Summary of What We Will Learn in Chapter 3

» The importance of social practices in SME

» The concept of method rationale

» How social practices are incorporated into evolutionary method engineer-
ing and method-user-centred method engineering

Formalised systems development methods are used in systems development as a
means to express and communicate knowledge about the systems/software devel-
opment process (Agerfalk and Fitzgerald 2006). Since methods are social
constructs, they embed various assumptions about people and systems development
as a social practice (Introna and Whitley 1997; Russo and Stolterman 2000).
Essentially, methods encapsulate knowledge of good design practice so that
developers can be more effective, efficient and confident in their work. Nonethe-
less, it is a well-known fact that many software organisations do not use methods
(Iivari and Maansaari 1998; Nandhakumar and Avison 1999) and, when methods
are used, they are not used straight out of the box but are tailored to suit the
particular development situation (Fitzgerald et al. 2003). This tension between
the method ‘as documented’ and the method ‘in use’ has been described as a
‘method usage tension’ between ‘method-in-concept’ and ‘method-in-action’
(Lings and Lundell 2004).

If a method is to be accepted and used, method users must perceive it as useful in
their development practice (Riemenschneider et al. 2002). In general, for someone
to regard a piece of knowledge as valid and useful, it must be possible to rationalise
that knowledge, i.e., it must make sense to developers and be possible to incorpo-
rate into their view of the world.! This is particularly true in the case of method

! Ethnomethodologists refer to this property of human behaviour as ‘accountability’ (Garfinkel
1967; Dourish 2001; Eriksén 2002); people require an account of the truth or usefulness of

B. Henderson-Sellers et al., Situational Method Engineering, 53
DOI 10.1007/978-3-642-41467-1_3, © Springer-Verlag Berlin Heidelberg 2014

54 3 Method Engineering as a Social Practice

prescriptions since method users are supposed to use these as a basis for future
actions, and thus use the method description as a partial account of their own
actions. Hence, the type of knowledge that is codified as method descriptions can
best be understood as a form of ‘action knowledge’ (Goldkuhl 1999; Agerfalk
et al. 2006).

In order to understand better the rationalisation of system development methods,
several different approaches have been investigated. Each examines the pros and
cons of different alternatives and the impact of making specific choices. One
approach is that of eliciting the requirements for the methodology using typical
strategies from the requirements engineering literature (as discussed further in Sect.
6.2), perhaps using a goal-based approach (see the overview of several such goal-
oriented requirements engineering (GORE) approaches by Lapouchnian 2005, and
also one particular example in Sect. 6.4.2).

In this chapter, however, we focus on the concept of method rationale as
developed in the literature (Oinas-Kukkonen 1996; Agerfalk and Ahlgren 1999;
Agerfalk and Wistrand 2003; Rossi et al. 2004; Agerfalk and Fitzgerald 2006).
Method rationale concerns the reasons and arguments behind method prescriptions,
and why method users (e.g., systems developers) choose to follow or adapt a
method in a particular way. This argumentative dimension is an important but
often neglected aspect of systems development methods (Agerfalk and Ahlgren
1999; Agerfalk and Wistrand 2003; Rossi et al. 2004). One way of approaching
method rationale is to think of it as an instance of ‘design rationale’ (MacLean
et al. 1991) that concerns the design of methods, rather than the design of computer
systems (Rossi et al. 2004). This aspect of method rationale captures how a method
may evolve and what options are considered during the design process, together
with the argumentation leading to the final design (Rossi et al. 2004), thus providing
insights into the process dimension of method development. A complementary
view on method rationale is based on the notion of purposeful-rational action.
This aspect of method rationale focusses on the underlying goals and values that
make people choose options rationally (Agerfalk and ;\hlgren 1999; ;\gerfalk and
Wistrand 2003). It also provides an understanding of the overarching conceptual
structure of a method’s underlying philosophy.

3.1 Methods as Action Knowledge

A method description is a linguistic entity and an instance of what can be referred to
as action knowledge (Goldkuhl 1999; Agerfalk 2004). The term ‘action knowledge’
refers to theories, strategies and methods that govern people’s action in social

something in order to accept it as valid. According to ethnomethodologist Harold Garfinkel (1967),
actions that are accountable are ‘visibly-rational-and-reportable-for-all-practical-purposes’.

http://dx.doi.org/10.1007/978-3-642-41467-1_6#Sec8_6
http://dx.doi.org/10.1007/978-3-642-41467-1_6#Sec12_6

3.1 Methods as Action Knowledge 55

Values,
Beliefs and
Understanding

Values,
Beliefs and
Understanding

[]
w Suggestion Interpretation w Method-in-Action
Method
Method Creator Description Method User

