
Method Engineering as a Social Practice 3

Summary of What We Will Learn in Chapter 3

• The importance of social practices in SME

• The concept of method rationale

• How social practices are incorporated into evolutionary method engineer-

ing and method-user-centred method engineering

Formalised systems development methods are used in systems development as a

means to express and communicate knowledge about the systems/software devel-

opment process (Ågerfalk and Fitzgerald 2006). Since methods are social

constructs, they embed various assumptions about people and systems development

as a social practice (Introna and Whitley 1997; Russo and Stolterman 2000).

Essentially, methods encapsulate knowledge of good design practice so that

developers can be more effective, efficient and confident in their work. Nonethe-

less, it is a well-known fact that many software organisations do not use methods

(Iivari and Maansaari 1998; Nandhakumar and Avison 1999) and, when methods

are used, they are not used straight out of the box but are tailored to suit the

particular development situation (Fitzgerald et al. 2003). This tension between

the method ‘as documented’ and the method ‘in use’ has been described as a

‘method usage tension’ between ‘method-in-concept’ and ‘method-in-action’

(Lings and Lundell 2004).

If a method is to be accepted and used, method users must perceive it as useful in

their development practice (Riemenschneider et al. 2002). In general, for someone

to regard a piece of knowledge as valid and useful, it must be possible to rationalise

that knowledge, i.e., it must make sense to developers and be possible to incorpo-

rate into their view of the world.1 This is particularly true in the case of method

1 Ethnomethodologists refer to this property of human behaviour as ‘accountability’ (Garfinkel

1967; Dourish 2001; Eriksén 2002); people require an account of the truth or usefulness of

B. Henderson-Sellers et al., Situational Method Engineering,
DOI 10.1007/978-3-642-41467-1_3, # Springer-Verlag Berlin Heidelberg 2014

53



prescriptions since method users are supposed to use these as a basis for future

actions, and thus use the method description as a partial account of their own

actions. Hence, the type of knowledge that is codified as method descriptions can

best be understood as a form of ‘action knowledge’ (Goldkuhl 1999; Ågerfalk

et al. 2006).

In order to understand better the rationalisation of system development methods,

several different approaches have been investigated. Each examines the pros and

cons of different alternatives and the impact of making specific choices. One

approach is that of eliciting the requirements for the methodology using typical

strategies from the requirements engineering literature (as discussed further in Sect.

6.2), perhaps using a goal-based approach (see the overview of several such goal-

oriented requirements engineering (GORE) approaches by Lapouchnian 2005, and

also one particular example in Sect. 6.4.2).

In this chapter, however, we focus on the concept of method rationale as

developed in the literature (Oinas-Kukkonen 1996; Ågerfalk and Åhlgren 1999;

Ågerfalk and Wistrand 2003; Rossi et al. 2004; Ågerfalk and Fitzgerald 2006).

Method rationale concerns the reasons and arguments behind method prescriptions,

and why method users (e.g., systems developers) choose to follow or adapt a

method in a particular way. This argumentative dimension is an important but

often neglected aspect of systems development methods (Ågerfalk and Åhlgren

1999; Ågerfalk and Wistrand 2003; Rossi et al. 2004). One way of approaching

method rationale is to think of it as an instance of ‘design rationale’ (MacLean

et al. 1991) that concerns the design of methods, rather than the design of computer

systems (Rossi et al. 2004). This aspect of method rationale captures how a method

may evolve and what options are considered during the design process, together

with the argumentation leading to the final design (Rossi et al. 2004), thus providing

insights into the process dimension of method development. A complementary

view on method rationale is based on the notion of purposeful-rational action.

This aspect of method rationale focusses on the underlying goals and values that

make people choose options rationally (Ågerfalk and Åhlgren 1999; Ågerfalk and

Wistrand 2003). It also provides an understanding of the overarching conceptual

structure of a method’s underlying philosophy.

3.1 Methods as Action Knowledge

Amethod description is a linguistic entity and an instance of what can be referred to

as action knowledge (Goldkuhl 1999; Ågerfalk 2004). The term ‘action knowledge’

refers to theories, strategies and methods that govern people’s action in social

something in order to accept it as valid. According to ethnomethodologist Harold Garfinkel (1967),

actions that are accountable are ‘visibly-rational-and-reportable-for-all-practical-purposes’.

