Phenomenological Yield and Failure Criteria

Holm Altenbach, Alexandre Bolchoun and Vladimir A. Kolupaev

Abstract Models for isotropic materials based on the equivalent stress concept
are discussed. At first, so-called classical models which are useful in the case of
absolutely brittle or ideal ductile materials are presented. Tests for basic stress states
are suggested. At second, standard models describing the intermediate range between
the absolutely brittle and ideal-ductile behavior are introduced. Any criterion is
expressed by various mathematical equations formulated, for example, in terms of
invariants. At the same time the criteria can be visualized which simplifies the applica-
tion. At third, in the main part pressure-insensitive, pressure-sensitive and combined
models are separated. Fitting methods based on mathematical, physical and geometri-
cal criteria are necessary. Finally, three examples (gray cast iron, poly(oxymethylene)
(POM) and poly(vinyl chloride) (PVC) hard foam) demonstrates the application of
different approaches in modeling certain limit behavior. Two appendices are nec-
essary for a better understanding of this chapter: in Chap.?2 applied invariants are
briefly introduced and a table of discussed in this chapter criteria with references is
given.
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1 Need of Criteria

The strength theory assumes that the mechanical loading states can be characterized,
for example, by stresses [62]. It is known that the stresses in each point of the material
or structure are presented by the stress tensor o [5]. For comparison purposes of
various stress states the stress tensor cannot be applied that means a scalar quantity
should be used. Let us introduce the following expression for such quantity

OEQ = 0eq(0) + f(VO)R, R =0. ey

V is the nabla operator, f denotes an arbitrary scalar-valued function and R is a
structural parameter, which can be associated with the grain size in gray iron, with
the cell size of a hard foam, with the particle size in nanomaterials, etc. This parameter
represents the influence of the stress distribution expressed by the stress gradient Vo .
The parameter R is positive-definit and bounded by the minimal dimension of the
structural component, e. g. the plate or sheet thickness, cf. [214]. Equation (1) can
be extended by introducing higher order stress gradients, however the application is
limited. The additional material parameters should be estimated experimentally, but
tests for their estimation are unknown.
Ignoring the microstructure influence Eq. (1) can be simplified

OEQ = O¢q (0’) (2)

This implies that the stress state in each point can be described through the stresses
at this point only [71]. This formulation has multiple limitations and must be applied
with care if the calculation of stresses is performed for parts with significant stress
gradients:

e stress concentration areas,
e load application areas,
e sharp corners, etc.

Nevertheless, the concept of the equivalent stress (2) is widely applicable. This
concept allows to compare multi-axial stress states with material parameters, e.g.
the tensile yield or failure stress o

Oeq = 0. 3)

Strength hypotheses and yield criteria for isotropic materials can be formulated
using principal stresses

@ (o1, 011, 01, Oeq) = 0, 4)

or other invariants, e. g. axiatoric-deviatoric invariants

@ (1, Ié’ 13/, Oeq) =0, &)
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or cylindrical invariants (Novozhilov’s invariants)
O (11, 1, 6, 0eq) = 0. (©6)

The invariants are named in accordance to [234] and detailed presented in Appen-
dix 15. The three formulations (4), (5) and (6) are equivalent. Note that in the case
of incompressible material behavior it can be shown that the first invariant /1 has no
influence on @

D (13, I3, 0eq) =0, @ (13, 0, 0eq) = 0. (7)

The remaining invariants are named deviatoric invariants.

The equivalent stress concept (2) allows to formulate the material response under
multi-axial loading in a compact form using only few parameters. Such formulations
are used in

elasticity theory (elastic potential) [8, 9, 130, 212],

plasticity theory (plastic potential, yield criterion) [8, 139, 163, 234],

creep theory (creep potential) [8, 125],

strength of materials (strength hypothesis or criterion) [8, 35, 91, 157, 220, 229],
low cyclic fatigue [8, 126] and

phase transformation conditions [158, 165].

Phenomenological yield and failure criteria are widely discussed in the literature.
Some reviews are given in [8, 16, 45, 71, 74, 157, 174, 204, 221, 228, 229, 234]
among others.

2 Classical Strength Theories

The dimensioning of structural members is usually carried out under the assumption,
that materials behave either brittle or ductile. The following hypotheses (sometimes
named theories), which correspond to one of the two assumptions, are often used for
strength or yield evaluation [65, 74, 132, 174].

The three classical models (normal stress hypothesis, Tresca, von Mises), which
are presented as usual in textbooks on strength of materials and implemented in com-
mercial finite element codes as a standard tool, and the model of Schmidt-Ishlinsky
represent particular cases of material behavior and are sometimes unable to describe
the behavior of materials properly. Because of their simplicity they are used in the
engineering practice. For applied problems the computations can be performed using
these models, if no information on the particular material properties is available. The
normal stress hypothesis (Fig. 1) describes the “absolutely brittle” material behav-
ior, the models of Tresca, vonMises and Schmidt-Ishlinsky—the “ideal ductile”
behavior.
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Fig. 1 Models for incompressible “ideal ductile” material behavior (vonMises, Tresca and
Schmidt-Ishlinsky) and the normal stress hypothesis (NSH) for “absolutely brittle” material behav-
ior in the plane o1—oyy, o = 0 (after [93])

2.1 Normal Stress Hypothesis

The normal stress hypothesis (Clapeyron, Galilei, Leibniz, Lamé, Maxwell, Navier,
Rankine), Fig.2, i.e. the maximum tensile stress is responsible for the failure
[75, 94, 166, 175], can be expressed as it as follows

Oeq = max(oy, oy, o). 3
Another formulation is

(o1 — O’eq) (onm — O’eq) (omr — Geq) =0. )

Equation (9) is a cubic equation with respect to oeq. With the help of a parameter
identification this equation can be transformed into a third order polynomial of I3,
112 Oeq> Tt agq, agq, I 0¢q and I3. It can be obtained using the model [178]
31, 0eq + 314
212%q T 373 063 ; (10)
1+2c3/33 1
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Fig. 2 Normal stress hypothesis (8) and cylinder of von Mises (16) in the principal stress space
(o1, o11, o111)

and the substitution [103, 178]

Oeq — Y1 11
Oeq — (11D
“ 1=
with the parameter values
3? 1 12)
C = — . = —
3 ) Y1 3

for the better analysis, unified visualization techniques and systematization.

2.2 Tresca Hypothesis

The shear stress hypothesis (Coulomb, Guest, Mohr, Saint Venant, Tresca), i.e. the
maximum difference of the principal stresses is relevant for the failure [48, 163,
209], can be written as follows (Fig. 1)

1
Tmax = 5 max(loy — oqt|, lon — oml, lom — o1)). (13)

The equivalent stress can be expressed in this case as

Geq = 2 Tmax. (14)
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In analogy to Eq. (9) one can write
(0eq — lo1 — om1l) (0eq — lon — oml) (Geq — lom — o1]) = 0.

This hypothesis (often called Tresca hypothesis) can be also expressed by the devi-
atoric invariants [163, 171]

(12’ - ogq)2 (22 I — agq) —B2=o. (15)

2.3 Huber-von Mises-Hencky Hypothesis

The distortion energy hypothesis (Huber, von Mises, Hencky),1 Fig. 2, has different
interpretations among them that the failure occurs if a critical amount of accumulated
distortion energy is achieved [85, 91, 139, 194, 234]

1
Ge%] =5 [(01 — on)* + (on — om)* + (om — 01)2] =31, (16)

This hypothesis is often called von Mises hypothesis.

2.4 Schmidt-Ishlinsky Hypothesis

The criterion of the maximum deviatoric stress (Burzynski, Schmidt, Ishlinsky, Hill,
Haythornthwaite), i. e. the failure occurs if a critical value of deviatoric components
of the stress tensor is achieved [35, 84, 87, 92, 182] (Fig. 1)

11
o — —
r= 30

9 ’

1
max |:|c71 — =1

1 2
3 om— < N|| = S0 (17)

3

or in analogy to Eq. (9)

|0

1
om-—5 (o1 + o)

=

1
on— E(UIII +o1)

=

1
Sy (o1 + o)

(18)
This model can be expressed with the deviatoric invariants [11, 222, 224, 225]
33 32 3 33 32 3
/ / / U
|:§ I3+ ilz Ueq —O’eqi| |:§ 13 — 2—2120’eq+0'eqi| =0. (19)

The naming Schmidt-Ishlinsky hypothesis has become established.

1 This criterion was also formulated 1865 in a letter of Maxwell to Lord Kelvin [204].
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Fig. 3 Nine basic tests. The stresses, values and labels of loading are given in Table 1

3 Basic Stress States

All criteria can be visualized as a limit surface @. Nine tests (Fig. 3) are chosen for
the analysis and comparison of the surfaces @:

e two loadings corresponding to one-dimensional stress states (tension, compres-
sion),

e five loadings corresponding to plane stress states (torsion, two balanced plane
states, two thin-walled tube specimens with closed ends under inner and outer
pressure) and

e two loadings corresponding to hydrostatic (3D balanced) tension and compression.

The relevant stresses are listed in Table 1. All these loading cases have approved
verbal formulations and can be considered as basic tests.?

2 Note that in material testing another definition of basic tests is given [32].
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These nine tests are sufficient for the comparison of the most important features of
surfaces. Their selection is however not unambiguous and can be expanded according
to the available equipment, expected phenomena and requested precision, see e. g.
loading cases labeled by Q and H (Table 1 and Sect.9.2). Further considerations for
the choice of loadings are discussed in [8, 36, 37].

The values (Table 1) relating the respective stresses to o4 are introduced in order
to obtain

k=d= iZ = up = bZ = bD =1 and Clliyd, Cliyd — 0 (20)

for the von Mises hypotheses (16).
For the models of incompressible material behavior the values on the angle 6 = 0,
% and % are computed to [16, 103, 234]

bD = 1, k= iz = Uup and d= bz. (21)

by=1, bp=d. (22)

The models for incompressible behavior can be compared in the d—k-diagram
(Fig.4) [104, 105, 110]. In this diagram the models of Haythornthwaite and Sayir II
(Sect. 9.1) limit the convex shapes of the surface @ in the w-plane [33]. For the
models of compressible material behavior (Sect. 10) the é —k-diagram, which allows

to represent the properties d — 00, k = +/3 of the normal stress hypothesis among
others, is recommended (Fig.5) [122, 156, 157]. In this diagram the areas of validity
of all criterions and various ideas of generalization can be visualized.

The measurements o, o_ and 7, for some materials are presented in [18, 41, 124,
157, 229]. Examples of experimental data for some polymers are given in Table 2.

The data are taken from various sources and they are related to different manu-
facturers. They can be used as first estimates only. Note that the experiments were
performed for specimens with different geometries and using different techniques.
The relations d and k of the materials can be represented in Figs.4 and 5 together
with the models in order to simplify the choice of the suitable model [104].

4 Inelastic Poisson’s Ratio

In the linear theory of elasticity the Poisson’s ratio is defined as the negative ratio of
the strain ;1 = ¢jpp in the direction orthogonal to the applied load and the strain &1
in the tension direction [20, 89]:

1
pel = AL A vele]—l, -[. (23)
€1 €1
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Fig. 4 Diagram d—k for convex models of incompressible material behavior compared with the
hypothesis of vonMises [110]. Certain cross sections in the w-plane are visualized in order to
achieve a better understanding:

a.k=1//3,d=1/2 b.k=2/v3,d=2
c.k=32=3),d=3/2dk=1,d=1++3)/2
e.k=+/3/2,d =3/4 fk=2/V3,d=4/3

g. k=+/3/2,d = 1(Tresca) h.k =2/+/3,d = 1(Schmidt — Ishlinsky)
i.k=1,d=+3/2 m. k =1,d = 1(von Mises)

If the elastic law is formulated on the base of the potential @, one can write

l)el__(a_qj/a_d’) __(3_05/3_@)
d o1l 0 o1 on=o =0 0 o111 d o1
The classical theory of elasticity [20, 64, 205] makes no difference between Poisson’s
ratio at tension and compression

(24)

on=om=0

vl =l (25)

The Poisson’s ratio for yield criteria in the isotropic case can be computed in a
similar way as relations of the strain or strain rates

in 0P /0 0P 0P
VWe—| — /) — =—(—/ — (26)
don/ doi on=om=0 dom/ 9o on=om=0
using the flow rule [126, 167, 234]
. . 0P .
&ij = A — A>0 27

30',']'7
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Fig. 5 1/d versus k for the classical models (Sect.2) and for the Unified Strength Theory of Yu
(Sect. 10.2) as a function of d > 1 and b € [0, 1]:

d>1,ke [1, ﬁ]—Pisarenko-Lebedev model (48),

d=1ke[(2/3)"%, (3/2)!/°]—model of DruckerI (Sect.9.2),

d=1,ke [ﬁ /2, Z/ﬁ]—Uniﬁed Yield Criterion of Yu with b € [0, 1] (Sect.9.2),

d — 00, k = +/3—normal stress hypothesis (Sect.2.1).

SI—model of Schmidt-Ishlinsky (Sect.2.4), SD—model of Sdobirev withd =2,k = 3 — «/§ ~
1.27 (Sect.6.3), UYC—Unified Yield Criterion (Sect.9.2), SST—Single-Shear-Theory of Yu

(model of Mohr-Coulomb), Sect. 10.2, TST—Twin-Shear-Theory of Yu. The cross-sections in
the 7r-plane on /1 = o¢q are provided for better understanding [104, 105, 115]

for &y and é1. Further definitions of v'™ are given in [109]. There is a difference
between the inelastic Poisson’s ratios at tension vﬂf with o1 = o and compression
v withor = —d oy, d > 0.

The convexity condition (necessary condition) for the meridian with the angle
6 = 0 and the associated point Z (tension) yields [105]

in 1
Vel -, E]‘ (28)
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Fig. 6 Cone of Drucker-Prager with the family of cylindric surfaces and cylinder of von Mises in
the principal stress space (the cone is cut in order to achieve better visualization)

For the surfaces that do not cross the hydrostatic axis in the compression region

@™ = 00), it follows [103, 181]

(29)

(S

pin >

For those surfaces (e. g. Drucker-Prager, Mohr-Coulomb, Pisarenko-Lebedev) a non-

associated flow rule with |

it = 30

Z=53 (30)

is often used [103]. The model of Drucker-Prager can be used as an example (Fig. 6).

In this figure for each stress state in the region /; < 0 a cylindrical surface is defined.

This results in a “family” of rings, which define the incompressible behavior for each
stress state in the compression region.

For closed surfaces in the principal stress space will be assumed [105, 216]

: 1
pin e] 1, 5]. 31)

The restriction can be clarified in the (1 /315, 1 1)—plane (Sect. 8.2): the maximum
of a meridian lies in the region

I
— € [—d, 1].
o+

Using (26) the inclination of the tangent line at the points Z (tension) and D (com-
pression) of the surface @ in the principal stress space with respect to the hydrostatic
axis can be characterized:
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e from the inclination i = 0 (tangent line parallel to the hydrostatic axis) follows
v = 1/2 (Fig. 2, model of von Mises) and

e the inclination ¢ = /2 (tangent line is orthogonal to the hydrostatic axis) yields
pit = 1,

The Poisson’s ratio vi{‘ = 0 (Fig.2, normal stress hypothesis (8)) yields® the incli-
nation angle with

3

tanyy =2 | ———— —
2(14+vh

(32)

to ¥ = arctan («/5/ 2) ~ 35.26° in the principal stress space (Fig. 7).

This geometrical interpretation of (26) can be used for description of the limit sur-
face @. It completes the relations (Table 1) for the analytical comparison of different
surfaces by fitting of measurements.