Fig. 3.1 Method descriptions in a communication context (after /e\gerfalk and Fitzgerald 2006).
Reprinted with permission of the publisher

practices (Goldkuhl 1999). The method description is a result of a social action’
performed by the method creator directed towards intended users of the method. A
method description should thus be understood as a suggestion by the method creator
regarding how to perform a particular development task. This ‘message’ is received
and interpreted by the method user, and acted upon by following or not following
this suggestion (see Fig. 3.1), i.e., by transforming the method description
(or ‘formalised method’) (Fitzgerald et al. 2002) or ‘method-in-concept’ (Lings
and Lundell 2004) into a method-in-action. The ‘method as message’ is formulated
based on the method creator’s understanding of the development domain and on his
or her fundamental values and beliefs. In such a team-based environment, shared
understanding is critical—this may be implicit or explicit, some of which may be
true and some false (Fig. 3.2). Similarly, the interpretation of a method by a method
user is based on his or her understanding, beliefs and values.

It is possible to distinguish between five different aspects of action knowledge: a
subjective, an intersubjective, a linguistic, an action and a consequence (Goldkuhl
1999; Agerfalk 2004). Subjective knowledge is part of a human’s ‘subjective
world’ and is related to the notion of ‘tacit knowledge’ (Polanyi 1958). Subjective
knowledge is shown as two ‘clouds’ in Fig. 3.1. This would be the type of
knowledge that someone possesses after having interpreted and understood a
method. Intersubjective knowledge is ‘shared’ by several people in the sense that
they attach the same meaning to it and are able to meaningfully communicate (parts
of) it among themselves. This could imply that the communicator (method creator)
and interpreter (method user) agree on some of the elements of the ‘clouds’ in
Fig. 3.1, and that they thus attach the same meaning to, at least parts of, a particular
method. Linguistic knowledge is expressed as communicative signs, for example,
as the written method description in Fig. 3.1. As the name suggests, action knowl-
edge is expressed, or manifested, in action. This is the action aspect of knowledge

2 According to sociologist Max Weber, social action is that human behaviour to which the actor
attaches meaning and which takes into account the behaviour of others, and thereby is oriented in
its course (Weber 1978).

56 3 Method Engineering as a Social Practice

Implicit } Explicit
‘Dark’ information: Y o | | Explicitly specified
relevant, butnot ~——x—e Implicit shared | Explicit shared and truly understood
noticed by anybody \ understanding | understanding . and relevant
' (1Isv) | | . "
b dable imolici \ | . @+— Explicitly specified
ependable implicit) and truly understood
shared understanding /’A’ | I and not relevant
of relevant information | |
Implicit shared under- W | | Note that area
standing of irrelevant ————®| | | sizes don’t
information . | L indicate any
| I | proportions
True shared understanding | | 0
False shared understanding |
(misunderstandings exist) //. Explicitly specified
Le—me—=o—c=—a== = and misunderstood
pJ and relevant
False implicit shared False implicit shared ‘ Context boundary: Explicitly specified
understanding of relevant understanding of considered, | separates relevant from and misunderstood
information but irrelevant information | irrelevant information and not relevant

Fig. 3.2 Forms and categories of shared understanding: implicit versus explicit and true versus
false. In addition, this diagram identifies the possibility of ‘dark’ information, i.e., information that
no stakeholders are aware of (after Glinz and Fricker 2013)

or ‘method-in-action’. Finally, traces of the action knowledge might be found in
materialised artefacts, which constitute a consequence aspect of the knowledge.
This would correspond to, for example, models and documentation produced as
well as the actual software developed.

3.2 Method Stakeholders

When we think of software and systems development methods, what usually spring
to mind are descriptions of ideal typical® software processes. Developers use such
descriptions in practical situations to form what can be referred to as methods-in-
action (Fitzgerald et al. 2002). Method engineering acknowledges that a method
used in an actual project typically deviates significantly from the idealised process
described in method handbooks and manuals (livari and Maansaari 1998;
Nandhakumar and Avison 1999; Fitzgerald et al. 2003). Such adaptations of
methods can be made more or less explicit and be based on more or less well-
grounded decisions.

Methods need to be tailored to suit particular development situations (see also
Chap. 7) since a method, as described in a method handbook, is a general

3 Max Weber introduced the notion of an ‘ideal type’ as an analytic abstraction. Ideal types do not
exist as such in real life, but are created so as to facilitate discussion. We use the term here to
emphasise that a formalised method, expressed in a method description, never exists as such as a
method-in-action. Rather, the method-in-action is an appropriation of an ideal typical formalised
method to a particular context. At the same time, a formalised method is usually an ideal type
created as an abstraction of existing ‘good practice’ (Agerfalk and Ahlgren 1999).

http://dx.doi.org/10.1007/978-3-642-41467-1_7

3.2 Method Stakeholders 57

description of an ideal process. Such an ideal type needs to be aligned with a
number of situation-specific characteristics or ‘contingency factors’ (van Slooten
and Hodes 1996; Karlsson and ;\gerfalk 2004).