54 3 Method Engineering as a Social Practice

http://dx.doi.org/10.1007/978-3-642-41467-1_6#Sec8_6
http://dx.doi.org/10.1007/978-3-642-41467-1_6#Sec12_6


practices (Goldkuhl 1999). The method description is a result of a social action2

performed by the method creator directed towards intended users of the method. A

method description should thus be understood as a suggestion by the method creator

regarding how to perform a particular development task. This ‘message’ is received

and interpreted by the method user, and acted upon by following or not following

this suggestion (see Fig. 3.1), i.e., by transforming the method description

(or ‘formalised method’) (Fitzgerald et al. 2002) or ‘method-in-concept’ (Lings

and Lundell 2004) into a method-in-action. The ‘method as message’ is formulated

based on the method creator’s understanding of the development domain and on his

or her fundamental values and beliefs. In such a team-based environment, shared

understanding is critical—this may be implicit or explicit, some of which may be

true and some false (Fig. 3.2). Similarly, the interpretation of a method by a method

user is based on his or her understanding, beliefs and values.

It is possible to distinguish between five different aspects of action knowledge: a

subjective, an intersubjective, a linguistic, an action and a consequence (Goldkuhl
1999; Ågerfalk 2004). Subjective knowledge is part of a human’s ‘subjective

world’ and is related to the notion of ‘tacit knowledge’ (Polanyi 1958). Subjective

knowledge is shown as two ‘clouds’ in Fig. 3.1. This would be the type of

knowledge that someone possesses after having interpreted and understood a

method. Intersubjective knowledge is ‘shared’ by several people in the sense that

they attach the same meaning to it and are able to meaningfully communicate (parts

of) it among themselves. This could imply that the communicator (method creator)

and interpreter (method user) agree on some of the elements of the ‘clouds’ in

Fig. 3.1, and that they thus attach the same meaning to, at least parts of, a particular

method. Linguistic knowledge is expressed as communicative signs, for example,

as the written method description in Fig. 3.1. As the name suggests, action knowl-

edge is expressed, or manifested, in action. This is the action aspect of knowledge

Method Creator Method User
Method 

Description

Values, 
Beliefs and 

Understanding

Values, 
Beliefs and 

Understanding

InterpretationSuggestion Method-in-Action

Fig. 3.1 Method descriptions in a communication context (after Ågerfalk and Fitzgerald 2006).

Reprinted with permission of the publisher

2 According to sociologist Max Weber, social action is that human behaviour to which the actor

attaches meaning and which takes into account the behaviour of others, and thereby is oriented in

its course (Weber 1978).

3.1 Methods as Action Knowledge 55



or ‘method-in-action’. Finally, traces of the action knowledge might be found in

materialised artefacts, which constitute a consequence aspect of the knowledge.

This would correspond to, for example, models and documentation produced as

well as the actual software developed.

3.2 Method Stakeholders

When we think of software and systems development methods, what usually spring

to mind are descriptions of ideal typical3 software processes. Developers use such

descriptions in practical situations to form what can be referred to as methods-in-

action (Fitzgerald et al. 2002). Method engineering acknowledges that a method

used in an actual project typically deviates significantly from the idealised process

described in method handbooks and manuals (Iivari and Maansaari 1998;

Nandhakumar and Avison 1999; Fitzgerald et al. 2003). Such adaptations of

methods can be made more or less explicit and be based on more or less well-

grounded decisions.

Methods need to be tailored to suit particular development situations (see also

Chap. 7) since a method, as described in a method handbook, is a general

Implicit Explicit

True shared understanding

Implicit shared
understanding
(ISU)

Explicit shared
understanding
(ESU)

Context boundary:
separates relevant from
irrelevant information

False implicit shared
understanding of relevant
information

False implicit shared
understanding of considered,
but irrelevant information

‘Dark’ information:
relevant, but not
noticed by anybody

Explicitly specified
and truly understood
and relevant

Explicitly specified
and truly understood
and not relevant

Explicitly specified
and misunderstood
and not relevant

Explicitly specified
and misunderstood
and relevant

Dependable implicit
shared understanding
of relevant information

False shared understanding
(misunderstandings exist)

Note that area 
sizes don’t 
indicate any 
proportions

Implicit shared under-
standing of irrelevant
information

Fig. 3.2 Forms and categories of shared understanding: implicit versus explicit and true versus

false. In addition, this diagram identifies the possibility of ‘dark’ information, i.e., information that

no stakeholders are aware of (after Glinz and Fricker 2013)

3Max Weber introduced the notion of an ‘ideal type’ as an analytic abstraction. Ideal types do not

exist as such in real life, but are created so as to facilitate discussion. We use the term here to

emphasise that a formalised method, expressed in a method description, never exists as such as a

method-in-action. Rather, the method-in-action is an appropriation of an ideal typical formalised

method to a particular context. At the same time, a formalised method is usually an ideal type

created as an abstraction of existing ‘good practice’ (Ågerfalk and Åhlgren 1999).

56 3 Method Engineering as a Social Practice

http://dx.doi.org/10.1007/978-3-642-41467-1_7


description of an ideal process. Such an ideal type needs to be aligned with a

number of situation-specific characteristics or ‘contingency factors’ (van Slooten

and Hodes 1996; Karlsson and Ågerfalk 2004).

