
The Sequence Reconstruction Problem

Angela Angeleska, Sabrina Kleessen, and Zoran Nikoloski

Abstract Despite recent advances, assembly of genomes from the high-throughput
data generated by the next-generation sequencing (NGS) technologies remains one
of the most challenging tasks in modern biology. Here we address the sequence
reconstruction problem, whereby, for a given collection of subsequences or factors,
one has to determine the set of sequences compliant with the collection. First,
we give a brief review of sequencing technologies, along with an exposition of
the advantages and shortcomings of the existing algorithmic approaches to sequence
assembly. In addition, we enumerate some properties of subsequences, which
have been overlooked in the existing heuristic solutions despite their effect on
the quality of the assembly. We then give an overview of the sequence reconstruction
problem from a language-theoretic perspective, and present a comprehensive review
of theoretical results that may prove relevant to the genome assembly problem.
Finally, we outline a new optimization-based formulation which casts the sequence
reconstruction problem as a quadratic integer programming problem.

1 Introduction

Next-generation sequencing (NGS) technologies of ever-increasing quality offer
the possibility to use the plethora of sequence data that results from them to
assemble whole genomes. Currently, tremendous amounts of time, money, and
computational resources are being invested in genome sequencing. The existing

A. Angeleska (�)
The University of Tampa, Tampa, FL, USA
e-mail: aangeleska@ut.edu

S. Kleessen � Z. Nikoloski
Systems Biology and Mathematical Modeling Group, Max Planck Institute for Molecular Plant
Physiology – Golm, Potsdam, Germany
e-mail: Kleessen@mpimp-golm.mpg.de; Nikoloski@mpimp-golm.mpg.de

N. Jonoska and M. Saito (eds.), Discrete and Topological Models in Molecular Biology,
Natural Computing Series, DOI 10.1007/978-3-642-40193-0__2,

23

© Springer-Verlag Berlin Heidelberg 2014

mailto:aangeleska@ut.edu
mailto:Kleessen@mpimp-golm.mpg.de
mailto:Nikoloski@mpimp-golm.mpg.de

24 A. Angeleska et al.

NGS technologies cannot be used to sequence entire genomes at once; in fact, only
short reads (i.e., substrings) are sequenced, and these must then be assembled to
form the original genome. The resulting reads differ in length, depending on the
technology used. To increase the coverage, the genome to be investigated is first
copied several times. These copies are broken up randomly into fragments, which
are then sequenced to produce reads. The aim of genome assembly is then to obtain
the entire genome sequence with the help of the overlaps of all the reads while taking
into account the particularities of the NGS technology used.

The contribution of this chapter is threefold: (1) to provide a brief review and
history of existing methods for genome assembly, while critically comparing and
contrasting them with existing results from language theory; (2) to offer a source
for interdisciplinary understanding of the genome assembly problem, by presenting
a comprehensive overview of the relevant mathematical results and pointing out
problems where mathematical endeavor may improve the existing solutions; and
(3) to formulate an optimization-based approach that provides a different framework
for the problem at hand.

2 A Brief Review of Sequencing Technologies

In this section, we present a short background on DNA and whole-genome
sequencing. In addition, we present a brief historical overview of the commonly
used sequencing technologies, including their advantages and drawbacks. For a
detailed review of next-generation sequencing technologies, we refer the reader
to [16].

2.1 The Basics of Sequencing

DNA sequencing is a process used to determine the order of nucleotides (adenine,
A; guanine, G; cytosine, C; and thymine, T) in a strand of a DNA molecule.
Knowing exact DNA sequences is necessary for research in molecular biology, and
such knowledge has resulted in numerous breakthrough applications in medicine,
forensics, and other fields. The process of DNA sequencing of the full genome of an
organism is referred to as complete or whole-genome sequencing. Whole-genome
sequencing includes the sequencing of chromosomal, mitochondrial, and (in plants)
chloroplast DNA.

Owing to the limited power of even the most modern technologies, a whole
genome or a long DNA strand cannot be sequenced affordably as a whole piece
in a reasonable time and with the desired quality. Therefore, most of the existing
techniques shatter the molecule into millions of smaller pieces (anywhere between
20 and 2,000 bp), amplify each of them by the polymerase chain reaction (PCR),
and then run them through sequencers. The resulting “small” DNA sequences are
called reads, and are then assembled into longer segments and, eventually, genomes.

The Sequence Reconstruction Problem 25

This process is known as genome assembly and is performed by the use of various
algorithms known as assembly algorithms (with their respective implementations
referred to as assemblers).

The sequencing can be de novo, where new sequences are assembled without
a reference sequence, or mapping-based, where the method relies on a reference
sequence. There are two types of assembly strategies, depending on the type of
sequencing. In the de novo assembly approach, sequence reads are compared
with each other, and then assembled into longer segments called contigs by using
the overlaps of the sequences. The reference-based assembly approach involves
mapping each read to a reference genome sequence [27].

To ensure that all nucleotides from the sequenced DNA are read, the sequencing
process must have a certain depth. The average number of reads that contain a given
nucleotide is called the sequencing coverage or the depth. It is denoted by C , and
can be calculated from C D NL=G, where N is the total number of reads, L is
the average read length, and G is the size of the whole genome. A higher-depth
sequencing provides greater accuracy of the assembly [25].

2.2 The History of Sequencing Technologies

The ultimate goal of the genome sequencing and assembly process is to correctly
determine the complete genome sequence of an organism and to characterize and
annotate the protein-coding genes.

An understanding of organismal genomes is expected to revolutionize molecular
medicine, pharmaceutics, and environmental studies [11]. The first genome to be
completely sequenced was bacterial, and this was done in 1995 [8]. The human
genome was sequenced de novo in the Human Genome Project, which started in
1990, and was completed in 2003. The total cost of the project has been estimated at
$3 billion [38]. To illustrate the advancement of genome assembly techniques since
then, we may mention that at the beginning of 2012, Life Technologies announced
a sequencer designed to sequence an individual human genome in 1 day for a cost
of $1;000 [9]. Despite the fact that the latter example is not de novo sequencing, it
shows a significant improvement in sequencing technologies, leading to a decrease
in the time invested and the cost.

Historically, sequencing technologies can be divided into several categories.
Before 1980, the sequencing procedure was performed manually [1]. Then, the
Sanger sequencing method was adopted in laboratories around the world and
was the prevalent method used for two decades. The capillary sequencer machine
incorporated Sanger’s sequencing method, for which Sanger won a Nobel Prize in
1980 [32]. This method was the main method used in the Human Genome Project.

