Construction of Oscillatory Singularities

Alan D. Rendall

Abstract One way to understand more about spacetime singularities is to con-
struct solutions of the Einstein equations containing singularities with prescribed
properties. The heuristic ideas of the BKL picture suggest that oscillatory singu-
larities should be very common and give a detailed picture of how these could
look. The more straightforward case of singularities without oscillations is reviewed
and existing results on that subject are surveyed. Then recent theorems proving
the existence of spatially homogeneous solutions with oscillatory singularities of
a specific type are presented. The proofs of these involve applications of some ideas
concerning heteroclinic chains and their stability. Some necessary background from
the theory of dynamical systems is explained. Finally some directions in which this
research might be generalized in the future are pointed out.

1 Introduction

One of the characteristic features of general relativity is its prediction of space-
time singularities. These can already be observed in explicit solutions of the
Einstein equations such as the Schwarzschild solution and the Friedman—-Lemaitre—
Robertson—Walker (FLRW) solutions. These explicit solutions have a high degree
of symmetry. The question arose early whether the known singularities might be
artefacts of symmetry. The work of Lifshitz and Khalatnikov [13] supported this
idea. These authors made what they believed to be a general ansatz for the form
of the geometry near the singularity and found that it could not accommodate the
full number of free functions expected. They concluded that generic solutions of the
Einstein equations do not develop singularities. The result was heuristic in nature.
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The conclusions of [13] were shown to be invalid by the singularity theorems
of Penrose and Hawking [5]. In contrast to the arguments in [13] the results
of the singularity theorems were based on mathematical proofs. It was shown
that singularities occur for open sets of solutions of the Einstein equations. More
specifically, using the point of view of the initial value problem, they occur for the
solutions arising from open sets of initial data. This means that the occurrence of
singularities is stable in a certain precise sense. A positive feature of these theorems
is that the hypotheses are relatively weak. On the other hand the conclusions are also
relatively weak. What is proved is that the spacetimes to which the theorems apply
are geodesically incomplete. Very little is said about the nature of the singularities.
There is no information on whether the singularities are accompanied by large
energy densities or tidal forces, as might be expected on the basis of physical
intuition.

Later, Belinskii, Khalatnikov and Lifshitz (abbreviated in what follows by BKL)
presented a more detailed picture of spacetime singularities [3]. Their arguments
are heuristic. They are similar to the work of [13] with the important difference that
this time the ansatz used is more complicated, including oscillatory behaviour. This
allows the full number of free functions to be included. Some of the main assertions
belonging to the BKL picture are:

1. the solutions of the partial differential equations are approximated by solutions
of ordinary differential equations near the singularity

2. the approach to the singularity is oscillatory

3. solutions of the Einstein equations with matter are approximated by solutions of
the vacuum equations near the singularity

The solutions of the ordinary differential equations in point (1) correspond to
spatially homogeneous solutions of the Einstein equations. In the original work one
of the most general classes of spatially homogeneous solutions, the Bianchi type IX
solutions, played a central role. These solutions were also studied independently
at about the same time by Misner [14] who called them the Mixmaster model.
On the basis of heuristic and numerical work the conclusion was reached that these
solutions show a highly oscillatory behaviour near the singularity. This statement
is correct but, as will be discussed below, it took a long time to prove it. Here the
connection to point (2) above can be seen. Moreover, the oscillations are observed
in the vacuum case and this makes contact with point (3). From these remarks it
follows that if the BKL picture is correct then spatially homogeneous solutions of
the vacuum equations are very important in understanding singularities in solutions
of the Finstein equations without symmetries and with quite general matter. Note,
however, that after 40 years it is still not known whether the BKL picture is correct.
At least there have been many studies of solutions with symmetries which give good
agreement with the conclusions obtained by specializing the general BKL picture to
symmetric cases.