The following estimates are available for evaluation of the quality of the model:

e For ductile materials the experience-based inequality

/ Om

Fig. 7 Principal stress space (o1, oy, oqn): inclination of the tangent line 1/f 2 35.26° at the point
Z (tension) of the surface @ correlates with the Poisson’s ratio at tension v} = 0, Y—intersection
of the surface @ with the surface (¢, 0, oyy) or meridian with 6 = 0 of the surface @

3 Here the substitution I = %g (12/)3/ 2 js used, which corresponds to the meridian with the angle
6 = 0 (Sect. 8.2). The point Z (tension) belongs to this meridian (Table 1).
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. 1
Vit e |:vil, 5} (33)

can be used in order to check the quality of fitting to the measured data.
e The term “slight compressibility”, see [140], can estimated by [110]

in 1
v 048, . (34)

This range is recommended for yield criteria.
e For “very ductile” behavior [126] it can be required additionally

- 1
vy — > (35)

and one gets the desired parameters of the yield criterion in the fitting (Sect. 12).
e For brittle material behavior the following constraints can be formally written

down .
Vit el =1, v, (36)

cf. the maximum strain hypothesis (Sect.6.1) for the upper bound and the strain
hypotheses with oeq = I; for the lower bound.

e For “absolutely” brittle material behavior failure occurs without plastic deforma-
tions in the cross sectional area of the tensile bar [206, 208]. In this case it can be
assumed from the normal stress hypothesis (Sect. 2)

Vit & 0. (37)

5 Ratios for a Torsion Bar

In addition to value k, one can define other values relating to torsion using the yield
condition (27). By analogy to the Poisson’s ratio the elongation/contraction ratio for
a torsion bar or tubes can be established, cf. [8]:

VAL a8)
X_3011 dop

with o1 = kO’eq/\/g and 011 = o = 033 = o013 = op3 = (0. With the
help of this ratio the Poynting-effect and the Poynting-Swift-effect [160—-162, 200]
can be described (Figs.8 and 9). These effects are discussed in the literature, see
[3, 8, 16, 27, 29, 69, 81, 168, 206, 215] among others. The material behavior of the
von Mises-type results in x = 0. In the case of the application of the normal stress
hypothesis (Sect.2) one gets x = 1/2 [6, 110].
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Fig. 8 Change of the geometry of a tube clamped on the right side at torsion

x>0

Fig. 9 Change of the geometry of a tube at torsion. D and d—outer diameter of the tube before
and after loading, S and s—wall thickness before and after loading, u (r)—distribution law for the
displacements in the direction 1
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VON MISES

vin= yin = %

SAYR I, ¢3 = =37 SAYIR I, c3 = 3?

vin=yin= -

2

vin= yin=

Fig. 10 Change of the geometry and the shape of a cube with the size 1 x 1 x 1 under stress action
712 for four settings of the Sayir I model (Table 3)

Furthermore, the volume strain caused by torsion (volume dilatation, see Kelvin-
effect [8, 16]) can be computed as follows:

o 0P n 0P n JdP K (39)
Ve dojr 0o 0033 o’

In addition, a transverse contraction ratio can be obtained [110]:

: 0D P
n__ 9% f9% 40
& dosz/ don “0)

By this way one gets more information about the material behavior from the torsion
test. Some special cases are analyzed in Fig. 10 and Table 3 on the base of model of
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Table 3 Effects computed at torsion considering the model of Sayir I (10) with the linear substi-
tution (11)

Cross section in the -plane (Fig.4) a m b
32 32
c e [732, —] —3? 0 =
2 2
1
e[0, 1 0 -
14! [] [ 1 3
h—_(1-3 0
vy 2 ( v1) B
Classical model - von Mises - NSH
1 2 1 2
=—— 14+ =3 — 1 - V3
-y 33 V3 V3
1
d 3 1 2 00
2 al-yN+2-3%n 1 1 1
=3, /1+ = —— 0 - -
x =31+ 50 233 (1— ) 6 6 2
. 3 (1 —ypp) — 32 0
yin = 93 d =y ;/1 ) 0 ) 0
a(l—=y)+2-32y 0

Y 2
=3 1+ = 0 1
eve =+/3 T~ + 36

The von Mises hypothesis describes the torsion of the tubular specimen without elongation x = 0.
The hypotheses for incompressible material behavior (vonMises and Sayir I with ¢c3 = —3? und
c3 = 32/2) reflect no volume change. The hypotheses of vonMises and of normal stress do not
result in changes of the wall thickness 0 @ /0 033 = 0, cf. the Mohr-Coulomb hypothesis [73, 79]
and Pisarenko-Lebedev hypothesis [157].

SayirI (10). It is obvious that the influence of /; and I; cannot be separated by these
measurements.

For rotational-symmetric models with allyd — 00 one obtains x > 0. For vari-
ous materials the cross-sections of the surface @ in the w-plane result in the part
g — b — h of the d—k-diagram (Fig.4, d > 1) yielding x > 0. From this it
follows that the length and the diameter increase at torsion is more realistic, cf.
[25, 168, 206]. This effect is significantly influenced by:

defects in the material,

material anisotropy,

loading-induced anisotropy,

technological characteristics,

deviation of the specimen shape from the ideal geometry,
non-coaxial fixation of the specimen in the testing machine,
temperature changing during the test, etc.

This is the reason for different suggestions to describe such behavior in the literature.
The ratios x, ey, and viT“ are properties of the model.

If the torsion test is carried out with 11 = 0 (strain is constrained), the axial force
can be computed using the flow rule [172]. The sign of this force gives clues about
the shape of the surface @.
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6 Standard Criteria

The standard models (strain hypothesis, model of Mohr-Coulomb, model of
Pisarenko-Lebedev and model of Burzynski-Yagn [157, 194, 234]) are frequently
used models for first approximations of measurements: they are easy to handle, can be
used to describe different material types (brittle-ductile range) and their parameters

can be obtained using simple tests.

6.1 Strain Criterion

Strain model (strain hypothesis) is obtained assuming Hooke’s law [20, 64, 205]

o1 — v (o1 + om) — 0eq = 0.

(41)

The other two equations are obtained by cyclic permutation of indices. The model

(10) together with the substitution (11) and the parameter values

(1-2vi).
gives rise to the representation in invariants.
The Poisson’s ratio for the strain hypothesis follows, cf. [88, 201]

32
3 = 77 V] =

W | =

. 1 . 1
UTZE(d—l), l)il:g
Further values are
3 1
d=>2, k:L., R p—
1+ -2

This model contains

e the normal stress hypothesis with vif = 0 (Sect.2),

(42)

(43)

(44)

e the maximum strain hypothesis4 (Mariotte [134], Navier [146], St. Venant [175],

Poncelet [159], Grashof [77], Resal [170] or Bach [15]) with v§' = vin.

The limit cases are the following surfaces @

e triangular prism in the principal stress space with pin = vif =1/2,[8, 31, 66, 97,

174, 177, 192] and

e plane through point Z orthogonal to hydrostatic axis with vﬂf =—11[97, 102].

4 This hypothesis is analyzed in [38, 65, 94, 220, 221]. It does not reflect the experimental results

[22, 50, 78, 157, 213] and is used in combinations of various hypotheses (Sect. 11).
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6.2 Mohr-Coulomb Criterion

The model is introduced on the basis of geometrical considerations
[76, 127, 141-143]. It arises as equations, which are obtained by permutation of
indices in

1 1 1
[61 — o= aeq:| |:01 — g om = Ueq:| [GH — g om - 0'eq1| =0. (45

The formulation in invariants is given in Sect. 10.2. The model leads to values

. d : 1
v = 5 vy = 54 d=>1, (46)
and [129]
d hyd d
k=+3—0, = — 47
B @ =T “7)

This model yields (Fig.5, SST)

e with d — oo to the normal stress hypothesis and
e with d = 1 to the model of Tresca.

The relationd > 2 is recommended if computations involving so called fatigue limits
should be performed [30].

6.3 Pisarenko-Lebedev Criterion

The model is presented by

(1-%) \/% [(o1 — om)? + (ou — o1m)? + (o111 — 01)%] +& max[o1, ow, om] = 0eq

(48)
with & € [0, 1] [82, 120, 121, 156, 157]. This is a linear combination of the equiva-
lent stresses after the normal stress hypothesis (§ = 1) and the von Mises hypothesis
(¢ = 0). The relations compute to [123]

1 3 1
k = a¥ = g (49)

E— 3+ (-3+3) €

and the Poisson’s ratio

&
i (50)



70 H. Altenbach et al.
The model of Sdobirev [191] follows with & = 1/2. The relations are d = 2,

k=3 — V3~127,a%" =2, = 1/4 and v = 3/2 (Fig.5). The average
values of the parameter £ for some materials are given in [124].

6.4 Burzyiiski-Yagn Criterion

The rotationally symmetric model evolves the energy consideration and is a function
of two parameters [16, 36, 37, 220]

Oeq — V1 11 Oeq — v2 1

30 = (51)
g L=n =9
The values k and d compute to
1 ) 1
d=—-——, kK=—"———. (52)
l—y1=» 1=y =)
The position of the hydrostatic nodes one gets from
(1 3y aiyd) (1 3y ahyd) —0. (53)
The Poisson’s ratios at tension and compression are obtained using
; —1+2 -3
oin = +2(n1+y)—3n ” (54)
2+y1+n
and 5 5
in _ “l+y+y—nnr 55)

(24t )ty +)

The model (51) represents the general equation of a second order surface of revolution
about the hydrostatic axis in the principal stress space. In dependence of the parameter
values y; and y» one gets:

e cone of Drucker-Prager [56], Mirolyubov [138] (Fig.6) with equal parameters
i=r2€I[0, 1];

e paraboloid of Balandin [17], Burzynski-Torre [35-37, 207, 235] (Fig.11) with
y1 €10, 11,2 =0;

e cllipsoid of Beltrami (strain energy hypothesis) [21], see Fig. 12, assuming y;
= — y» € [0, 1] or with equal Poisson’s ratios pin = vif el—1, 1/2];

e ellipsoid of Schleicher [179, 180] with y; € [0, 1], y» € [—00, 0]. The restriction
(31) yields vi" €] — 1, 1/2], vi‘ e[—1, 1/2];

e hyperboloid of Burzynski-Yagn [39, 221] with y; € [0, 1]and y» € [0, y1];
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hydrostatic axis

Oom

BALANDIN
BURZYNSKI -T ORRE

VON MISES

Fig. 11 Paraboloid of Balandin, Burzynski-Torre and the cylinder of vonMises in the principal
stress space (the cylinder is cut for better understanding) [103]

Om

hydrostatic axis

VON MISES

BELTRAMI

Fig. 12 Ellipsoid of Beltrami and cylinder of von Mises in the principal stress space (the cylinder
is cut for better understanding) [103]

e hyperboloid of one sheet with complex conjugate y; and y» whichis not convex (see
Sect. 10.1); this model is used as partial surface in combined models (Sect. 11.2.1).

The models differ by the symmetry type in the r-plane (Fig.4) and by the power
of stresses n. The rotationally symmetric model (51) has the stress power n = 2. The
strain hypothesis and the model of Pisarenko-Lebedev has the stress power n = 3
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and the model of Mohr-Coulomb—n = 6. The last three models have a trigonal
symmetry in the in the s-plane.

The models can be characterized by the shape of the meridian line. The strain
hypothesis, the hypothesis of Mohr-Coulomb, the model of Pisarenko-Lebedev, the
models of vonMises and of Drucker-Prager have a straight line as the meridian.
The model (51) has additional to the straight line curvilinear meridians: parabola,
hyperbola and ellipse.

The cross-sections of models (41) and (51) in the w-plane are unchangable. The
form in the -plane and the inclination of the meridian line of the models of Mohr-
Coulomb and Pisarenko-Lebedev are controlled by a single parameter. This limits
the capabilities of the models to be fitted to measured data.

There are no theoretical or experimental evidence known to support the application
of models with a straight line as the meridian line. Models with further shapes of the
meridian lines and independent from the shapes in the -plane (Fig.4) are required.

7 Mathematical Formulations

In the case of phenomenological models some mathematical framework is often
applied for the formulation. The aim is to establish some general equation which
includes classical models as special cases. The following three formulation ideas are
known:

7.1 Criterion of Altenbach-Zolochevsky I
The criterion [7, 8]

Ocq =4/3 12/ (A sing + Ay cos@ + A3) + I (Ag + A5 sing + Ag cos@) (56)

is a combination of the first invariant of the stress tensor, the second invariant of
the stress deviator and the stress angle.> Various special cases can be deduced by
different settings of A; (Table4). It should be mentioned that the systematization of
models can be based on the number of these parameters.

In the formulation of this model the following relations between the principal
stresses o1, of1, oqr and the invariants (Appendix 15) [42, 43, 147, 149, 211, 233]
are used:

5 In the original papers the following definition of the stress angle is used

3J3 I(s)

sin3¢ = —TW,

T
< —.
le_6
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1 ;. 27
o] = 3 2,/31, sin ¢+T + 1],
1 -
on = %[2 31 sm(go)+2], (57)
. T
0’11125[21/312/ SIH(¢+T)+11i|,

and o1 > oy > oy is assumed.
This model includes not only the standard models (Sect. 6). The following models
can be obtained:

e criterion of Sandel [176]

1 1 1
Ocq =01 + 3 (1 - 3) o1 — — Ol (58)

e convex combination of von Mises and Tresca models after Edelman-Drucker,
Koval’chuk [57, 117]

X3+ 0=y (o1 —om) =0eq, x €[0, 1], (59)
e criterion of Paul [154]
aj o1 + az oy + a3 onp = Oeqs (60)

e criterion of Birger [30]

ay or + ar o + az oy + aq 312/ = Oeq- (61)

A disadvantage of this model is the number of parameters, which should be identified
by six independent tests.

7.2 Model in Terms of the Integrity Basis

This model results from the invariants 71, (1;)'"/* and I}, cf. [23, 24, 51, 188]. The

basic idea is the formulation of scalar valued functions of a given order:

Si=a1 1 +b; (12/)1/2,
So =a2112+b21/,

(62)
Sy=ay I} +b3 (12/)3/2 +oali+dili b +esli (12/)1/2’
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The sum of the S; with the same power n yields

(SD)" + (8" + ()" + ... = ol (63)
The choice of integer exponents n/i is recommended for the terms S;. In [103] the
following exponents are suggested

n=1,2,3,6,9 and 12. (64)

The model of Altenbach-ZolochevskyIl follows with n = 1 for S;, S and S3
[2, 8, 103]. The parameters of the model are related to the scaling (3). The advantage
of this model is that the equivalent stress oeq can be -expressed explicitly.

Another modification one gets if the weight o/,* for S; is introduced

ou ! S1+ oe”q‘Z Sy + ae”q_3 S35+ ...+ Oeq Su—1 + Sy = o

. (65)

By this way we get the same power of the stresses in each term [103]. The exponent
n > 1 and the terms in (65) can be selected in such a manner that an analytical
solution is possible with respect to oeq. Equation (51) is an example of a quadratic
equation, models which are given cubic, bi-cubic and tri-quadratic equations are

SlO' +S20eq+S3—Uq (66)
$2 Oty + Sa. 0y + S6 = 08, (67)
S3 a q T 56 = a eq- (68)

More examples are presented in [103]. Disadvantages of this approach can be sum-
marized as follows:

e increasing number of parameters,
e difficult convexity limits for the parameters and
e missing geometrical interpretation of the parameters.

7.3 Models Based on the Stress Deviator

The functions of the invariants of the stress deviator can be defined as follows

SészI/,
S, =b3 (I )32—1-0313,

(69)
Sy=bs () + fu (13)"" I3,
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The sum of S/ with the same power results in

($5)™% 4 (83)" + ()™ + .. = o (70)

and
oL Sy ol Sy A 0 Sy + Sy =0l (71)

cf. Egs. (63) and (65). Another possibility is [106]

O,ézq—Zmz (Sé)mz +O,ézq—3m3 (Sg)”” + .. 40 (52—1) + (5}/1) = ggq_ (72)
The formulations (70), (71) and (72) yield in the models of incompressible mate-
rial behavior (Sect.9): SayirI, DruckerI, Dodd-Naruse, TQM, BCM, Spitzig, Iyer,
Freudenthal [16, 68, 90] and Maitra [131, 226].

Multiplicative combinations of various S; are possible, for example,

()" 8t = ol (73)
This equation results in the geometrical-mechanical model (Sect. 9.1.6).

The formulation of the models with the deviatoric basis (69) should be preferred
since they are simpler in comparison with models on the basis of Eq. (62). The
compressible generalization can be performed using the substitution presented in
Sect. 10.1. In the case of rational functions of I} (functions of I} with integer power)
one gets convex shapes in the w-plane.

8 Visualization Methods

Several possibilities of the visualization of the limit surface @ are presented in the
literature. In this section main approaches are briefly discussed and examples are
given.

8.1 Spatial Representation of the Limit Surface

Strength hypotheses and flow criteria can be represented in the principal stress space
(o1, o11, om) [43, 219, 234], which is also known as the Haigh-Westergaard space
[80, 218]. By means of an orthogonal transform the decomposition of the stress tensor
in the hydrostatic and deviatoric components can be carried out. For this purpose the
coordinates (&1, &, &3) are introduced (Fig. 13), which are related to the coordinates
(o1, o1, om) as follows [23, 123, 186, 187, 210]:
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Fig. 13 Principal stress space (o1, o1, om), coordinates (§1, &, &) and (&1, p, 6)

1 1 1
o1 ‘{g V2 3/6 €1
on |=|—&= 0 — & (74)
o \F 1 \/? £
V3 V2 6
In these coordinates
1 1
§ = Wi (o1 + o + om) = 7 I (75)
is the hydrostatic axis (o1 = oy = opq). The axis
§ ! (—or+2 ) (76)
3=—= (01 o1 — OTII
V6
lies in the plane &1 — op. The axis
1
& = — (o1 — om) (77

2

constitutes together with the axes & and &3 an orthogonal coordinate system (Fig. 13).
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The surface @ can be formulated in cylindrical coordinates or the Haigh-Wester-
gaard coordinates (&1, p, 6) [234]. The value of the radius p is computed to

(23, 43]
p=J21, = /& +& (78)

and represents a function of the second invariant of the stress deviator. The angle 6
is given by Eq. (224).