The “Next-generation sequencing” (NGS) technologies are widely used today.
Some of the sequencing methods commonly used are based on the Roche/454,
Illumina, and SOLiD platforms [24]. More details of these platforms can be found
in recent reviews [19, 31].

26 A. Angeleska et al.

The Illumina reads are 50–150 bp long with up to six billion reads per run,
where as 454 can manage 400 bp but with lower throughput. Therefore, these
technologies are fast and cheap, and have relatively high coverage depth. Current
second-generation sequencing technologies produce read lengths ranging from 35
to 400 bp. The shortcomings of the NGS technologies are short reads and high data
volume, which often lead to difficulties in assembly. Correct assembly and mapping
are computationally challenging, as short segments create ambiguities in alignment
and in genome assembly, which, in turn, can produce errors when the results are
interpreted.

Recently, new technologies such as “single-molecule real-time technology”
(SMRT) and the nanopore sequencing method [19] have been proposed. The
general characteristics of these methods are a shorter DNA preparation time before
sequencing, capturing the nucleotide signal in real time, and longer reads. The error
rates of single-molecule reads are high (less than 85 % nucleotide accuracy). To
overcome this problem, a new hybrid method that combines these technologies with
NGS and yields very good accuracy for long reads has been developed [14].

3 Three Categories of Assembly Algorithms

Although NGS technologies provide the possibility of fast and cheap sequencing,
they result in a computationally challenging assembly problem. There are three
basic approaches to designing assembly algorithms: the greedy-algorithm approach;
overlap–layout–consensus methods, relying on overlap graphs; and de Bruijn
methods, based on de Bruijn graphs.

3.1 Greedy Assembly

Two reads are considered to overlap if a prefix of one nucleotide sequence is the
same as or very similar to a suffix of the other. The quality of an overlap is quantified
by the size of the overlapping sequence and the percentage of matching base pairs
in the overlapping region. All of the greedy assemblers use a variant of the greedy-
algorithm approach. Some of greedy algorithms start by iteratively joining the reads
with the best overlaps, forming multiple contigs. Others extend a given read to a
contig by consecutively attaching the read that has the best overlap with the previous
one. This is performed at both the 30 and the 50 end of the read until no further
extensions are possible. An unassembled read is then chosen to be the start of a
new contig. In this selection process, priority is given to reads of better quality. The
greedy approach was first used on Sanger data sets by assemblers such as TIGR
[35] and CAP3 [10]; a second approach was more recently applied to short-read
data assemblers (e.g., SSAKE [37], VCAKE [13], and SHARCGS [5]).

The Sequence Reconstruction Problem 27

AATGC
CTGGA

GATG
TGCCTG

1

2

3

4

1

2

3

4

1

4
2

3

(I) correct assembbly

(II) mis-assembly

AATGC
TGCCTG CTGGA

GATG AATGC
TGCCTG

CTGGA
GATG

Genome: AATGCTGGATGCCTG
Reads: 1. AATGC,

2.CTGGA,
3.GATG,
4.TGCCTG

Fig. 1 Genome misassembly by greedy algorithm. (I) A small genome is to be assembled from
four reads, labeled 1, 2, 3, and 4. The correct assembly is 1–2–3–4. (II) The greedy algorithm
assembles 1 and 4 first, since they have the best overlap, of three nucleotides, and then 2 and 3 are
assembled. As a result, the misassembled genome 1–4–2–3 is obtained

These assembly algorithms, like every other greedy algorithm, aim at determin-
ing the optimal global assembly by finding locally optimal assemblies at each step.
This is a simple assembly strategy and very easy to implement, but it does not
necessarily result in the optimal solution. In addition, a greedy assembly might also
lead a misassembly, as illustrated in Fig. 1.

3.2 Overlap–Layout–Consensus Assembly

The overlap–layout–consensus (OLC) assembly approach is graph-based. A graph
is a structure composed of a set of vertices connected by edges. If the edges are
directed, the graph is called directed. If a vertex u is an endpoint of an edge e, we
say that e is an incident edge on u. A path in a graph is an alternating sequence of
vertices and edges u1; e1; u2; e2; : : : ; ek�1; uk such that each edge ei in the sequence
is incident on both ui and uiC1. A Hamiltonian path is a path that visits every vertex
of the graph exactly once. Examples of a graph, a path, and a Hamiltonian path are
given in Fig. 2 (I), (II), and (III), respectively.

The assembly of a genome by the OLC approach method can be seen as a
mathematical problem of finding a Hamiltonian path in a directed graph. The
graph structure used by OLC assemblers is called an overlap graph. The vertices
of the overlap graph represent the reads, so that the graph has as many vertices as
there are reads. The first (overlap) step in an OLC assembly is the identification
of overlapping reads by pairwise comparison. The second (layout) step is the
construction of the graph, such that two vertices are connected with an edge if
the corresponding reads overlap. The direction of the edge is from the vertex
that contains the overlap as a suffix towards the vertex that contains the overlap
as a prefix. Each path in such a graph constructed in this way corresponds to
an assembled contig, and each Hamiltonian path corresponds to a completely

28 A. Angeleska et al.

u1

u2

u3

u4u5

u1

u2

u3

u4u5

u1

u2

u4u5

e1

e2

e3

e4

e1

e4

e5

e6

(I) (II) (III)

u3

Fig. 2 (I) A directed graph with five vertices, labeled u1; u2; u3; u4; u5. (II) The alternating
sequence of vertices and edges u1e1u2e2u5e3u4e4u5 is a path. (III) The alternating sequence of
vertices and edges u1e1u2e5u4e4u5e6u3 is a Hamiltonian path

Genome: AATGCTGGATGCCTA

reads: 1. AATGC, 2. TGCTG, 3. CTGGA,
4. GGATG, 5. ATGCC, 6. GCCTA

u1

u2

u3

u4

u5

u6

Fig. 3 Overlap graph. The graph corresponds to the overlap graph of the sequence used in
Example 1

assembled genome. Finding a Hamiltonian path is then the third step in the process.
A simplified example to illustrate the OLC assembly process is given in Fig. 3.

Example 1. This example refers to the overlap graph shown in Fig. 3. A small
genome � D AATGCTGGATGCCTA is to be assembled from reads 1, 2, 3, 4, 5, and
6. Each vertex of the graph corresponds to a read. Two vertices are connected by a
directed edge if the corresponding reads have an overlap of at least two nucleotides.
There is a Hamiltonian path 1–2–3–4–5–6 in the overlap graph. By listing the reads
corresponding to each vertex on this path (including only a single copy of each
overlap) in consecutive order as they appear in the path, one obtains the assembled
genome.