Since the general case is very complicated to treat it makes sense to start looking
for a better understanding of the question of the validity of the BKL picture by
concentrating on the spatially homogeneous case. This is especially true due to
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the fact that the wider significance of the homogeneous case is intimately related
to the main claims of the BKL picture. This leads to the study of certain systems
of ordinary differential equations. A concept from the theory of ODE which turns
out to be of particular relevance in this context is that of heteroclinic chains. They
will be discussed in Sect. 4. In special cases the dynamics near the singularity is
convergent rather than oscillatory and in this easier case there do exist results for
inhomogeneous spacetimes. Since these are relevant for the conceptual approach
used in the case of oscillatory asymptotics they will be discussed in Sect. 3. In order
to even define the concepts “monotone” and “oscillatory” being used it is necessary
to introduce some basic notation and terminology and this is the subject of Sect. 2.

2 Notation and Terminology

Let M be a four-dimensional manifold and g,s a Lorentzian metric on M. Let
S; be a foliation by spacelike hypersurfaces whose leaves are parametrized by ¢.
Let g.(¢) and k,,(¢) be the induced metric and the second fundamental form of
the leaves of the foliation. Define the Hubble parameter as H = —% g%k yp. Tt is
possible to do a 3 + 1 decomposition of the Einstein equations for the metric gqg
based on the foliation S; which brings in a lapse function and a shift vector. This
can of course be done in the presence of matter and also in a closely analogous way
in other dimensions.

Let A; be the eigenvalues of k,, with respect to g, i.e. the solutions of
kapXP = A gan X b for some vector X°. For a well-behaved foliation approaching
the singularity towards the past H > 0 in a neighbourhood of the singularity.
Hence the quantities p; = —A;/3H, the generalized Kasner exponents, are
well-defined functions of ¢ and x, where x denotes a point on one of the leaves
of the foliation. It follows from the definition that ), p; = 1 so that only two
of the p; are independent. The way in which different leaves are identified with
each other depends on the choice of the shift vector. Suppose that the limit 7 — 0
corresponds to the approach to a singularity. Fix a point xy, and consider the
functions p; (¢, xo). A function p; is said to be oscillatory near the singularity if
liminf, o p; (t) < limsup,_,, pi(¢). It is said to be convergent near the singularity
if liminf; o p; (t) = limsup,_,, p;i(¢), in other words if p; tends to a limit as
t — 0. Similar definitions can be made for other geometric quantities. Informally,
a singularity is said to be oscillatory or convergent if some important geometric
quantities have the corresponding properties. It is important that the quantities
concerned are dimensionless, since otherwise they could be expected to diverge as
the singularity is approached.

These definitions depend a lot on the choice of 3+1 decomposition. Things are
simpler in the case of spatially homogeneous spacetimes. There it is natural to
choose the foliation to consist of level hypersurfaces of a Gaussian time coordinate
based on a hypersurface of homogeneity. Then geometric quantities such as p;
depend only on ¢.
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3 The Convergent Case

Points (2) and (3) listed above as parts of the BKL picture are only supposed to hold
in this form with certain restrictions on the type of matter which is coupled to the
Einstein equations. Assuming the validity of point (1) this is directly related to the
behaviour of homogeneous models with that type of matter. Two related types of
matter which are known to be exceptional from this point of view are the scalar
field and the stiff fluid. Here we will concentrate on the second. Consider a perfect
fluid with linear equation of state p = (y — 1)p for a constant y. An extreme
case of this from the point of view of ordinary physics is y = 2. This is the stiff
fluid where the velocity of sound of the fluid 4/y — 1 is equal to the velocity of light.
(We use geometrical units.) It is also possible to consider ultrastiff fluids with y > 2.
These very exotic matter models have been considered in certain scenarios for the
early universe. According to the BKL picture the generalized Kasner exponents in
a general spatially homogeneous solution of the Einstein—Euler equations with a
linear equation of state are oscillatory near the singularity in the case 1 < y <
2 and convergent for 2 < y. (The case y < 1 will not be considered in what
follows.) In fact for y > 2 the p; all converge to the limit % These limiting values
agree with the values of these quantities in the FLRW solutions and correspond to
isotropization. In the case y = 2, on the other hand, the p; may converge to different
limits in different solutions and at different spatial points in a single inhomogeneous
solution.