When a situational method has been devised, or ‘engineered’, and is used by
developers in a practical situation, it is likely that different developers disagree with
the method description and adapt the method further to suit their particular hands-
on situational needs. As a consequence, the method-in-action will deviate not only
from the ideal typical method but also from the situational method.

Altogether, this gives us three ‘abstraction levels’ of method: (a) the ideal typical
method that abstracts details and addresses a generic problem space, (b) the situa-
tional method that takes project specifics into account and thus addresses a more
concrete problem space and (c) the method-in-action, which is the manifestation of
developers’ actual behaviour ‘following’ the method in a concrete situation. It
follows from this that both the ideal typical method (a) and the situational method
(b) exist as linguistic expressions of knowledge about the software development
process (middle ‘level’ of Fig. 1.8). At the same time, the method-in-action
represents an action aspect of that knowledge, which may of course be
reconstructed and documented post facto (in addition to the way it is manifested
in different developed artefacts along the way) (lower ‘level’ of Fig. 1.8).

Figure 3.3 offers an alternative visualisation of these three abstraction levels of
method and corresponding actions and communication between the actors
involved. In Fig. 3.3, the Method User of Fig. 3.1 has been specialised into the
Method Configurator and the Developer (method creators and method configurators
are collectively referred to as method engineers). Method configurators use the
externalised knowledge expressed by the method creator in the ideal typical method
as one basis for method configuration and subsequently communicate a situational
method to developers. What is not shown in Fig. 3.3 is that method construction,
method configuration and method-in-action rely on the actors’ interpretation of and
assumptions about the development context. The developer ‘lives’ within this
context and thus focusses his or her tailoring efforts on a specific problem space.
The method creator, on the other hand, has to rely on an abstraction of an assumed
development context and thus focusses on a generic problem space. Finally, the
method configurator supposedly has some interaction with the actual development
context, which provides a more concrete basis for configuring a situational method.

In both method construction and method configuration, the method
communicated is a result of social action aimed towards other actors as a basis
for their subsequent actions. This means that method adaptation, in construction,
configuration and in-action, relies on the values, beliefs and understanding of the
different actors involved—and this is where method rationale comes into play.

http://dx.doi.org/10.1007/978-3-642-41467-1_1#Fig8_1
http://dx.doi.org/10.1007/978-3-642-41467-1_1#Fig8_1

58 3 Method Engineering as a Social Practice

Method Method
Construction Configuration
Q -l =%

Suggestion Interpretation Suggestion » Interpretation w Method-in-Action

Ideal Typical Situational
Method Method Method Method Developer
Creator Configurator
D ettt Problem Space ===== == m e e o >
Generic Specific

Fig. 3.3 Levels of method abstraction in methods as action knowledge (after Agerfalk and
Fitzgerald 2006). Reprinted with permission of the publisher

3.3 Method Rationale

Since methods represent knowledge, they also represent rationale. Therefore, a
method user ‘inherits’ both the knowledge expressed by the method and the
rationale of the method constructor (Agerfalk and Ahlgren 1999). It can be argued
that, regardless of the grounds, method tailoring (both during configuration and
in-action) is rational from the point-of-view of the method user (Parnas and
Clements 1986) who must decide whether to follow, adapt or omit a certain method
or part thereof. Such adaptations are driven by the possibility of reaching ‘rational-
ity resonance’ between the method and the method users (Stolterman and Russo
1997). That is, they are based on method users’ efforts to understand and ultimately
internalise the rationale expressed by a method description.

From a process perspective, method rationale can be thought of as having to do
with the choices one makes in a process of design (Rossi et al. 2004). Thus, we can
capture this kind of method rationale by paying attention to the questions or
problematic situations that arise during method construction. For each question,
we may find one or more options, i.e., ‘solutions’ to that question.

As an example, consider the construction of a method for analysing business
processes. In order to graphically represent flows of activities in business processes,
we may consider the option of modelling flows as links between activities, as in
UML Activity Diagrams (OMG 2010). Another option would be to use a modelling
language that allows for explicitly showing communicative and material results of
each action and how those results are used as a basis for subsequent actions, as in
VIBA* Action Diagrams (Agerfalk and Goldkuhl 2001; Agerfalk 2004). To help
explore the pros and cons of each option, we may specify a number of criteria as
guiding principles. Then, for each of the options, we can assess whether it

*Versatile Information and Business Analysis.

