
Chapter 2
Doeblin’s Theory for Markov Chains

In this chapter we begin in earnest our study of Markov processes. Like the random
walks in Chap. 1, the processes with which we will be dealing here take only count-
ably many values and have a discrete (as opposed to continuous) time parameter.
In fact, in many ways, these processes are the simplest generalizations of random
walks. To be precise, random walks proceed in such a way that the distribution of
their increments are independent of everything that has happened before the incre-
ment takes place. The processes at which we will be looking now proceed in such a
way that the distribution of their new position depends on where they are at the time
when they move but not on where they were in the past. A process with this sort
of dependence property is said to have the Markov property and is called a Markov
chain.1

The set S in which a process takes its values is called its state space, and, as I
said, our processes will have state spaces which are either finite or countably infinite.
Thus, at least for theoretical purposes, there is no reason for us not to think of S as
the set {1, . . . ,N} or Z

+, depending on whether S is finite or countably infinite.
On the other hand, always taking S to be one of these has the disadvantage that it
may mask important properties. For example, it would have been a great mistake to
describe the nearest neighbor random walk on Z

2 after mapping Z
2 isomorphically

onto Z
+.

2.1 Some Generalities

Before getting started, there are a few general facts that we will need to know about
Markov chains.

A Markov chain on a finite or countably infinite state space S is a family of
S-valued random variables {Xn : n ≥ 0} with the property that, for all n ≥ 0 and

1The term “chain” is commonly applied to processes with a time discrete parameter.
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(i0, . . . , in, j) ∈ S
n+2,

P(Xn+1 = j |X0 = i0, . . . ,Xn = in) = (P)inj , (2.1.1)

where P is a matrix all of whose entries are non-negative and each of whose rows
sums to 1. Equivalently (cf. Sect. 7.4.1)

P(Xn+1 = j |X0, . . . ,Xn) = (P)Xn j . (2.1.2)

It should be clear that (2.1.2) is a mathematically precise expression of the idea
that, when a Markov chain jumps, the distribution of where it lands depends only on
where it was at the time when it jumped and not on where it was in the past.

2.1.1 Existence of Markov Chains

For obvious reasons, a matrix whose entries are non-negative and each of whose
rows sum to 1 is called a transition probability matrix: it gives the probability that
the Markov chain will move to the state j at time n + 1 given that it is at state
i at time n, independent of where it was prior to time n. Further, it is clear that
only a transition probability matrix could appear on the right of (2.1.1). What may
not be so immediate is that one can go in the opposite direction. Namely, let μ be a
probability vector2 and P a transition probability matrix. Then there exists a Markov
chain {Xn : n ≥ 0} with initial distribution μ and transition probability matrix P.
That is, P(X0 = i) = (μ)i and (2.1.1) holds.

To prove the preceding existence statement, one can proceed as follows. Begin
by assuming, without loss in generality, that S is either {1, . . . ,N} or Z

+. Next,
given i ∈ S, set β(i,0) = 0 and β(i, j) = ∑j

k=1(P)ik for j ≥ 1, and define F : S ×
[0,1) −→ S so that F(i, u) = j if β(i, j −1) ≤ u < β(i, j). In addition, set α(0) = 0
and α(i) = ∑i

k=1(μ)k for i ≥ 1, and define f : [0,1) −→ S so that f (u) = i if
α(i −1) ≤ u < α(i). Finally, let {Un : n ≥ 0} be a sequence of mutually independent
random variables (cf. Theorem 7.3.2) which are uniformly distributed on [0,1), and
set

Xn =
{

f (U0) if n = 0

F(Xn−1,Un) if n ≥ 1.
(2.1.3)

We will now show that the sequence {Xn : n ≥ 0} in (2.1.3) is a Markov chain
with the required properties. For this purpose, suppose that (i0, . . . , in) ∈ S

n+1, and

2A probability vector is a row vector whose coordinates are non-negative and sum to 1.
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observe that

P(X0 = i0, . . . ,Xn = in)

= P
(
U0 ∈ [

α(i0 − 1), α(i0)
)

& Um ∈ [
β(im−1, im − 1), β(im−1, im)

)
for 1 ≤ m ≤ n

)

= μi0
(P)i0i1 · · · (P)in−1in = P(X0 = i0, . . . ,Xn−1 = in−1)Pin−1,j .

2.1.2 Transition Probabilities & Probability Vectors

Notice that the use of matrix notation here is clever. To wit, if μ is the row vector
with ith entry (μ)i = P(X0 = i), then μ is called the initial distribution of the chain
and

(
μPn

)
j

= P(Xn = j), n ≥ 0 and j ∈ S, (2.1.4)

where we have adopted the convention that P0 is the identity matrix and Pn = PPn−1

for n ≥ 1.3 To check (2.1.4), let n ≥ 1 be given, and note that, by (2.1.1) and induc-
tion,

P(X0 = i0, . . . ,Xn−1 = in−1,Xn = j) = (μ)i0(P)i0i1 · · · (P)in−1j .

Hence (2.1.4) results after one sums with respect to (i0, . . . , in−1). Obviously,
(2.1.4) is the statement that the row vector μPn is the distribution of the Markov
chain at time n if μ is its initial distribution (i.e., its distribution at time 0). Al-
ternatively, Pn is the n-step transition probability matrix: (Pn)ij is the conditional
probability that Xm+n = j given that Xm = i.

For future reference, we will introduce here an appropriate way in which to mea-
sure the length of row vectors when they are being used to represent measures.
Namely, given a row vector ρ, we set

‖ρ‖v =
∑

i∈S

∣
∣(ρ)i

∣
∣, (2.1.5)

where the subscript “v” is used in recognition that this is the notion of length which
corresponds to the variation norm on the space of measures. The basic reason for
our making this choice of norm is that

‖ρP‖v ≤ ‖ρ‖v, (2.1.6)

since, by Theorem 7.1.15,

‖ρP‖v =
∑

j∈S

∣
∣
∣
∣

∑

i∈S
(ρ)i(P)ij

∣
∣
∣
∣ ≤

∑

i∈S

(∑

j∈S

∣
∣(ρ)i

∣
∣(P)ij

)

= ‖ρ‖v.

3The reader should check for itself that Pn is again a transition probability matrix for all n ∈N: all
entries are non-negative and each row sums to 1.
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Notice that this is a quite different way of measuring the length from the way Euclid
would have: he would have used

‖ρ‖2 =
(∑

i∈S
(ρ)2

i

) 1
2

.

When S is finite, these two norms are comparable. Namely,

‖ρ‖2 ≤ ‖ρ‖v ≤ √
#S‖ρ‖2, where #S denotes the cardinality of S.