What kind of mathematical results could count as a rigorous version of these
expectations? It would be desirable to prove that an open neighbourhood with
respect to some reasonable topology of the FLRW data leads to solutions which have
the predicted asymptotics. This may be called a forwards result since it goes from
the data to the asymptotics. Unfortunately this kind of result is hard to obtain. What
is sometimes easier is to get a backwards result which goes from the asymptotics
to the solution. The solutions with the predicted asymptotics can be parametrized
by certain free functions. (Here we ignore complications arising from the Einstein
constraints.) Call these functions the asymptotic data. The idea is then to ask
whether for asymptotic data belonging to a large class there exists a solution with
the correct asymptotics and exactly those free functions. A theorem of this kind
was proved for stiff fluids in [1] and for ultrastiff fluids in [6]. In this work the
notion of “large class” was defined to mean containing as many free functions as
the general solution. It was only proved in the case that these functions are analytic
(C®). Until very recently the forwards problem was unsolved, even in the stiff case,
but a theorem of this kind has been announced by Rodnianski and Speck [20].

For comparison it is of interest to quote what is known in a case with symmetry,
that of the Gowdy solutions. Note that for the Gowdy solutions the BKL picture
does not predict oscillations and indeed none are found. In this case the backwards
problem was solved in [7] for the analytic case and in [16] for the smooth case. The
forwards problem for Gowdy was solved in [19]. The aim of this section was to
exhibit the backwards problem as a route to obtaining rigorous results and to show
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that at least in some cases it can open the way to obtaining results of the type which
are most desirable.

Just as some matter models such as the stiff fluid can suppress oscillations others
can stimulate them. For instance a Maxwell field can produce BKL type oscillations
within Bianchi types where there are no oscillations in the vacuum case. An example
is discussed in Sect. 6. The BKL picture can be applied in higher dimensions and
gives different results in that case. It says, for instance, that in the case of the Einstein
vacuum equations generic oscillations disappear when the spacetime dimension is
at least eleven but are present in all lower dimensions. The higher dimensional
models come up in the context of string theory and there it is typical that there
are other matter fields present. There is the dilaton which, as a scalar field, tends
to suppress oscillations and the p-forms which, as generalizations of the Maxwell
field, encourage them. Many of the conclusions of the heuristic analysis which lead
to the conclusion that the singularity is convergent can be made rigorous using
techniques generalizing those of [1]. For more information on this the reader is
referred to [4]. To conclude it should be noted that there is not a single rigorous
result which treats solutions which are both inhomogeneous and oscillatory.

4 Heteroclinic Chains

Consider a system of k ordinary differential equations. This can be thought of as
being defined by a vector field defined on an open subset of R*, a geometrical for-
mulation which corresponds to the point of view of dynamical systems. A stationary
(i.e. time-independent) solution of the ODE system corresponds to a fixed point of
the vector field. A solution of the ODE system which is time-dependent corresponds
to an integral curve of the vector field, an orbit of the dynamical system. An orbit
which tends to a stationary solution p as ¢t — —oo and a stationary point ¢ # p as
t — +o0 is called a heteroclinic orbit. An orbit which tends to p as ¢ — —oo and
as t — +o00, but is not itself stationary, is called a homoclinic orbit.