3.3 Method Rationale 59

VIBA
« Action
,, Diagrams

’

How to represent

flows of activities?
UML
Activity

Diagrams

Minimalist Language

Differentiate between
material and

communicative actions

Well-known formalism

Fig. 3.4 Method rationale as choosing between options VIBA Action Diagrams and UML
Activity Diagrams for modelling activity flows (based on the Question, Option, Criteria Model
of Design Space Analysis (MacLean et al. 1991)). The solid arrow between ‘situation’ and ‘option’
indicates the preferred choice; a solid line between an option and a criterion indicates a positive
impact, while a dashed line indicates a negative impact (after Agerfalk and Fitzgerald 2006).
Reprinted with permission of the publisher

contributes positively or negatively with respect to each criterion. Let us, for
example, assume that one criterion (a) is that we want to create a visual modelling
language (notation) with as few elements as possible in order to simplify models
(a minimalist language). Another criterion (b) might be that we want a process
model that is explicit regarding the difference between material actions and com-
municative actions’ in order to focus developers’ attention on social/communica-
tive aspects and material/instrumental aspects, respectively (thus a more expressive
language). Finally, a third criterion (c) might be that we would favour a well-known
modelling formalism. The UML Activity Diagram option would have a positive
impact on criteria a and c, and a negative impact on criterion b, while the VIBA
Activity Diagram option would have a positive impact on criterion b, and a negative
impact on criteria a and c. If we do not regard any of the criteria as being more
important than any other, we would likely choose UML Activity Diagrams.

Figure 3.4 depicts this notion of method rationale as based on explicating the
choices made throughout method construction. The specific example shown is the
choice between VIBA Action Diagram versus UML Activity Diagram.

This model of method rationale is explicitly based on the Question, Option,
Criteria Model of Design Space Analysis (MacLean et al. 1991). Other approaches
to capture method rationale in terms of design decisions are, for example, IBIS/
gIBIS® (Conklin and Begeman 1988; Conklin and Yakemovic 1991; Nguyen and
Swatman 2000; Conklin et al. 2003; Rooksby et al. 2006) and REMAP’ (Ramesh
and Dhar 1992). The process-oriented view of method rationale captured by these
approaches is important, especially when acknowledging method engineering as a
continuous evolutionary process (Rossi et al. 2004) as will be discussed below in

5 Material actions are actions that produce material results, such as painting a wall, while
communicative actions result in social obligations, such as a promise to paint a wall in the future.
The latter thus corresponds to what Searle (1969) termed ‘speech act’.

SIssue Based Information Systems.
"REpresentation and MAintenance of Process knowledge.

60 3 Method Engineering as a Social Practice

Sect. 3.4. However, another, and as we shall see below, complementary approach to
method rationale, primarily based on Max Weber’s notion of practical rationality,
has been put forth as a means to understand why methods prescribe the things they
do (Agerfalk and Ahlgren 1999; Agerfalk and Wistrand 2003; Wistrand 2009).

According to Weber (1978), rationality can be understood as a combination of
means in relation to ends, ends in relation to values and ethical principles in relation
to action. Rational social action is always possible to relate to the means
(instruments) used to achieve goals, and to values and ethical principles to which
an action conforms. Thus, we cannot judge whether or not means and ends are
rational without considering the value base upon which we consider the
possibilities.

In this view of method rationale, all fragments or components of a method are
related to one or more goals (see also Sect. 6.4 on goal-based method construction
techniques). If a fragment is proposed as part of a method, it should have at least one
reason to be there. We refer to this as the goal rationale of a method. Each goal is, in
turn, related to one or more values. If a goal is proposed as the argument for a
method fragment, it too should have at least one reason to be included. We refer to
this as the value rationale of a method. Figure 3.5 depicts this notion of method
rationale, which also includes the idea that goals and values are related to other
goals and values in networks of achievements and contradictions. The diagram also
includes the actor who subscribes to a particular rationale. Using the terminology
introduced above, an actor could be a method creator, a method configurator or a
method user.

Each goal is anchored in the method creator’s values (Goldkuhl et al. 1998;
Agerfalk 2006; ;\gerfalk and Fitzgerald 2006) and goals and values form the
essence of the perspective (Goldkuhl et al. 1998) or philosophy (Fitzgerald
et al. 2002) of an Information Systems Development Methods (ISDM). Method
rationale makes it possible to address the goals that are essential to reaching specific
project objectives. Prescribed actions and artefacts, on the other hand, are the means
to achieving something (such as the goals). Method rationale can therefore prevent
developers from losing sight of that ultimate result and can help them find alterna-
tive ways forward. This was clearly evident in Karlsson and Agerfalk’s (2009a)
study of method configuration in an agile context and Karlsson’s (2013) longitudi-
nal study of the use of method rationale in method configuration.

However, when defining method components in practical SME, Karlsson and
Agerfalk (2009b) suggest restricting the modelling of method rationale to goals
only. This suggestion is purely pragmatic and based on the empirical finding that
method engineers and developers tend to reason about the purpose of certain
method components and often omit discussion of values. It is also important to
note that for practical reasons we are not searching for objective goal statements but
rather for pragmatic and situated statements that describe the use and effects of
method components.