The first inequality is easily seen by squaring both sides, and the second is an ap-
plication of Schwarz’s inequality (cf. Exercise 1.3.1). However, when S is infinite,
they are not comparable. Nonetheless, ‖ · ‖v is a good norm (i.e., measure of length)
in the sense that ‖ρ‖v = 0 if and only if ρ = 0 and that it satisfies the triangle in-
equality: ‖ρ + ρ′‖v ≤ ‖ρ‖v + ‖ρ′‖v. Furthermore, Cauchy’s convergence criterion
holds for ‖ · ‖v. That is, if {ρn}∞1 is a sequence in R

S, then there exists ρ ∈ R
S for

which ‖ρn − ρ‖v −→ 0 if and only {ρn}∞1 is Cauchy convergent in the sense that

lim
m→∞ sup

n>m
‖ρn − ρm‖v = 0.

As usual, the “only if” direction is an easy application of the triangle inequality:

‖ρn − ρm‖v ≤ ‖ρn − ρ‖v + ‖ρ − ρm‖v.

To go the other direction, suppose that {ρn}∞1 is Cauchy convergent, and observe
that each coordinate of {ρn}∞1 must be Cauchy convergent as real numbers. Hence,
by Cauchy’s criterion for real numbers, there exists a ρ to which {ρn}∞1 converges
in the sense that each coordinate of the ρn’s tends to the corresponding coordinate
of ρ. Thus, by Fatou’s lemma, Theorem 7.1.10, as m → ∞,

‖ρ − ρm‖v =
∑

i∈S

∣
∣(ρ)i − (ρm)i

∣
∣ ≤ lim

n→∞

∑

i∈S

∣
∣(ρn)i − (ρm)i

∣
∣ −→ 0.

2.1.3 Transition Probabilities and Functions

As we saw in Sect. 2.1.2, the representation of the transition probability as a matrix
and the initial distributions as a row vector facilitates the representation of the distri-
bution at later times. In order to understand how to get the analogous benefit when
computing expectation values of functions, think of a function f on the state space
S as the column vector f whose j th coordinate is the value of the function f at j .
Clearly, if μ is the row vector which represents the probability measure μ on S and
f is the column vector which represents a function f which is either non-negative or
bounded, then μf = ∑

i∈S f (i)μ({i}) is the expected value of f with respect to μ.
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Similarly, the column vector Pnf represents that function whose value at i is the
conditional expectation value of f (Xn) given that X0 = i. Indeed,

E
[
f (Xn)

∣
∣X0 = i

] =
∑

j∈S
f (j)P(Xn = j |X0 = i)

=
∑

j∈S

(
Pn

)
ij
(f)j = (

Pnf
)
i
.

More generally, if f is either a non-negative or bounded function on S and f is the
column vector which it determines, then, for 0 ≤ m ≤ n,

E
[
f (Xn)

∣
∣X0 = i0, . . . ,Xm = im

] = (
Pn−mf

)
im

, or, equivalently,

E
[
f (Xn)

∣
∣X0, . . . ,Xm

] = (
Pn−mf

)
Xm

(2.1.7)

since

E
[
f (Xn)

∣
∣X0 = i0, . . . ,Xm = im

]

=
∑

j∈S
f (j)P(Xn = j |X0 = i0, . . . ,Xm = im)

=
∑

j∈S
f (j)

(
Pn−m

)
imj

= (
Pn−mf

)
im

.

In particular, if μ is the initial distribution of {Xn : n ≥ 0}, then

E
[
f (Xn)

] = μPnf,

since E[f (Xn)] = ∑
i (μ)iE[f (Xn)|X0 = i].

Just as ‖ · ‖v was the appropriate way to measure the length of row vectors when
we were using them to represent measures, the appropriate way to measure the
length of column vectors which represent functions is with the uniform norm ‖ · ‖u:

‖f‖u = sup
j∈S

∣
∣(f)j

∣
∣. (2.1.8)

The reason why ‖ · ‖u is the norm of choice here is that |μf| ≤ ‖μ‖v‖f‖u, since

|μf| ≤
∑

i∈S

∣
∣(μ)i

∣
∣
∣
∣(f)i

∣
∣ ≤ ‖f‖u

∑

i∈S

∣
∣(μ)i

∣
∣.

In particular, we have the complement to (2.1.6):

‖Pf‖u ≤ ‖f‖u. (2.1.9)
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2.1.4 The Markov Property

By definition, if μ is the initial distribution of {Xn : n ≥ 0}, then

P(X0 = i0, . . . ,Xn = in) = (μ)i0(P)i0i1 · · · (P)in−1in . (2.1.10)

Hence, if m,n ≥ 1 and F : Sn+1 −→R is either bounded or non-negative, then

E
[
F(Xm, . . . ,Xm+n), X0 = i0, . . . ,Xm = im

]

=
∑

j1,...,jn∈S
F(im, j1, . . . , jn)μi0

(P)i0i1 · · · (P)im−1im(P)imj1 · · · (P)j1n−1jn

= E
[
F(X0, . . . ,Xn)

∣
∣X0 = im

]
P(X0 = i0, . . . ,Xm = im).

Equivalently, we have now proved the Markov property in the form

E
[
F(Xm, . . . ,Xm+n)

∣
∣X0 = i0, . . . ,Xm = im

]

= E
[
F(X0, . . . ,Xn)

∣
∣X0 = im

]
. (2.1.11)

2.2 Doeblin’s Theory

In this section I will introduce an elementary but basic technique, due to Doeblin,
which will allow us to study the long time distribution of a Markov chain, particu-
larly ones on a finite state space.

2.2.1 Doeblin’s Basic Theorem

For many purposes, what one wants to know about a Markov chain is its distribution
after a long time, and, at least when the state space is finite, it is reasonable to think
that the distribution of the chain will stabilize. To be more precise, if one is dealing
with a chain which can go in a single step from any state i to some state j with
positive probability, then that state j is going to visited again and again, and so,
after a while, the chain’s initial distribution is going to get “forgotten.” In other
words, we are predicting for such a chain that μPn will, for sufficiently large n, be
nearly independent of μ. In particular, this would mean that μPn = (μPn−m)Pm is
very nearly equal to μPm when m is large and therefore, by Cauchy’s convergence
criterion, that π = limn→∞ μPn exists. In addition, if this were the case, then we
would have that π = limn→∞ μPn+1 = limn→∞(μPn)P = πP. That is, π would
have to be a left eigenvector for P with eigenvalue 1. A probability vector π is, for
obvious reasons, called a stationary probability for the transition probability matrix
P if π = πP.
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Although a state j of the sort in the preceding discussion is most likely to exist
when the state space is finite, there are situations in which these musings apply even
to infinite state spaces. That is, if, no matter where the chain starts, it has a positive
probability of immediately visiting some fixed state, then, as the following theorem
shows, it will stabilize.

Theorem 2.2.1 (Doeblin’s Theorem) Let P be a transition probability matrix with
the property that, for some state j0 ∈ S and ε > 0, (P)ij0 ≥ ε for all i ∈ S. Then P
has a unique stationary probability vector π , (π)j0 ≥ ε, and, for all initial distribu-
tions μ,

∥
∥μPn − π

∥
∥

v ≤ (1 − ε)n‖μ − π‖v ≤ 2(1 − ε)n, n ≥ 0.