Suppose now that p; is a sequence of points, finite or infinite, such that for
each i there is a heteroclinic orbit from p; to p;+;. This configuration is called
a heteroclinic chain. If the chain is finite and comes back to its starting point then
it is called a heteroclinic cycle. It turns out that homoclinic orbits and heteroclinic
cycles are not robust in the sense that a sufficiently general small perturbation of the
vector field will destroy them. It is therefore perhaps surprising that they are found
in models for many phenomena in nature. Given that all physical measurements
only have finite precision it seems difficult to be able to rule out small perturbations
in mathematical models for real phenomena. The answer to this question appears
to be that there is some absolute element in the system whose presence is not
subject to uncertainty and which therefore cannot be perturbed. In the case of
spacetime singularities it is the singularity itself which appears to play this role.
These considerations are admittedly rather vague and it would be desirable to
understand issues of this type more precisely. In any case, heteroclinic cycles do
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seem to be widespread in models for the dynamics of solutions of the Einstein
equations near their singularities.

Coming back to more general dynamical systems, it is of interest to have criteria
for the stability properties of heteroclinic chains. In other words, the aim is to
find out under what conditions solutions which start close to a heteroclinic chain
approach it as t+ — o00. The case of most interest is not that where a solution
approaches one of the stationary points belonging to the heteroclinic chain (call
them vertices) but the case where the solution follows successive heteroclinic orbits
within the chain. When the chain is a cycle this means that the solutions exhibit
oscillatory behaviour, repeatedly approaching the vertices of the cycle. In the next
section it is shown that this is exactly what happens in the context of the BKL
picture.

A solution which is converging to a heteroclinic chain spends most of its time
near the vertices. Since the vector field vanishes at the vertices it is small near them
and the solution moves slowly there. This suggests that the behaviour of the solution
while it is near the vertices could have strong influence on the stability of the cycle.
A way of studying the local flow near a vertex is to linearize there and examine the
eigenvalues of the linearization. It turns out that this can give valuable information
about the stability of the cycle.

5 Bianchi Models

A spatially homogeneous solution of the Einstein equations is one which admits a
symmetry group whose orbits are spacelike hypersurfaces. The only case where the
group cannot be assumed to be three-dimensional is the class of Kantowski—Sachs
spacetimes. They are not discussed further in this paper. All the rest are the Bianchi
models. In that case it can be assumed without loss of generality that the spatial
manifold is simply connected and then it can be identified with the Lie group itself.
The reason for this is that the dynamics on the universal covering manifold is the
same as that on the original manifold. Thus in Bianchi models it can be assumed that
M = I x G where [ is an interval and G is a simply connected three-dimensional
Lie group. These Lie groups are in one to one correspondence with their Lie algebras
and the three-dimensional Lie algebras were classified by Bianchi into types I-1X.
The metric can be written in the form

—dr + ) gi (0" ® 6 (1

where 6’ is a basis of left invariant one-forms on G. Let ¢; be the dual basis of vector
fields. The evolution equations depend on the Lie group chosen through the structure
constants defined by [e;, e;] = cf‘j ex. It is customary to distinguish between Class

A models where clk‘ = 0 and Class B models which are the rest.
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There are many ways in which the evolution equations for Bianchi models can
be written as a system of ordinary differential equations. Consider for simplicity
the vacuum models of Class A. In that case it can be shown that there is a basis
of the Lie algebra with the property that diagonal initial data give rise to diagonal
solutions. This is still true when the matter is described by a perfect fluid but it does
not hold for general matter. A form of the equations for Class A models which has
turned out to be particularly useful for proving theorems is the Wainwright—Hsu
system [21]. The basic variables are called X', ¥_, Ni, N,, N3. The first two are
certain linear combinations of the generalized Kasner exponents. The quantity N,

is given in the Bianchi type IX case by % % and the other two N; are related

to this by cyclic permutations. The Gaussian time coordinate ¢ is replaced by a
coordinate t which satisfies % = H. In this time coordinate the singularity is
approached as 7 — —oo. Two important related features of this system is that
the variables are dimensionless and that their evolution equations form a closed
system, not depending on H. They must satisfy one algebraic condition which is
the Hamiltonian constraint in the 34-1 formalism. There results a four-dimensional
dynamical system. Stationary solutions of this system correspond to self-similar
spacetimes. When a solution of the Wainwright—Hsu system is given the quantities
H and ¢ can be determined by integration.