To illustrate how the concepts of method rationale fit together, we will return to
the example introduced above. Assume we have a model following Fig. 3.5
populated as follows (assuming that the classes in the model can be represented

http://dx.doi.org/10.1007/978-3-642-41467-1_6#Sec10_6

3.3 Method Rationale 61

{xﬁr}

Value Achievemen

Value Contradiction ,

Value Base
: Value Rationale
{xor} <’
Goal Achievemen
N Goal Rationale
22 i
. intention \[’ .
Goal Contradiction ; -
| Method Fragment |
7S

In-Concept ~ In-Action
[In-Concept |-— [In-Action |

Fig. 3.5 Method rationale as consisting of interrelated goals and values as arguments for method
fragments (after Agerfalk 2006)

as sets and associations as relations between sets, i.e., as sets of pairs with elements
from the two related sets). Note that we assume that the actors involved are the
creators of the respective fragments, so these are not included in the analysis. This
could easily be done and can be used as an additional analytic tool to verify
consistency within and across methods with respect to underlying values and how
these are reflected in particular method fragments.

A set of method fragments F= {f;: Representation of the class concept; f,:
Representation of the activity link concept; f3: Representation of the action result
concept}; A set of goals G = {g;: Classes are represented in the model; g,: Activity
links are represented in the model; g;: Activity results are represented in the
model}; A set of values V = {v;: Model only information aspects; v,: Minimalist
design of modelling language; v3: Focus on instrumental v. communicative; v4: Use
well-known formalisms}; Goal rationale Rg = {(f;, g1), (f2, 2), (f3, g3)}; Value
rationale Ry = {(gy, v2), (81, V3), (81, Va4), (82, V1), (&2, V2), (82, Va), (g3, V3)}; Goal
achievement GA = {(g3, g,)}; Value contradiction VC = {(v{, v3)}; VA=GC=0.

A perhaps more illustrative graphical representation of the model is shown in
Fig. 3.6. If we view each method fragment in the model as possible options to
consider, then the goals and values can be compared with the criteria in a structured
way. Given that we know that what we want to describe in our notation is a flow of
activities (or more precisely the links between activities), we can disregard f;
outright, since its only goal is not related to what we are trying to achieve. When
considering f, and f3, we notice that each is related to a separate goal. However,
since there is a goal achievement link from g5 to g,, we understand that both f, and
f3 would help satisfy the goal of representing visually a link between two activities

62 3 Method Engineering as a Social Practice

Fig. 3.6 Graphical
representation of the method
rationale mode showing the
tree method fragments, the
three goals, the three values
and their relationships. The
goal achievement relation is
represented by an arrow to
indicate the direction of the
‘goal contribution’. All other
relationships are represented
by non-directed edges since
the direction of reading is
arbitrary

(if we model results as output from one activity and input to another, we also model
a link between the two), since these two goals are based on different underlying and
contradictory values. Since g, is related to vy, and g3 to v3, we must choose the goal
that best matches our own value base. This could and should be expressed by the
criteria we use. If, for example, we believe that it is important to direct attention to
instrumental versus communicative aspects (v3), then we should choose g3 and
consequently f3. If, on the other hand, we are only concerned with modelling
information flows, then g, and consequently f, would be the option to choose.

Empirical observations show that the method component’s overall goals and
artefacts are important during method configuration (Karlsson and Agerfalk 2004)
and hence they are part of the interface. An artefact, as discussed above, is
designated as an input and/or a deliverable (output). This is necessary in order to
deal with the three fundamental actions that can be performed on an artefact: create,
update or delete. In cases where an artefact is only created by a method component
it is classified as a deliverable. If the artefact can be updated by the same method
component, it is also classified as an input. Furthermore, a component can have one
or more input artefacts, but has only one deliverable (which thus defines the ‘layer
of granularity’ of the component).

The concept of method rationale described above applies to both construction of
methods and refinement of methods-in-action (Rossi et al. 2004). Since method
descriptions are means of communicating knowledge between method creators and
method users, it could be used as a bridge between the two and thus as an important
tool in achieving rationality resonance, as discussed above.

From the earlier example in this section, we can see that method rationale is
related to both the choices we make during method construction and to the goals
and values that underpin the method constructs we choose among. The example
used above was at a very detailed level, focussing on rationale in relation to method
fragments at the concept layer of granularity. The same kind of analysis could be
performed at any layer of granularity and may consider both process and product
fragments (i.e., both activities and deliverables). As an example, let us consider the

34 Evolutionary Method Engineering 63

use of agile methods for globally distributed software development. This may seem
counter-intuitive in many ways. One example is that agile methods usually assume
that the development team is co-located with an on-site customer present at all time
(Beck 2000). By analysing the reasons behind this method prescription (i.e., the
suggestion by the method creator), we may find that we can operationalise the
intended goals of co-location (such as increased informal communication) into
other method prescriptions, say utilising more advanced communication
technologies. In this way, we could make sure that the method rationale of this
particular aspect of an agile method is transferred into the rationale of a method
tailored for globally distributed development. Thus, we may be able to adhere to
agile values even if the final method does look quite different from the original
method. That is to say, the principles espoused by the method creators may be
logically achieved to the extent that they are relevant in the particular context of the
final situational method.