The representation of the surface @ in the principal stress space (o1, o1, o) iS
widely used because of its simplicity and clearness. For the analysis of the surface
properties the Haigh-Westergaard space with the coordinates (§1, &, &3) is better.
Such a surface can be characterized by two projections:

e the meridian cross section (&1, &3) and
e the planes with the cuts & = const. (;7-plane with the coordinates (&>, £3)).

8.2 Burzyniski-Plane

Instead of the meridian cross section (§1, &3) the Burzynski-plane is often used. The
Burzynski-plane is introduced for the rotationally symmetric models [35, 39]

@ (I, Iy, 0eq) = 0. (79)

For these models the surface is represented by a line in the upper half-plane in the
diagram (&1, p) (Fig. 14, model of von Mises).

The whole surface @ is obtained by the rotation of this line about the axis &; [234].
For a better clearness the coordinates (1 1, +/3 12’ ) are used [103]. This scaling is due

to the relation
12=31 (80)

at tension and compression. It simplifies the comparison of the presented models
with the model of vonMises (16) and leads to a geometrical interpretation of the
relations (Table 1). Other scalings are used in [86, 95, 101, 133, 155, 174, 181, 194,
231, 234]. A normalization of axes with respect to the tensile stress

n B

o4 o4

can be applied in order to compare the shape of the surfaces for different materials
[105, 113].

The surface @ (5) or (6) can be presented in the Burzynski-plane by the meridians
defined using the stress angle [136, 145, 155]
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=30 V3|
6= 60°
| K
VON MISES Bp_Up D ) I; \ Bz
‘Z ...... |
Az
" n : i v

4 -3 2 -1 1 2 3 I
---------------- line of the plane stress state of the NSH O+

Fig. 14 Normal stress hypothesis (NSH) and the model of von Mises in the Burzyniski-plane [105].
The inclination of the tangent line at the point Z (tension) of the surface @ is = arctan 1/2 =~
27.56°, cf. (Fig.7)

243
32
T !/

o 0= 3 =I1=0,
big , 23
[ ] 9 == E; = 13 = —-—?;5—
These meridians for the normal stress hypothesis (8) are shown in Fig. 14.
The three meridians are enough to display the most important properties (Table 1).
The line of the plane stress state, which results from

e 0=0=1I= (1532,

(15)3/2.

oyonom = 0, (81)
is obtained in this diagram using the substitution [103]

p=tppoLp (82)
373 14 33
This line contains the points Bp, Up, D, K, Z, Iz and Bz (Figs. 15 and 16) and
it is convex for axisymmetric models only, e. g. the model of Burzyriski-Yagn (51),
Fig.17.
The introduced representation allows to show all the measurements on their
respective meridians. Different extrapolations of the measurements to the point Az
(hydrostatic tension) with the relation
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hyd 1 in 1
— el —1 , =
a > 3 or v |: i|

can be easily evaluated.

8.3 n-Plane

The cross-section of the surface @ with the cut §&; = const. (Fig. 13) is denoted as
the m-plane [12, 43, 167, 234]. For incompressible material behavior these cross-
sections do not depend on the coordinate &;. For a compressible material it is impor-
tant to consider the cross-sections, which contain certain points of the plane stress
state for the most important loading cases, e. g.:

1
e point Z (tension): &1 = —3 Oeqs

e point K (torsion): £ = 0 and

e point D (compression): §1 = ——=d 0¢q.

V3

The line of the plane stress state defined, for instance, by the condition oy = 0 can
be projected onto the rr-plane. The projection is given by the equality, see (74),

1
= — (3 , 83
£ ﬁwszm) (83)

which must be substituted into the equation of the surface @.

In the most general case the surface @ has a trigonal symmetry in the 7-plane
(Fig.4). If only even powers of the third invariant of deviators are present, then the
model has a hexagonal symmetry (e.g. models of Tresca and Schmidt-Ishlinsky,
Fig.4). The absence of the third invariant leads to a rotationally symmetric surface,
e.g. Eq. (51) [105].

9 Pressure-Insensitive Criteria
In this section the most important models with the property
i = =~ (84)

are discussed. These models are of the form
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6= 60°
6=0° Bp D Ok z Bz
I NPTt LT }-C' .............. e
6= 30° Up K Iz
4 3 2 B 1 2 E
---------------- line of the plane stress state o)
Fig. 15 Model of Tresca in the Burzynski-plane [103]
!
0= 30° V3h
Up oy (K Iz
0= 0° BiD b - Z Bz
0= 60°
) 3 2 -1 1 2 3
---------------- line of the plane stress state a
Fig. 16 Model of Schmidt-Ishlinsky in the Burzynski-plane
b aD /30
Oy
BD Up 2F
c
K
XZ Iz Bz
VON MISES ) i b
30° 3 | o A
15 | )20 2 /
- 0 1 1
-4 -2 2 1/ 7 4 a
Fig. 17 Quadratic rotationally symmetric models (51) with the hydrostatic node Az (y1 = 1/3)

in the Burzysiski-plane [105]: a cone of Drucker-Prager: y» = 1/3, vi" = 2, vt = 0,d = 3,
k = 3/2; b hyperboloid of Burzynski-Yagn: y» = 1/4, pin 1.54, v_%‘_‘ =0.06,d =24,k =1.41;
¢ paraboloid of Balandin: y» = 0, vi" = 0.8, vi! = 0.2,d = 3/2,k = 1.22

or
(86)

¢(12/’ 09 Ueq) = Oy
and hence are cylindric or prismatic surfaces aligned along the hydrostatic axis. They
do not restrict the hydrostatic stresses. These models can only be used in the region
I; < 0in combined models (Sect. 11), cf. [139].
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o hydrostatic axis

SAYIR 1

VON MISES

s m au Meridian with =0
meridian with 0 = 7/ 3

Fig. 18 Triangular prisms of Sayir I (87) with the limit convexity values of the parameter ¢3 €
[—32, 32 /2] and the cylinder of von Mises (16) in the principal stress space [103]

9.1 Yield Surfaces with Trigonal Symmetry

Theoretical considerations allow conclusions about the symmetry of the yield surface
@ in the -plane only. This surface shows trigonal, hexagonal or rotational symme-
try. No suggestions can be made based on microstructure. The material behavior
is described by neglecting the real structure with its microscopic defects and inho-
mogeneity. The effects of material behavior could be captured correctly only in
average [8].

9.1.1 Model of Sayir I

The cylinder of Sayir I [178] is defined as follows

Oeq 315+ c3 14 3 ) 32
—_ = = , e|-34, —|. 87
142333 e O 2 87)

The model has the structure of the reduced cubic equation with respect to oeq. For
c3 = 0 the cylinder of von Mises arises (Fig. 18). The relations k and d compute to

3% 4203332 —203) (33 +203)
- 22 ¢3

k2—1+3c d (88)
- 33 37

and shown in Fig. 4.
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9.1.2 Model of Sayir II

The hexagonal prism of Sayir II [178] is defined by

1 1
T (byon+om) —oeq =0, by € [—5’ 1] . (89)

Further equations result from the cyclic permutations of indices. The model is for-
mulated in the deviatoric invariants

4 g7 3 g 2 /N2
PsAy = @41 0gq I + 31 05 I3 + ooy 05 (1)

+an 0eq 5 I + Bo1 (13)° + Ba1 (13)° — o8, (90)
with
2:3(1+ b +b?) 33 by

(07 = o = —
“ (L+bp? T by ,

(1+ by +0b7) 4, l4+bi+0b7
ay =3 L1 app =3 ————L (91
2 (I +b)? ! L+ by
p (=1 +b)? 2+ b)? (1 +2b))? 3 A +bi+by)
o (1 +b)° CT T A e

For b1 = 0 the model of Tresca (15) arises (Figs. 1, 15). Withb; = —1/2and b; = 1
the model corresponds to the limit convexity cases of the model of Sayir I (87).
The relations are

1+ b
k=43 , d=1+b. 92
\/—2+b1 + by (92)

The model is representing the lower bound of the convexity region in the d—k-
diagram (Fig.4). For the model of Sayir II the point, which has the shortest distance
to the point M (1, 1) can be obtained from the equation

(d — 12+ (k — 1)> - min., (93)

which results in b1 ~ 0.0471, d ~ 1.05 and k ~ 0.89.

9.1.3 Model of Haythornthwaite

The model of Haythornthwaite [40, 83, 107] consists of two overlapping triangles
in the 7 -plane described with the model (87) with c3 = —3% and ¢3 = 3%/2
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2doeg) 30+ (=315 (2dow)’ oq3L+ 37/ o2 | =o.
142(-3%)/33 14+2(32/2)/33 q
(94)
It is separated in two regions in the d —k diagram (Fig. 4)

Haythornthwaitel : k= for d e[l, 2], 95)

Haythornthwaite Il : k =

SR G

for d e |:% 1]. (96)

The model is representing the upper bound of the convexity region of the d—k-
diagram. The boundaries, where d = 1/2 and d = 2, correspond to the limit
convexity cases of the models of Sayir I and Sayir II. For d = 1 the model of
Schmidt-Ishlinsky (18) arises (Figs. 1, 16). The point, which has the shortest dis-
tance to the point M (1, 1) (Fig.4), can be obtained from Eq. (93). This results in
d=(3+2+3)/7~0.9234and k ~ 1.07.

9.1.4 Convex 7 -Plane Model

The model of Haythornthwaite (94)

1 L, Pd-1 31,5,
‘DHAY=$d—3(I3/) —575 éo—eq_?ﬁ(lz/) Oeq o7

B¥1-d®, 5, 3 1+d>

4 6
— 3 5 Btz 2% %y
and the model of SayirII (90) with the parameters
d-1*+d d—1
0141=6d—2, 0131=33 2
(d - 1?+d)’ 4 @d=1) (=1 +d)
oy =-3¥—" 2 o =-3 , 099
d* d* 3
(1—=2d)%*d—-2)?%1+d)? ; (@=D?+4d)
B2 = 76 , B31 = -3 6
are functions of d € [1/2, 2]. With the linear combination [33]
P =& Puay + (1 —§) Psay, & €[0, 1] 99)

one obtains the model with the power of stress n = 6 in each term. The resulting
model describes with two parameters (d, &) all points in the d —k-diagram (Fig.4)
with a convex form in the r-plane. A drawback is that an explicit solution of (99)
with respect to oeq is not possible.
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The model contains as special cases:

e the model of hexagonal symmetry in the m-plane with d = 1 (bicubic model,
Sect.9.2),
e the value k = 1 of the model of vonMises results with d = 1 in the parameter

g = 2 ~0.7033 and
e the approximation of the model of Sayir I (87) with & = % and & € [0, 1].

9.1.5 Radcig Model

The Radcig model® consists of two overlapping hexagonal prisms of Sayir II (89)
[105, 115]. It is deduced from the Unified Yield Criterion of Yu (Sect.9.2.1). The
defining equations are:

(b1 o + o) — 0eq =0,
14 b1 (100)
15 by (by o1 + o) + 1 0eq = 0.

o] —

o] —

Further equations are obtained by cyclic permutations of indices. The cross-section
of this model in the m-plane is a dodecagon (twelve-sided figure). The parameters
are bounded as follows

1 1 1
bie|—=. 1|, be|—z 1, 2. 101
) A [

The model (100) can be formulated in invariants of the deviator [105]:

(otar qu I+ as aSq L+ a21062q (1;)?
Far10eq Iy 15 + a1 (1) + Ba1 (5)* — 0 &) x
(a2 (noeq)* I — @32 (7 0eq)® 15 + @22 ( 0eq)* (13)?
—a12 (10eq) I5 15+ B2z (13)* + B32 (19)* — (1 0eq)®] = 0.

(102)

This allows a representation of the model in the Burzynski-plane. The first part
corresponds to the model of Sayir II (90) with parameters which are given by (91).
The parameters of the second part are computed using the substitution b, by b1. The
Radcig model contains the following models:

e the model of Sayir Il with by € [—1/2, 1], n = 2 and for arbitrary by € [—1/2, 1]
orby =n—1,bp = (1 —n)/nand n € [1/2, 2] with the relations (92),

e the model of Haythornthwaite withby = 1, = l and n € [1/2, 2] with relations
(95) and (96),

6 This model is dedicated to Jurij Antonovi¢ Radcig (1900-1976), who was a professor at the Kazan
State University of Technology (KAI), Kazan, Russia.
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e the continuous approximation of the model of Sayir I with n € [1/2, 2] and
1
b= -3+ (5v3-3) 153,
5 7 (103)

e the UYC of Yu withn = 1 and b = by = by € [0, 1] (Sect.9.2) with

14 by
k=3 ., d=1. 104
2+ by (164

Further discussion of the Radcig-model can be found in the Sect. 10.2.

9.1.6 Geometrical-Mechanical Model
This model is a function of the stress angle 8 (224) [6, 33, 107]

' n 1+ ¢3c0836 + cocos® 30 "
(312 e = 0gq- (105)

The main idea is to include the influence of the odd and the even functions of I}
separately and to give a geometrical meaning to the parameters with respect to the
mechanical properties. Computation of the equivalent stress oeq can be performed
directly.

The two parameters c3 and cg determine the geometry of the model in the -plane.
With ¢3 = 0 a model with hexagonal symmetry is obtained: there is no difference
between tension and compression (d = 1). With c¢3 = c¢ = 0 one gets the model of
von Mises.

The values d and k compute to

Jh = 14+c¢34+cq

T 3+ C6 (106)
This leads to the two inequalities
1—c3+4+c¢6>0, 1+4+c¢3+4+c>0. (107)

The recommended values for the exponent are n = 2, 3 and 6. The exponentn = 2 is
suitable, if the modeling with rational compressible substitution (Sect. 10.1) involves
energy considerations [212]. The values n = 2 and 3 allow to solve the equation given
by (105) with respect to oeq analytically even if the rational compressible substitution
(Sect. 10.1) is introduced. The convexity region of the geometrical-mechanical model
(105) in the parameter space c3—cg is shown in Figs. 19 and 20).
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1
Cce = ?(7C3+ 2)

P B

Fig. 19 Convexity region of the geometrical-mechanical model (105) with n = 2: with
0 some curves are marked, which build the boundary of the convexity region, Coordinates
at the points Pp(0, —1/9), Pi1(—0.1, —0.1086), P»(—0.2, —0.1011),  P3(—0.3, —0.0886),
P4(—0.3560, —0.05), P5(—0.3478, —0.02717), Ps(0, 1/23)

(0, 1/2)

1
o= ; (c3+2) DRUCKER [

(= 1.1400, 0.2150) (1.1400, 0.2150)

(1/2,-0.2101)

(1/4, - 0.3013)
0,-1/3)

Fig.20 Convexity region of the geometrical-mechanical model (105) withn = 6 (the cross-sections
in the w-plane are shown for clarity)

With the exponent n = 6 a model is obtained, which has the largest convexity
region in the d —k-diagram (Figs.4 and 21).
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HAYTHORNTHWAITE [
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a
¢,

Fig. 21 Convexity condition of the geometrical-mechanical model (105) in the d—k-diagram
together with the boundaries of the convexity region as presented in Fig.4

9.1.7 Triquadratic Model
The triquadratic model is formulated as follows [103, 105, 107]

3B I3 4303 I + cg 12
2 €q 322 3 =O'e6q' (108)

2
1+3—3€3+3—6C6

It allows analytical estimation of the equivalent stress. This model with the power
n = 6 contains the hexagonal symmetry model with ¢3 = 0 (model of Drucker I,
Sect. 9.2) and with cg = 0 one gets

33 33
c3 € |:—2—2, E] . (109)
The relations are
2 22 k®
Ko=l4 e+ 5506 d'=——— (110)
1+ 36 Ce

The idea for this model is similar to the model (105). Comparing with (105) we
conclude that the triquadratic model (TQM) is more difficult to use. It should be
noted that the parameters c3, cq have no mechanical or geometrical meaning.
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ISHLINSKY -IVLEV

UYC, k= 3v3/5

SCHMIDT -I SHLINSKY UYC, k=1
Fig. 22 Continuous surfaces with hexagonal symmetry and the model of vonMises (16) in the
m-plane, incompressible material behavior, d = 1 [135]. On the right hand side an enlarged cross-
section with 6 € [0, /3] is presented [33]