The different Bianchi types are represented by subsets of the state space of the
Wainwright—Hsu system where the N; have certain combinations of signs (positive,
negative or zero). The simplest Bianchi type is Bianchi type I, the Abelian Lie
algebra. The vacuum solutions of this type are the Kasner solutions. They are
self-similar and form a circle in the state space, the Kasner circle JZ". Let 7 be
the equilateral triangle circumscribing the Kasner circle which is symmetric under
reversal of X_. It is tangential to % at three points 7;, the Taub points. They
correspond to flat spacetimes. Each solution of Bianchi type II is a heteroclinic
orbit joining two Kasner solutions. Its projection to the (X4, X_)-plane is a straight
line which passes through a corner of .7. Concatenating Bianchi type II solutions
gives rise to many heteroclinic chains. Given a point of #~ which is not one of
the Taub points consider the straight line joining it to the closest corner of the
triangle 7. The part of this straight line inside .# is the projection of an orbit
of type II and it intersects % in exactly one other point. In this way it is possible
to define a continuous map from £ to itself, the BKL map. (The map is defined
to be the identity at the Taub points.) The two most general Bianchi types of Class
A are type VIII and type IX, corresponding to the Lie algebras s/(2, R) and su(2).
As already mentioned BKL concentrated on type IX. Type VIII shows many of the
same features but may be even more complicated.

When specialized to the Bianchi Class A case the BKL picture suggests that as
the singularity is approached in a Bianchi type IX solution the dynamics should
be approximated by a heteroclinic chain of Bianchi type II solutions, successive
vertices of which are generated by the BKL map. In particular the solution is
oscillatory in the sense that the «-limit set of a solution of this kind should consist
of more than one point. (The «-limit set consists of those points x such there
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is a sequence of times tending to —oo along which the value of the solution
converges to x.) In fact there should be three non-collinear points in the «-limit
set. This implies that both ¥, and X_ are oscillatory in the approach to the
singularity. This statement about the «-limit set was proved in fundamental work
of Ringstrom [17]. He showed that there are at least three non-Taub points in the
a-limit set of a generic Bianchi IX solution. (He also described the exceptions
explicitly.) In addition Ringstrom showed that the entire «-limit set of a Bianchi
type IX solution is contained in the union of the points of type I and II [18]. This
means that in some sense the type IX solution is approximated by solutions of types
I and II. The question of whether the corresponding statement holds for solutions of
Bianchi type VI is still open.

After the results just discussed it still took a long time before theorems about
convergence to heteroclinic cycles were published. There is a heteroclinic cycle
of Bianchi II solutions which comes back to its starting point after three steps.
Let us call this particularly simple example “the triangle”. It turns out that there
is a codimension one manifold with the property that any Bianchi type IX solution
which starts on this manifold converges to the triangle in the past time direction [11].
This result extends to a much larger class of heteroclinic chains generated by
iterating the BKL map. The essential condition is that the vertices of the chain
should remain outside an open neighborhood of the Taub points. The manifold
constructed in [11], which may referred to as the unstable manifold of the triangle
(unstable towards the future and hence stable towards the past), is only proved
to be Lipschitz continuous. An alternative approach to this problem was given
in [2]. It has the advantage that the stable manifold is shown to be continuously
differentiable. On the other hand it cannot treat all the heteroclinic chains covered
by the results of [11]. In particular, it does not cover heteroclinic cycles such as
the triangle. The reason for this restriction is the need to avoid resonances, certain
linear relations between the eigenvalues with integer coefficients. When this extra
condition is satisfied it can be shown, using a theorem of Takens, that the flow near
any vertex of the chain is equivalent to the linearized flow by a diffeomorphism.
Some investigations of the case of chains which may approach the Taub points have
been carried out in [15].