Proof The key to the proof lies in the observations that if ρ ∈ R
S is a row vector

with ‖ρ‖v < ∞, then
∑

j∈S
(ρP)j =

∑

i∈S
(ρ)i ,

and
∑

i∈S
(ρ)i = 0 =⇒ ∥

∥ρPn
∥
∥

v ≤ (1 − ε)n‖ρ‖v for n ≥ 1.

(2.2.2)

The first of these is trivial, because, by Theorem 7.1.15,

∑

j∈S
(ρP)j =

∑

j∈S

(∑

i∈S
(ρ)i(P)ij

)

=
∑

i∈S

(∑

j∈S
(ρ)i(P)ij

)

=
∑

i∈S
(ρ)i .

As for the second, note that, by an easy induction argument, it suffices to check it
when n = 1. Next, suppose that

∑
i (ρ)i = 0, and observe that

∣
∣(ρP)j

∣
∣ =

∣
∣
∣
∣

∑

i∈S
(ρ)i(P)ij

∣
∣
∣
∣

=
∣
∣
∣
∣

∑

i∈S
(ρ)i

(
(P)ij − εδj,j0

)
∣
∣
∣
∣ ≤

∑

i∈S

∣
∣(ρ)i

∣
∣
(
(P)ij − εδj,j0

)
,

and therefore that

‖ρP‖v ≤
∑

j∈S

(∑

i∈S

∣
∣(ρ)i

∣
∣
(
(P)ij − εδj,j0

)
)

=
∑

i∈S

∣
∣(ρ)i

∣
∣
(∑

j∈S

(
(P)ij − εδj,j0

)
)

= (1 − ε)‖ρ‖v.

Now let μ be a probability vector, and set μn = μPn. Then, because μn =
μn−mPm and

∑
i ((μn−m)i − μi ) = 1 − 1 = 0,

‖μn − μm‖v ≤ (1 − ε)m‖μn−m − μ‖v ≤ 2(1 − ε)m
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for 1 ≤ m < n. Hence {μn}∞1 is Cauchy convergent, and therefore there exists
a π for which ‖μn − π‖v −→ 0. Since each μn is a probability vector, it is
clear that π must also be a probability vector. In addition, π = limn→∞ μPn+1 =
limn→∞(μPn)P = πP, and so π is stationary. In particular,

(π)j0 =
∑

i∈S
(π)i(P)ij0 ≥ ε

∑

i∈S
(π)i = ε.

Finally, if ν is any probability vector, then

∥
∥νPm − π

∥
∥

v = ∥
∥(ν − π)Pm

∥
∥

v ≤ (1 − ε)m‖μ − π‖v ≤ 2(1 − ε)m,

which, of course, proves both the stated convergence result and the uniqueness of π

as the only stationary probability vector for P. �

The condition in Doeblin’s Theorem is called Doeblin’s condition, and it is in-
structive to understand what his theorem says in the language of spectral theory.
Namely, as an operator on the space of bounded functions (a.k.a. column vectors
with finite uniform norm), P has the function 1 as a right eigenfunction with eigen-
value 1: P1 = 1. Thus, at least if S is finite, general principles say that there must
exist a row vector which is a left eigenvector of P with eigenvalue 1. Moreover, be-
cause 1 and the entries of P are real, this left eigenvector can be taken to have real
components. Thus, from the spectral point of view, it is no surprise that there is a
non-zero row vector μ ∈ R

S with the property that μP = μ. On the other hand, stan-
dard spectral theory would not predict that μ can be chosen to have non-negative
components, and this is the first place where Doeblin’s theorem gives information
which is not readily available from standard spectral theory, even when S is finite.
To interpret the estimate in Doeblin’s Theorem, let M1(S;C) denote the space of
row vectors ν ∈ C

S with ‖ν‖v = 1. Then,

‖νP‖v ≤ 1 for all ν ∈ M1(S;C),

and so

sup
{|α| : α ∈C & ∃ ν ∈ M1(S;C) νP = αν

} ≤ 1.

Moreover, if νP = αν for some α �= 1, then ν1 = ν(P1) = (νP)1 = αν1, and there-
fore ν1 = 0. Thus, the estimate in (2.2.2) says that all eigenvalues of P which are
different from 1 have absolute value dominated by 1 − ε. That is, the entire spec-
trum of P lies in the complex unit disk, 1 is a simple eigenvalue, and all the other
eigenvalues lie in the disk of radius 1 − ε. Finally, although general spectral theory
fails to predict Doeblin’s Theorem, it should be said that there is a spectral theory,
the one initiated by Frobenius and developed further by Kakutani, that does cover
Doeblin’s results. The interested reader should consult Chap. VIII in [2].
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2.2.2 A Couple of Extensions

An essentially trivial extension of Theorem 2.2.1 is provided by the observation that,
for any M ≥ 1 and ε > 0,4

sup
j

inf
i

(
PM

)
ij

≥ ε

=⇒ ∥
∥μPn − π

∥
∥

v ≤ (1 − ε)

n
M

�‖μ − π‖v ≤ 2(1 − ε)

n
M

�
(2.2.3)

for all probability vectors μ and a unique stationary probability vector π . To see
this, let π be the stationary probability vector for PM , the one guaranteed by
Theorem 2.2.1, and note that, for any probability vector μ, any m ∈ N, and any
0 ≤ r < M ,

∥
∥μPmM+r − π

∥
∥

v = ∥
∥
(
μPr − πPr

)
PmM

∥
∥

v ≤ (1 − ε)m‖μ − π‖v ≤ 2(1 − ε)m.

Thus (2.2.3) has been proved, and from (2.2.3) the argument needed to show that
π is the one and only stationary measure for P is the same as the one given in the
proof of Theorem 2.2.1.

The next extension is a little less trivial. In order to appreciate the point that it is
addressing, one should keep in mind the following example. Consider the transition
probability matrix

P =
(

0 1
1 0

)

on {1,2}.

Obviously, this two state chain goes in a single step from one state to the other.
Thus, it certainly visits all its states. On the other hand, it does not satisfy the hy-
pothesis in (2.2.3): (Pn)ij = 0 if either i = j and n is odd or if i �= j and n is even.
Thus, it should not be surprising that the conclusion in (2.2.3) fails to hold for this P.
Indeed, it is easy to check that although ( 1

2 , 1
2 ) is the one and only stationary prob-

ability vector for P, ‖(1,0)Pn − ( 1
2 , 1

2 )‖v = 1 for all n ≥ 0. As we will see later (cf.
Sect. 3.1.3), the problems encountered here stem from the fact that (Pn)ii > 0 only
if n is even.