O1r

on

Fig. 23 Non-convex models for incompressible material behavior with d = 1 in the 7 -plane: left
hand side model of triangular symmetry, right hand side model of hexagonal symmetry [96]. The
rotationally symmetric model of vonMises is presented for comparison

9.2 Yield Surfaces with Hexagonal Symmetry

The models for incompressible material behavior with hexagonal symmetry have
the properties d = 1 and h = g (Table 1, Figs.22 and 23). Such models are often
used for the description of yield of ideal ductile materials in the theory of plasticity.
Numerous problems are treated in the engineering practice using these criteria. These
models are of the form

D (1, (I})*, 0eq) =0, DI}, 08> 26, 00q) =0
The meridians with § = 0 and 7 /3 coincide in the Burzyfiski-plane (Figs. 15 and

16). Such models can be represented in the h#—k-diagram (Fig.24) and compared
with vonMises model with 7 = k = 1.
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k[
E SCHMIDT -ISHLINSKY

R A poal L
b= -2+ 3+ \/m - V2
b=1/2 110[—
b=+2-1 4
b= 0.4095 DRUCKER I
b=( V3- 1)/% n= 1.1602

0.90 1.05
b= 1/(2+ V2) n= 23
DoDD -NARUSE = 3(4+5ﬁ+3\/§+ \/g)
uYC 33

M= —— - 11154

\V/32-V3)

(o,
TRESCA t

Fig. 24 h — k-diagram: models of hexagonal symmetry for incompressible material behavior:
M—model of vonMises (16) with i = k = 1; UYC—yield criterion of Yu (111); BCM—bicubic
model (113); Eq. (122)—model based on the stress angel with n = 6; MAC—multiplicative ansatz
criterion, special points—s. [116]

9.2.1 Unified Yield Criterion of Yu

The criterion of Yu [222, 229] with the parameter b € [0, 1] can be expressed

1
o — ——(boq + om) — 0eq =0,
“{b (111)
o1 — l—i—_b(b o + o) + 0eq =0,

and using Eq. (102) formulated in terms of the invariants of the deviator [105]
Dyye = (a1 00 Iy + a1 04 157 + Bor 15 + Bar I — 0&)*
— (31 09y I3 + 11 0eq I 13)? (112)

with the coefficients (91). In Table 5 some settings for special cases are presented.
The yield criterion of Yu defines the left convexity bound of the models with
hexagonal symmetry in the 7 — k-diagram (Fig. 24, UYC).
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Table 5 Settings of UYC (111) and the respective relations k and & (Fig.24)

Model b k h Fig.
3
Tresca 0 % ~ 0.8660 0.8966  1,15,22
1
- 0.9767 09545 -
% 2~ 0.2929
Sokolovsky® 5 ( ) ~ 03660 1 09659 22
- 0.409 1.0132 09723 -
- V2 - 1 ~ 0.4142 V6 (V2-1)~1.0146 09729 -
1
- 3 3 ? ~ 1.0392 0.9845 22,33
- 0.6286 1.0731 1 -
2
Schmidt-Ishlinsky 1 — ~ 1.1547 1.0353  1,16,22
' N

4The model is named after Sokolovsky following Pisarenko-Lebedev [157] “...it was attempted to
introduce some intermediate criteria by replacing the hexagonal prism of Coulomb with a dode-
cagonal prism [195] (inscribed in the von Mises-cylinder) ...”. Further references to this models
are [28, 222, 223, 226].

9.2.2 Bicubic Model

This model is obtained as a linear combination of the models of Tresca (15) and
Schmidt-Ishlinsky (19) [33, 103]

(-8 [(Iﬁ —ogq) (22 Ko~ 1/2}

33 32 3 33 32 ; (1 13)
/
This model also results from (99) withd = 1.

The bicubic model divides the & — k-diagram into two areas. The models of Tresca
and Schmidt-Ishlinsky are obtained with & = 0 and & = 1. The value k = 1 results
in & = 2°/(7 - 13) ~ 0.7033. This model is continuously differentiable (excluding
the borders of &) and allows an explicit solution for oeq. For this reason, the BCM
is appropriate for practical use. The parameters k and / are obtained from bicubic
equations

2433423 B2 E -2+ 2%%0¢E - 1) -3kt TE-2YH =0, (119
2.3 42. 3 —T78)+24 B R2E -2+ 0376 =20 =0 (115)

as the lowest positive solutions. The analytical solution of (114) and (115) is complex
and hence omitted.
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Table 6 Settings of MAC (116) and the respective relations k and & (Fig.24)

Model n k h Fig.
3
Tresca 1 % ~ 0.8660 0.8966  1,15,22
1 2+ 3
_ L s ;f%0.9659 1 _
32-+3)
- 1.1344 0.9824 10170 —
2
Ishlinsky-Tvlev® A 1.1547 1 10353 22
Y NG
- 3 (4 + ﬁ) ~1.1602  1.0048 10353 -
14
1
- 2 =~ 12929 1.1197 10353 -
. . 4 2
Schmidt-Ishlinsky — — =~ 1.1547 1.0353 1, 16, 22
3 Ve

4The regular dodecagon in the 7-plane is named after Ishlinsky-Ivlev [33, 105, 115], s. also [93,
98-100, 128, 193, 227].

9.2.3 Multiplicative Ansatz Criterion

Multiplicative combination of the models of Tresca (15) and Schmidt-Ishlinsky (19)
[116] lies on the right boundary of the convexity region of the models of hexagonal
symmetry (Fig.24, MAC) [93, 98, 99, 193]. It is obtained as follows [105]

2
Priac = [(15 —ow)?) (2215~ (noeg)?) = 3° 13’2}
33 32 33 32
X [2—3 13/+2_212/0'eq_0'3q1| |:2_3 13/—2—2[2/O'eq +O'e3q:|. (116)

The value 7 lies in the interval n € [1, 4/3]. The parameters k and 2 compute to

2

32-V3).,ne|l, —|,

k_£ o ny3Q2—+3). 1 [ ﬁ} i
BT o7 6[2 4}
- ) n = 5 |-
J3 3
The models of Tresca and Schmidt-Ishlinsky are obtained with n = 1 and n = 4/3.
With n = % one gets the regular dodecagon in the 7 -plane (Table 6).

For UYC and MAC the points, which have the shortest distance to the point
M(1, 1) (Fig.24, model of von Mises), can be obtained from the equation

(h — 1*+ (k — 1)> > min. (118)
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Using these points the model of von Mises can be approximated with the dodecagons
of UYC with b = 0.4095 and the dodecagons of multiplicative ansatz criterion
(MAC) with n = 1.1344.

9.2.4 Universal Model with Hexagonal Symmetry

The parameter b € [0, 1] of the UYC (111) can be replaced by the parameter
ke [V32.2/v3]
-2k
,_ V3

= 119
PR (119)

The parameter 5 € [1, 4/3] in MAC (116) can be replaced by k € [ﬁ /2, 2/ﬁ]
with (117)
-k (120)
LV

With the linear (convex) combination of the two latter models [116]

P =& Pyac + (1 —8) Pyye, £ €10, 1] (121)

the model with the power of stress n = 12 is obtained, cf. Eq. (99). It covers all the
convex forms in the 7 —k-diagram with two parameters (k, &). The values k = 1 and
& =0.3901 result in & = 1, which corresponds to the model of von Mises (Fig.24).

With& = 0.3901 and k € [ﬁ /2, 2/J§] one gets the approximation of BCM (113).

With k = 1 and & € [0, 1] one obtains a model, which links the regular dodecagon
of Sokolovsky and Ishlinsky-Ivlev: 2 € [0.9659, 1.0353]. The major disadvantage
is, that the model (121) is not analytically solvable with respect to oeq.

9.2.5 Model Based on the Stress Angle

Cosine ansatz to the power 2 and 4 is introduced in [33]

, 1 + ¢ cos? 30 + ¢z cos* 30
(3 1)"? et on =ol, n=12.. (122)

with & oo+
c6 +ci2
K" =1 , =22 — == 123
+c6+ci2 2 2cetcn (123)

This model contains the following criteria:

e Drucker I [54, 154, 199] withn = 6, ¢ € [—1/3, 1/2], c1o = 0 and
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c12 b
\0“ (0,1/5)
-1/3,0 1/2,0
B0 | N 120
foﬂ 02 02 04 Wg 08 o
DRUCKER I 1
c6= 5(1— Sci2)
N -02f
e \ (0,-0.2671)
| \ 0= T
I BRE)
< 0.4 \\/_/

Fig. 25 Convexity region of the model (122) with n = 6 in the parameter space (cg, c12). The
constraints at 6 = 0 with ¢g = (1 — 5¢12)/2,0 = /12 and 6 = 7 /6 with ¢¢ = —1/3 are shown
for clarity

o Dodd-Naruse [53, 229] with n = 12, cg = 0, c12 € [3% (2 VT - 13), %].

The boundaries of the parameters of the model (122) with n = 6, which result from
the convexity conditions [33], are shown in Fig. 25.
10 Pressure-Sensitive Criteria

The behavior of real materials can be presented by the models (5) and (6). The first
invariant of the stress tensor should be included in the pressure-insensitive criteria
(Sect. 9) in such a way that the shape in the 7-plane will be preserved.

10.1 Compressible Generalization

A compressible generalization of the models of incompressible material behavior
(Sect.9) is obtained by substitution [115]

timl (Oea — V1 1N ((0eq — 2 I\
Oeq — /+l+\/ eq _7/1 1 eq _7/2 1 Ue’g- (124)
1=y L=
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The parameters y; and y» determine the position of the hydrostatic nodes Az and Ap
on the hydrostatic axis (Figs.2, 12). The powers j, [ and m are chosen to be integer
and positive. They are restricted by the following experience-based relation:

j+l+m<6. (125)

For materials, which do not fail under hydrostatic pressure (brass, plumb, steel),
the surfaces @ has a single hydrostatic node Az (aiyd > 1/3, aliyd — 00), €e.8.:

e in order to obtain straight meridians the substitution with/ = m = 0 is

Oeq — Y111
S - -

, + + 4y € [0, 1], (126)
-y

Ocq

e for parabolic models it follows / = 0 and

e for hyperbolic meridians y» €]0, yi[; the second node does not belong to the
relevant region of the surface and has no physical meaning, cf. [220]; due to this
fact the hyperbolic surfaces are not recommended for applications.

For materials, which fail under hydrostatic compression (hard foams, ceramics,
sintered and granular materials, etc.) the additional hydrostatic node Ap is needed.
The parameters in (124) are then bounded as follows

y1 €10, 1[, » <O. (127)

For instance the closed surface with the substitution

Oeq — V111 ((Oeq— 2 11\°
Geq — \% eq — Y111 ( eq — V2 1) (128)
=y =y
and the shape b of the cross-section in the -plane (Fig.4) can be considered. The

properties of the surface with y; = 1/3, y» = —1/3 are shown in Figs. 27, 28 and 26.
The closed surfaces with j = [ possess a symmetry plane orthogonal to the

hydrostatic axis
I 1 /1 1
—=z\—+—). (129)
o 2\ n

The ellipsoid of Schleicher (Sect.6) with this property is widely applied in model-
ing [114].

There is no method known, which allows to choose the powers in (124) analyti-
cally. Rational substitution, e. g. such transform where the root in (124) spared, is a
simple possibility. For example a quadratic substitution

2 Oeq — Y111 0eq — V2 11
) €[0, 1 130
0o — —-— 7 y1 €10, 1[ (130)
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o = on

---------------- plane stress state with o= 0

Fig. 26 Model of Sayir I (87) with c3 = 32/2 and the substitution (128) with y; = 1/3, y» =
—1/3 in the o1—oyy-plane (s. Burzyniski-plane (Fig.27) and -plane (Fig. 28)). The meridians with
o = opr and opr = oy are shown for clarity (spatial image)

can be applied for the model of von Mises (16), see rotationally symmetric model (51),
and the models of hexagonal symmetry (Sect.9.2) for fitting the available measured
data.

The nonconvex surfaces in the meridian section are obtained with (124), if among
the parameters y; there are two complex conjugated values. Figure 29 represents, as
an example, a hyperboloid [63]. Such surfaces can be used as parts of combined
models (Sect. 11.2).

10.2 Unified Strength Theory of Yu

The Unified Strength Theory (UST) is built up from two six-edge pyramids in the
principal stress space [105, 228, 229]

o1 (bon + omp) — 0eq =0,
1

1
S0 H—b(bﬁn+01n)+0eq =0.

1
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/31
---------------- plane stress state (2.82) 2 0= 60° NSH
TT TD
Up}
Bpi
Ap
4 I 2 R I
~3d ~2d —d o

Fig.27 Model of SayirI(87) with c3 = 3?/2 and the substitution (128) withy; = 1/3,1» = —1/3
in the Burzynski-plane. Properties: d = 1.41, k = 1.09, iz = 1.09, up = 0.81, by = 1.35,
bp = 0.70, aljryd =1, allyd =1, vi“ =1/2, v = —0.05. The reference values for the hydrostatic
nodes Az and Ap are: NSH—upper bound due to the normal stress hypothesis alj_yd =1,41), TT—
lower bound for the point Ap with respect to the normal stress hypothesis as trigonal trapezohedron,
am = d, TD—Ilower bound for the point Ap with respect to the normal stress hypothesis as

triangular dipyramid, a}lyd =2d/3

The faces of the first pyramid are obtained from the first equation with the cyclic
permutations of indices. The faces of the second one are obtained in the same manner
from the second equation.

The model (131) describes the compressible material behavior with the properties
(22) using two parameters d > 1 and b € [0, 1]. The value d corresponds to the

relation d (Table 1)
o]

d=—01, (132)
0+

which simplifies the application of the model.
The analysis of the UST leads to the following special cases (Figs.5 and 30):

e b = 1 results in the Twin-Shear Theory (TST) of Yu,

e with /3
3-1
b= — (133)

follows a continuous analogy of the model of Pisarenko-Lebedev (48),

e with b = 0 the model of Mohr-Coulomb (Single-Shear Theory of Yu), Eq. (45),
is obtained,

e withd — oo, b € [0, 1] absolutely brittle materials can be described (normal

stress hypothesis), Eq. (8),
e the Unified Yield Criterion (111) results from the UST withd = 1 and b € [0, 1].
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o/ oy o1/ oy

Fig. 28 Cross-sections /1 = o4, I1 = 0, I} = —d o4 and the line of the plane stress state of the
model of Sayir I (87) with ¢3 = 32/2 and the substitution (128) with y; = 1/3, y» = —1/3 in the
m-plane, see Fig.27

VON MISES

n n n i n n i n 1 n n 1
1
4 2 2 L
O

Fig. 29 Model of vonMises and the hyperboloid of one sheet (51) with y; = —y, = 1/ V3iin
the Burzyiiski-plane with the properties: d = 1, k = /3/2, iz = up = /3, vt =t =1

The hydrostatic tensile stress computes to
1 1
ahyd _

* [ i
d

(134)
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hydrostatic axis

e
e
-
-

&

Twin-Shear-Theory of YU
d=3,b=1,vi"=1/6

normal stress hypothesis

Om

Fig. 30 Twin-Shear Theory (d =3,b =1, vif = 1/6) and the normal stress hypothesis (d — oo,
b=0...1, vi{_‘ = 0) in the principal stress space. The point Az of the normal stress hypothesis is
shown for better understanding

The surface @ of the UST is open in the hydrostatic compression direction (/1 < 0):

a_’  — oo. (135)

The relation k equals to

1+b 14+b
k:ﬁ%:ﬁ;m. (136)
libt— 1+b+200
d
For iz and up it follows
V3(1+b) _ V3 +b)

7 = ——————————, = . 137
=y haid-2 T arbid (137)
The relations bz and bp are given by (22). The Poisson’s ratios at tension and comp-
ression are

Vil = — = (138)
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0= 60° NaA:
\ [

0= 30°

NSH

6=0°

VON MISES

L L L 1 L L L L L L L L L L L

6 4 2 0 2 4 I
—2d —d

................ line of the plane stress state

Fig. 31 UST withd = 3 and b = 1 with the properties k = 6/3/7, iz = 6/3/11, up = 2/3,
bp =3,bz =1, aiyd =3/2, v$ =1/6, pin — 3/2 and the model of vonMises in the Burzynski-
plane, cf. [105]. NSH—reference value akfryd = 1 from the normal stress hypothesis

The invariant representation of the UST (131) is given in [105, 115]. It results from
the Radcig model (102) by the linear transform (126) and the parameters

1—1/d 24+ 1/d
_ , - , 139
" 3 1= 124 (139)
1+b—1/d+2b/d 3(1 — b)

1=

) +1. (140

1+b+2/d—bjd’ “b(-1/d)—2—1jd

The meridians with 8 = 0, 7/6 and 7 /3 of the UST are represented in the
Burzynski-plane by straight lines through the point Az (3 alj_yd, 0) and the points
Z (1, 1), K (0, k) and D (—d, d), respectively. The Twin Stress Theory (TST) with
the parameter values d = 3 and b = 1 is shown in Figs. 30, 31 and 32.