It is important to see that method rationale is present at all three levels of method
abstraction (Fig. 3.3): ideal typical, situational and in-action. At the ideal typical
level, method rationale can be used to express the method creator’s intentions,
goals, values and choices. This serves as a basis for method configurators (i.e., those
who tailor a situational method) and developers in understanding the method and
how to tailor it to best advantage. In the communication between configurator and
developer, method rationale would also express why certain adaptations were made
when configuring the situational method. If we understand different developers’
personal rationale, we might be able to better configure or assemble situational
methods.

Combining the two aspects of method rationale gives us a structured approach to
using method rationale both as a tool to express and document a method’s rationale,
and as a tool to analyse method rationale as basis for method construction, assem-
bly, configuration and use.

3.4 Evolutionary Method Engineering

Method engineering involves a learning process in which the current level of
expertise and the situation influence the outcomes (Hughes and Reviron 1996).
Thus, any organisation that develops systems not only delivers them but also learns
how to perform system development and to mobilise associated knowledge
(methods), but also improves their development capabilities (learning by doing).
The development organisation builds its knowledge about how its methods work in
certain development situations. These experiences complement the codified method
knowledge and should lead into better applications of the method in the future.
Checkland (1981) was an early advocate of a learning-based approach to method
development through cyclical action research. In this view, evolutionary method
engineering is seen as a continuous refining process. However, as Lyytinen and
Robey point out (1999) large parts of this experience are lost since the experiences

64 3 Method Engineering as a Social Practice

are seldom collected and interpreted—thus emphasising the importance of
retrospectives (Kerth 2001).

Methods can never gather all previous knowledge and anticipate all future
development situations. Therefore, it is fruitful to view methods from an
organisational learning perspective. This perspective analyses system development
situations and the role of methods through ‘reflection-in-action’ (Schén 1983). In
Schon’s view, a large part of a designer’s knowledge of ISD is a result of his or her
reflections of the situation, rather than being determined by the methods. In real life,
the method-in-action is adapted and interpreted by designers based on their under-
standing of the events and contingencies. At the same time the current version of the
method is a result of those reflections so that designers’ tacit understandings are
made explicit so that they can be made understandable to others (Nonaka 1994).

Rossi et al. (2004) claimed that reflection-in-action and technical-rationality are
complementary in systems development and both explicit and tacit knowledge are
needed to develop systems. Thus, a good method should adapt to a situation and
provide cognitive frames and norms that designers can use, but also challenges the
use of their experiential knowledge (Argyris and Schon 1978). Such a learning view
has been called evolutionary method engineering (Tolvanen 1998). Because evolu-
tionary SME aims to continually improve ISD methods it can be regarded as a
learning process in which individuals (Schon 1983), communities and organisations
(Nonaka 1994) create, memorise and share knowledge about system development
through codifying it to methods. This double loop learning leads to continuous
modification and augmentation of an organisation’s methods. In evolutionary ME,
method evolution is seen to be necessary since organisations have to deal with
different method versions for different implementation targets and development
contexts (as for example with UML (OMG 2010)).

Two different types of method evolution have been identified (Rossi et al. 2004):
changes to methods reflecting general requirements of changed technical and
business needs, and those relevant to the ISD situation at hand. The former relates
to the general genealogy of methodical knowledge within the method developer and
user community, and the latter with how these general evolutions are adapted into
local situations and affect development practices. We can anticipate that user-
centred method engineering calls for extensive local modifications and possibilities
for evolutionary variants of methods.

3.5 Method-User-Centred Method Engineering®

A problem in situational method engineering, similar to software and systems
engineering, is that requirements, here method requirements, need to be specified
and managed. Evolutionary method engineering addresses the management prob-
lem by allowing method requirements to evolve over time. The initial specification

8 We acknowledge contributions of Dr. Fredrik Karlsson to this section.

3.5 Method-User-Centred Method Engineering 65

of method requirements calls for specific techniques. One such technique, as partly
explored in relation to the MC Sandbox tool, has been borrowed from user-centred
design and termed method-user-centred method engineering (Karlsson and
Agerfalk 2012). These authors provide extensive discussion about method-user-
centred method engineering along with a case study on the use of these ideas as
implemented in MC Sandbox (see also Sect. 7.3.2).