In spite of the problems raised by the preceding example, one should expect that
the chain corresponding to this P does equilibrate in some sense. To describe what
I have in mind, set

An = 1

n

n−1∑

m=0

Pm. (2.2.4)

Although the matrix An is again a transition probability matrix, it is not describing
transitions but instead it is giving the average amount of time that the chain will visit

4Here and elsewhere, we use 
s� to denote the integer part of s of s ∈R. That is, 
s� is the largest
integer dominated by s.
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states. To be precise, because

(An)ij = 1

n

n−1∑

m=0

P(Xm = j |X0 = i) = E

[
1

n

n−1∑

m=0

1{j}(Xm)

∣
∣
∣X0 = i

]

,

(An)ij is the expected value of the average time spent at state j during the time
interval [0, n−1] given that i was the state from which the chain started. Experience
teaches us that data becomes much more forgiving when it is averaged, and the
present situation is no exception. Indeed, continuing with the example given above,
observe that, for any probability vector μ,

∥
∥
∥
∥μAn −

(
1

2
,

1

2

)∥
∥
∥
∥

v
≤ 1

n
for n ≥ 1.

What follows is a statement which shows that this sort of conclusion is quite general.

Theorem 2.2.5 Suppose that P is a transition probability matrix on S. If for some
M ∈ Z

+, j0 ∈ S, and ε > 0, (AM)ij0 ≥ ε for all i ∈ S, then there is precisely one
stationary probability vector π for P, (π)j0 ≥ ε, and

‖μAn − π‖v ≤ M − 1

nε

for any probability vector μ.

To get started, let π be the unique stationary probability that Theorem 2.2.3
guarantees for AM . Then, because any μ which is stationary for P is certainly sta-
tionary for AM , it is clear that π is the only candidate for P-stationarity. More-
over, to see that π is P-stationary, observe that, because P commutes with AM ,
(πP)AM = (πAM)P = πP. Hence, πP is stationary for AM and therefore, by
uniqueness, must be equal to π . That is, π = πP.

In order to prove the asserted convergence result, we will need an elementary
property of averaging procedures. Namely, for any probability vector μ,

‖μAnAm − μAn‖v ≤ m − 1

n
for all m,n ≥ 1. (2.2.6)

To check this, first note that, by the triangle inequality,

‖μAnAm − μAn‖v = 1

m

∥
∥
∥
∥
∥

m−1∑

k=0

(
μAnPk − μAn

)
∥
∥
∥
∥
∥

v

≤ 1

m

m−1∑

k=0

∥
∥μAnPk − μAn

∥
∥

v.
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Second, if k ≥ n then ‖μAnPk − μAn‖v ≤ 2 ≤ 2k
n

, and if 0 ≤ k < n then

μAnPk − μAn = 1

n

n−1∑

�=0

(
μP�+k − μP�

) = 1

n

(
n+k−1∑

�=k

μP� −
n−1∑

�=0

μP�

)

,

and so ‖μPkAn − μAn‖v ≤ 2k
n

for all n ≥ 1. Hence, after combining this with the
first observation, we are lead to

‖μAnAm − μAn‖v ≤ 2

mn

m−1∑

k=0

k = m − 1

n
,

which is what we wanted.
To complete the proof of Theorem 2.2.5 from here, assume that (AM)ij0 ≥ ε for

all i, and, as above, let π be the unique stationary probability vector for P. Then, π
is also the unique stationary probability vector for AM , and so, by the estimate in
the second line of (2.2.2) applied to AM , ‖μAnAM − π‖v = ‖(μAn − π)AM‖v ≤
(1 − ε)‖μAn − π‖v, which, in conjunction with (2.2.6), leads to

‖μAn − π‖v ≤ ‖μAn − μAnAM‖v + ‖μAnAM − π‖v

≤ M − 1

n
+ (1 − ε)‖μAn − π‖v.

Finally, after elementary rearrangement, this gives the required result.

2.3 Elements of Ergodic Theory

In the preceding section we saw that, under suitable conditions, either μPn or μAn

converge and that the limit is the unique stationary probability vector π for P. In the
present section, we will provide a more probabilistically oriented interpretation of
these results. In particular, we will give a probabilistic interpretation of π . This will
be done again, by entirely different methods, in Chap. 4.

Before going further, it will be useful to have summarized our earlier results in
the form (cf. (2.2.3) and remember that |μf| ≤ ‖μ‖v‖f ‖u)5

sup
j

inf
i

(
PM

)
ij

≥ ε =⇒ ∥
∥Pnf − πf

∥
∥

u ≤ 2(1 − ε)

n
M

�‖f‖u (2.3.1)

and (cf. Theorem 2.2.5)

sup
j

inf
i

(AM)ij ≥ ε =⇒ ‖Anf − πf‖u ≤ M − 1

nε
‖f‖u (2.3.2)

when f is a bounded column vector.

5Here, and elsewhere, I abuse notation by using a constant to stand for the associated constant
function.
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2.3.1 The Mean Ergodic Theorem

Let {Xn : n ≥ 0} be a Markov chain with transition probability P. Obviously,

T
(n)

j ≡ 1

n

n−1∑

m=0

1{j}(Xm) (2.3.3)

is the average amount of time that the chain spends at j before time n. Thus, if μ is
the initial distribution of the chain (i.e., (μ)i = P(X0 = i)), then (μAn)j = E[T̄ (n)

j ],
and so, when it applies, Theorem 2.2.5 implies that E[T̄ (n)

j ] −→ (π)j as n → ∞.

Here we will be proving that the random variables T̄
(n)
j themselves, not just their

expected values, tend to (π)j as n → ∞. Such results come under the heading of
ergodic theory. Ergodic theory is the mathematics of the principle, first enunciated
by the physicist J.W. Gibbs in connection with the kinetic theory of gases, which
asserts that the time-average over a particular trajectory of a dynamical system will
approximate the equilibrium state of that system. Unfortunately, in spite of results,
like those given here, confirming this principle, even now, nearly 150 years after
Gibbs, there are embarrassingly few physically realistic situations in which Gibbs’s
principle has been mathematically confirmed.

Theorem 2.3.4 (Mean Ergodic Theorem) Under the hypotheses in Theorem 2.2.5,

sup
j∈S

E
[(

T
(n)

j − (π)j
)2] ≤ 2(M − 1)

nε
for all n ≥ 1.

(See (2.3.10) below for a more refined, less quantitative version.) More generally,
for any bounded function f on S and all n ≥ 1:

E

[(
1

n

n−1∑

m=0

f (Xm) − π f

)2]

≤ 4(M − 1)‖f‖2
u

nε
,

where f denotes the column vector determined by f .

Proof Let f̄ be the column vector determined by the function f̄ = f − πf. Obvi-
ously,

1

n

n−1∑

m=0

f (Xm) − π f = 1

n

n−1∑

m=0

f̄ (Xm),
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and so
(

1

n

n−1∑

m=0

f (Xm) − π f

)2

= 1

n2

(
n−1∑

m=0

f̄ (Xm)

)2

= 1

n2

n−1∑

k,�=0

f̄ (Xk)f̄ (X�)

= 2

n2

∑

0≤k≤�<n

f̄ (Xk)f̄ (X�) − 1

n2

n−1∑

k=0

f̄ (Xk)
2

≤ 2

n2

∑

0≤k≤�<n

f̄ (Xk)f̄ (X�).