10.3 Models for Applications

Because of their simplicity and versatility the following models can be recommended
for various classes of isotropic materials.

10.3.1 Unified Strength Theory of Yu

The UST (131) is well-accepted and often used in computations and theoretical inves-
tigations. The linear relations of the model result in low computational complexity.
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o1/ O+

1
............. line of the plane stress state with &; = 5 <§3 - \/g‘g’z)

Fig. 32 UST withd = 3 and b = 1: cross-sections I} = o4, I} = 0, I} = —d o4+ and the line
of the plane stress state in the w-plane, see principal stress space (Fig.30) and Burzynski-plane
(Fig.31)

The model is restricted to materials with @™ — oo (the hydrostatic compression is

unbounded). The straight lines of the meridians of this model simplify the description

of the material behavior, however they have no theoretical foundation. The model can

be modified near the hydrostatic tension (Sect. 11.1) in order to reduce the relation
hyd

ay [229].

The UYC (UST withd = 1) cannot describe the SD-effect (no strength differential
effect) and the Poynting-Swift-effect for incompressible material [105]. Because the
intersections of the planes (131) with each other lie outside of the closed region,
where the model is valid (Fig.33), the approximation of the measurements using
different optimization criteria (Sect. 12) becomes difficult.

If the UST is used as a plastic potential these intersections lead to singularities in
the strain field.

10.3.2 Rotationally Symmetric Models

Depending on the number of experiments, the quality of the measurements and
the required modeling precision, the function @ can be simplified, if the influence
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o
(e

| | |
/ /{ 52
a
Fig. 33 UYC with b = 1/2 in the w-plane. P—measurement (schematic); /1, ho—normals to
(o1+bom). The

some planes of the model: a oeq = m (on+bom) —o1, b oeq = o1 — T
model of vonMises is presented for comparison

of the third deviatoric invariant is neglected. These models contains the quadratic
rotationally symmetric model (51), Figs. 11, 12 and 34.
Using the substitution (124) the rotationally symmetric model of the form

' Oeq =11 11\ (0eq— 12 11)
(312>3=( °‘}_y1 ) (e‘}_m )ae":], yrelo, [ (141)

with
j+l+m=6 (142)

can be introduced. The following combination of the parameters y; for materials
with a™® — oo can be used

e for a cone with y; = y», m = 0 and
e for a paraboloid with/ =0,m =1...5.

For closed criteria, which restrict in addition to the hydrostatic tension the hydro-
static compression, the following values of parameters y; should be considered

e » <0,m=0...3,j #1 (Fig.35) or
e » <0,m =0, 2, 4, j = [ asurface similar to the ellipsoid of Schleicher (Fig. 34)
with the symmetry plane orthogonal to the hydrostatic axis with (129).
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VON MISES Z Iz

I Bz
0.5
26.6° 450

Ap 4 2 2 Ay o5
Iy

Fig. 34 Model of Schleicher (51) with the Poisson’s ratio vif = 11—0, [103]: top in the principal stress
space o, of1, oqyp (for clarity the surfaces /, /I and /11 are cut &1 > 0) bottom in the Burzynski-plane

. 1 1 . 1
To = =y = — (=9 +2/78), 1o = — (=9 — 2/78), d = 0.45, k = 0.92; [ Vi = —,
2 5 15 15 1 ! 10
Yi=v2= Witk d = 1,k = 1.17 (ellipsoid of Beltrami); /Il vi" = 3= E(2-}- V26),

1
r=2- V26),d = 1.36,k = 1.25

This model yields more possibilities for approximations in comparison to (51).
If an analytical solution of the equation with respect to oeq is required, the model

, -y LY -y L\
(312)3/2=("‘“l n 1) ("‘“’q z 1) ol yel0 1 (143)

-y 1—»

with
j+l+m=3 (144)
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hydrostatic axis
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Bz
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Fig. 35 Rotationally symmetric model (141) with y; = 1/3, 32 = —1/3 ora™ = 1,a™* = 11.
j=41=2,d=125k=119b; =082 bp = 1.10,v" = 1 vi" = 044; 1. j = 2,1 = 4,
d=0.83,k=0.94, by =094, bp = 0.70, vf;_’ = %, vi" = 0.27 in the principal stress space and
in the Burzynski-plane

can be used too. The number of the possible meridian shapes is lower in comparison
with (141).
10.3.3 Geometrical-Mechanical Model

The model

31 1 + ¢3 cos 30 + cg cos? 36 _ Oeq =1 I 0eq — 2 11
l+c3+ce 1=y =9

(145)
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is a generalization of the rotationally symmetric model (51). The equivalent stress
Oeq can be computed analytically. The model can be used for describing of the multi-
modular theory of elasticity.’

The relations compute to

d21—63+06 _U+dypd+dy)
1+ c¢3+c6 1=y A=)

, (146)

2 1+ c3+ce

= 147
d=ynd =y (140

The Poisson’s ratio at tension vﬂf is the same as in (54). The Poisson’s ratio at
compression v is not provided because of its complexity.
The model

G315)Y

5 1 4+ c3c0830 + ¢ cos? 30 . (O’eq — )3lm (Ueq — 7/2]1)1 o
1+ c3+c6 “\ I-»n 1=y e

148)

with the substitution (124) and the adjustment (144) allows the analytical computa-

tion of the equivalent stress oeq. The number of possible shapes of the meridian line

is however still not sufficient for a fitting of measurements. The relations compute to

d31—C3~|—66_|:1~|—d)/1:|3_l_m |:1~|—d)/21|l (149)
14+c¢3+4+cq 11—y -y '
1
k3 +c3+ce (150)

T A=y (=)l

As strength hypothesis it can be recommended to use the geometrical-mechanical
model (105) with the substitution (124) and the adjustment (142)

(1)

3 1+ c3 cos30 + ¢ cos? 36 B (aeq - 11)6[’” (aeq - V211)16m
1+c3+c6 "\ 1-»n L=y e
(151)
This model has a large region of convex forms in the m-plane and various settings
for the meridian. The relations are obtained analogous to (149) and (150)

pl-ote _[l+dy o= r 4 d Y (152)
l+c34+c6 11—y 1=y |~
1
6 +c3+c6 (153)

T A=) (=)

7 Theory of elasticity with different Young’s moduli £, # E_ and elastic Posisson’s ratios vil £
at tension and compression [9, 212]
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The models (145), (148) and (151) describe incompressible material behavior
with y; = y» = 0 and for ¢c3 = ¢¢ = 0 become rotationally symmetric model
(141). With ¢3 = 0 one obtains the models of hexagonal symmetry. The convexity
conditions in the parameter space c¢3—cg must be taken into account for these models.

10.3.4 Convex r-Plane Model

The model (99) with the substitution (124) and the adjustment (142) can be used
for analysis in certain special situations. For instance, in order to check if the given
measurements can be described by a convex model. The number of measurements
must be sufficient in order to obtain reasonable approximations. This model contains
applying the linear substitution (126) the pyramids of Sayir II [178] and due to
Haythornthwaite. The model of Drucker II [55] and due to Schmidt-Ishlinsky are
special cases of these models. This model incorporate various conditions, e.g. £ = 0,

by =1, aiyd = 1, to obtain special theories.

11 Combined Criteria

The mechanical behavior of modern materials can seldom be represented by a sin-
gle surface @ [157]. The extrapolated behavior at a hydrostatic tension (point Az)
is in this case frequently overestimated. It occurs also that the Poisson’s ratio at
compression can admit incorrect values with v > 1/2 for yield criteria (Sect.4).

For a reliable description of the measured data a number of combined models
is proposed: the standard hypotheses (strain hypothesis (41), Mohr-Coulomb model
(45) and Burzynski-Yagn model (51)) are combined in a different manner. Further
reasons for the development of the combined models are:

e a small number of well-recognized models (Sect. 2, 6),

e simple interpretation of the measurements, which for instance can be separated
in the regions of the brittle and of the ductile failure based on the hydrostatic
stress with e.g. I1 < o4 and I} > o. In this case the surfaces with hexagonal
symmetry in the -plane are often used for ductile material behavior (Tresca and
Schmidt-Ishlinsky models) and the surfaces with the trigonal symmetry (Fig.4,
cross section b) for the brittle one (normal stress hypothesis),

e taking into account the incompressibility v'" = 1/2 for loadings with I; < 0,

o the restriction of the hydrostatic stresses with, e. g., a.. ™9 €[ 1/3, 1] (Fig.7),

e decrease of the power of the stresses in each part of the combined surface @
to n < 6, which simplifies the analysis of the measurements and results in an
increased computational stability.

Combined models containing a “cap” (cut-off), which bounds the hydrostatic
stress at the point Az, and a “body”. Models for incompressible material behavior
(e.g. Schmidt-Ishlinsky, von Mises or Tresca) are usually chosen as the “body” in
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o1

hydrostatic axis

VON MISES

Fig. 36 Combined model with a C'-transition in the cross-section I; = 0 built up from the model
with the cross-section @ in the 7 -plane (Fig. 4) in the principal stress space. The cylinder of von Mises
is shown for comparison

the compression region (/1 < 0). The influence of the first invariant in the model @
changes with the transition from the “body” to the “cap” [107].

In order to reduce the number of possible combinations of surfaces additional
plausibility conditions [105] are introduced

o the C¥-transition (continuous, not differentiable transition) follows for polyhedral
surfaces (Sect. 11.1),

e for combinations of continuously differentiable surfaces it is a natural requirement
the C!-transition (Sect. 11.2),

e for combinations of surfaces, which have the same shape in the w-plane and are
continuous, the C!-transition in the meridian sections is recommended (Fig.36).

The above mentioned conditions prohibit for instance the use of the model of
Pelczynski [155, 234], which is built up from the normal stress hypothesis (8) and
the model of von Mises (Figs. 2 and 37), some modifications, see [43, 45, 55, 173,
197, 217, 232]. The complicated shapes of the lines, resulting from the combination
of the two surfaces, have no physical meaning.

11.1 Criteria with C°-Transition

These models are built up from the Unified Strength Theory of Yu (Sect. 10.2) and
the strain hypothesis (41). The normal stress hypothesis (8) is usually used as cut-off
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Fig.37 “Pencil” of Pelczyiiski in the principal stress space with a CO-transition between the surface
of the strain hypothesis (SH), (41) and the cylinder of vonMises [107], cf. [234]

hydrostatic axis

MOHR -C OULOMB o

Fig. 38 Combined model with a CO-transition in the principal stress space (model of Mohr-
Coulomb with d = 3, v' = 1/6 and the normal stress hypothesis v' = 0 as a cut-off) [107]

(Figs.30 and 38) instead of the strain hypothesis in order to reduce the number of
parameters in the model [49, 70, 153, 154, 229].

The inclination of the meridian line of the angle 6 = 0 of the combined model,
defined by the Poisson’s ratio vﬂf, has a jump at the point Z (Figs.39 and 40)
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Fig. 39 Pyramld of the UST (131) with b = 0,d = 3, k = 1.30, bz = 1,iz = 0.87, ahyd =3/2,
'“ = 1/6,v"™ = 3/2 in the Burzyriski-plane with the normal stress hypothesis as cut-off, iz = 0.87,

a}® = 1,01 =0 (Fig.38)

0= 60° /31 *
\ o, L
4T
£ Bz
| Sl
L 7 i
[ ~ Iz
A A T L N P B P S
-6 -4 -2 0 2 4
-2d —d Az 1/ oy
---------------- plane stress state
Fig. 40 Pyramldofthe UST (131) with b = 1,d = 3,k = 1.48, by = Liz = 0.94,a}* = 3,
v'j_‘ = é, vi" = 3 in the Burzyriski-plane with the normal stress hypothesis as cut-off, iz = 0.87,
hyd

alt =1, = 0 (Fig.30), cf. [105]

0, Iy > o4+, NSH as cut-off;

= 1 154
V+ 0...5, I} < o, UST of Yuas body. (154)

It is possible to combine two surfaces of UST with different parameter sets (d, b)
under the constraint

vieelt e o, o2 (155)
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hydrostatic axis

8o %\IA
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VON MISES

Fig. 41 Model of Huber with the C'-transition in the cross section /; = 0 and the cylinder of
vonMises in the principal stress space [107]

However, the resulting surface is too complex for applications. The existing infor-
mation on the material behavior, which allow to deduce two different parameter
sets (d, b) of the UST, can be as usual better taken into account with the help of
C-criteria.

11.2 Criteria with C-Transition

Combined surfaces with C!-transitions have the following advantages:

e unique computation of the strain rates for the yield surface @ with the flow rule,
e.g. with (27) and
e lower number of parameters compared to C%-criteria.

11.2.1 Model of Huber
The first combined hypothesis was proposed in 1904 by Huber [36, 37, 67, 91, 103,

118]. The model consists of the ellipsoid of Beltrami (Sect.6.4) and of a cylinder
with the transition at the cross-section /1 = 0 (Figs.41 and42)

Oeqg — V111 Ocq+ 111
eq Y111 Oeq Y1 1’11>0’ cap:

r = =y I+n
= Teq % Iy <0, body. (150

L=y 14y’
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Fig. 42 Models fitted to the measured data for polyoxymethylene (POM) Hostaform C13031,

Ticona GmbH, Sulzbach in the Burzynski-plane [113]: / model of Huber (156) with k = 1.25,
(d = 1.25 v = —0.04, vI" = 1/2, 3a:1_yd = 1.67), II modified model of Huber (163) with

d =134, (k = 1.24, v = 0,20, " = 12,34 = 2.18)

The transition between the surfaces in the cross-section /1 = 0 is continuously
differentiable. The model has the property k = d > 1. The parameter y; € [0, 1]
results from the relation (52)

2 1

=—\ (157)
(I =yDd+y)
The Poisson’s ratio at tension can be computed using (54) as follows
. 3
n_
Further values are
1 1
bz = ————, aiyd = (159)
2(1—1)}{_1) 3(1—21)2_’)

The model is simple and represents the “classical view” with respect to the inelastic
material behavior, cf. [140]:

e compressible properties for I} > 0 with vy ™ €] — 1, 1/2] and
e incompressible properties for I; < 0, vI" = 1/2.

The model can be used as a yield surface with the empirical restriction (34), which
leads to the relation d = k € [1, 1.007]. The latter condition is rather restrictive,
which makes the fitting of the model to the measurements harder. However, the model
should be preferred to the von Mises-model (16), since one obtains safer results in
the region I} > o4 with bz € [0.98, 1] and aiyd > 2.89 in regions, where the
information on these loading cases are missing.

The model of Huber (156) can be extended (Fig.43).
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The new model reflects the observation, that “the hydrostatic pressure improves
the material strength” [118]. This model consists of the ellipsoid of Beltrami with

y1 € [0, 1[ for I} > 0 and of the hyperboloid (Sect. 10.1) for I} < 0:

Oeq — Y111 0eq +y1 11

, 11 > 0, ellipsoid of Beltrami;

_ 1— 14+
31 = AT . (160)
— + vl
Jeq “VOT1! Teq T YO TN! , I1 <0, hyperboloid of one sheet.
L=y 1+ y

The transition at the cross-section /1 = 0 is continuously differentiable. The values
compute to

. 1 . 1 397
=2 (1-3y), = T (161)
* 2( 2 2(1-y—v)
1 1
2 = a™e (162)

1
k T -y d+n) A== a4 =3
Y1 Y1 1— V02 _ J/12 Y1

With y9 = 0 the model of Huber (156) is obtained. The value yy # O results in a
non-convex model, cf. [144, 221, 231]. With the setting 3y = y; the model of Kuhn
[118] is obtained. A model built up of two ellipsoids with the transition at the point
K results for purely complex yyp. The tangent line at the point K is parallel to the
hydrostatic axis, cf. [212].

NEIA
O
K
\Z/ VON MISES
) I/ o}
-4 -3 2 -1 1 2
Ap d Az .

Fig. 43 Model of Kuhn with the C!-transition at /; = 0 [107]: y; = 1/4/3, " = 0, k = /3/2,
a = 1/4/3 with; yo = 1 (d = /3, v = 2), modification with yo = y1/2 (d = 2/3/7,
vi" = 5/7), combination of two ellipsoids with yp = 0.3 i (d = 1.1496,v" = 0.32,(111yd =-10/9)
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11.2.2 Modification of the Model of Huber

An analogous approach results in the modified model of Huber (Fig.42) for the
materials with the relationd > k > 1 and incompressibility in the region I} < —d o+
[103, 107, 113]

O = V111 0eq =12 I , Iy > —d o4, ellipsoid;

3= 4=V, =7 (163)
ii, I) < —d oy, cylinder.
l—yil—p

In contrast to the model of Huber (156) the C!-transition between two surfaces at the
cross-section It = —d o is defined by the point D (compression). The model can
be better fitted to the measurements, that belong to the region /1 € [—d oy, o+], it
means in the region D — K — Z.