Two well-known assemblers that use the OLC method are Newbler [22] and
Celera Assembler [26]. The OLC assembly method is exact, and therefore more
accurate than the greedy approach. However, finding Hamiltonian paths in a graph
is, in general, an NP-hard problem, for which there exists no efficient algorithm.
It should also be pointed out that the resulting graphs include millions of vertices,
so even efficient heuristics need to scale linearly with the order and size of the
graph. Therefore, this approach might be convenient for smaller number of reads
(i.e., larger read lengths). As the reads become shorter, as in the case of NGS data,
the use of OLC assembly techniques becomes prohibitive. Some of the difficulties
can be resolved by considering Eulerian instead of Hamiltonian paths and creating
de Bruijn instead of overlap graphs, as discussed in the following section.

The Sequence Reconstruction Problem 29

u1

u2

u3

u4u5

e1

e2

e3

e4

e5

e6

e7

e8

Fig. 4 Eulerian path. The
sequence u1e1u2e2u4e3u5e4u4e5u2e6u5e7u3e8u1

is an Eulerian path in the
graph

3.3 De Bruijn Assembly

De Bruijn graphs were introduced in the 1940s by the Dutch mathematician
Nicholas Govert de Bruijn long before their application in genome assembly. De
Bruijn was interested in the following “string reconstruction problem”: Find the
shortest superstring that contains as substrings all possible strings of a given length k

over an arbitrary alphabet. He solved the problem by encoding it in directed graphs,
later known as de Bruijn graphs.

For every sequence of length k � 1, there is a vertex in the de Bruijn graph. Two
vertices u1 and u2 are connected by an edge directed from u1 to u2 if there is a k-mer
that has the .k � 1/-mer u1 as its prefix and the .k � 1/-mer u2 as its suffix. The
k-mer composed of u1 and u2 is the label of the edge connecting them. Therefore,
traversing each edge in the graph yields a path whose edge labels give the smallest
sequence that has all possible k-mers as subsequences.

A path that contains every edge of the graph exactly once is called an Eulerian
path. Hence, finding an Eulerian path in the de Bruijn graph solves the sequence
reconstruction problem. An example of an Eulerian path is depicted in Fig. 4.

De Bruijn graphs can readily be used to solve the genome assembly problem (see
[12, 28]). If we consider an alphabet fA; C; G; T g and, instead of using all possible
k-mers as edges, we use only those generated from the reads, we can construct a de
Bruijn graph as described above. An Eulerian path in such a graph corresponds to
an assembled DNA sequence.

This approach has been used in many assemblers, such as Velvet [39],
ABySS [34], and AllPaths [2]. For more details of how the de Bruijn graph was used
in these “DBG” assemblers, see [25]. A simple example of DBG genome assembly
is illustrated in Fig. 5 and described as follows.

Example 2. Consider the genome � D AATGCTGGATGCCTA. The set of reads is

fAATGC; TGCTG; CTGGA; GGATG; ATGCC; GCCTAg:

We construct a graph with a vertex set composed of every 3-mer obtained from the
reads

30 A. Angeleska et al.

Genome: AATGCTGGATGCCTA

Reads: 1. AATGC, 2. TGCTG, 3. CTGGA,
4. GGATG, 5. ATGCC, 6. GCCTA

Set of 3-mers: u = AAT, u =ATG, u =TGC,1 2 3

u =GCT, u =CTG, u =TGG,4 5 6

u =GGA, u =GAT, u =GCC,7 8 9

u =CCT, u =CTA10 11

u1
u2

u3

u4

u5

u6u7

u8

u9

u10

u11

e1

e2

e3

e4

e5

e6e7

e8

e9

e10

e11

e12

Fig. 5 De Bruijn graph. The graph on the right is the de Bruijn graph that is used to assemble
the genome AATGCTGGATGCCTA

fu1 D AAT; u2 D ATG; u3 D TGC; u4 D GCT; u5 D CTG; u6 D TGG;

u7 D GGA; u8 D GAT; u9 D GCC; u10 D CCT; u11 D CTAg:

A directed edge from vertex v to vertex w is included if v is a prefix and w is a suffix
of a 4-mer that belongs to a read. The de Bruijn graph depicted in Fig. 5 is obtained.
The path u1e1u2e2u3e3u4e4u5e5u6e6u7e7u8e8u2e9u3e10u9e11u10e12u11 is an Eulerian
path which corresponds to the assembled genome � .

Finding an Eulerian path in a graph is a computationally easy problem, rendering
the de Bruijn approach more applicable than the Hamiltonian-path approach used in
the OLC method. On the other hand, one of the drawbacks of the de Bruijn approach
is the loss of information caused by decomposing a read into a path of k-mers [33].

3.4 Summary of Advantages and Disadvantages of the Popular
Assembly Methods

The quality of DNA sequencing and assembly can be quantified by a few character-
istics, including the speed, accuracy, and cost of the sequencing, the computational
complexity of the assembly, and the accuracy of the assembly. All of these categories
are interlaced with each other, and also all of them depend on the sequencing
method, the biotechnology used, the computational approach, and the software.
Unfortunately, there is no solve-it-all assembly or sequencing technique for the
genome assembly problem. All of the methods described above might perform very
well in terms of one characteristic, but not another.

The Sanger sequencing method produces reads ranging from 800 to 900 bp in
length, which are much longer than the NGS read lengths (50–150 bp). Therefore,
the assembly process is less complex, and an approach such as the OLC method
might yield reasonable computational complexity. But the cost of generating Sanger
data is much higher, and this technology is more time-consuming. Next-generation

The Sequence Reconstruction Problem 31

M

P

N

Q
r

M Nr

M
P N

rr

r

rr

rr

r

M

M

M

M

N

N

M

N

N

P

PQ

Q

Graph segment

correctly assembled

incorrectly assembled

incorrectly assembled

correctly assembled

incorrectly assembled

correctly assembled

Q
X YX Y Q

M P N Q

X

M
P

XX

N Q

separated repeats

consecutive repeats

sequencing error in the middle

sequencing error in the end

(I)

(II)

(III)

(IV)

YY

Fig. 6 Errors caused by repetition. On the left-hand side, a portion of an assembly graph that
contains a repetitive segment is shown. On the right-hand side, the correct assembly is depicted,
along with a possible incorrect assembly

sequencers can read base pairs at a thousandth of the cost of Sanger sequencers and
faster, but the size of the reads makes the computation very laborious and error-
prone. Therefore, there is no single assembler that will perform well on any type of
data set. For example, although the greedy approach is computationally feasible and
might work well on small genomes, its output may be far from the optimal. On the
other hand, the robustness of the OLC method comes at the price of its being more
computationally intensive, especially when the number of reads is large, which is the
case for the NGS technologies. The de Bruijn approach can easily be implemented,
but suffers from loss of information when the reads are chopped up into k-mers [30].