Hence,

E

[(
1

n

n−1∑

m=0

f (Xm) − πf

)2]

≤ 2

n2

n−1∑

k=0

E

[

f̄ (Xk)

n−k−1∑

�=0

f̄ (Xk+�)

]

= 2

n2

n−1∑

k=0

E

[

f̄ (Xk)

n−k−1∑

�=0

(
P� f̄

)
Xk

]

= 2

n2

n−1∑

k=0

(n − k)E
[
f̄ (Xk)(An−k f̄)Xk

]
.

But, by (2.3.2), ‖An−k f̄‖u ≤ M−1
(n−k)ε

‖f̄‖u, and so, since ‖f̄‖u ≤ 2‖f‖u,

(n − k)E
[
f̄ (Xk)(An−k f̄)Xk

] ≤ 2(M − 1)‖f‖2
u

ε
.

After plugging this into the preceding, we get the second result. To get the first,
simply take f = 1{j} and observe that, in this case, ‖f̄‖u ≤ 1. �

2.3.2 Return Times

As the contents of Sects. 1.1 and 1.2 already indicate, return times ought to play an
important role in the analysis of the long time behavior of Markov chains. In particu-
lar, if ρ

(0)
j ≡ 0 and, for m ≥ 1, the time of mth return to j is defined so that ρ

(m)
j = ∞

if ρ
(m−1)
j = ∞ or Xn �= j for every n > ρ(m−1) and ρ

(m)
j = inf{n > ρ

(m−1)
j :

Xn = j} otherwise, then we say that j is recurrent if P(ρ
(1)
j < ∞|X0 = j) = 1

and that it is transient if P(ρ
(1)
j < ∞|X0 = j) < 1; and we can hope that when j

is recurrent, then the history of the chain breaks into epochs which are punctuated
by the successive returns to j . In this subsection we will provide evidence which
bolsters that hope.



38 2 Markov Chains

Notice that ρj ≡ ρ
(1)
j ≥ 1 and, for n ≥ 1,

1(n,∞](ρj ) = Fn,j (X0, . . . ,Xn) where

Fn,j (i0, . . . , in) =
{

1 if im �= j for 1 ≤ m ≤ n,

0 otherwise.

(2.3.5)

In particular, this shows that the event {ρj > n} is a measurable function of
(X0, . . . ,Xn). More generally, because

1(n,∞]
(
ρ

(m+1)
j

) = 1[n,∞]
(
ρ

(m)
j

) +
n−1∑

�=1

1{�}
(
ρ

(m)
j

)
Fn−�,j (X�, . . . ,Xn),

an easy inductive argument shows that, for each m ∈ N and n ∈ N, {ρ(m)
j > n} is a

measurable function of (X0, . . . ,Xn).

Theorem 2.3.6 For all m ∈ Z
+ and (i, j) ∈ S

2,

P
(
ρ

(m)
j < ∞ ∣

∣X0 = i
) = P(ρj < ∞|X0 = i)P(ρj < ∞|X0 = j)m−1.

In particular, if j is recurrent, then P(ρ
(m)
j < ∞|X0 = j) = 1 for all m ∈ N. In fact,

if j is recurrent, then, conditional on X0 = j , {ρ(m)
j −ρ

(m−1)
j : m ≥ 1} is a sequence

of mutually independent random variables each of which has the same distribution
as ρj .

Proof To prove the first statement, we apply (2.1.11) and the monotone convergence
theorem, Theorem 7.1.9, to justify

P
(
ρ

(m)
j < ∞ ∣

∣X0 = i
)

=
∞∑

n=1

P
(
ρ

(m−1)
j = n & ρ

(m)
j < ∞ ∣

∣X0 = i
)

= lim
N→∞

∞∑

n=1

P
(
ρ

(m−1)
j = n & ρ

(m)
j ≤ N

∣
∣X0 = i

)

=
∞∑

n=1

lim
N→∞E

[
1 − FN,j (Xn, . . . ,Xn+N), ρ

(m−1)
j = n

∣
∣X0 = i

]

=
∞∑

n=1

lim
N→∞E

[
1 − FN,j (X0, . . . ,XN)

∣
∣X0 = j

]
P
(
ρ

(m−1)
j = n

∣
∣X0 = i

)

=
∞∑

n=1

lim
N→∞P(ρj ≤ N |X0 = j)P

(
ρ

(m−1)
j = n

∣
∣X0 = i

)

= P(ρj < ∞|X0 = j)P
(
ρ

(m−1)
j < ∞ ∣

∣X0 = i
)
.
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Turning to the second statement, note that it suffices for us prove that

P
(
ρ

(m+1)
j > n + nm

∣
∣X0 = j, ρ

(1)
j = n1, . . . , ρ

(m)
j = nm

)

= P(ρj > n |X0 = j).

But, again by (2.1.11), the expression on the left is equal to

E
[
Fn,j (Xnm, . . . ,Xnm+n)

∣
∣X0 = j, ρ

(1)
j = n1, . . . , ρ

(m)
j = nm

]

= E
[
Fn,j (X0, . . . ,Xn)

∣
∣X0 = j

] = P(ρj > n |X0 = j). �

Reasoning as we did in Sect. 1.2.2, we can derive from the first part of Theo-
rem 2.3.6:

E[Tj |X0 = i] = δi,j + P(ρj < ∞|X0 = i)

P(ρj = ∞|X0 = j)
,

E[Tj |X0 = j ] = ∞ ⇐⇒ P(Tj = ∞|X0 = j) = 1,

E[Tj |X0 = j ] < ∞ ⇐⇒ P(Tj < ∞|X0 = j) = 1,

(2.3.7)

where Tj = ∑∞
m=0 1{j}(Xm) is the total time the chain spends in the state j . Indeed,

because

P(Tj > m |X0 = i) =
⎧
⎨

⎩

P(ρ
(m)
j < ∞|X0 = j) if i = j

P(ρ
(m+1)
j < ∞|X0 = i) if i �= j,

all three parts of (2.3.7) follow immediately from the first part of Theorem 2.3.6.
Of course, from (2.3.7) we know that

j is recurrent if and only if E[Tj |X0 = j ] = ∞.

In particular, under the conditions in Theorem 2.2.5, this means that j0 is recurrent
since (An)j0j0 −→ (π)j0 > 0 and therefore

E[Tj0 |X0 = j0] =
∞∑

m=0

(
Pm

)
j0j0

= lim
n→∞n(An)j0j0 = ∞.

To facilitate the statement of the next result, we will say that j is accessible from
i and will write i→j if (Pn)ij > 0 for some n ≥ 0. Equivalently, i→j if and only if
i = j or i �= j and P(ρj < ∞|X0 = i) > 0.