Further we obtain with (52)

2d 2k
_ Yed o L 2k (164)
JV1+d V23 + k2 —k
based on the relation . :
d+—=—(d+—). (165)
Y1 Y2

This relation sets the symmetry plane of the ellipsoid in the cross-section with
Iy = —doy, see (129). There are three equations: for d and k and the con-
straint vi". The parameters of the model y; € [0, 1[ and y» < 0 are unknown and
should be determined. There are two solutions

n_ v+ -np
(—12 +y1+y2) (=1+y+y2) (166)

d= ———

l—y1—»

and 5 )

pin _ _ —l+yi+vy—nnr
) 1

A=y =y’

which should be compared. The conservative solution will be chosen. The solution
of the above equations with v'™™ = 1/2 defined through (165) leads to
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"= (d—l—i—\/dz—l),
21d (168)
—_ 1 2
2= 54 (d 1-vd 1)
or
V1=ﬁ (3k—\/23+k2+«/§\/k(k+x/23+k2)—4),
(169)
V2=ﬁ (3k—\/23+k2—ﬁ\/k(k+\/23+k2)—4),
respectively.

The setting d = k = 1, which yields y; = y, = 0, results in the model of
von Mises. With d = 3 (~/17— 1) /8~ 117 ork = /(9\/17 —27) /8~ 1.12

the value y; = 1/3 is obtained. This corresponds to the value aiyd = 1 of the normal
stress hypotheses. The Poisson’s ratio at tension is computed as follows:

w_ 3 _3VBHR 7
it =0T L (170)
2d 4k 4

For this model the yield condition should be restricted by (34). This results in restric-
tions for the parameters d € [1, 1.014] and k € [1, 1.010]. With

d
d—14++d>=1

hyd

2
=2 a71)

one gets ail_yd > 3.79. This model is more suitable than the model of von Mises (16),
which results in underpredictions in the region /1 > o.

The model can be applied instead of the paraboloid of Balandin (51). In this
case incompressible yielding at compression can be obtained without the use of a
non-associated flow rule (Sect.4).

11.2.3 Combined Geometrical-Mechanical Model

A combined model can be built up based on the geometrical-mechanical model (105)
with the transition at the cross-section /7 = 0 (Fig.44)

Ueq—)/1110eq+y111 3 I o:
)31+c300539+cscos230: [ 1;‘)/1 , It > 0;

1+c¢3+cs ( Oeq Oeq ) I <0
l—yil4+py) -
(172)

G
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Fig. 44 Combined geometric mechanical model (172) for the polyoxymethylene (POM) Hosta-

form C13031, Ticona GmbH, Sulzbach, fitting starts from the values d = 1.34, k = 1.25 in the
Burzyriski-plane [113]: k = 1.20, bz = 0.999, bp = 1.06, vl = 1/3, vi" = 1/2, a‘lyd =1,

c3 = 0.7885, cg = 0.3029, y; =1/3

Since the necessary information on the material behavior under the hydrostatic ten-
sion (point Az) is almost always missing, the response under the hydrostatic tension
can be defined by setting y; = 1/3, which is based on the normal stress hypothesis
(Sect.2.1). It leads to the Poisson’s ratio at tension with

~ 1
vt = 2 (1-307) (173)
to vﬁf = 1/3. This setting can be corrected in dependence on the Poisson’s ratio vif.
For v = 0.48 one gets y; = 1/5+/3 ~ 0.1155.

The values ¢3 and c¢ can be computed from relations d and k, if the convexity
restrictions (Fig. 20) are taken into account. These values result from the equations

k6:1+63+C6 6:1+C3+C6 1
(1—yH3’ l—c3+ce 1=y (1+p)3

(174)

The model (172) can be recommended for many applications (Fig. 44).

A similar model with the C!-transition at the cross-section [ 1 = —d oy, cf. the
modified model of Huber (163), can be formulated (Fig.45).

The parameters c3, cg and y of the model result from the formulas for d, k and
vi" = 1/2. The last condition leads to the geometric relation (165)

1 1
—:—(2d+—). (175)
Y2 Y1

This model has additional fitting possibilities in comparison to (172). Whether the
model can be preferred over the model (172) it can be determined if further measure-
ments, for instance at the points Bz or Bp, are available. If only three measurements
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Fig. 45 Combined geometrical-mechanical model with the transition at /1 = —d oq for the

polyoxymethylene (POM) Hostaform C13031, Ticona GmbH, Sulzbach, with the values d = 1.34,

k = 1.25inthe Burzynski-plane: c3 = 0.4743,c¢ = 0.3642, y» = —0.1761,b7 = 0.92,bp = 1.19,

vL’_’ =0.28, vin = 1/2, aiyd = 1. The lines from Fig.44 are shown for comparison [113]

at tension, compression and torsion (Z, K and D) exist, the application of the model
with C!-transition at I; = —do, is not meaningful.

12 Fitting

The objective function for fitting of the model to the measurements can be formulated
in many ways, which lead to different results. The following three kinds of objective
functions

e mathematical,
e physical and
e geometrical

can be considered [111, 114].

The mathematical objective functions are derived in a purely formal way, so that
the fast convergence of the optimization routine can be achieved. Physical objective
functions are based on a measurable value, which can be “related to mechanics”.
These conditions usually lead to complex implementations and slow computations.
Geometrical criteria are based on the properties of the surface @.

12.1 Mathematical Criteria

This kind of objective functions will be presented using the geometrical-mechanical
model (151) with the restriction (142) and the powers j = 4,1 = 2, m = 0. The
function @ is rewritten in the form
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)3 1 4 ¢3 cos 36 + cg cos? 36 (Ueq -V 11)4 (oeq — ¥ 11)2’
l+c3+ce 1= l—»
(176)
so that the surface is given by the equation 2 = 0.
The n measurements are given e.g. in the principal stress space ali, Gfl, Glill’
i = 1...n. The objective functions can be formulated as follows

1
f= ‘9(03,06 Vi, V2,017 011’ GHI)

mj

77)

n—1
l

withm| =1, 2 or
foo = maX ‘Q(C%, €6, Y1, Y2, (71 s G]I’ UHI)‘ (178)

Other exponents m; can be used, however they do not lead to any significantly
different results. In order to compare various fitting results the following value is
considered

fr = OV (179)
The optimization problem is formulated as
minimize f(c3, 6, ¥1, ¥2) (180)

for the chosen meridian shape through j, / and m. The solution is obtained in the
form of the parameters of the models c¢3, cg, 1 and y». Using these parameters
the measurements o*{, a{l, olin, i = 1...n are approximated. This optimization
problem contains the constraints for the parameters of meridians yy, y», parameters
of the cross-section c3, ¢g and for the Poisson’s ratios vif, it (Sect. 4).

The function £2 (176) can be modified, so that additional solutions of the opti-
mization for comparisons become possible, e. g.:

l
3L 1 4¢3 cos 30 + cg cos? 36 (Ueq—)/l 11)4 (Ueq—)/zll)2 l —0
2 14+c3+cq 1—9 11—y

(181)

with the integer exponent /; > 1.
The formulation (176) is derived with oy = 0eq. If there are “enough” measure-
ments the equivalent stress o.q can also be seen as a parameter subject to optimization.
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Surface through the point P

plane with o = 0

Fig. 46 Cone of Drucker-Prager (51) in the principal stress state (left) and in the w-plane (right).
Comparison of the four physical optimization criteria

12.2 Physical Criteria

For a limit surface, which is defined implicitly in the form (5) or (6) and available
measurements it is required to estimate the quality of fitting. Four physical crite-
ria for estimation of the optimization quality are discussed (Fig.46). In order to
apply the criteria the measurements must be transformed into a principal stress state
(of,of}, ofyp) fori = 1...n. The four criteria can hardly be used in order to obtain
the parameters of a model because of the high computational complexity. However,
they can be used for comparison of different optimization results.
The criteria can be formulated as follows:

1. The regression quality in the principal stress space is evaluated, that is for each
measurement the distance from the limit surface in the principal stress space
(o1, om1, omr) is computed and then averaged over all measurements. Formally
that means, we start with a set of measurements (0{, U{I, O‘IiH) and solve for each
measurement the optimization problem

min (o1 — 0f)? + (o1 — 0}))? + (om — o}y)? (182)
subject to @ (o7, o11, o) = 0.
The solution is obtained using a Lagrange multiplier. For example the function

F (o1, ou, o1, A) = (01—07)* +(on—0i)> + (om — o) > =2 @ (o1, ou, o)
(183)
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is defined and the stationary points are obtained from the equation

VF =0. (184)

Generally this equation has more than one solution, however a single point

(zi, zh, ziu) of minimal distance on the limit surface is to be determined. Since

the number of solutions is small, the correct one can be chosen by trial-and-error.
Finally, the value of the objective function f3p computes to

- — ; ; - ;
fin = —— 3"\ Jof 22+ oy 2 + Gy — . (189

i=1

2. The minimal distance can be computed not in the principal stress space but for a
plane stress state. For example we put oy = 0 and hence simplify the optimization
problem (182)

: i 2 i 2

subject to @ (o1, 011, 0) = 0.

A further computation is performed in analogy to the previous case. For each

point (o7, oy, 0) the point of minimal distance (z1, zy;, 0) on the curve

@ (o1, o1, 0) =0 (187)

is determined and the value of the objective function f>p is estimated as follows

1 <& ; : : :
fooi= —— 3" \Jlof =2 + (o — 22, (188)
i=1

3. If the model is based on the equivalent stress concept, that is
@ (o1, o1, O, Oeq) =0, (189)

whereas oeq = 0, a simple estimation for the quality of fitting can be proposed.
The equivalent stress oeq is considered as a parameter as fitting is performed. The
fitted equivalent stress is denoted by a:q. In order to estimate the quality of fitting
for each point (ali, olil, UIiH), i = 1...n the value oeq = oé
that the point lies on the surface

" is computed so,

@ (o1, o1, o, Geiq) =0, (190)

i.e. the equation o .
@ (07, ofy, Oy Oeq) =0 (191

&
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must be solved for each i = 1...n with respect to aéq. The estimated value feq

computes to
n i *
lof

1 Oeq ~ P¢q
= . 192
feq p— iz_l o (192)

4. The distance between the experimental point and the surface of model is measured
along the line connecting the point with the origin. The sum of all the distances
normalized by n — 1 computes to the value fray.

The criterion 1 is ubiquitous and can be used for an arbitrary set of measurements
and an arbitrary surface. Often the measurements belong to a plane stress state,
in this case the criterion 2 is of stronger physical relevance. Since it is a plausible
assumption, that a measurement corresponding to a plane stress state is approximated
by a point of the model, which also belong to a plane stress state. The criterion 3
is only suitable for the models based on the equivalent stress concept (2). It can be
used too, if for instance torsion t, or compression o_ are taken as the equivalent
stress. An advantage of the criterion 4 is that it has a “mechanical background”: Each
measurement (e. g. torsion) is compared to the corresponding point on the surface
(point K for torsion). It is clear that it can be easily applied and leads to relatively
fast convergence of the optimization routine.

12.3 Geometrical Criteria

The principle of the conservative modeling can be stated as follows: among all
best possible solutions the one is preferred, which represents the most conservative
assumption about the material behavior [103]. Geometrical criteria allow to compare
different optimal solutions. These criteria are listed below [108]:

e linear criteria:

— the shortest length of the line in the meridian section of the closed surface @
with the plane & = 0 (Fig. 13, coordinates (&1, &>, &3), Figs.34 and 35),

— the minimal length of the line of the plane stress state,

— the distance between the hydrostatic nodes Az and Ap for foams, ceramics, etc.,

minimize (x A - X)aiy“), ¥ €10, 1] (193)
. . hyd
and for materials with a_’~ — o0
minimize (a?_yd) , (194)

— relation k: minimize (k),
— relation d: minimize (d),
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e square criteria:

— the minimal area of the closed surface @ in the principal stress space,

— minimal area of the closed surface @ in the meridian cross-section with the
plane & =0,

— minimal area circumscribed by the line of the plane stress state,

e cubic criteria, for instance the minimal volume circumscribed by the closed surface
@ in the principal stress space.

These criteria can be chosen in dependence on the measurements and the require-
ments imposed upon the model. A comparison of the criteria can be performed in the
Pareto-diagram [44, 61, 152, 196]. The geometrical criteria allow to select a single
point from the Pareto-solutions [114].

13 Applications

In order to illustrate the application of the models and fitting of the parameter, some
measurements from the literature are analyzed. The stages of the analysis are visual-
ized. The experimental data are normalized with respect to o for better comparison
of the surfaces @.

13.1 Measurements of Coffin for Gray Cast Iron

8

29 measurements for the plane stress state for gray cast iron® are shown in Coffin-

Schenectady [47] and approximated as follows:

e region Tension-Tension
Oeq = O1, Oeq = 011 (195)

with 0eq = 33 x 103 psi.
e region Tension-Compression

(k 0eq + 00)* = (ko1 + 00)*> — on1 (ko1 + 00) + o,

196
(k 0eq + 00)* = (kon + 00)> — o1 (k ot + 09) + of (196)
with ¥k = 3 and o9 = 30psi.
e region Compression-Compression
: 2 4 o2 +02] + 2 =0 197
3 [(o1 — ow)? + o +UII]+§H(UI+UII)— (197)

83.08 % total C, 2.04 % Si, 0.56 % Mn, 0.112 % S, 0.33 % P
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with 1 = 0.51 and ¥ = 88 x 103 psi.

The measurements were digitalized from the diagram o1 — oy1 [47] . The agreement
with the approximation presented in the paper results for k = 2.9050, u = 0.5307
and ¥ = 89.0202 x 103 psi and is to be ascribed to the precision of the digitalization
and the rounding error. The computation of stresses leads to opp = 137.76 x 103 psi,
oup = 14820 x 103psi, o_ = 108.15 - 103psi, 7, = 27.49 x 10°psi and
oaz = 33 - 103 psi.

For further evaluations the measurements are normalized with respect to
or = 33 x10° psi (Table7). The relations of the evaluations are summarized
in Table 8. The relations az and bp result from the extrapolations. The smallest value

—3.13 (198)

is obtained from the results of the test 11 with the convexity requirement

01— (—69.4) oy —(~137.3)
(—137.3) — (=69.4)  (—69.4) — (—137.3)

(199)

for o1 = oyy. If the classical material behavior (22) with bp = d is assumed, the
estimate
bp € [3, 3.29] (200)

is obtained from the measurements at axial compression.
The value by can be estimated

28.52  30.22
bz=——...—— =0.86...0.92. (201)
33 33

The lower bound for az is defined using the stress value ogz = 30.22 x 103 psi and
the convexity condition

20‘BZ < 30‘Az. (202)
It follows
a2 3022 o (203)
R R M

13.1.1 Strain Hypothesis

In the first quadrant of the oj—op-diagramm (region Tension-Tension, Fig.47) the
strain hypothesis (41) can be used instead of the normal stress hypothesis (8) in
order to estimate relations in this region. For fitting of parameters and computation
of the relations iz, bz and az the model is used in the form (10) with (42). The
Poisson’s ratio computes to vif € [—0.0870, —0.0521] which is equivalent to y; €
[0.3681, 0.3913]. Relations iz, bz and az are specified in Table 8.
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Table 7 Measurements by Coffin-Schenectady and their normalized values with respect to o =
33 - 107 psi, the axiatoric-deviatoric invariants and the stress angle, plane stress state oy = 0

Test o1 on o1 onl I I I cos30 6O
number 10° [psi] 10° [psi] [-] [-] [-] [-] [-] [-] [grad]
7 —-77.60 —151.45 —-235 —4.59 —694 52667 0.199442 0.0429 29.2
11 —69.40 —137.30 —2.10 —4.16 —6.26 4.3278 0.065570 0.0189  29.6
12 —-30.00 —116.95 —091 —-3.54 —445 33881 —1.758632 —0.7327 45.7
23 —24.45 —120.52 —-0.74 —-3.65 —4.39 3.7268 —2.317541 —08369 48.9
0 —108.67 0 —329 =329 3.6147 —2.645169 —1 60
0 —101.78 0 —-3.08 —-3.08 3.1709 —2.173324 —1 60
46 0 —9890 O —3.00 -3.00 29939 —1.993946 —1 60
19 17.03 —67.68 0.52 —2.05 —1.53 1.8434 —0.809151 —0.8399 49.0
23.28 —-52.79 0.71 —1.60 —0.89 1.3948 —0.389280 —0.6140 42.6
18 25.35 —-50.85 0.77 —1.54 -0.77 1.3827 —0.339070 —0.5418 40.9
23.67 —47.65 0.72 —144 —-0.73 12117 —0.279228 —0.5439 41.0
32.60 —32.51 0.99 —099 0 0.9733 0.000814 0.0022 30
17 27.60 —27.47 0.84 —-0.83 0 0.6962 0.000914 0.0041 299
26.49 —26.49 0.80 —0.80 0 0.6442  —0.000002 0 30
28.36 —14.52 0.86 —0.44 042 0.4368 0.058351 0.5251 194
9 30.25 —13.38 0.92 —0.41 051 0.4587 0.073234 0.6125 174
30.58 0 0.93 0 0.93 0.2862 0.058921 1 0
6 32.55 0 0.99 0 0.99 0.3243 0.071085 1 0

29.47 13.67 0.89 0.41 1.31 0.1997 0.004307 0.1254  27.6
29.68 15.21 0.90 0.46 1.36 0.2023  —0.001518 —0.0434 30.8
35.18 17.62 1.07 0.53 1.60 0.2841 —0.000188 —0.0032 30.1
28.64 28.52 0.87 0.86 1.73 0.2501  —0.048125 —0.9999 59.8
29.59 29.80 0.90 0.90 1.80 0.2699 —0.053974 —0.9998 59.7

4 30.22 30.22 0.92 0.92 1.83 0.2795 —0.056886 —1 60
15.90 31.57 0.48 0.96 1.44 0.2288  —0.000551 —0.0131 30.3
16.32 3291 0.49 1 1.49 0.2487 0.000710 0.0149  29.7
0 30.66 0 0.93 0.93 0.2877 0.059381 1 0
0 33.28 0 1.01 1.01 0.3390 0.075957 1 0

1 0 34.18 0 1.04 1.04 0.3576 0.082308 1 0

The measurement number and the respective values for oy, oy; are shown in Figs. 6, 7 and 8 in [47]
The values for the measurement 23 with o; = —42.900 x 103 psi, o = —104, 000 x 103 psi (Fig.8
in [47]) are different from the digitalized values, which are used for evaluation

13.1.2 Burzynski-Yagn Model

The measurements can be described using the rotationally symmetric model (51).
The best approximation is obtained with the hyperboloid (Table9).