3.5.1 Method Requirements

Methods exist for the purpose of supporting project members during development
projects. These people are users of the method in the same sense that end-users are
users of software. Hence, method users impose requirements on methods in much
the same way that end-users have requirements on information systems. The actual
content of requirements engineering processes varies, although often the core
activities include elicitation of problems and solutions, negotiation of problems to
solve and solutions to adopt as well as commitment to implement the selected
solutions. The requirements are developed during these activities and a number of
challenges are evident.

Firstly, method requirements are not always clear, neither to the method engi-
neer nor to the method user—partly because the systems development task is not
always well understood, partly because the project members’ method varies. The
first problem indicates dependencies between systems development and method
engineering, which is why we discuss situational methods in the first place. These
dependencies are not always possible to identify completely initially. Rather they
become visible incrementally, which is also acknowledged in incremental method
engineering as discussed in Chap. 7. The second problem illustrates the necessity to
improve the communication about what is possible to achieve and reasonable to
expect from the method at hand. Method users will learn about the possibilities
offered by the method and discover new requirements as a project progresses.

Secondly, there is not just one set of requirements, since requirements are by
nature emergent and constantly negotiated and renegotiated (Chakraborty
et al. 2010; Holmstrom and Sawyer 2011). Different stakeholders with different
interests typically bring their own set of requirements to the table. Klein and
Hirschheim (2001) emphasise the importance that these different interests are
‘understood and debated’. Depending on the selection of method users, the method
requirements are therefore likely to be different. Developing a shared understand-
ing is therefore of prime importance (see earlier discussion of Fig. 3.2).

It is also true that not all stakeholders have the same power and possibility to
influence the requirements process (Coughlan et al. 2003). In any case, these
different sets of requirements can of course be (at least partly) conflicting. In
some cases, apparent conflicts are based on misunderstandings that can be solved
through clarification. Conflicts can also arise due to differences in perspectives and
what is perceived as important during the project. Stakeholders may not share the
same value base, as discussed in Sect. 3.3 above.

http://dx.doi.org/10.1007/978-3-642-41467-1_7#Sec8_7
http://dx.doi.org/10.1007/978-3-642-41467-1_7

66 3 Method Engineering as a Social Practice

Finally, project resources may not allow for all requirements to be considered. A
situational method will thus only solve stakeholders’ needs and problems to a
certain degree. Thus, the method requirements process must include ways to handle
method requirements conflicts and requirements viewed as negotiated
commitments to be fulfilled during the project.

3.5.2 Why Method-User-Centred?

In software and systems engineering, end-users have to conceptualise, explicate and
negotiate their requirements; creativity has to be stimulated in that process (Maiden
et al. 2004). Malcolm (2001) suggests that user-centred approaches are especially
appropriate when addressing tacit, semi-tacit and future systems knowledge. Argu-
ably, mental models and tacit knowledge are as crucial to successful method
engineering as to systems design. Stolterman (1992) addressed the importance of
understanding the method creators’ mental model of their created method.
Stolterman and Russo (1997) use the terms public and private rationality for this
purpose. Public rationality is the intersubjective understanding of prescribed
actions and results, and about why a specific part of a method is prescribed. This
is therefore what we refer to as method rationale in this book. Private rationality is
expressed ‘in the skills and in the professional ethical and aesthetic judgments’ of a
person (Stolterman and Russo 1997). The method creator has to influence not only
public rationality but also the private rationality of the method user. Otherwise,
method users may not be able to use the method to its fullest potential. Conse-
quently, it is important to involve method users early when crafting a situational
method. Just as when involving end-users early in systems development, this
involvement should focus on method-user-centred aspects.

3.5.3 Bringing User-Centred Ideas to Situational Method
Engineering

Gould and Lewis (1985) proposed three principles that are included in what we
today call user-centred design: (1) early focus on users and tasks, (2) empirical
measurement and (3) iterative design. According to Cato (2001), it is possible to
conceptually view user-centred design as a triad: the user, the use and the informa-
tion. This triad focusses on who is using the technology, how technology is used
and what is required to support that use. Translated into situational method engi-
neering, we should thus focus on who the method users are as a team and these
users’ needs during a project (i.e., what kinds of challenges are found in the
project), and how methods are used in the organisation. Furthermore, designing a
situational method is an iterative process where the method is continuously
evaluated and, if necessary, changed. Although a user-centred approach shifts the
emphasis in software development from technology to people, Constantine and
Lockwood (1999) stress that it should be more than this—that we should focus on

3.5 Method-User-Centred Method Engineering 67

usage rather than user. In their usage-centred design (UCD) approach (Constantine
1996), they advocate five key elements:

¢ Pragmatic design guidelines

¢ Model-driven design process

* Organised development activities

e Iterative improvement

¢ Measures of quality.