6 Construction of Solutions Converging to the Triangle

The construction of Bianchi type IX solutions converging to heteroclinic chains
of Bianchi type II solutions in the approach to the initial singularity will be
illustrated by the case of the triangle. The scenario being considered here is related
to that described for more general dynamical systems in Sect. 4 by time reversal.
As indicated in Sect. 4 the stability of heteroclinic chains is related to the eigenvalues
of the linearization about the vertices. Since a vertex of the triangle lies on the
Kasner circle and %~ consists of stationary points the linearization automatically
has a zero eigenvalue. Of the three other eigenvalues one is negative, call it —u, and
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two are positive, call them A; and A,. The two positive eigenvalues are distinct and
we adopt the convention that A; < A,. The eigendirection corresponding to A; is
tangent to the triangle. The proofs of [11] are dependent on the fact that p is smaller
than both positive eigenvalues.

A solution which converges to the triangle repeatedly passes the vertices.
Consider a point on the triangle which is close to a vertex and on an orbit
approaching it. Let S be a manifold passing through the point which is transverse
to the heteroclinic orbit. Call this an incoming section. Similarly we can consider
an outgoing section close to the vertex and passing through the orbit leaving it.
A solution which starts on the incoming section sufficiently close to the heteroclinic
cycle also intersects the outgoing section. Taking the first point of intersection
defines a local mapping from the incoming section to the outgoing section, the local
passage. There is a similar local mapping from the outgoing section of one vertex to
the incoming section of the next in the cycle. This is called an excursion. Composing
three passages and three excursions gives a mapping from the incoming section of a
vertex to itself. It is important for the proof of [11] that this mapping is Lipschitz and
that by restricting the domain of the mapping to a small enough neighbourhood of
the triangle the Lipschitz constant can be made as small as desired. The norm used
to define the Lipschitz property is that determined by the flat metric dx? + dy? + dz?,
where (x, y,z) are some regular coordinates on the section. The mapping from a
small local section to itself is a contraction. The excursions are expanding mappings
but the expansion factor is bounded. The passages are contractions which can
be made arbitrarily strong and which can therefore dominate the effect of the
excursions. Once the contraction has been obtained the manifold being sought can
be constructed in a similar way to the stable manifold of a stationary solution.

A system similar to the Wainwright—Hsu system can be obtained for solutions
of Bianchi type VI, with a magnetic field [10]. It also includes certain solutions
of Bianchi types I and II with magnetic fields and the vacuum solutions of types
I, I and V. It uses variables Y and X_ which have the same geometrical
interpretation as in the vacuum case. The Kasner circle can be considered as a
subset of the state space for the magnetic system. It has been proved that solutions
of this system are oscillatory [22]. There are two families of heteroclinic orbits
defined by vacuum solutions of type II. The third family in the vacuum case is
replaced by heteroclinic orbits defined by Bianchi type I solutions with magnetic
field. The projections of these heteroclinic orbits onto the (X4, X_)-plane are the
same straight lines as are obtained from heteroclinic orbits in the vacuum case.
Thus the exactly the same heteroclinic chains are present. However their stability
properties might be different. Now the stability of the triangle will be considered in
the case with magnetic field, following [12]. The result is very similar to that in the
vacuum case—there is a one-dimensional unstable manifold—but the proof is a lot
more subtle. The reason that the method of proof of [11] does not apply directly is
that the eigenvalue configuration is different. Compared to the vacuum case one of
the eigenvalues is halved. Then it can happen that the negative eigenvalue is larger
in modulus than one of the positive eigenvalues.
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A problem which results from the different eigenvalue configuration is that the
return map is no longer Lipschitz. More precisely it no longer has this property with
respect to the Euclidean metric x> + dy2 + d7?. Tt does, however, have the desired

Li hi . . s ox24+y? 50 x24y2 ;2 2
ipschitz property with respect to the singular metric —5—dx” + % dy” 4+ dz
and this observation allows the proof of [11] to be generalized to the case with
magnetic field. It is important to know that the properties of eigenvalues and
eigenvectors alone are not enough to make this proof work. It is also necessary to
use the existence of certain invariant manifolds which follows form the geometric
background of the problem. At this point it is necessary to remember that we are not
just dealing with a heteroclinic cycle in an arbitrary dynamical system but with one
in a system with very special properties.