When a situational method has been devised, or ‘engineered’, and is used by

developers in a practical situation, it is likely that different developers disagree with

the method description and adapt the method further to suit their particular hands-

on situational needs. As a consequence, the method-in-action will deviate not only

from the ideal typical method but also from the situational method.

Altogether, this gives us three ‘abstraction levels’ of method: (a) the ideal typical

method that abstracts details and addresses a generic problem space, (b) the situa-

tional method that takes project specifics into account and thus addresses a more

concrete problem space and (c) the method-in-action, which is the manifestation of

developers’ actual behaviour ‘following’ the method in a concrete situation. It

follows from this that both the ideal typical method (a) and the situational method

(b) exist as linguistic expressions of knowledge about the software development

process (middle ‘level’ of Fig. 1.8). At the same time, the method-in-action

represents an action aspect of that knowledge, which may of course be

reconstructed and documented post facto (in addition to the way it is manifested

in different developed artefacts along the way) (lower ‘level’ of Fig. 1.8).

Figure 3.3 offers an alternative visualisation of these three abstraction levels of

method and corresponding actions and communication between the actors

involved. In Fig. 3.3, the Method User of Fig. 3.1 has been specialised into the

Method Configurator and the Developer (method creators and method configurators

are collectively referred to as method engineers). Method configurators use the

externalised knowledge expressed by the method creator in the ideal typical method

as one basis for method configuration and subsequently communicate a situational

method to developers. What is not shown in Fig. 3.3 is that method construction,

method configuration and method-in-action rely on the actors’ interpretation of and

assumptions about the development context. The developer ‘lives’ within this

context and thus focusses his or her tailoring efforts on a specific problem space.

The method creator, on the other hand, has to rely on an abstraction of an assumed

development context and thus focusses on a generic problem space. Finally, the

method configurator supposedly has some interaction with the actual development

context, which provides a more concrete basis for configuring a situational method.

In both method construction and method configuration, the method

communicated is a result of social action aimed towards other actors as a basis

for their subsequent actions. This means that method adaptation, in construction,

configuration and in-action, relies on the values, beliefs and understanding of the

different actors involved—and this is where method rationale comes into play.

3.2 Method Stakeholders 57

http://dx.doi.org/10.1007/978-3-642-41467-1_1#Fig8_1
http://dx.doi.org/10.1007/978-3-642-41467-1_1#Fig8_1


3.3 Method Rationale

Since methods represent knowledge, they also represent rationale. Therefore, a

method user ‘inherits’ both the knowledge expressed by the method and the

rationale of the method constructor (Ågerfalk and Åhlgren 1999). It can be argued

that, regardless of the grounds, method tailoring (both during configuration and

in-action) is rational from the point-of-view of the method user (Parnas and

Clements 1986) who must decide whether to follow, adapt or omit a certain method

or part thereof. Such adaptations are driven by the possibility of reaching ‘rational-

ity resonance’ between the method and the method users (Stolterman and Russo

1997). That is, they are based on method users’ efforts to understand and ultimately

internalise the rationale expressed by a method description.

From a process perspective, method rationale can be thought of as having to do

with the choices one makes in a process of design (Rossi et al. 2004). Thus, we can

capture this kind of method rationale by paying attention to the questions or

problematic situations that arise during method construction. For each question,

we may find one or more options, i.e., ‘solutions’ to that question.

As an example, consider the construction of a method for analysing business

processes. In order to graphically represent flows of activities in business processes,

we may consider the option of modelling flows as links between activities, as in

UML Activity Diagrams (OMG 2010). Another option would be to use a modelling

language that allows for explicitly showing communicative and material results of

each action and how those results are used as a basis for subsequent actions, as in

VIBA4 Action Diagrams (Ågerfalk and Goldkuhl 2001; Ågerfalk 2004). To help

explore the pros and cons of each option, we may specify a number of criteria as

guiding principles. Then, for each of the options, we can assess whether it

Method
Creator

Developer
Ideal Typical 

Method 

� InterpretationSuggestion Method-in-Action

Situational 
Method Method

Configurator

� InterpretationSuggestion

Problem Space
Generic Specific

Method 
Construction

Method 
Configuration

Fig. 3.3 Levels of method abstraction in methods as action knowledge (after Ågerfalk and

Fitzgerald 2006). Reprinted with permission of the publisher

4 Versatile Information and Business Analysis.

58 3 Method Engineering as a Social Practice



contributes positively or negatively with respect to each criterion. Let us, for

example, assume that one criterion (a) is that we want to create a visual modelling

language (notation) with as few elements as possible in order to simplify models

(a minimalist language). Another criterion (b) might be that we want a process

model that is explicit regarding the difference between material actions and com-

municative actions5 in order to focus developers’ attention on social/communica-

tive aspects and material/instrumental aspects, respectively (thus a more expressive

language). Finally, a third criterion (c) might be that we would favour a well-known

modelling formalism. The UML Activity Diagram option would have a positive

impact on criteria a and c, and a negative impact on criterion b, while the VIBA

Activity Diagram option would have a positive impact on criterion b, and a negative

impact on criteria a and c. If we do not regard any of the criteria as being more

important than any other, we would likely choose UML Activity Diagrams.