Theorem 2.3.8 Assume that infk(AM)ki ≥ ε for some M ≥ 1, i ∈ S, and ε > 0.
Then j is recurrent if and only if i→j , in which case infk(AM ′)kj > 0 for some
M ′ > 0. Moreover, if k is recurrent, then supj∈SE[ρp

k |X0 = j ] < ∞ for all
p ∈ (0,∞).



40 2 Markov Chains

Proof First suppose that i � j . Equivalently, P(ρj = ∞|X0 = i) = 1. At the same
time, because (AM)ji ≥ ε, there exists an 1 ≤ m < M such that (Pm)ji > 0, and so
(cf. (2.3.5))

P(ρj = ∞|X0 = j) ≥ P(Xn �= j for n ≥ m & Xm = i |X0 = j)

≥ lim
N→∞E

[
FN,j (Xm, . . . ,Xm+N), Xm = i|X0 = j

]

= lim
N→∞E

[
FN,j (X0, . . . ,XN)

∣
∣X0 = i

]
P(Xm = i |X0 = j)

= P(ρj = ∞|X0 = i)
(
Pm

)
ji

> 0.

Therefore j cannot be recurrent.
We next show that

i→j =⇒ inf
k

(AM ′)kj > 0 for some M ′ ≥ 1. (∗)

To this end, choose m ∈ N so that (Pm)ij > 0. Then, for all k ∈ S,

(Am+M)kj = 1

m + M

M+m−1∑

�=0

(
P�

)
kj

≥ 1

m + M

M−1∑

�=0

(
P�

)
ki

(
Pm

)
ij

= M

m + M
(AM)ki

(
Pm

)
ij

≥ Mε

m + M

(
Pm

)
ij

> 0.

In view of (∗) and what we have already shown, it suffices to show that
E[ρp

i |X0 = j ] < ∞ for all j ∈ S. For this purpose, set

u(n, k) = P(ρi > nM |X0 = k) for n ∈ Z
+ and k ∈ S.

Then, by (2.1.11),

u(n + 1, k) =
∑

j∈S
P
(
ρi > (n + 1)M & XnM = j |X0 = k

)

=
∑

j∈S
E

[
FM,i(XnM, . . . ,X(n+1)M), ρi > nM & XnM = j |X0 = k

]

=
∑

j∈S
P(ρi > M |X0 = j)P(ρi > nM & XnM = j |X0 = k)

=
∑

j∈S
u(1, j)P(ρi > nM & XnM = j |X0 = k).

Hence, u(n + 1, k) ≤ Uu(n, k) where U ≡ maxj∈S u(1, j). Finally, since u(1, j) =
1 − P(ρi ≤ M|X0 = j) and

P(ρi ≤ M |X0 = j) ≥ max
0≤m<M

(
Pm

)
ji

≥ (AM)ji ≥ ε,
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U ≤ 1 − ε. In particular, this means that u(n + 1, k) ≤ (1 − ε)u(n, k), and therefore
that P(ρi > nM|X0 = k) ≤ (1 − ε)n, from which

E
[
ρ

p
i

∣
∣X0 = k

] =
∞∑

n=1

np
P(ρi = n |X0 = k)

≤
∞∑

m=1

(mM)p
mM∑

n=(m−1)M+1

P(ρi = n |X0 = k)

≤ Mp
∞∑

m=1

mp
P
(
ρi > (m − 1)M

∣
∣X0 = k

)

≤ Mp
∞∑

m=1

mp(1 − ε)m−1 < ∞

follows immediately. �

2.3.3 Identification of π

Under the conditions in Theorem 2.2.5, we know that there is precisely one
P-stationary probability vector π . In this section, we will give a probabilistic in-
terpretation of (π)j . Namely, we will show that

sup
M≥1

sup
j∈S

inf
i∈S(AM)ij > 0

=⇒ (π)j = 1

E[ρj |X0 = j ] (≡ 0 if j is transient). (2.3.9)

The idea for the proof of (2.3.9) is that, on the one hand, (cf. (2.3.3))

E
[
T

(n)

j

∣
∣X0 = j

] = (An)jj −→ (π)j ,

while, on the other hand,

X0 = j =⇒ T
(ρ

(m)
j )

j = 1

ρ
(m)
j

ρ
(m)
j −1
∑

�=0

1{j}(X�) = m

ρ
(m)
j

.

Thus, since, at least when j is recurrent, Theorem 2.3.6 says that ρ
(m)
j is the sum of

m mutually independent copies of ρj , the preceding combined with the weak law
of large numbers should lead

(π)j = lim
m→∞E

[
T

(ρ
(m)
j )

j

∣
∣X0 = j

] = 1

E[ρj |X0 = j ] .
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To carry out the program suggested above, we will actually prove a stronger
result. Namely, we will show that, for each j ∈ S,6

P

(

lim
n→∞T

(n)

j = 1

E[ρj |X0 = j ]
∣
∣
∣X0 = j

)

= 1. (2.3.10)

In particular, because 0 ≤ T
(n) ≤ 1, Lebesgue’s dominated convergence theorem,

Theorem 7.1.11, says that

(π)j = lim
n→∞(An)jj = lim

n→∞E
[
T

(n)

j

∣
∣X0 = j

] = 1

E[ρj |X0 = j ]
follows from (2.3.10). Thus, we need only prove (2.3.10). To this end, choose j0,
M , and ε > 0 so that (AM)ij0 ≥ ε for all i. If j0 � j , then, by Theorem 2.3.8,
j is transient, and so, by (2.3.7), P(Tj < ∞|X0 = j) = 1. Hence, conditional on

X0 = j , T
(n)

j ≤ 1
n
Tj −→ 0 with probability 1. At the same time, because j is tran-

sient, P(ρj = ∞|X0 = j) > 0, and so E[ρj |X0 = j ] = ∞. Hence, we have proved
(2.3.10) in the case when j0 � j .

Next assume that j0→j . Then, again by Theorem 2.3.8, E[ρ4
j |X0 = j ] < ∞ and,

conditional on X0 = j , Theorem 2.3.6 says that the random variables ρ
(m)
j −ρ

(m−1)
j

are mutually independent random variables and have the same distribution as ρj . In
particular, by the strong law of large numbers (cf. Exercise 1.3.4)

P

(

lim
m→∞

ρ
(m)
j

m
= rj

∣
∣
∣ X0 = j

)

= 1 where rj ≡ E[ρj |X0 = j ].