All existing assemblers and assembly approaches face the same problems, which
are largely due to sequencing errors and repeats in the genome. Sequencing errors
in the middle of the set of reads might produce “bubbles” (see Fig. 6 (III)) in the
graph structure used for assembly. This implies that there is no Hamiltonian path

32 A. Angeleska et al.

that traverses all vertices in the region and no Eulerian path that includes the edges
in both branches. On the other hand, if there is a sequencing error (or drop in
coverage) at the end of the reads (see Fig. 6 (IV)), the graph has a “spur” – a short
dead end that cannot belong to any path, but complicates the graph structure and
causes ambiguities [25].

Repeated segments might cause two types of misassembly. The first type occurs
when there are multiple consecutive copies of the same segment, as illustrated in
Fig. 6 (II). Any assembly algorithm will have a problem in detecting the correct
number of repeated copies, and, very often, fewer or more copies are included. The
second type of misassembly (see Fig. 6 (I)) occurs when the repeated segments are
apart from each other. There is then a possibility that the assembler will create a
chimera by falsely joining two regions, and the resulting genome will be rearranged
in comparison with the reference. Assembly errors that appear because of repeats
are a very serious problem because sometimes the number of repeated copies is
closely related to some phenotypic characteristic of an organism, and a shuffle of
regions might be mistaken for a DNA rearrangement event [29].

Different strategies have been developed for different assemblers to resolve the
problems caused by repeats. One of the most commonly used solutions is the use of
mate pairs or paired ends. Mate pairs and paired ends are reads (of size 150–500 bp)
generated in pairs from opposite ends of a longer DNA sequence. There is no
significant difference between paired ends and mate pairs in terms of assembly, even
though the laboratory techniques used to generate them are very different (see [23]).
The pairs span larger regions, ranging from 200 to 20,000 bp. If a pair contains a
repeat, it might provide enough information about the correct context of the repeated
segments. For instance, in the situation depicted in Fig. 6 (I), the assembler would
be able to identify the correct assembly if a mate pair which spans M –N (or the first
repeat r) and a mate pair that spans P –Q (or the second repeat r) were available.

Another widely used approach for resolving repeats is a comparison of the depth
of coverage for each contig (branch in the graph) that is in question. This method
is based on the assumption that the set of reads is uniformly distributed throughout
the genome (which is not generally true) and helps in estimating the number of
repeated copies. This approach might be particularly helpful when one is “popping”
bubbles or counting the number of repeats, as illustrated in Fig. 6. For instance, in
Fig. 6 (III), if there were proportionally more reads (edges) matching the segment
XY than matching the segment PN, the assembler would form a contig MXYQ.
Also, in Fig. 6 (III), if the number of reads covering the repeated segment r was
m-fold in comparison with the average depth of coverage, than m copies of r would
be included in the contig [36].

Despite the attempts to resolve these problems, none of the current assemblers
are applicable to all kinds of data sets while simultaneously exhibiting high accuracy
and low computational complexity.

The Sequence Reconstruction Problem 33

4 Theoretical Results

The results presented in this section are mainly combinatorial results on words
over a given alphabet. Combinatorics on words is an area of discrete mathematics
that initially dealt with problems in theoretical computer science, including formal
languages, automata theory, coding theory, and the theory of computation. In
mathematics, there are a number of problems that deal with reconstruction, for
instance reconstruction of a function from its values at some points, of a group from
its subgroups, of a graph from a subset of its subgraphs, and of an image from a
sample point set, to name just a few. Combinatorics on words is an area that, among
other problems, deals with the sequence reconstruction problem, and addresses the
following aspects:

• Uniqueness of sequences reconstructed from the same set of subsequences;
• The existence of a reconstruction based on the size and the number of available

subsequences; and
• Unambiguous reconstruction with respect to the structure and origin of the

subsequences.

Some of these theoretical results can be applied directly to sequence assembly,
and answer different questions related to DNA sequencing. Therefore, we have
included a few of the results that we believe are the most relevant to assembly
problems.

4.1 Definitions and Notation

Let ˙ be a finite alphabet of symbols. The elements of ˙ are called letters. The set
of all sequences over ˙ is denoted by ˙�, and the elements of ˙� are called words
(or sequences). The empty word is denoted by �. If w is a word over ˙ , then we
write jwj to denote the length (measured as the number of letters) of w. We denote
by ˙�

n the set of all sequences over ˙ of length n.
We often refer to the nth letter in w as the nth position. A sequence v over ˙ is

called a (scattered) subsequence of the word w D w1w2 � � � wn if v D vi1vi2 � � � vis ,
for some 1 � i1 < i2 < � � � < is � n. In other words, we say that w is a
supersequence of v. The set of all subsequences of length t of a sequence w is called
the t-spectrum of w, and we denote it by St .w/. A sequence v over ˙ is called a
factor of the word w if there are words x and y over ˙ such that w D xvy. Note that
x and/or y may be empty. These factors are special types of subsequences. Given a
word w such that w D xy, we define w � x D y. A factor v is said to be a prefix of
the word w D xvy if x D � and, similarly, v is a suffix of w if y D �. The overlap of
two words w and w0, denoted by o.w; w0/, is defined as the maximal factor v which
is a suffix of w and a prefix of w0. It may also be that v D �.

34 A. Angeleska et al.

For two words w and w0, we define an operation “ı”, called composition, by
which w ı w0 D w.w0 � o.w; w0//. In other words, we concatenate the two words,
though a single copy of their largest overlap.

Example 3. Let ˙ D fa; b; cg and w D aaaacccbabacc, w0 D bacccbba. The
word v D bacc is the maximal factor – a suffix of w and prefix of w0. Therefore,
v D o.w; w0/. The composition of w and w0 is w ı w0 D aaaacccbabacccbba.