Figure 3.4 depicts this notion of method rationale as based on explicating the

choices made throughout method construction. The specific example shown is the

choice between VIBA Action Diagram versus UML Activity Diagram.

This model of method rationale is explicitly based on the Question, Option,

Criteria Model of Design Space Analysis (MacLean et al. 1991). Other approaches

to capture method rationale in terms of design decisions are, for example, IBIS/

gIBIS6 (Conklin and Begeman 1988; Conklin and Yakemovic 1991; Nguyen and

Swatman 2000; Conklin et al. 2003; Rooksby et al. 2006) and REMAP7 (Ramesh

and Dhar 1992). The process-oriented view of method rationale captured by these

approaches is important, especially when acknowledging method engineering as a

continuous evolutionary process (Rossi et al. 2004) as will be discussed below in

Fig. 3.4 Method rationale as choosing between options VIBA Action Diagrams and UML

Activity Diagrams for modelling activity flows (based on the Question, Option, Criteria Model

of Design Space Analysis (MacLean et al. 1991)). The solid arrow between ‘situation’ and ‘option’

indicates the preferred choice; a solid line between an option and a criterion indicates a positive

impact, while a dashed line indicates a negative impact (after Ågerfalk and Fitzgerald 2006).

Reprinted with permission of the publisher

5Material actions are actions that produce material results, such as painting a wall, while

communicative actions result in social obligations, such as a promise to paint a wall in the future.

The latter thus corresponds to what Searle (1969) termed ‘speech act’.
6 Issue Based Information Systems.
7 REpresentation and MAintenance of Process knowledge.

3.3 Method Rationale 59



Sect. 3.4. However, another, and as we shall see below, complementary approach to

method rationale, primarily based on Max Weber’s notion of practical rationality,

has been put forth as a means to understand why methods prescribe the things they

do (Ågerfalk and Åhlgren 1999; Ågerfalk and Wistrand 2003; Wistrand 2009).

According to Weber (1978), rationality can be understood as a combination of

means in relation to ends, ends in relation to values and ethical principles in relation

to action. Rational social action is always possible to relate to the means

(instruments) used to achieve goals, and to values and ethical principles to which

an action conforms. Thus, we cannot judge whether or not means and ends are

rational without considering the value base upon which we consider the

possibilities.

In this view of method rationale, all fragments or components of a method are

related to one or more goals (see also Sect. 6.4 on goal-based method construction

techniques). If a fragment is proposed as part of a method, it should have at least one

reason to be there. We refer to this as the goal rationale of a method. Each goal is, in

turn, related to one or more values. If a goal is proposed as the argument for a

method fragment, it too should have at least one reason to be included. We refer to

this as the value rationale of a method. Figure 3.5 depicts this notion of method

rationale, which also includes the idea that goals and values are related to other

goals and values in networks of achievements and contradictions. The diagram also

includes the actor who subscribes to a particular rationale. Using the terminology

introduced above, an actor could be a method creator, a method configurator or a

method user.

Each goal is anchored in the method creator’s values (Goldkuhl et al. 1998;

Ågerfalk 2006; Ågerfalk and Fitzgerald 2006) and goals and values form the

essence of the perspective (Goldkuhl et al. 1998) or philosophy (Fitzgerald

et al. 2002) of an Information Systems Development Methods (ISDM). Method

rationale makes it possible to address the goals that are essential to reaching specific

project objectives. Prescribed actions and artefacts, on the other hand, are the means

to achieving something (such as the goals). Method rationale can therefore prevent

developers from losing sight of that ultimate result and can help them find alterna-

tive ways forward. This was clearly evident in Karlsson and Ågerfalk’s (2009a)

study of method configuration in an agile context and Karlsson’s (2013) longitudi-

nal study of the use of method rationale in method configuration.

However, when defining method components in practical SME, Karlsson and

Ågerfalk (2009b) suggest restricting the modelling of method rationale to goals

only. This suggestion is purely pragmatic and based on the empirical finding that

method engineers and developers tend to reason about the purpose of certain

method components and often omit discussion of values. It is also important to

note that for practical reasons we are not searching for objective goal statements but

rather for pragmatic and situated statements that describe the use and effects of

method components.