On the other hand, for any m ≥ 1,

∣
∣
∣
∣T

(n)

j − 1

rj

∣
∣
∣
∣ ≤ ∣

∣T
(n)

j − T
(ρ

(m)
j )

j

∣
∣ +

∣
∣
∣
∣T

(ρ
(m)
j )

j − 1

rj

∣
∣
∣
∣,

and

∣
∣T

(n)

j − T
(ρ

(m)
j )

j

∣
∣ ≤ |T (n)

j − T
(ρ

(m)
j )

j |
n

+
∣
∣
∣
∣1 − ρ

(m)
j

n

∣
∣
∣
∣T

(ρ
(m)
j )

j

≤ 2

∣
∣
∣
∣1 − ρ

(m)
j

n

∣
∣
∣
∣ ≤ 2

∣
∣
∣
∣1 − mrj

n

∣
∣
∣
∣ + 2m

n

∣
∣
∣
∣
ρ

(m)
j

m
− rj

∣
∣
∣
∣

6Statements like the one which follows are called individual ergodic theorems because they, as
distinguished from the first part of Theorem 2.3.4, are about convergence with probability 1 as
opposed to convergence in square mean. See Exercise 4.2.10 below for more information.
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while, since T
(ρ

(m)
j )

j = m

ρ
(m)
j

≤ 1,

∣
∣
∣
∣T

(ρ
(m)
j )

j − 1

rj

∣
∣
∣
∣ ≤ 1

rj

∣
∣
∣
∣
ρ

(m)
j

m
− rj

∣
∣
∣
∣.

Hence,
∣
∣
∣
∣T

(n)

j − 1

rj

∣
∣
∣
∣ ≤ 2

∣
∣
∣
∣1 − mrj

n

∣
∣
∣
∣ +

(
2m

n
+ 1

rj

)∣
∣
∣
∣
ρ

(m)
j

m
− rj

∣
∣
∣
∣.

Finally, by taking mn = 
 n
rj

� we get

∣
∣
∣
∣T

(n)

j − 1

rj

∣
∣
∣
∣ ≤ 2rj

n
+ 3

rj

∣
∣
∣
∣
ρ

(mn)
j

mn

− rj

∣
∣
∣
∣ −→ 0 as n → ∞.

Notice that (2.3.10) is precisely the sort of statement for which Gibbs was look-
ing. That is, it says that, with probability 1, when one observes an individual path,
the average time that it spends in each state tends, as one observes for a longer
and longer time, to the probability that the equilibrium (i.e., stationary) distribution
assigns to that state.

2.4 Exercises

Exercise 2.4.1 In this exercise we will give a probabilistic interpretation of the
adjoint of a transition probability matrix with respect to a stationary probability.
To be precise, suppose that the transition probability matrix P admits a stationary
distribution π , assume (π)i > 0 for each i ∈ S, and determine the matrix P� by

(P�)ij = (π)j
(π)i

(P)ji .

(a) Show that P� is a transition probability matrix for which π is again a stationary
probability.

(b) Use P and P
� to denote probabilities computed for the chains determined, re-

spectively, by P and P� with initial distribution π , and show that these chains
are the reverse of one another in the sense that, for each n ≥ 0 the distribution of
(X0, . . . ,Xn) under P� is the same as the distribution of (Xn, . . . ,X0) under P.
That is,

P
�(X0 = i0, . . . ,Xn = in) = P(Xn = i0, . . . ,X0 = in)

for all n ≥ 0 and (i0, . . . , in) ∈ S
n+1.

Exercise 2.4.2 The Doeblin theory applies particularly well to chains on a finite
state. For example, suppose that P is a transition probability matrix on an N element
state space S, and show that there exists an ε > 0 such that (AN)ij0 ≥ ε for all i ∈ S



44 2 Markov Chains

if and only if i→j0 for all i ∈ S. In particular, if such a j0 exists, conclude that, for
all probability vectors μ,

‖μAn − π‖v ≤ 2(N − 1)

nε
, n ≥ 1,

where π is the unique stationary probability vector for P.

Exercise 2.4.3 Here is a version of Doeblin’s theorem that sometimes gives a
slightly better estimate. Namely, assume that (P)ij ≥ εj for all (i, j), and set
ε = ∑

j εj . If ε > 0, show that the conclusion of Theorem 2.2.1 holds with this
ε and that (π)i ≥ εi for each i ∈ S.

Exercise 2.4.4 Assume that P is a transition probability matrix on the finite state
space S, and show that

j ∈ S is recurrent if and only if E[ρj |X0 = j ] < ∞.

Of course, the “if” part is trivial and has nothing to do with the finiteness of the state
space.

Exercise 2.4.5 Again assume that P is a transition probability matrix on the finite
state space S. In addition, assume that P is doubly stochastic in the sense that each
of its columns as well as each of its rows sums to 1. Under the condition that every
state is accessible from every other state, show that E[ρj |X0 = j ] = #S for each
j ∈ S.

Exercise 2.4.6 In order to test how good Doeblin’s theorem is, consider the case
when S= {1,2} and

P =
(

1 − α α

β 1 − β

)

for some (α,β) ∈ (0,1).

Show that π = (α + β)−1(β,α) is a stationary probability for P, that

‖νP − π‖v = |1 − α − β|‖μ − π‖v for all probability vectors μ.

Hence, in this case, Doeblin’s theorem gives the optimal result.

Exercise 2.4.7 One of the earliest examples of Markov processes are the branch-
ing processes introduced, around the end of the nineteenth century, by Galton and
Watson to model demographics. In this model, S = N, the state i ∈ N representing
the number of members in the population, and the process evolves so that, at each
stage, every individual, independently of all other members of the population, dies
and is replaced by a random number of offspring. Thus, 0 is an absorbing state,
and, given that there are i ≥ 1 individuals alive at a given time n, the number of
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individuals alive at time n + 1 will be distributed like the sum of i mutually inde-
pendent, N-valued, identically distributed random variables. To be more precise, if
μ = (μ0, . . . ,μk, . . . ) is the probability vector giving the number of offspring each
individual produces, define the m-fold convolution power μ�m so that (μ�0)j = δ0,j

and, for m ≥ 1,

(
μ�m

)
j

=
j∑

i=0

(
μ�(m−1)

)
j−i

μi .

Then the transition probability matrix P is given by (P)ij = (μ�i)j .
The first interesting question which one should ask about this model is

what it predicts will be the probability of eventual extinction. That is, what is
limn→∞ P(Xn = 0)? A naïve guess is that eventual extinction should occur or
should not occur depending on whether the expected number γ ≡ ∑∞

k=0 kμk of
progeny is strictly less or strictly greater than 1, with the case when the expected
number is precisely 1 being more ambiguous. In order to verify this guess and re-
move trivial special cases, we make the assumptions that μ0 > 0, μ0 + μ1 < 1, and
γ ≡ ∑∞

k=0 kμk < ∞.

(a) Set f (s) = ∑∞
k=0 skμk for s ∈ [0,1], and define f ◦n(s) inductively so that

f ◦0(s) = s and f ◦n = f ◦ f ◦ (n−1) for n ≥ 1. Show that γ = f ′(1) and that

f ◦n(s)i = E
[
sXn

∣
∣X0 = i

] =
∞∑

j=0

sj
(
Pn

)
ij

for s ∈ [0,1] and i ≥ 0.

Hint: Begin by showing that f (s)i = ∑∞
j=0 sj (μ�i)j .