Storyboarding (Higgins 1995) and prototyping (Boar 1984) are techniques
frequently used in user-centred approaches to create a feel for a proposed solution
(e.g., Carroll 1994; Hall 2001) and to visualise commitments made. The idea is to
make the design more tangible by letting use-scenarios and visualisations drive the
design process. Visualisation often starts with low-fi prototypes, which make it
possible to identify potential problems early and at a low cost (Rettig 1994). A
paper-based storyboard typically captures the structure, possible navigation through
the information system, information provided by the system and by the user and the
result of users’ actions (Cato 2001).

Nickols (1993) emphasises that a prototype is a working model that is subject to
negotiation. It therefore does not have to be complete in terms of functionality.
Low-fi and high-fi prototypes differ in the sophistication of their technical imple-
mentation and the cost of change. Low-fi prototypes implement less technical
complexity and are hence less expensive to change. They also implement less
functionality. High-fi prototypes, on the other hand, typically implement more
complex functionality and are therefore more accurate but also more costly to
change.

Transferring these basic ideas to situational method engineering shows that
visualising the method design and its parts is essential to SME. Prototyping also
involves a continuous evolution of the prototype and its design. Naumann and
Jenkins (1982) present prototyping as consisting of four activities: identify basic
requirements, develop a working prototype, implement and use and revise and
enhance. The two latter activities are performed iteratively, somewhat similar to
evolutionary method engineering (Sect. 3.4) and scenario-based approaches
(Rolland et al. 1999). It is not surprising, then, that the implementation of evolu-
tionary method engineering in a tool like MetaEdit+ (Sect. 7.3.1) shares several
characteristics with high-fi prototyping. Consequently, evolutionary method engi-
neering could be complemented with an approach where the method users are
involved more directly in the initial tailoring of the method. However, this may
be difficult to achieve since method engineering tends to be a detailed process,
especially if high-fi prototypes, such as runtime CASE-tool implementations of
methods, are brought into the equation.

As a complement, it may therefore be fruitful to use also low-fi prototypes and
storyboarding in situational method engineering as suggested by Karlsson and
Agerfalk (2012) and implemented using MC Sandbox as described in Sect. 7.3.2.
This approach combines the idea of visualising the situational method as a story-
board by reducing the amount of detail. Clearly, that approach shares similarities
with the map construction approach presented by Rolland et al. (1999)—see

http://dx.doi.org/10.1007/978-3-642-41467-1_7#Sec5_7
http://dx.doi.org/10.1007/978-3-642-41467-1_7#Sec8_7

68 3 Method Engineering as a Social Practice

Chap. 4. The focus of method-user-centred method configuration is on what method
parts add value to the development project and its members as a team. Hence, it
moves away from the use of complex meta languages when working closely with
method users, similarly to the way prototypes are used in discussions with end-users
instead of complex diagrams and source codes. The underlying idea is facilitate
method users to formulate their requirements, debate them as a team and explicate
their commitments. Essentially, the use of prototyping and storyboarding facilitates
the negotiation of several mental models and makes implications tangible. The
prototyping tool can at the same time act as a documentation tool during elicitation
and negotiation of method requirements.

Altogether, these ideas affect the concepts, the models and the meta methods that
we use in situational method engineering. Even more importantly, they affect the
tools that we use in the process. Essentially, tools have to support the simplification
of method modules to emulate a low-fi prototype. Still, they must provide the
information needed for discussing and negotiating method support and potential
results of different choices. MC Sandbox, as described in Sect. 7.3, is explicitly
designed to deal with these constraints but certainly other tools can be used to
achieve similar effects.

3.6 Summary

This chapter has highlighted that situational method engineering is a social process
that needs to pay attention to human factors such as values, attitudes and knowl-
edge. Method rationale has been presented as a way to understand how methods
encapsulate rationality and how different stakeholders may perceive a method
differently. Evolutionary method engineering and method-user-centred method
engineering were introduced as two current approaches that aim to take human
and social aspects of SME into account by acknowledging that method
requirements are constantly renegotiated and evolving. The two approaches have
been shown to be complementary and could be used together in order to properly
address the social aspects of SME in practice.

http://dx.doi.org/10.1007/978-3-642-41467-1_4
http://dx.doi.org/10.1007/978-3-642-41467-1_7#Sec4_7

2 Springer
http://www.springer.com/978-3-642-41466-4

Situational Method Engineering
Henderson-Sellers, B.; Ralyté, |.; Agerfalk, P.; Rossi, M.

2014, ¥, 310 p. 167 illus., 58 illus, in color., Hardcover
ISBEN: 978-3-642-41466-4

	3: Method Engineering as a Social Practice
	3.1 Methods as Action Knowledge
	3.2 Method Stakeholders
	3.3 Method Rationale
	3.4 Evolutionary Method Engineering
	3.5 Method-User-Centred Method Engineering
	3.5.1 Method Requirements
	3.5.2 Why Method-User-Centred?
	3.5.3 Bringing User-Centred Ideas to Situational Method Engineering

	3.6 Summary