To illustrate how the concepts of method rationale fit together, we will return to

the example introduced above. Assume we have a model following Fig. 3.5

populated as follows (assuming that the classes in the model can be represented

60 3 Method Engineering as a Social Practice

http://dx.doi.org/10.1007/978-3-642-41467-1_6#Sec10_6


as sets and associations as relations between sets, i.e., as sets of pairs with elements

from the two related sets). Note that we assume that the actors involved are the

creators of the respective fragments, so these are not included in the analysis. This

could easily be done and can be used as an additional analytic tool to verify

consistency within and across methods with respect to underlying values and how

these are reflected in particular method fragments.

A set of method fragments F¼ {f1: Representation of the class concept; f2:

Representation of the activity link concept; f3: Representation of the action result

concept}; A set of goals G¼ {g1: Classes are represented in the model; g2: Activity

links are represented in the model; g3: Activity results are represented in the

model}; A set of values V¼ {v1: Model only information aspects; v2: Minimalist

design of modelling language; v3: Focus on instrumental v. communicative; v4: Use

well-known formalisms}; Goal rationale RG¼ {(f1, g1), (f2, g2), (f3, g3)}; Value

rationale RV¼ {(g1, v2), (g1, v3), (g1, v4), (g2, v1), (g2, v2), (g2, v4), (g3, v3)}; Goal

achievement GA¼ {(g3, g2)}; Value contradiction VC¼ {(v1, v3)}; VA¼GC¼Ø.

A perhaps more illustrative graphical representation of the model is shown in

Fig. 3.6. If we view each method fragment in the model as possible options to

consider, then the goals and values can be compared with the criteria in a structured

way. Given that we know that what we want to describe in our notation is a flow of

activities (or more precisely the links between activities), we can disregard f1
outright, since its only goal is not related to what we are trying to achieve. When

considering f2 and f3, we notice that each is related to a separate goal. However,

since there is a goal achievement link from g3 to g2, we understand that both f2 and

f3 would help satisfy the goal of representing visually a link between two activities

Fig. 3.5 Method rationale as consisting of interrelated goals and values as arguments for method

fragments (after Ågerfalk 2006)

3.3 Method Rationale 61



(if we model results as output from one activity and input to another, we also model

a link between the two), since these two goals are based on different underlying and

contradictory values. Since g2 is related to v1, and g3 to v3, we must choose the goal

that best matches our own value base. This could and should be expressed by the

criteria we use. If, for example, we believe that it is important to direct attention to

instrumental versus communicative aspects (v3), then we should choose g3 and

consequently f3. If, on the other hand, we are only concerned with modelling

information flows, then g2 and consequently f2 would be the option to choose.

Empirical observations show that the method component’s overall goals and

artefacts are important during method configuration (Karlsson and Ågerfalk 2004)

and hence they are part of the interface. An artefact, as discussed above, is

designated as an input and/or a deliverable (output). This is necessary in order to

deal with the three fundamental actions that can be performed on an artefact: create,

update or delete. In cases where an artefact is only created by a method component

it is classified as a deliverable. If the artefact can be updated by the same method

component, it is also classified as an input. Furthermore, a component can have one

or more input artefacts, but has only one deliverable (which thus defines the ‘layer

of granularity’ of the component).

The concept of method rationale described above applies to both construction of

methods and refinement of methods-in-action (Rossi et al. 2004). Since method

descriptions are means of communicating knowledge between method creators and

method users, it could be used as a bridge between the two and thus as an important

tool in achieving rationality resonance, as discussed above.

From the earlier example in this section, we can see that method rationale is

related to both the choices we make during method construction and to the goals

and values that underpin the method constructs we choose among. The example

used above was at a very detailed level, focussing on rationale in relation to method

fragments at the concept layer of granularity. The same kind of analysis could be

performed at any layer of granularity and may consider both process and product

fragments (i.e., both activities and deliverables). As an example, let us consider the

f2

f1f3

g2 g1

g3 v1

v3

VCGA
v4

v2

Fig. 3.6 Graphical

representation of the method

rationale mode showing the

tree method fragments, the

three goals, the three values

and their relationships. The

goal achievement relation is

represented by an arrow to

indicate the direction of the

‘goal contribution’. All other

relationships are represented

by non-directed edges since

the direction of reading is

arbitrary

62 3 Method Engineering as a Social Practice



use of agile methods for globally distributed software development. This may seem

counter-intuitive in many ways. One example is that agile methods usually assume

that the development team is co-located with an on-site customer present at all time

(Beck 2000). By analysing the reasons behind this method prescription (i.e., the

suggestion by the method creator), we may find that we can operationalise the

intended goals of co-location (such as increased informal communication) into

other method prescriptions, say utilising more advanced communication

technologies. In this way, we could make sure that the method rationale of this

particular aspect of an agile method is transferred into the rationale of a method

tailored for globally distributed development. Thus, we may be able to adhere to

agile values even if the final method does look quite different from the original

method. That is to say, the principles espoused by the method creators may be

logically achieved to the extent that they are relevant in the particular context of the

final situational method.