(b) Observe that s ∈ [0,1] �−→ f (s) − s is a continuous function which is positive
at s = 0, zero at s = 1, and smooth and strictly convex (i.e., f ′′ > 0) on (0,1).
Conclude that either γ ≤ 1 and f (s) > s for all s ∈ [0,1) or γ > 1 and there is
exactly one α ∈ (0,1) at which f (α) = α.

(c) Referring to the preceding, show that

γ ≤ 1 =⇒ lim
n→∞E

[
sXn

∣
∣X0 = i

] = 1 for all s ∈ (0,1]

and that

γ > 1 =⇒ lim
n→∞E

[
sXn

∣
∣X0 = i

] = αi for all s ∈ (0,1).

(d) Based on (c), conclude that γ ≤ 1 =⇒ P(Xn = 0|X0 = i) −→ 1 and that
γ > 1 =⇒ limn→∞ P(Xn = 0|X0 = i) = αi and

lim
n→∞P(1 ≤ Xn ≤ L|X0 = i) = 0 for all L ≥ 1.

The last conclusion has the ominous implication that, when the expected number
of progeny is larger than 1, then the population either becomes extinct or, what
may be worse, grows indefinitely.
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Exercise 2.4.8 Continue with the setting and notation in Exercise 2.4.7. We will to
show in this exercise that there are significant differences between the cases when
γ < 1 and γ = 1.

(a) Show that E[Xn |X0 = i] = iγ n. Hence, when γ < 1, the expected size of the
population goes to 0 at an exponential rate. On the other hand, when γ = 1,
the expected size remains constant, this in spite of the fact that as n → ∞
P(Xn = 0|X0 = i) −→ 1. Thus, when γ = 1, we have a typical situation of the
sort which demonstrates why Lebesgue had to make the hypotheses he did in his
dominated convergence theorem, Theorem 7.1.11. In the present case, the ex-
planation is simple: as n → ∞, with large probability Xn = 0 but, nonetheless,
with positive probability Xn is enormous.

(b) Let ρ0 be the time of first return to 0. Show that

P(ρ0 ≤ n|X0 = i) = P(Xn = 0|X0 = i) = (
f ◦ (n−1)(μ0)

)i
,

and use this to get the estimate

P(ρ0 > n|X0 = i) ≤ iγ n−1(1 − μ0).

In particular, this shows that E[ρk
0 |X0 = i] < ∞ for all k ∈ Z

+ when γ < 1.
(c) Now assume that γ = 1. Under the additional condition that β ≡ f ′′(1) =∑

k≥2 k(k − 1)μk < ∞, start from P(ρ0 ≤ n|X0 = 1) = f ◦ (n−1)(μ0), and show
that E[ρ0|X0 = i] = ∞ for all i ≥ 1.
Hint: Begin by showing that

1 − f ◦n(μ0) ≥
(

n−1∏

�=m

(
1 − β

(
1 − f ◦�(μ0)

))
)

(
1 − f ◦m(μ0)

)

for n > m. Next, use this to show that

∞ > E[ρ0|X0 = 1] = 1 +
∞∑

0

(
1 − f ◦n(μ0)

)

would lead to a contradiction.
(d) Here we show that the conclusion in (c) will, in general, be false without the

finiteness condition on the second derivative. To see this, let θ ∈ (0,1) be given,

and check that f (s) ≡ s + (1−s)1+θ

1+θ
= ∑∞

k=0 skμk , for some probability vector
μ = (μ0, . . . ,μk, . . . ) with μk > 0 unless k = 1. Now use this choice of μ to
see that, when the second derivative condition in (c) fails, E[ρ0|X0 = 1] can be
finite even though γ = 1.
Hint: Set an = 1 − f ◦n(μ0), note that an − an+1 = μ0a

1+θ
n , and use this first

to see that an+1
an

−→ 1 and then that there exist 0 < c2 < c2 < ∞ such that

c1 ≤ a−θ
n+1 − a−θ

n ≤ c2 for all n ≥ 1. Conclude that P(ρ0 > n|X0 = 1) tends to 0

like n− 1
θ .
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Exercise 2.4.9 The idea underlying this exercise was introduced by J.L. Doob and
is called7 Doob’s h-transformation. Let P is a transition probability matrix on the
state space S. Next, let ∅ �= Γ � S be given, set

ρΓ = inf{n ≥ 1 : Xn ∈ Γ },
and assume that

h(i) ≡ P(ρΓ = ∞|X0 = i) > 0 for all i ∈ Ŝ ≡ S \ Γ.

(a) Show that h(i) = ∑
j∈Ŝ(P)ij h(j) for all i ∈ Ŝ, and conclude that the matrix P̂

given by (P̂)ij = 1
h(i)

(P)ij h(j) for (i, j) ∈ (Ŝ)2 is a transition probability matrix

on Ŝ.
(b) For all n ∈ N and (j0, . . . , jn) ∈ (Ŝ)n+1, show that, for each i ∈ Ŝ,

P̂(X0 = j0, . . . ,Xn = jn |X0 = i)

= P(X0 = j0, . . . ,Xn = jn |ρΓ = ∞ & X0 = i),

where P̂ is used here to denote probabilities computed for the Markov chain on
Ŝ whose transition probability matrix is P̂. That is, the Markov chain determined
by P̂ is the Markov chain determined by P conditioned to never hit Γ .

Exercise 2.4.10 Here is another example of an h-transform. Assume that j0 ∈ S is
transient but that i→j0 for all i ∈ S.8 Set

h(j0) = 1 and h(i) = P(ρj0 < ∞|X0 = i) for i �= j0.

(a) After checking that h(i) > 0 for all i ∈ S, define P̂ so that

(P̂)ij =
{

(P)j0j if i = j0

h(i)−1(P)ij h(j) if i �= j0.

Show that P̂ is again a transition probability matrix.
(b) Using P̂ to denote probabilities computed relative to the chain determined by P̂,

show that

P̂(ρj0 > n |X0 = i) = 1

h(i)
P(n < ρj0 < ∞|X0 = i)

for all n ∈N and i �= j0.
(c) Starting from the result in (b), show that j0 is recurrent for the chain determined

by P̂.

7The “h” comes from the connection with harmonic functions.
8By Exercise 2.4.2, this is possible only if S in infinite.



http://www.springer.com/978-3-642-40522-8


	Chapter 2: Doeblin's Theory for Markov Chains
	2.1 Some Generalities
	2.1.1 Existence of Markov Chains
	2.1.2 Transition Probabilities & Probability Vectors
	2.1.3 Transition Probabilities and Functions
	2.1.4 The Markov Property

	2.2 Doeblin's Theory
	2.2.1 Doeblin's Basic Theorem
	2.2.2 A Couple of Extensions

	2.3 Elements of Ergodic Theory
	2.3.1 The Mean Ergodic Theorem
	2.3.2 Return Times
	2.3.3 Identiﬁcation of pi

	2.4 Exercises