The position of the measurements in the Burzynski-plane suggests that a rotation-
ally symmetric model is not suitable in this case. The material behavior in the region
Tension-Tension is underestimated and overestimated near the point Bp (Table 8).
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Table 8 Relations for the evaluations of the measurements by Coffin-Schenectady,
o4 = 33 x 103 psi with different models

Approximation  bp up d k iz bz aiy d vif yin
Coffin 4.17 389  3.38 144 087 1 1 >0 -
SHintheregion — - - - 0.84 095 0.91 —0.05 -
TT

SHin the region  — - - - 0.82 092 0.85 —0.09 -
TT

Eq.(51), hyper-  4.39 391 2.79 1.66 0.73  0.66 0.53 -0.20 1.24
boloid

Eq.(51), cone 7.15 4.61 2.34 1.40 0.83 0.78 1.62 0.07 1.51
Eq.(51), 4.29 3.88 2.82 1.68 0.73  0.66 0.52 —-0.21 1.21
paraboloid

USTby Yu,b = 3.05 3.03 3.05 1.39 0.87 1 1 0...0.16 1.53
0.35 with cut-

off

USTby Yu,b =  3.05 3.52 3.05 1.49 0.87 1 1 0...0.16 1.53
1 with cut-off

Bigoni- 3.58 3.71 3.04 1.50 0.88  0.89 0.92 0.09 1.51
Piccolroaz

GMM

(for Bigoni),

=3, m=1

GMM, straight 3.48 3.85 2.92 1.49 092 094 1.40 0.14 1.54
linel=m =0

GMM, parabola  3.48 3.84 2.94 1.53 0.90 0.90 1.10 0.10 1.47
[=0,m=1

CPM: straight 3.31 3.82 2.50 1.50 094 0091 1.43 0.15 1.37
linel=m =0

CPM: straight 3.34 3.82 3.00 1.50 093 097 1.43 0.15 1.55
linel=m =0

CPM: parabola  3.41 3.80 3.00 1.53 0.90 0091 1.11 0.10 1.48
[=0,m=1

13.1.3 Unified Strength Theory of Yu

The values bp (198) and d are similar. It follows that UST (Sect. 10.2) with the
relationship bp = d can be used. In [230] Yu puts d = 3.05, in order to describe
the Tension-Compression region. In the Tension-Tension region the normal stress
hypothesis is used as a cut-off (Sect.11.1) [228, 229]. In Table8 the relations for
the parameters b = 0.35 und b = 1 are presented. In the third quadrant of the
or—op-diagramm (Compression-Compression region) the UST is not sufficient.
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Table 9 Parameters of the models for the approximation of the measurements by Coffin-
Schenectady, o4 = 33 x 103 psi

Model Eq. Meridian H Y1 %) c3 c6
straight line  1.1935 0.2867 - -
Burzynski-Yagn (51)  hyperbola  0.7763  0.6345 0.0073 - -
parabola 0.7800 0.6451 O - -
GMM,l=m =0 straight line  53.7926 0.2376 0.8671 0.2832
GMM, [/ =0,m=1 (152) parabola 62.6810 0.3033 0 0.8161 0.2960
(for Bigoni), l =3, m =1 hyperbola ~ 84.6122 0.3617 0.2721 0.6969 0.0805

Values of the objective function f, (179) are to be compared for respective models only
(for Bigoni)—approximation by Bigoni-Piccolroaz reformulated using GMM

13.1.4 Geometrical-Mechanical Model

The best approximation for GMM (151) is obtained with a straight meridian (Figs. 47,
48, 49, 50). The value bp = 3.48 lies outside of the bounds given by (200).

These approximations with GMM can be compared to the approach by Bigoni-
Piccolroaz [26] with seven parameters (Table 8). This approximation can be obtained
using GMM with / = 3, m = 1 (Table 9).

The experimental results with o1 = o11/4 cannot be represented by GMM. A pre-
cise approximation is however possible using the continuously differentiable GMM
(Sect. 11.2.3) . The switching occurs in the plane Iy = —d o withd =3...3.29.

13.1.5 Convex r-Plane Model

The results of fitting using GMM (105) with n = 6 can be also represented by
CPM (99). The parameter y; of the linear substitution (126) is the same (Table 9):
y1 = 0.2376. With the parameters c3 = 0.8672 and ¢ = 0.2832 the relations (106)
are computed to

1+c¢3+cs
dinc = ‘6/ m, kine = \6/ 1+ c3 + cs. (204)

The parameter diy,c = 1.3149 corresponds to the same parameter of CPM and with
dine = 1.3149, kinc = 1.1361 the bridge-parameter £ = 0.8766 is computed. These
values can be used as a starting point for optimization:

f2=7.6597: dinc = 1.3149, £ = 0.8766, y1 = 0.2376. (205)

The optimization results

f>=6.0831: dinc = 12122, £ =1, y1 = 0.2325 (206)
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° measurements

o  approximation (GMM)

Oi/ Oy

o= -201

O1= — o1

)
I
.’
or= 20y |
1
\
\
\

o= —oy/2

~——————T%

O1= oq o;= oy/2 or= oy/ 4 oj=—-oy/4

Fig. 47 Plane stress state oy;; = 0: geometrical-mechanical model (o4 = 33 x 103 psi,y1 =y =
0.2375, c3 = 0.8672, cg = 0.2832, 1 = m = 0) with the values bp = 3.48,d = 2.92, k = 1.49 for
gray cast iron (Table 8). The models of von Mises and the approximations of Coffin-Schenectady
and Bigoni-Piccolroaz (between the points Bp and D) are shown for comparison

lead to the pyramid due to Haythornthwaite, which follows from the prism of
Haythornthwaite (94) with the substitution (126) [107]. This approximation (Fig. 48,
Model 1) underestimates the value at compression, it yields d = 2.50.

Additionally, it can be required, that the curve of the plane stress state contains the
point D with the coordinates o7 = 0, o = —98.90/33 (relation d = 3), it follows
(Fig.48, Model 2)

f>=8.1939: dinc = 1.3522, £ =0.9662, y1 = 0.2335. (207)
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L measurements

O  approximation 2

or= 20y

O1= Oq or= oy/2 or= oy/4 o= —-oy/4

Fig. 48 Plane stress state og;; = 0: CPM (0, = 33 x 10° psi) for gray cast iron (Table8): I CPM
withl =m =0, fo = 6.0831: dipc = 1.2122,& =1, y; = 0.2325, 2 CPM with/ = m = 0 and
d >3, f» = 8.1939: dipc = 1.3522, & = 0.9662, y; = 0.2335, 3 CPM with/ = 0, m = 1 and
d >3, fo = 8.8342: dipc = 1.3028, & = 0.8868, y1 = 0.3003. The GMM (Fig.47) is shown for
comparison

Similar approximation (Fig.48, Model 3) is obtained with the paraboloid / = 0,
m = 1 using the substitution (124) and the restriction d > 3

f»=8.8342: dinc = 1.3028, & = 0.8868, y1 = 0.3003. (208)

The models with a straight meridian fitted with the parameters (206), (207) should
be preferred here because of their simplicity. The setting (208) with the parabolic

meridian [ = 0, m = 1 yields a lower value az = 1.11. For further approximations
see [1, 14, 34, 202].
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0 = 30° 6= 60°

VON MISES i Pz B,

‘ ‘ ‘ Az
-8 —2bp -6 -4 —d -2 2 4 I

---------------- line of the plane stress state (o8

Fig. 49 Geometric-mechanical model (o = 33 - 103 psi, yi = y2 = 0.2375, ¢c3 = 0.8672,
ce = 0.2832,] = m = 0) with the values bp = 3.48, d = 2.92, k = 1.49 for gray cast iron
(Table 8) in the Burzynski-plane. The models of von Mises is shown for comparison, s. (Fig.47)

13.2 Measurements by Pae for Poly(oxymethylene) (POM)

The measurements for POM, du Pont Delrin 500, p =1.425 g/cm? are provided in
[151]. The following inaccuracies were found out after the analysis of the measure-
ments from [151]:

e Molar mass and crystallinity were not specified;
e Table I, hydrostatic pressure, (psi)x 1073;
e Table 1, average experimental yield stresses, the meausrement 10.5 is shifted from
the column “Shear” in to the column “Tension’;
e Figure 3 (a), hydrostatic axis, the factor 1/ /3 for the first invariant [ | was not taken
into account as the measurements were represented in the principal stress space:
=7.3kbar, I; =3-7.3-14503.8 = 317.63 x 10 psi. From the normalization

Wlth respect to oy it follows = I — % = 29.97[—]. The hydrostatic node

Az should lie at 29.97/+/3 = 17.3[ 1, (or with Z23100 11 7 = 17201,

cf. Eq.(3) with I, = 0 and TableIIl in [151]). The difference results from the
rounding error;

e Figures3(a) and (b), representation of the model in the m-plane, additionally to
the cross-sections I; = const. of the models of von Mises and Tresca a model with
trigonal symmetry is shown, which is however not defined;

e The units in the TableIII, [151] are not provided.

These measurements are visualized in the Burzyriski-plane and approximated with
a quadratic rotationally symmetric model (51), Fig.51.

It can be seen in Fig.51 that the points on the meridian & = /3 are separated
from the points on the meridians with & = 0 and 6§ = /6. So the trigonal symmetry
of the surface can be assumed. The application of the geometrical-mechanical model
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on
HAg
plane stress state 15°

N 30°

I = o4

45°

60°

o1/ O

Tanus®

Fig. 50 Measurements by Coffin-Schenectady [47] in the m-plane approximated with the
geometrical-mechanical model (151), s. Fig.49, d = 2.92; line of the plane stress state with o7 = 0.
The cross-sections orthogonal to the hydrostatic axis with /1 = const. through the points Z, K and
D are shown

(151) with the compressible substitution (146) can be recommended in this case.
A possible approximation is shown in the Burzynski-plane (Fig.52), in the plane
o1 — oy (Fig.53) and in the w-plane (Fig. 54). Further applications to POM can be
found in [113].

13.3 Measurements of Cristensen for PVC Hard Foam

Closed-cell PVC (polyvinyl chloride) foam Divinycell H200 (DIAB International
AB, Schweden) with the density p = 200kg/m> was tested in the region D—K —Z
(compression-torsion-tension) [46]. 25 measurements presented in the diagram o71-
712 in [46] were digitalized (Fig.55). The stresses at tension o4 corresponds to
the data provided by the manufacturer [52] and indirectly to the measurements by
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° 0= 30° o, =
0= 60° - _ Bp D K 7Z By cone
1.0
VON MISES i @\
Iy
-10 -5 0 5 Az o,
. r - - 2.0
VON MISES Lof I
230 25 20 15 10 %

Fig. 51 Approximation of the measurements by Pae for POM in the Burzynski-plane with the
quadratic rotationally symmetric model (51) with o = 10.6 x 10° psi and Oeq @S a parameter: cone
of Drucker-Prager (Mirolyubov): y; = y2 = 0.0403, 0eq = 1.12; d = 1.09, k = 1.04, vi{‘ = 0.44,
vit = 0.57, paraboloid of Balandin: y; = 0.1277, y» = 0, 0¢q = 1.01;d = 1.14, k = 1.07,
Vil = 0.40, vi" = 0.60, hyperboloid of Burzyriski-Yagn: y1 = 0.089, y» = 0.0107, 0eq = 1.07;
d=1.11,k = 1.05, vi‘ = 0.42, vi" = 0.58. The diagram is divided in two regions I} € [—10, 8]
and /7 € [—31, —10] for clarity

V31
By Up 0=30° 6=0° e
L[]
— 12¢ g
.............. Z I
D ’ ;
08} 8=060" ‘B
0.6 H H
04
02 4
3 L O+
2 -1 0 1 2
—d
plane stress space o computed points on the surface

Fig. 52 POM-measurements by Pae in the Burzyriski-plane approximated using the geometrical-
mechanical model (151) with the parameters y; = 0.0869, y» = 0, j = 4,1 = 2, m = 0,
3 = —02717,¢c6 = 04314 and 0eg = 1:d = 132 = 1.06, k = 357 = 1.09, vl = 0.41,
vi" = 0.63. The region I € [—2.5, 2] is shown for clarity

Gdoutos for the PVC-foam H250 [72]. The stresses at compression o_ are signifi-
cantly lower compared to the data in [52, 72]. The value for torsion is also lower than
the manufacturer’s data and the measurements by Deshpande-Fleck and Gdoutos.
In order to present the models in the diagram oq11—7112 (Fig.55) the invariants
(Appendix 15) were reduced with 02 = 033 = 713 = 1723 = 0 as follows

/ 1 2 2 / 2 3 1 2
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41 on/os Az

------------------ O = O

v/ 7 1
4=
————————— om = = (o7+ o
s Bo =5 (o1+ o)
A ———— Oom=201-0;
v V4
Ay —————  VON MISES
/ S,
SIH
Fig. 53 Plane stress state oy = 0: geometrical-mechanical model for POM with the values
d = 1.06, k = 1.09 (Fig.52). The models of von Mises and Schmidt-Ishlinsky are shown

for comparison

The restriction of the hydrostatic tension was set by Christensen according to the
normal stress hypothesis (a:l_yd = 1, y1 = 1/3) in order to obtain a closed limit
surface in the tension region for the approximation with the paraboloid (open in the
region /1 > 0).

The combined model (paraboloid bounded by the normal stress hypothesis) pre-
sented by Christensen has singularities. A similar approximation can be obtained
with the hyperboloid and the cone (51), Figs.55 and 56. Further measurements can
be described using the ellipsoid of Schleicher (51). These approximations are shown
in the Burzynski-plane (Fig. 57), however they are not optimal:



132 H. Altenbach et al.

line of the plane stress state 1 ( )
= — (&-3
with o7 = 0 S= 5\ v3&
Fig. 54 Cross-sections /1 = o4, I} = 0 and I} = —d o4 of the geometrical-mechanical model

for POM with the values d = 1.06, k = 1.09 in the -plane; see Figs.52, 53 (for clarity only one
section of the plane stress state with o = 0 is shown)

VON MISES

ANNNNNN

Restriction of

CHRISTENSEN (NSH)

-1.0 05 10 6,/ o,
Fig. 55 Measurements by Christensen [46] in the diagram o1;—7j2 with the normalization by
o4 = 7.12MPa and the models: cylinder of von Mises, Eq. (16); cone of Drucker-Prager, Eq. (51):
y =y, = —0.5325,vi" = 1.30, vI" = 0.11, d = 0.48, k = 0.65; GMM Eq. (151), j = 2,1 =4,
m = 0 with c3 = —1.0585, ¢ = 0.2354, y; = 0.4219, y» = —0.5747, vi{‘ =1/2, vﬂf = —0.24,
d =049,k =0.66

e The cone, the paraboloid and the hyperboloid are in this case open in the direction
I1 > 0. The hydrostatic tension is not constrained, however such constraint is
required.
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VON MISES

Fig. 56 Measurements by Christensen [46] in the diagram o1 —o7j, oy = 0 with the normalization
by o+ = 7.12MPa with the models from Fig.55. The points Az and Ap of the GMM are shown
for clarity

e The ellipsoid of Schleicher is fitted under the constraint vff_l < 1/2. The quality of
this approximation is not sufficient, the material strength in the region D—K —Z
is overestimated.

e All the approximations with the rotationally symmetric models can not describe
the typical «~-form of the curve of the plane stress state in the Burzyriski-plane for
the materials with d < 1 (cf. Figs.58, 59 and 62).