It is important to see that method rationale is present at all three levels of method

abstraction (Fig. 3.3): ideal typical, situational and in-action. At the ideal typical

level, method rationale can be used to express the method creator’s intentions,

goals, values and choices. This serves as a basis for method configurators (i.e., those

who tailor a situational method) and developers in understanding the method and

how to tailor it to best advantage. In the communication between configurator and

developer, method rationale would also express why certain adaptations were made

when configuring the situational method. If we understand different developers’

personal rationale, we might be able to better configure or assemble situational

methods.

Combining the two aspects of method rationale gives us a structured approach to

using method rationale both as a tool to express and document a method’s rationale,

and as a tool to analyse method rationale as basis for method construction, assem-

bly, configuration and use.

3.4 Evolutionary Method Engineering

Method engineering involves a learning process in which the current level of

expertise and the situation influence the outcomes (Hughes and Reviron 1996).

Thus, any organisation that develops systems not only delivers them but also learns

how to perform system development and to mobilise associated knowledge

(methods), but also improves their development capabilities (learning by doing).

The development organisation builds its knowledge about how its methods work in

certain development situations. These experiences complement the codified method

knowledge and should lead into better applications of the method in the future.

Checkland (1981) was an early advocate of a learning-based approach to method

development through cyclical action research. In this view, evolutionary method

engineering is seen as a continuous refining process. However, as Lyytinen and

Robey point out (1999) large parts of this experience are lost since the experiences

3.4 Evolutionary Method Engineering 63



are seldom collected and interpreted—thus emphasising the importance of

retrospectives (Kerth 2001).

Methods can never gather all previous knowledge and anticipate all future

development situations. Therefore, it is fruitful to view methods from an

organisational learning perspective. This perspective analyses system development

situations and the role of methods through ‘reflection-in-action’ (Schön 1983). In

Schön’s view, a large part of a designer’s knowledge of ISD is a result of his or her

reflections of the situation, rather than being determined by the methods. In real life,

the method-in-action is adapted and interpreted by designers based on their under-

standing of the events and contingencies. At the same time the current version of the

method is a result of those reflections so that designers’ tacit understandings are

made explicit so that they can be made understandable to others (Nonaka 1994).

Rossi et al. (2004) claimed that reflection-in-action and technical-rationality are

complementary in systems development and both explicit and tacit knowledge are

needed to develop systems. Thus, a good method should adapt to a situation and

provide cognitive frames and norms that designers can use, but also challenges the

use of their experiential knowledge (Argyris and Schön 1978). Such a learning view

has been called evolutionary method engineering (Tolvanen 1998). Because evolu-

tionary SME aims to continually improve ISD methods it can be regarded as a

learning process in which individuals (Schön 1983), communities and organisations

(Nonaka 1994) create, memorise and share knowledge about system development

through codifying it to methods. This double loop learning leads to continuous

modification and augmentation of an organisation’s methods. In evolutionary ME,

method evolution is seen to be necessary since organisations have to deal with

different method versions for different implementation targets and development

contexts (as for example with UML (OMG 2010)).

Two different types of method evolution have been identified (Rossi et al. 2004):

changes to methods reflecting general requirements of changed technical and

business needs, and those relevant to the ISD situation at hand. The former relates

to the general genealogy of methodical knowledge within the method developer and

user community, and the latter with how these general evolutions are adapted into

local situations and affect development practices. We can anticipate that user-

centred method engineering calls for extensive local modifications and possibilities

for evolutionary variants of methods.

3.5 Method-User-Centred Method Engineering8

A problem in situational method engineering, similar to software and systems

engineering, is that requirements, here method requirements, need to be specified

and managed. Evolutionary method engineering addresses the management prob-

lem by allowing method requirements to evolve over time. The initial specification

8We acknowledge contributions of Dr. Fredrik Karlsson to this section.

64 3 Method Engineering as a Social Practice



of method requirements calls for specific techniques. One such technique, as partly

explored in relation to the MC Sandbox tool, has been borrowed from user-centred

design and termed method-user-centred method engineering (Karlsson and

Ågerfalk 2012). These authors provide extensive discussion about method-user-

centred method engineering along with a case study on the use of these ideas as

implemented in MC Sandbox (see also Sect. 7.3.2).