It turns out that the difficulties just discussed can be avoided by a clever but
elementary device which comes down to replacing the variable representing the
magnetic field by its square. Although this provides a very simple way of studying
the heteroclinic chains in the Bianchi VIy model with magnetic field it cannot
be expected that this kind of trick will apply to more general matter models. By
contrast the new method is potentially much more generally applicable. There is
one case where it is already known to give new results, as will now be explained.
In addition to the results obtained on vacuum models results on models with a
perfect fluid with linear equation of state p = (y — 1)p were obtained in [11].
It turns out, however, that the techniques of [11] only work under an assumption
on y which has no physical interpretation. In the case of the triangle the condition
isy < # ~ 1.38. For other chains other inequalities are obtained. These arise
because the linearization has another positive eigenvalue coming from the fluid and
it must be ensured that this eigenvalue is greater than p. With the method of [12]
this restriction can be replaced by the inequality y < 2, saying that the speed of
sound in the fluid is smaller than the speed of light.

7 Future Challenges

This section discusses some directions in which the known results on the construc-
tion of oscillatory singularities might be extended in the future. There are dynamical
systems describing Bianchi models of types I and II with magnetic fields which are
not just special cases of those included in the system describing models of type VI,
[8,9]. The reason for this is that the Maxwell constraints become less restrictive in
the more special Bianchi types. It is possible to choose the basis so that the magnetic
field only has one non-vanishing component but the price to be payed is that the
metric becomes non-diagonal in that basis. In the dynamical systems describing
solutions of types I and II the already familiar heteroclinic chains are still found.
There are, however, additional heteroclinic orbits corresponding to the off-diagonal
elements of the metric. This means that, in contrast to the models analysed up to
now, the stable manifold of a point on the Kasner circle may be of dimension greater
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than one. This means that when it is desired to continue a heteroclinic chain towards
the past there is not a unique choice any more. New ideas are required to solve this
type of problem.

Similar difficulties are met in Bianchi models of Class B. There it is believed on
the basis of heuristic considerations that there is precisely one type, VI_ 1s which
shows oscillatory behaviour similar to that found in types VIII and IX. There are
no rigorous results on Class B comparable to the results of Ringstrom on models
of Class A. In this case too the stable manifold of a Kasner solution may have
dimension greater than one. It can also not be expected that invariant manifolds of
the type exploited in [12] will exist.

Perhaps the most exciting challenge in this field is to construct inhomogeneous
spacetimes with oscillatory singularities. The simplest class of inhomogeneous
vacuum spacetimes where oscillations are expected are the T2 models. These
have a two-dimensional isometry group acting on spacelike hypersurfaces and
so are effectively inhomogeneous in just one space dimension. They include
the Gowdy spacetimes as a subset but it is believed that generic T2-symmetric
vacuum spacetimes have a much more complicated oscillatory behaviour near the
singularity. The models of Bianchi type VI_ 1 are locally isometric to 7> models
but not locally isometric to Gowdy models. Thus understanding more about Bianchi
models of Class B appears a very natural first step towards a better understanding of
the inhomogeneous case.