4.2 Sequence Reconstruction from Subsequences

The Russian mathematician V. Levenshtein investigated the problem of recon-
struction of a sequence from its subsequences and supersequences. In [18],
Levenshtein determined the number of subsequences needed to reconstruct an
unknown sequence. The result is stated below in Theorem 1. Let X be an unknown
sequence of length n. For a number t < n we wish to determine how many different
subsequences of length t are needed to uniquely reconstruct X . This answers the
following question: What is the minimum number of reads of length t that one
needs to reconstruct a genome? We note here that considering subsequences instead
of factors might seem far from reality in terms of genome assembly, but in fact the
mate pairs are special types of subsequences and, furthermore, each read can be
viewed as a subsequence when we take sequencing errors into account.

All of the sequences in ˙�
n are considered first, and they are compared pairwise

to count the subsequences of length t that they have in common, i.e., we find
the cardinality of the sets St.w/\St .v/ for every w; v 2 ˙�

n . Let N.n; t/ denote the
maximum size of the set of subsequences of length t shared between two sequences
of length n, i.e.,

N.n; t/ D maxfjSt.w/ \ St .v/j; w; v 2 ˙�
n g:

Theorem 1. The minimum number of subsequences of length t that are needed to
reconstruct an unknown sequence X of size jX j D n equals N.n; t/ C 1.

Levenshtein also provided an efficient algorithm in [18] for performing the
reconstruction. The number St.w/ depends on the sequence w (see [17]) and,
therefore, there is no exact formula for calculating N.n; t/. This number can be
calculated recursively as follows:

N.n; t/ D S.n; t/ � S.n � 1; t/ C S.n � 2; t � 1/;

where S.n; t/ D maxfjSt.w/j; w 2 ˙�
n g.

The problem with applying these results to genome assembly is the fact that
there are sequences for which the existence of N.n; t/ C1 different subsequences is
not guaranteed. For more details, we refer the reader to Example 4 below. In some

The Sequence Reconstruction Problem 35

cases, more than half of the sequences of a given length do not have enough different
subsequences from which they can be reconstructed.

Example 4. Let ˙ D fA; G; T; C g and let X 2 ˙� be such that jX j D 5. Let
t D 3. According to Theorem 1, one needs N.5; 3/ C 1 different subsequences
of length 3 to reconstruct X . By examining the subsequences of length 3, one can
easily conclude that jS3.w/ \ S3.v/j D 7, where w D AGTCG and v D ATGCG.
Therefore, N.5; 3/ C 1 � 8, and one needs eight or more different subsequences
of length 3 to uniquely construct X . Note that no sequence composed of fewer than
three different symbols from ˙ has eight different subsequences. This implies that
those sequences composed of a single symbol (in total, four such sequences) and
those composed of two different symbols (in total, 25 � C.4; 2/ D 192 sequences)
do not have eight different subsequences. Therefore, at least 196 sequences of length
5, out of 1,024 in total, cannot be uniquely reconstructed. In other words, there are
high odds, greater than 1

6
, that a given sequence X cannot be reconstructed.

Besides the structure of X , the reconstruction depends on the size of the available
subsequences (reads). By changing the number t , one might be able to find enough
subsequences to reconstruct X , as discussed in the next subsection.

4.3 Reconstruction Based on the Size of the Subsequences

There are two types of questions that can be asked about reconstruction with respect
to the size of the given subsequences:

• What is the smallest k such that one can reconstruct any word of length n from
the multiset of its subsequences of length k?

• What is the smallest k such that one can reconstruct a word from the set of its
different subsequences of length k?

Note that a multiset is a set of elements such that multiple occurrences of an
element are allowed and their number is known. Therefore, the first problem is about
reconstruction of a sequence given all of the repeats and the number of copies of
each repeat, which is a far from realistic data requirement. The second problem is
more relevant to genome assembly, since it does not require input information about
the repeated reads.

Manvel et al. [21] showed that the reconstruction of a sequence of length n is
unique if all subsequences of size k are given, where k � n=2. In addition, it was
proven that a unique reconstruction is not possible for k < log2n. This implies that
two words of length n that have identical sets of subsequences up to n=2 might not
be identical. The lower bound on k has been improved several times. In [15], the
bound k � 5 C 16

7

p
n was given, and Dudik et al. [6] showed that

k � 3.
p

2=3�o.1//log
1=2
3 n:

These results thus provide estimates of k as an answer to the first problem above.

36 A. Angeleska et al.

In any case, the condition k � n=2, which implies that to uniquely reconstruct
one particular small genome namely that of a virus found in Escherichia coli with
n D 5;386, the read sizes must be greater than 2,193 bp. This is when the repeats
and their multiplicities are known and also all subsequences are available, conditions
that are far from realistic.

The result most relevant to genome assembly is one presented in [7]. The
authors of that paper examined finite words over an alphabet � D fa; a; b; bg
of pairs of letters, where each word w1w2 : : : wt is identified with its reverse
complement wt wt�1 : : : w1. This approach takes account of the reads and their
reverse complements, as is actually done in the genome assembly process. It was
shown that the smallest k for which every word of length n over � is uniquely
determined by the set of its subwords of length up to k is given by k � 2n=3 [7]. To
put this result into perspective in relation to genome assembly, let us consider one of
the smallest genomes, of size n D 5;386. Then k � 2 � 5;386=3 D 3;590:6, which
implies that one needs all possible reads of length 3,590 to uniquely assemble a
genome of size 5,386. This number becomes significantly larger for larger genomes.
For instance, the size of the human genome is estimated at 3:2 billion bp, and thus
one needs all of the k � 2:13 billion bp long subsequences to uniquely reconstruct
the genome.

The following result shows that no sequence can be uniquely determined by a k-
spectrum composed of factors only. Namely, the maximum length n such that every
word of this length can be uniquely determined by its factors of size k, for some
k � n, is k. This implies that there are words of length greater than k which cannot
be uniquely reconstructed from their set of factors of length k (see [20]).

Example 5. Let w D ababab : : : ab and v D bababa : : : ba be two sequences of
size n. We consider the sets of factors of length k, Fk.w/ for w and Fk.v/ for v,
where k D n�1. We have Fk.w/ D Fk.v/ D fabab : : : a; baba : : : bg, and therefore
w cannot be uniquely reconstructed from Fk.w/.