3.5.1 Method Requirements

Methods exist for the purpose of supporting project members during development

projects. These people are users of the method in the same sense that end-users are

users of software. Hence, method users impose requirements on methods in much

the same way that end-users have requirements on information systems. The actual

content of requirements engineering processes varies, although often the core

activities include elicitation of problems and solutions, negotiation of problems to

solve and solutions to adopt as well as commitment to implement the selected

solutions. The requirements are developed during these activities and a number of

challenges are evident.

Firstly, method requirements are not always clear, neither to the method engi-

neer nor to the method user—partly because the systems development task is not

always well understood, partly because the project members’ method varies. The

first problem indicates dependencies between systems development and method

engineering, which is why we discuss situational methods in the first place. These

dependencies are not always possible to identify completely initially. Rather they

become visible incrementally, which is also acknowledged in incremental method

engineering as discussed in Chap. 7. The second problem illustrates the necessity to

improve the communication about what is possible to achieve and reasonable to

expect from the method at hand. Method users will learn about the possibilities

offered by the method and discover new requirements as a project progresses.

Secondly, there is not just one set of requirements, since requirements are by

nature emergent and constantly negotiated and renegotiated (Chakraborty

et al. 2010; Holmström and Sawyer 2011). Different stakeholders with different

interests typically bring their own set of requirements to the table. Klein and

Hirschheim (2001) emphasise the importance that these different interests are

‘understood and debated’. Depending on the selection of method users, the method

requirements are therefore likely to be different. Developing a shared understand-

ing is therefore of prime importance (see earlier discussion of Fig. 3.2).

It is also true that not all stakeholders have the same power and possibility to

influence the requirements process (Coughlan et al. 2003). In any case, these

different sets of requirements can of course be (at least partly) conflicting. In

some cases, apparent conflicts are based on misunderstandings that can be solved

through clarification. Conflicts can also arise due to differences in perspectives and

what is perceived as important during the project. Stakeholders may not share the

same value base, as discussed in Sect. 3.3 above.

3.5 Method-User-Centred Method Engineering 65

http://dx.doi.org/10.1007/978-3-642-41467-1_7#Sec8_7
http://dx.doi.org/10.1007/978-3-642-41467-1_7


Finally, project resources may not allow for all requirements to be considered. A

situational method will thus only solve stakeholders’ needs and problems to a

certain degree. Thus, the method requirements process must include ways to handle

method requirements conflicts and requirements viewed as negotiated

commitments to be fulfilled during the project.

3.5.2 Why Method-User-Centred?

In software and systems engineering, end-users have to conceptualise, explicate and

negotiate their requirements; creativity has to be stimulated in that process (Maiden

et al. 2004). Malcolm (2001) suggests that user-centred approaches are especially

appropriate when addressing tacit, semi-tacit and future systems knowledge. Argu-

ably, mental models and tacit knowledge are as crucial to successful method

engineering as to systems design. Stolterman (1992) addressed the importance of

understanding the method creators’ mental model of their created method.

Stolterman and Russo (1997) use the terms public and private rationality for this

purpose. Public rationality is the intersubjective understanding of prescribed

actions and results, and about why a specific part of a method is prescribed. This

is therefore what we refer to as method rationale in this book. Private rationality is

expressed ‘in the skills and in the professional ethical and aesthetic judgments’ of a

person (Stolterman and Russo 1997). The method creator has to influence not only

public rationality but also the private rationality of the method user. Otherwise,

method users may not be able to use the method to its fullest potential. Conse-

quently, it is important to involve method users early when crafting a situational

method. Just as when involving end-users early in systems development, this

involvement should focus on method-user-centred aspects.

3.5.3 Bringing User-Centred Ideas to Situational Method
Engineering

Gould and Lewis (1985) proposed three principles that are included in what we

today call user-centred design: (1) early focus on users and tasks, (2) empirical

measurement and (3) iterative design. According to Cato (2001), it is possible to

conceptually view user-centred design as a triad: the user, the use and the informa-

tion. This triad focusses on who is using the technology, how technology is used

and what is required to support that use. Translated into situational method engi-

neering, we should thus focus on who the method users are as a team and these

users’ needs during a project (i.e., what kinds of challenges are found in the

project), and how methods are used in the organisation. Furthermore, designing a

situational method is an iterative process where the method is continuously

evaluated and, if necessary, changed. Although a user-centred approach shifts the

emphasis in software development from technology to people, Constantine and

Lockwood (1999) stress that it should be more than this—that we should focus on

66 3 Method Engineering as a Social Practice



usage rather than user. In their usage-centred design (UCD) approach (Constantine

1996), they advocate five key elements:

• Pragmatic design guidelines

• Model-driven design process

• Organised development activities

• Iterative improvement

• Measures of quality.