References

1. Andersson, L. and Rendall, A. D.: Quiescent cosmological singularities. Commun. Math. Phys.
218, 479-511 (2001).
2. Béguin, F.: Aperiodic oscillatory asymptotic behaviour for some Bianchi spacetimes. Class.
Quantum Grav. 27, 185005 (2010).
3. Belinskii, V. A., Khalatnikov, I. M. and Lifshitz, E. M.: Oscillatory approach to a singular point
in the relativistic cosmology. Adv. Phys. 19, 525-573 (1970).
4. Damour, T., Henneaux, M., Rendall, A. D. and Weaver, M.: Kasner-like behaviour for
subcritical Einstein—matter systems. Ann. H. Poincaré 3, 1049-1111 (2002).
5. Hawking, S. W. and Ellis, G. F. R. The large scale structure of space-time. Cambridge
University Press. Cambridge (1973).
6. Heinzle, J. M. and Sandin, P.: The initial singularity of ultrastiff perfect fluid spacetimes
without symmetries. Commun. Math. Phys. 313, 385-403 (2012).
7. Kichenassamy, S. and Rendall, A. D.: Analytic description of singularities in Gowdy space-
times. Class. Quantum Grav. 15, 1339-1355 (1998).
8. Leblanc, V. G.: Asymptotic states of magnetic Bianchi I cosmologies. Class. Quantum Grav.
14, 2281-2301 (1997).
9. Leblanc, V. G.: Bianchi Il magnetic cosmologies. Class. Quantum Grav. 15, 1607-1626 (1998).
10. Leblanc, V. G., Kerr, D. and Wainwright, J.: Asymptotic states of magnetic Bianchi VI,
cosmologies. Class. Quantum Grav. 12, 513-541 (1995).
11. Liebscher, S., Harterich, J., Webster, K. and Georgi, M.: Ancient dynamics in Bianchi models:
approach to periodic cycles. Commun. Math. Phys. 305, 59-83 (2011).



106 A.D. Rendall

12. Liebscher, S., Rendall, A. D. and Tchapnda, S. B.: Oscillatory singularities in Bianchi models
with magnetic fields. Preprint arXiv:1207.2655 (2012).

13. Lifshitz, E. M. and Khalatnikov, I. M.: Investigations in relativistic cosmology. Adv. Phys. 12,
185-249 (1963).

14. Misner, C. W.: Mixmaster universe. Phys. Rev. 22, 1071-1074 (1969).

15. Reiterer, M. and Trubowitz, E.: The BKL conjectures for spatially homogeneous spacetimes.
Preprint arXiv:1005.4908 (2010).

16. Rendall, A. D.: Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity.
Class. Quantum Grav. 17, 3305-3316 (2000).

17. Ringstrom, H.: Curvature blow up in Bianchi VIII and IX vacuum spacetimes. Class. Quantum
Grav. 17, 713-731 (2000).

18. Ringstrom, H.: The Bianchi IX attractor. Ann. H. Poincaré 2, 405-500 (2001).

19. Ringstrom, H.: Asymptotic expansions close to the singularity in Gowdy spacetimes. Class.
Quantum Grav. 21, S305-S322 (2004).

20. Rodnianski, I. and Speck, J.: Talk at Oberwolfach, August 2012.

21. Wainwright, J. and Hsu, L.: A dynamical systems approach to Bianchi cosmologies: orthogonal
models of class A. Class. Quantum Grav. 6, 1409-1431 (1989).

22. Weaver, M.: Dynamics of magnetic Bianchi type VI, cosmologies. Class. Quantum Grav. 17,
421-434 (2000).



2 Springer
http://www.springer.com/978-3-642-40156-5

Progress in Mathematical Relativity, Gravitation and
Cosmology

Proceedings of the Spanish Relativity Meeting ERE2012,
University of Minho, Guimaraes, Portugal, September
3-7, 2012

Garcia-Parrado, 4., Mena, F.C.; Moura, F.; WVaz, E. (Eds.)
2014, X0, 485 p. 68 illus., 55 illus. in color.,
Hardcover

ISBM: 978-3-642-40156-5



	Construction of Oscillatory Singularities
	1 Introduction
	2 Notation and Terminology
	3 The Convergent Case
	4 Heteroclinic Chains
	5 Bianchi Models
	6 Construction of Solutions Converging to the Triangle
	7 Future Challenges
	References