4.4 Reconstruction Based on the Structure and Origin
of the Factors

In this section, we consider some results due to Carpi and De Luca [3] and Carpi
et al. [4]. Unlike Levenshtein, whose results do not guarantee reconstruction of every
possible sequence, these authors analyzed the reconstruction of sequences from sets
of factors which permit reconstruction of the entire word. This analysis is based
on the notion of boxes. Before we state the main result, we need some preliminary
definitions.

Definition 1. The initial box of a word w is the shortest unrepeated prefix of w. The
terminal box of a word w is the shortest unrepeated suffix of w.

The Sequence Reconstruction Problem 37

Definition 2. Superbox is a factor of w that can be written as asb, where a; b 2 ˙ ,
s is repeated factor and as; sb are un-repeated factors of w.

The main result can be summarized in the following theorem.

Theorem 2. Any finite word w is uniquely determined by the initial box, the
terminal box, and the set of superboxes.

Example 6. Consider the small genome ATCCTATCAT . The initial box is ATCC,
the terminal box is CAT, and the set of superboxes is CCT , CTA, TATCA.

An efficient algorithm for finding the initial box, terminal box, and superboxes
is given in [4]. In relation to the genome assembly problem, the theorem implies
that one can uniquely assemble a genome if special reads are known (they all
might be of different lengths). Those special reads are the maximal unrepeated
subsequences of the genome, i.e., the unrepeated sequences such that each of their
proper subsequences is repeated in the genome.

Long interspersed nuclear elements (LINEs) are repeated in the human genome
and can be as long as a million base pairs. Based on Theorem 2, one would require a
read of length approximately one million base pairs to uniquely assemble the human
genome.

5 An Optimization-Based Approach

In this section, we present some preliminary results obtained from our optimization-
based approach to solving the sequence reconstruction problem, by providing a set
of mathematical formulations as programming problems which deal with different
aspects of the assembly problem.

Let S be a sequence over ˙ such that jSj D n. Let W be a collection of
(all) factors of S with length k. Our goal is to reconstruct S by appropriately
ordering the elements of W . To this end, we determine the optimal solution with the
minimum number of mismatches by encoding the problem into a quadratic integer
programming problem.

Let W D fw1; w2; : : : ; wN g be a set of factors of S and let jwi j D l , where l � 2,
for every i 2 f1; 2; � � � ; N g. If there is a subset W 0 D fw0

1; : : : ; w0
N 0g � W and a

permutation P D .p1; p2; : : : pN 0/ such that S D w0
p1

ı w0
p2

ı � � � ı w0
pN 0

, then we
say that S is covered by W , and the pair .W 0; P / is called a perfect coverage of S.
There may be no perfect coverage or there may exist multiple perfect coverage pairs
for a givenS and W . ReconstructingS from a set of factors W D fw1; w2; : : : ; wN g
means finding a perfect coverage .W 0; P /, if it exists. Let .W 0; P / be a pair made up
of W 0 � W and a permutation P D .p1; p2; : : : pN 0/ of the elements of W 0, such
that jSj D jw0

p1
ı w0

p2
ı � � � ı w0

pN 0
j. We call .W 0; P / a coverage of S. If the letters

at the i th positions of S and w0
p1

ı w0
p2

ı � � � ı w0
pN 0

differ, then we say that these two
words have a mismatch at the i th position. In the case where a perfect coverage does

38 A. Angeleska et al.

not exist for S, it is interesting to consider a coverage with the minimum number of
mismatches.

The sequence reconstruction problem described above can be translated directly
into the problem of genome assembly from a large number of reads (factors).
Namely, one can look at S as a genome that has to be reconstructed from a set
of reads W D fw1; w2; : : : ; wN g. Owing to mutations and errors in sequencing, the
sequence that is reconstructed from W may contain mismatches with respect to the
actual genome. Therefore, finding a coverage of S with the minimum number of
mismatches would optimize the problem of genome assembly.

We define xijk 2 f0; 1g for i 2 f1; 2; : : : ; N g; j 2 f1; 2; : : : ; lg; k 2 f1; 2; : : : ; ng
by

xik D
�

1 if the j th position of wi is assigned to the kth position in S;

0 otherwise.

Since jwi j D l for every i , the first constraint is given by

8i;

lX
j D1

nX
kD1

xijk D l: (1)

To satisfy the condition that each position in S is covered by at least one word wi

(i.e., there are no gaps in the sequence that we reconstruct), the following constraint
is added:

8k;

lX
j D1

NX
iD1

xijk � 1: (2)

In addition, we have to ensure the overlaps among the words are along the length l

of each word:

8i 8k; l � k � n;

lX
j D1

kCl�1X
mDk

xijm � l: (3)

We need three more constraints to obtain the intended result. The first of these
guarantees that every symbol of wi is matched to exactly one position in S. The
second prevents the inclusion of multiple copies of a word, and the third does not
allow stacking of words. These constraints are as follows:

8i 8j;

nX
kD1

xijk D 1; (4)

The Sequence Reconstruction Problem 39

8i 8k;

lX
j D1

xijk � 1; (5)

8j 8k;

NX
iD1

xijk � 1: (6)

We introduce two new binary variables zik and yik, such that zik; yik 2 f0; 1g such
that

zik D 1; yik D 1 if
lX

j D1

kCl�1X
mDk

xijm D l; (7)

zik D 0; yik D 1 if l <

lX
j D1

kCl�1X
mDk

xijm < 2l; (8)

zik D 1; yik D 0 if 0 �
lX

j D1

kCl�1X
mDk

xijm < l: (9)

The constraints in Eqs. (10)–(14) below ensure that the new variables are properly
defined (as described in Eqs. (7)–(9)):

8i 8k; l � k � n

lX
j D1

kCl�1X
mDk

xijm � l � .1 � zik/l; (10)

8i; 8k; l � k � n

lX
j D1

kCl�1X
mDk

xijm � l � �zikl; (11)

8i 8k; l � k � n

lX
j D1

kCl�1X
mDk

xijm � l � .1 � yik/.�l/; (12)

8i 8k; l � k � n

lX
j D1

kCl�1X
mDk

xijm � l � yikl; (13)

8i 8k; 1 � zik C yik � 2: (14)

To ensure that a factor wi fits at only one position, the following constraint is added:

8i

nX
kD1

.zik C yik � 1/ D 1: (15)

40 A. Angeleska et al.

Moreover, owing to the consecutive property, we set

8i 8k; 1 � k � .l � 1/; 8j; .k C 1/ � j � l; xijk D 0; (16)

8i 8k; .n � l C 2/ � k � n; 8j; 1 � j � ..l � 1/ � .n � k//; xijk D 0:

(17)

The optimal solution for the number of mismatches can then be found by using
the following objective function, which is to be minimized:

min
nX

kD1

X
i;j;i 0;j 0

.wj
i ¤ wj 0

i 0 /xijkxi 0j 0k � yikl for all i; i ¤ i 0: (18)

Note that this objective function is quadratic and that the number of variables that
we introduce depends on the number of reads. Furthermore, the constraints imposed
are linear in the integer variables, which render this formulation a quadratic integer
programming problem.