In Figs.57, 58 and 59 on the left and on the right hand side the constraints for the
hydrostatic stresses at tension and compression are shown. These constraints result
from the normal stress hypothesis and lead to a bounded region on the hydrostatic
axis for approximation of hard foams.

13.3.1 Geometrical-Mechanical Model
In the first step the optimization f> — minis performed for the geometric-mechanical
model (151), (Fig.58). Here the constraints are applied:

e y1 = 1/3 from the normal stress hypothesis and
e V' < 1/2 as plausibility condition.

The line of the plane stress state approximates the measurements with a good quality,
however the resulting extrapolation in the region /1 > o is unconvincing:
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Fig.57 Measurements by Christensen [46] in the Burzyriski-plane approximated with the quadratic
rotationally symmetric model (51), o = 6.94: ellipsoid of Schleicher with the constraints v} <
1/2: y1 = —1.6389, y» = 0.3831: vi+" =1/2,v" = —0.34,d = 044, k = 0.78, by = 0.88,
bp = 0.27; hyperboloid: y1 = —0.9001, y» = —0.1473: vi" = 1.14, vI" = 0.05, d = 0.49,
k = 0.68, bz = 1.64, bp = 0.37; cone of Drucker-Prager: y; = y» = —0.4956: vi+“ = 1.24,
vt =0.13,d = 0.50, k = 0.67, by = 1.98, bp = 0.40; NSH: Restriction from the normal stress
hy]?qo(tlhesis y1 = 1/3; TT: Restriction from the normal stress hypothesis as trigonal trapezohedron
3a2" =3d

-3d -2d -d o,

Fig. 58 Measurements by Christensen [46] in the Burzyrski-plane approximated with the
geometrical-mechanical model (151), j = 1,1 =1, m = 4 with f, —min, (f, = 0.321):

c3 = —1.0950, c6 = 0.2263, 1 = 1/3, y» = —1, y3 == 0, 0y = 7.04: il = 1/2, vi" = 0.29,
d =0.53,k =0.68, by = 0.62, bp = 0.49; the optimization constraints y = 1/3 and vif <1/2

e the surface @ has a symmetry plane /1 = o4 and
e there are no measurements available in the region /1 > o4, which confirm the
setting y; = 1/3.

In Figs. 59, 60 and 61 a further approximation with the GMM (151) and setting for
the meridian j = 2,/ = 4, m = 0 is presented. This representation shows that the
restriction obtained from the normal stress hypothesis —L > 34 does not hold in
this case. A further approximation can be obtained with the GMM (151), j = 1,
=5 m=0,y €0, 1[, y» < 0 (Fig.62). The point Ap is shifted to the left.
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-d
------------- curve of the plane stress state

Fig. 59 Measurements by Christensen [46] in the Burzynski-plane approximated with the
geometrical-mechanical model (151), j = 2,1 = 4, m = 0, fo —min, (fz = 0.229):
c3 = —1.0585, cg = 0.2354, y1 = 04219, y» = —0.5747, y3 = 0, 0 = 7.12: V! = 1/2,
Vil = —0.24,d = 0.49, k = 0.66, by = 0.64, bp = 0.53; the optimization constraints d > 0.49
and vl < 1/2

& A

1.0 r 15°
----------- plane stress state [ 30°

60°
L =- dO'eq
10 0 &
L =0
]1 = Oe¢q
O/ O o1/ O

Fig. 60 Measurements by Christensen [46] in the -plane approximated with the geometrical-
mechanical model (151), see Fig.59. The cross-sections orthogonal to the hydrostatic axis with
Iy = const. through the points Z, K and D are shown

Both approximations with the constraints d > 0.49 and vij_l < 1/2 lead to similar
results for the points Bz and Bp. A comparison of the Figs.57, 58, 59 and 62
shows the differences of the approximations. For a more precise description of the
plane stress state the loading points Bp and Bz are necessary. The respective testing
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&

hydrostatic axis

VON MISES

Fig. 61 Geometric-mechanical model (151) with the parameters from Fig.59 and the model of
von Mises in the principal stress space (o1, o1, o), (the surfaces are cut for clarity; with 6 = 0°
and & = 60° the meridians are labeled)

procedures for hard foams are described in [112]. The value at the point Bz reduces
the interval a, "4 e] % 1] toa, W4 e] % bz, 1] because of the convexity condition.

The optimization constraint v < 1/2 allows to obtain plausible approximations
as in Figs. 57, 58, 59 and 62 with vif = 1/2. In order to justify this constraint the
test By is required as well.

13.3.2 Linear Geometrical Criterion
A further criterion based on a simple approach (Sect. 12.3) can be applied in order

to compare the available approximations, €. g. the geometric criterion (193) with the
equally weighted nodes x = 1/2. For the approximation in Fig. 62 it can be obtained:

L1 1) 1 1 1 Y 210)
2 \y1 /) 2\06050 04415) T
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Fig. 62 Measurements by Christensen [46] in the Burzynski-plane approximated with the
geometrical-mechanical model (151), j = 1,/ = 5, m = 0, f —min, (f, = 0.226):
c3 = —1.0380, cg = 0.2405, y; = 0.6050, y» = —0.4415, oy = 7.22: vi‘f = 1/2,vI" = 0.26,
d =0.49, k = 0.66, bz = 0.65, bp = 0.54; the optimization constraints d > 0.49 and vif <1/2

The criterion leads to the values 2 and 2.06 for Figs. 58 and 59, respectively. It follows,
that the approximation (Fig.62) is to be preferred according to the criterion (210).
The same result is obtained for y = 0.

13.3.3 Combined Geometrical-Mechanical Criterion

The position of the hydrostatic nodes Ap and Az can be adjusted, if the combined
models (Sect.11.2) are used and so a more conservative solution can be obtained.
For this approximation of the measurements by Christensen a C!-combination of
two surfaces can be used. The surfaces are connected in the cross-section /1 = o,
so that vif = 1/2 holds. The second surface in the region /1 > o4 with the same
values of the parameters c3, c¢ is continuously differentiable coupled with the first
one.

The parameter y; € [1/3, 1 [ of the right surface in the Burzynski-plane can be
fitted according to the assumption regarding the position of the point Az, for instance

based on the normal stress hypothesis (a}j_yd = 1)

oy = %,yz =-1,j=11=1,m =4, cf. Fig.58;

oy = %,yz = —%,j =2,1=4,m =0, cf. Fig.59;

oy = %, Yy = —é,j =1, =5,m =0, cf. Fig.62, etc.

These approximations result in similar values of bz. Contrary to aiyd = 1 a more

conservative value, for instance with aiyd = 1/2 and vﬂ'r‘ = 1/2 can be obtained. It
follows then y; = 2/3 (Fig. 63).
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Fig. 63 Measurements by Christensen [46] in the Burzyriski-plane approximated with the combined
geometrical-mechanical model (151) with j =1 = 1,m =4, c3 = —1.0950, ¢ = 0.2263: Region
Il < 0eq:y1 =1/3, 2 = —1, vﬂf =1/2,v" =0.29,d = 0.53, k = 0.68, bp = 0.49 (Fig.58),
Region I} > oy:y1 =2/3,p =2, vif =1/2,bz =0.60

14 Summary and Outlook

The modeling of the deformation and limit behavior of real materials is influenced by
many phenomena. In the case of traditional materials and applications the number
of influence factors taken into account is reduced. The corresponding models are
simple and easy manageable. As usual they are based on a small number of material
parameters. The experimental identification of the parameters and verification of the
models is often simple. In many situations one needs only one basic test [8].

For high tech materials or applications with increasing safety requirements it is
necessary to take into account non-classical effects since they have a significant
influence on the deformation and limit behavior. Such phenomena are the different
behavior at tension and compression—strength differential effect (SD-effect), the
influence of the hydrostatic pressure, the Poynting-Swift-effect, the Kelvin-effect,
etc. [8, 16, 229]. In contrast to the classical material behavior, which can be described
by tensorial linear equations only, non-classical behavior partly should be presented
by tensorial non-linear equations. The effects related to these equations are sometimes
named second order effects [169]. They can be observed for elastic, plastic, creep
behavior and in fluid mechanics [8, 169]. Therefore in this chapter several models
allowing the description of complex material behavior are presented.

The models discussed in this chapter are limited by the assumption of isotropic
material behavior. Further investigation should be directed on extension of these mod-
els to the case of anisotropic materials. In addition, the application of the suggested
models to coated materials is not clear.

The concept of the equivalent stress is a simple and traditional engineering way to
solve problems related to the strength prediction or material behavior modeling. The
formulation and investigation of limit criteria will be in the focus of the scientific
community in the future. The reason ist that one has new materials and particular
application field [4].
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The development of the concept of the equivalent stress is considered in conjunc-
tion with:

e materials science,
e thermo-dynamics,
e morphology, and
e advanced measurement programs.

This results in verification of new effects that result from the model, in the precise
description of the failure with the consideration of the physical processes, taken into
account the phase transitions for the definition of the limits of the parameters.

15 Invariants

Assuming isotropic material behavior the invariants of the stress tensor play an
important role in the formulation of the equivalent stress expression. Here we define
several sets of invariants mostly used in practical situations [8, 234].

15.1 Principal Invariants

Let us postulate that the stress state is defined by the stress tensor o. This tensor
is a symmetric second rank tensor. The principal invariants are the solution of the
eigenvalue problem

(o —M)-n=0. 211)

I is the unit second rank tensor, n denotes the eigendirections and A the eigenvalues
of the problem. In our case the eigenvalues are named principal values or principal
stresses. For the stress tensor it can be shown that the principal stresses are real-
valued. Three different cases should be distinguished:

e three different solutions,
e one single and one double solution, and
e one triple solution

The necessary conditions for the solution of the problem (211) results in

n=0 or |o—A|=det(c—Al)=0. (212)
The first Eq. (212) is a trivial solution. The second equation (212) is of greater impor-
tance since the principal stresses can be computed with help of this condition. The

solution can be obtained from

2= L))\ + Lio)h — (o) =0, (213)
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where I; (o), (i = 1, 2, 3) are the invariants of the stress tensor
ILio)=1-0,
hio) = 3 [17@ 1 (s?)]. (214)
L) = |o| = deto = % [11 (a*) +31(0)h(o) — 113(0)] .

The solutions of Eq. (213) are named principal invariants or principal stresses A;,
i = 1,2, 3. The following relations are valid after ordering the A;-values

o] = O = O11l- (215)
If the principal stresses are distinguished that means

o1 # o1 # o1, (216)

the following spectral decomposition holds
0 = omng + ounnni + OmMNMNII, (217)

whereny, nyy, nyp are the eigendirections (principal directions), which can be obtained
from the solution of
(0’ —0,'1) ‘n; 20, ni-n; 25,'./'. (218)

d;j is the Kronecker symbol. The last equation in (218) is the orthogonality condition
for the principal directions.

15.2 Irreducible Invariants

The stress tensor has three irreducible invariants:

e the linear invariant Jy(¢) = I1(6) =1 -- 0,
e the quadratic invariant J(0) =0 - 0,
e the cubic invariant J3(6) = (6 - 0) -- 0.

The following representation is also possible

e the linear invariant Jy(¢) = I1(6) =1 -- 0,
e the quadratic invariant J, (o) = %0' -0,
e the cubic invariant J3(o) = %(a -0)-0.
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15.3 Axiatoric-Deviatoric Invariants

The axiatoric-deviatoric invariants are based on the principal invariants of the stress
deviator, which can be computed from the eigenvalue problem for the deviator

1 1
s=0—-0-1=0—--11(0)] (219)
3 3
Principal deviatoric stresses follow from

Is —AI| = det(s — A) =0 (220)

or
23— LA + L(s)x — (s) = 0, (221)

which can be simplified with respect to 71(s) = 0
A+ Ls)r— Lis) =0.

Here the second and the third invariants are equal to

b(s) = —%Jz (02) . L(s) = |s| = dets = %Jg (s3) . (222)

For a better distinguishing incompressible and compressible material behavior the
second, the third deviatoric and the axiatoric invariant will be used

ILi(oc)=0-1. (223)

15.4 Cylindrical Invariants

There are other sets of invariants, for example, Novozhilov’s invariants [148], which
are defined as it follows

e the axiatoric invariant (223)

e the second invariant of the stress deviator (222)

1
I(s) = —5J2 (s),

e and the stress angle
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Table 10 Main criteria

H. Altenbach et al.

Abbrev. Name Reference Section Equation BP 3D =&

Classical Strength Theories

NSH Normal Stress Hypothesis (Rankine) [166, 175] 2.1 8 14 2
Tresca [209] 2.2 13 15 22
von Mises [85,91, 1391 2.3 16 14 2 22

SI Schmidt-Ishlinsky [92, 182] 24 17 15 22

Standard Models (Pressure-Sensitive Criteria)

SH Strain Hypothesis [8, 174] 6.1 41

MSH Maximum Strain Hypothesis [134] 6.1

MC Mohr-Coulomb [141] 6.2 45

PL Pisarenko-Lebedev [121] 6.3 48 38

SD Sdobirev [191] 6.3
Burzyiiski-Yagn [36, 220] 6.4 51 17
Drucker-Prager, Mirolyubov [56, 138] 6.4 17 6
Balandin, Burzynski-Torre [17, 36, 207] 6.4 17 11
Beltrami [21] 6.4 17 12
Schleicher [179] 6.4 34

Mathematical Formulations (Pressure-Sensitive Criteria)
Altenbach-Zolochevsky 1 [7] 7.1 56
Altenbach-Zolochevsky IT [8] 7.2 63

Pressure-Insensitive Criteria with Trigonal Symmetry
Sayir I [178] 9.1.1 87 18
Sayir I [178] 9.1.2 89
Haythornthwaite [83] 9.13 94

CPM Convex m-plane model [33] 9.14 99
Radcig model [105] 9.1.5 100

GMM Geometrical-Mechanical Model [107] 9.1.6 105

TQM Triquadratic model [103] 9.1.7 108

Pressure-Insensitive Criteria with Hexagonal Symmetry

uyc Unified Yield Criterion of Yu [222, 229] 9.2.1 111 22
Sokolovsky [157] 9.2.1

BCM Bicubic model [103] 9.2.2 113

MAC Multiplicative Ansatz Criterion [116] 923 116
Ishlinsky-Ivlev [93, 98] 9.2.3
Universal model with hexagonal symmetry  [116] 9.2.4 121
Model based on the stress angle [33] 925 122
Dodd-Naruse [53] 9.2.5
Drucker I [54] 9.2.5

Pyramidal Criteria (Pressure-Sensitive Criteria)

UST Unified Strength Theory of Yu [228] 10.2 131

SST Single-Shear-Theory of Yu [228] 10.2

TST Twin-Shear-Theory of Yu [228] 10.2 30
Drucker II [55] 10.3.4
Haythornthwaite [107] 10.3.4

Combined Criteria
Pelczyniski [155] 11 37
Huber [36, 91] 11.2.1 156 42 41
Kuhn [118] 11.2.1 160 43
Modification of the model of Huber [103] 11.2.2 163 42
Combined Geometrical-Mechanical Model  [103] 11.2.3 172 44
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33 dets

39 =2 T
cos 2 (1)

0 e [0, f] , (224)

see [43, 150, 234] among others.

16 Criteria of this Chapter 2

In Table 10 many of the discussed in this chapter criteria are summarized. The table
is organized as it follows:

e In the first column (Abbrev.) some abbreviations are presented.

e The main name of the criteria is presented in column 2.

e The third column indicates the main reference(s).

e Column 4 presents the section, where the given criterion is discussed.

e In the column 5 the relevant equation is presented.

e In the last three columns are given the references to the figures (in the Burzynski-
plane (BP), in the principal stress space (3D) and in the 7-plane (77)).
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