Storyboarding (Higgins 1995) and prototyping (Boar 1984) are techniques

frequently used in user-centred approaches to create a feel for a proposed solution

(e.g., Carroll 1994; Hall 2001) and to visualise commitments made. The idea is to

make the design more tangible by letting use-scenarios and visualisations drive the

design process. Visualisation often starts with low-fi prototypes, which make it

possible to identify potential problems early and at a low cost (Rettig 1994). A

paper-based storyboard typically captures the structure, possible navigation through

the information system, information provided by the system and by the user and the

result of users’ actions (Cato 2001).

Nickols (1993) emphasises that a prototype is a working model that is subject to

negotiation. It therefore does not have to be complete in terms of functionality.

Low-fi and high-fi prototypes differ in the sophistication of their technical imple-

mentation and the cost of change. Low-fi prototypes implement less technical

complexity and are hence less expensive to change. They also implement less

functionality. High-fi prototypes, on the other hand, typically implement more

complex functionality and are therefore more accurate but also more costly to

change.

Transferring these basic ideas to situational method engineering shows that

visualising the method design and its parts is essential to SME. Prototyping also

involves a continuous evolution of the prototype and its design. Naumann and

Jenkins (1982) present prototyping as consisting of four activities: identify basic

requirements, develop a working prototype, implement and use and revise and

enhance. The two latter activities are performed iteratively, somewhat similar to

evolutionary method engineering (Sect. 3.4) and scenario-based approaches

(Rolland et al. 1999). It is not surprising, then, that the implementation of evolu-

tionary method engineering in a tool like MetaEdit+ (Sect. 7.3.1) shares several

characteristics with high-fi prototyping. Consequently, evolutionary method engi-

neering could be complemented with an approach where the method users are

involved more directly in the initial tailoring of the method. However, this may

be difficult to achieve since method engineering tends to be a detailed process,

especially if high-fi prototypes, such as runtime CASE-tool implementations of

methods, are brought into the equation.

As a complement, it may therefore be fruitful to use also low-fi prototypes and

storyboarding in situational method engineering as suggested by Karlsson and

Ågerfalk (2012) and implemented using MC Sandbox as described in Sect. 7.3.2.

This approach combines the idea of visualising the situational method as a story-

board by reducing the amount of detail. Clearly, that approach shares similarities

with the map construction approach presented by Rolland et al. (1999)—see

3.5 Method-User-Centred Method Engineering 67

http://dx.doi.org/10.1007/978-3-642-41467-1_7#Sec5_7
http://dx.doi.org/10.1007/978-3-642-41467-1_7#Sec8_7


Chap. 4. The focus of method-user-centred method configuration is on what method

parts add value to the development project and its members as a team. Hence, it

moves away from the use of complex meta languages when working closely with

method users, similarly to the way prototypes are used in discussions with end-users

instead of complex diagrams and source codes. The underlying idea is facilitate

method users to formulate their requirements, debate them as a team and explicate

their commitments. Essentially, the use of prototyping and storyboarding facilitates

the negotiation of several mental models and makes implications tangible. The

prototyping tool can at the same time act as a documentation tool during elicitation

and negotiation of method requirements.

Altogether, these ideas affect the concepts, the models and the meta methods that

we use in situational method engineering. Even more importantly, they affect the

tools that we use in the process. Essentially, tools have to support the simplification

of method modules to emulate a low-fi prototype. Still, they must provide the

information needed for discussing and negotiating method support and potential

results of different choices. MC Sandbox, as described in Sect. 7.3, is explicitly

designed to deal with these constraints but certainly other tools can be used to

achieve similar effects.

3.6 Summary

This chapter has highlighted that situational method engineering is a social process

that needs to pay attention to human factors such as values, attitudes and knowl-

edge. Method rationale has been presented as a way to understand how methods

encapsulate rationality and how different stakeholders may perceive a method

differently. Evolutionary method engineering and method-user-centred method

engineering were introduced as two current approaches that aim to take human

and social aspects of SME into account by acknowledging that method

requirements are constantly renegotiated and evolving. The two approaches have

been shown to be complementary and could be used together in order to properly

address the social aspects of SME in practice.

68 3 Method Engineering as a Social Practice

http://dx.doi.org/10.1007/978-3-642-41467-1_4
http://dx.doi.org/10.1007/978-3-642-41467-1_7#Sec4_7


http://www.springer.com/978-3-642-41466-4


	3: Method Engineering as a Social Practice
	3.1 Methods as Action Knowledge
	3.2 Method Stakeholders
	3.3 Method Rationale
	3.4 Evolutionary Method Engineering
	3.5 Method-User-Centred Method Engineering
	3.5.1 Method Requirements
	3.5.2 Why Method-User-Centred?
	3.5.3 Bringing User-Centred Ideas to Situational Method Engineering

	3.6 Summary