In addition to the general case of the quadratic programming problem described
above, one can consider three different variants of the problem, where (1) we use a
subset of the factors (instead of all possible factors), (2) we use a subset of paired
factors, and (3) we use a subset of the factors including their inverses. Each of these
variants is relevant to the genome assembly problem and can be matched to some of
the NGS technologies that are being employed. However, because of the nature of
this chapter, we shall not give details of the formulation of the optimization problem
for these cases.

Finally, we should point out that solving an integer programming problem is, in
general, an NP-hard problem. The computational challenges are reinforced by the
large number of variables that would arise in any realistic application. Although
there are efficient techniques for relaxing the integer constraints, it remains to
be investigated how well this optimization-based formulation and its relaxations
can solve the problem of genome assembly, even in the case of small, contrived
examples.

6 Conclusion

Efficient and accurate solution of the genome assembly problem offers the possi-
bility of improving not only our understanding of the diversity of nature but also
the state of the art in medical research. Owing to its numerous applications, this
problem has gained considerable attention in the bioinformatics community.

The principal aim of this chapter was to present a comprehensive overview
of overlooked mathematical results which may prove relevant to improving the
existing heuristic solutions to the genome assembly problem. This necessitated
the inclusion of a high-level description of the existing NGS technologies, so that

The Sequence Reconstruction Problem 41

researchers in applied mathematics might formulate the appropriate theoretical
settings. By illustrating the implications of language-theoretic results in realistic
scenarios, we may have given the impression that the current technologies do
not guarantee the uniqueness of the resulting genome assembly (regardless of the
algorithmic approach used). However, the existing theoretical results pertain to
special alphabets, use some special subsequences, or discard information about
the existence of particular subsequences (which could be empirically verified).
Therefore, we believe that a critical comparative view of these results could
propel the development of language-theoretical tools that are closer and thus more
relevant to realistic genome assembly scenarios.

To this end, we have also presented a preliminary optimization-based formulation
of the genome assembly problem as a quadratic integer programming problem,
whose performance, with appropriate relaxation, will be addressed in future work.
The merit of the integer programming formulation is that it provides a new and
potentially useful formulation of the genome assembly problem. We would like
to point out that the optimization-based formulation requires information about
the estimated size of the genome (here, N). Interestingly, none of the graph-
based assembly methods have this as a requirement, rendering the comparison of
the resulting genomes (which are likely to be of different lengths and coverage)
a nontrivial task. Currently, however, we fail to see how the optimization-based
formulation may be used to address the comparison of assemblies from different
assemblers.

References

1. J. Adams, DNA sequencing technologies. Nat. Educ. 1(1) (2008)
2. J. Butler, I. MacCallum, M. Kleber, I.A. Shlyakhter, M.K. Belmonte, E.S. Lander, C. Nusbaum,

D.B. Jaffe, ALLPATHS, de novo assembly of whole-genome shotgun microreads. Genome
Res. 18, 810–820 (2008)

3. A. Carpi, A. De Luca, Words and special factors. Theor. Comput. Sci. 259(1–2), 145–182
(2001)

4. A. Carpi, A. De Luca, S. Varricchio, Words, univalent factors, and boxes. Acta Inform. 38,
409–436 (2002)

5. J.C. Dohm, C. Lottaz, T. Borodina, H. Himmelbauer, SHARCGS, a fast and highly accurate
short read assembly algorithm for de nove genomic sequencing. Genome Res. 17, 1697–1706
(2007)

6. M. Dudik, L.J. Schulman, Reconstruction from subsequences. J. Comb. Theory A 103,
337–348 (2003)

7. P.L. Erdos, P. Ligeti, P. Sziklai, D.C. Torney, Subwords in reverse-complement order. Ann.
Comb. 10, 415–430 (2006)

8. R.D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R. Kerlavage,
C.J. Bult, J.F. Tomb, B.A. Doughherty, J.M. Merrick, K. McKenney, G. Sutton,
W. FitzHugh, C. Fields, J.D. Gocyne, J. Scott, R. Shirley, L. Liu, A. Glodek, J.M. Kelley,
J.F. Weidman, C.A. Phillips, T. Spriggs, E. Hedblom, M.D. Cotton, T.R. Utterback,
M.C. Hanna, D.T. Nguyen, D.M. Saudek, R.C. Brandon, L.D. Fine, J.L. Fritchman,
J.L. Fuhrmann, N.S.M. Geoghagen, C.L. Gnehm, L.A. McDonald, K.V. Small, C.M. Fraser,

42 A. Angeleska et al.

H.O. Smith, J.C. Venter, Whole-genome random sequencing and assembly of Haemophilus
influenzae Rd. Science 269(5223), 496–512 (1995)

9. http://www.lifetechnologies.com/content/lifetech/us/en/home/about-us/news-gallery/press-
releases/2012/life-techologies-itroduces-the-bechtop-io-proto.html.html. Accessed Mar 2013

10. X. Huang, A. Madan, CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877
(1999)

11. Human Genome Project Information, Genomic science program. http://www.genomics.energy.
gov. Accessed Oct 2012

12. R.M. Idury, M.S. Waterman, A new algorithm for DNA sequence assembly. J. Comput. Biol.
2(2), 291–306 (1995)

13. W.R. Jeck, J.A. Reinhardt, D.A. Baltrus, M.T. Hickenbotham, V. Magrini, E.R. Mardis,
J.L. Dangl, C.D. Jones, Extending assembly of short DNA sequences to handle error.
Bioinformatics 23, 2942–2944 (2007)

14. S. Koren, M.C. Schatz, B.P. Walenz, J. Martin, J.T. Howard, G. Ganapathy, Z. Wang,
D.A. Rasko, W.R. McCombie, E.D. Jarvis, A.M. Phillippy, Hybrid error correction and de
novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012)

15. I. Krasikov, Y. Roditty, On a reconstruction problem of sequences. J. Comb. Theory A77,
344–348 (1997)

16. H. Lee, H. Tang, Next-generation sequencing technologies and fragment assembly algorithms.
Methods Mol. Biol. 855(2), 155–174 (2012)

17. V. Levenshtein, Reconstruction of objects from a minimum number of distorted patterns. Dokl.
Math. 55, 417–420 (1997)

18. V. Levenshtein, Efficient reconstruction of sequences from their subsequences or superse-
quences. J. Comb. Theory A 93, 310–332 (2001)

19. L. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, M. Law, Comparison of next-
generation sequencing systems. J. Biomed. Biotechnol. 2012, 1–11 (2012)

20. J. Manuch, Characterization of a word by its subwords, in Developments in Language
Theory – Foundations, Applications, and Perspectives, Proc. DLT 2000, ed. by G. Rozenberg,
W. Thomas, pp. 210–219

21. B. Manvel, A. Meyerowitz, A. Schwenk, K. Smith, P. Stockmeyer, Reconstruction of
sequences. Discret. Math. 94, 209–219 (1991)

22. M. Margulies, M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J. Berka,
M.S. Braverman, Y. Chen, Z. Chen, S.B. Dewell, A. de Winter, J. Drake, L. Du, J.M. Fierro,
R. Forte, X.V. Gomes, B.C. Godwin, W. He, S. Helgesen, C.H. Ho, S.K. Hutchison, G. Irzyk,
S.C. Jando, M.L.I. Alenquer, T.P. Jarvie, K.B. Jirage, J. Kim, J.R. Knight, J.R. Lanza,
J.H. Leamon, W.L. Lee, S.M. Lefkowitz, M. Lei, J. Li, K.L. Lohman, H. Lu, V.B. Makhijani,
K.E. McDade, M.P. McKenna, E.W. Myers, E. Nickerson, J.R. Nobile, R. Plant, B.P. Puc,
M. Reifler, M.T. Ronan, G.T. Roth, G.J. Sarkis, J.F. Simons, J.W. Simpson, M. Srinivasan,
K.R. Tartaro, A. Tomasz, K.A. Vogt, G.A. Volkmer, S.H. Wang, Y. Wang, M.P. Weiner,
D.A. Willoughby, P. Yu, R.F. Begley, J.M. Rothberg, Genome sequencing in microfabricated
high-density picolitre reactors. Nature 437, 376–380 (2005)

23. P. Medvedev, M. Stanciu, M. Brudno, Computational methods for discovering structural
variation with next-generation sequencing. Nat. Methods 6, S13–S20 (2009)

24. M. Metzker, Sequencing technologies – the next generation. Nat. Genet. 11, 31–46 (2010)
25. J.R. Miller, S. Koren, G. Sutton, Assembly algorithms for next-generation sequencing data.

Genomics 95(6), 315–327 (2010)
26. E.W. Myers, G.G. Sutton, A.L. Delcher, I.M. Dew, D.P. Fasulo, M.J. Flanigan, S.A. Kravitz,

C.M. Mobarry, K.H. Reinert, K.A. Remington, E.L. Anson, R.A. Bolanos, H. Chou,
C.M. Jordan, A.L. Halpern, S. Lonardi, E.M. Beasley, R.C. Brandon, L. Chen, P.J. Dunn,
Z. Lai, Y. Liang, D.R. Nusskern, M. Zhan, Q. Zhang, X. Zheng, G.M. Rubin, M.D. Adams,
J.C. Venter, A whole genome assembly of Drosophilia. Science 287, 2196–2204 (2000)

27. P.C. Ng, E.F. Kirkness, Whole genome sequencing. Methods Mol. Biol. 628, 215–226 (2010)
28. A.P. Pevzner, T. Haixu, S.M. Waterman, An Eulerian path approach to DNA fragment

assembly. PNAS 98(17), 9748–9753 (2001)

http://www.lifetechnologies.com/content/lifetech/us/en/home/about-us/news-gallery/press-releases/2012/life-techologies-itroduces-the-bechtop-io-proto.html.html
http://www.lifetechnologies.com/content/lifetech/us/en/home/about-us/news-gallery/press-releases/2012/life-techologies-itroduces-the-bechtop-io-proto.html.html
http:// www.genomics.energy.gov
http:// www.genomics.energy.gov

The Sequence Reconstruction Problem 43

29. A.M. Phillippy, M.C. Schatz, M. Pop, Genome assembly forensics: finding the elusive mis-
assembly. Genome Biol. (2008). doi:10.1186/gb-2008-9-3-r55

30. M. Pop, Genome assembly reborn: recent computational challenges. Brief Bioinform. 10(4),
354–366 (2009)

31. M. Quail, M.E. Smith, P. Coupland, T.D. Otto, S.R. Harris, T.R. Connor, A. Bertoni,
H.P. Swerdlow, Y. Gu, A tale of three next generation sequencing platforms: comparison of
Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13(1), 341
(2012). doi:10.1186/1471-2164-13-341

32. F. Sanger, A.R. Coulson, A rapid method for determining sequences in DNA by primed
synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448 (1975)

33. M.C. Schatz, A.L. Delcher, S.L. Salzberg, Assembly of large genomes using second-generation
sequencing. Genome Res. 20(9), 1165–1173 (2010)

34. J.T. Simpson, K. Wong, S.D. Jackman, J.E. Schein, S.J. Jones, I. Byrol, ABySS, a parralel
asembler for short read sequence data. Genome Res. 19, 1117–1123 (2009)

35. G.G. Sutton, O. White, M.D. Adams, A.R. Kerlavage, TIGR assembler: a new tool for
assembling large shotgun sequencing projects. Genome Sci. Technol. 1, 9–19 (1995)

36. T.J. Treangen, S.L. Salzberg, Repetitive DNA and next-generation sequencing: computational
challenges and solutions. Nat. Rev. Genet. 13(2), 36–46 (2012)

37. R.L. Warren, G.G. Sutton, S.J. Jones, R.A. Holt, Assembling millions of short DNA sequences
using SSAKE. Bioinformatics 23, 500–501 (2007)

38. K.A. Wetterstrand, DNA sequencing costs: data from the NHGRI large-scale genome sequenc-
ing program. http://www.genome.gov/sequencingcosts. Accessed Oct 2012

39. D.R. Zerbino, E. Birney, Velvet, algorithms for de novo short read assembly using de Bruijn
graphs. Genome Res. 18, 821–829 (2008)

http://www.genome.gov/sequencingcosts

http://www.springer.com/978-3-642-40192-3

