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Abstract Analysis of medical images involves robust computational approaches to
various optimization problems prior to interpretation of the embedded pathological
changes. Major computational efforts are essential in unsupervised learning of
structures in various medical images. Some unsupervised learning techniques that
take advantage of information theory concepts provide a different perspective on the
solution of automated learning methods. This chapter will review a recent approach
to clustering examined under an information theoretic framework that efficiently
finds a suitable number of clusters representing different tissue characteristics
in a medical image. The proposed clustering approach optimizes an objective
function which quantifies the quality of particular cluster configurations. Recent
developments involving interesting relationships between spectral clustering (SC)
and kernel principal component analysis (kPCA) are used in this technique to
include the nonlinear domain. In this novel SC approach, the data is mapped to a new
space where the points belonging to the same cluster are collinear if the parameters
of a radial basis function (RBF) kernel are adequately selected. The effectiveness
of this nonlinear approach is demonstrated in the segmentation of uterine cervix
color images for early identification of cervical neoplasia, as an aid to cervical
cancer diagnosis. The limitations of this method in the segmentation of specific
medical images such as brain images with multiple sclerosis lesions and a strategy
to overcome them are discussed.
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1 Introduction

The discovery of underlying structures in medical images in a robust and efficient
manner is of crucial significance in many applications, such as the diagnostic classi-
fication of precancerous uterine cervix lesions and the identification of anomalies in
magnetic resonance image (MRI) brain structures. Often, with medical images, an
adequate ground truth is not available, and unsupervised learning techniques must
be used. One of the fundamental questions in the identification process is the number
of distinguishable clusters or segments that comprise the image data. The machine
learning methods that address these problems form a highly interdisciplinary field,
where a non-interacting machine can be developed to learn in either a supervised or
unsupervised manner.

With supervised learning, the system is “taught” by providing a labeled training
set, which is a sequence of desired output y D fy1, y2, : : : g. The goal of the machine
is to learn to produce the correct output (or class label in a classification context)
given a new input. Although such a system may be quite fast after training, it can be
limited by a subjective bias that depends on the training set, i.e. it may perform
poorly when presented with a data pattern that is considerably different from
the patterns encountered during training. Furthermore, some applications cannot
provide a universally accepted “ground truth” to label training data in the first place.
In unsupervised learning, the machine only receives the input data x D fx1, x2, : : : g
but obtains neither supervised target outputs nor rewards from its environment. It
may seem mysterious that a system can learn to recognize patterns without being
informed of the features it should analyze or even the correct number of clusters.
With unsupervised learning, the machine is not explicitly taught; instead, its goal is
to build representations of the input that can be used for decision making. Instead
of relying upon a correctly labeled training set, the machine learns typically via
a general objective function or a set of update rules. In one sense, unsupervised
learning can be thought of as discovering patterns that are more significant than
noise. Hence, a standard example of unsupervised learning is clustering, which
becomes segmentation when applied to image data [1].

The two competing formalisms of machine learning methods are discrimina-
tive and generative approaches. Generative or informative approaches produce a
probability density model over all variables to compute classification in the manner
of parametric clustering. In parametric clustering, a predefined distribution for the
dataset is assumed, and then sufficient statistics or parameters are calculated. For
example, when assuming a multidimensional normal distribution, the sufficient
statistics are the mean and the covariance matrix [2]. Furthermore, some information
about the statistical dependencies of the data can be gained through unsupervised
learning [3, 4]. Another approach is discriminative learning, which lends itself to
nonparametric clustering. Discriminative approaches provide a direct attempt to
compute the input–output mappings for classification, while eschewing any direct
modeling of the underlying distributions. Nonparametric clustering divides the data
into groups of points that possess strong internal similarities. A criterion function
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Table 1 A summary of method for various scales of discriminative and generative approaches in
machine learning (Jebara 2004)

Scale/approach Generative Discriminative

Local Maximum likelihood Empirical risk
minimization

Maximum mutual information
Local C prior Maximum a posteriori Support vector machines

(SVM)
Regularization theory

Model averaging Bayesian inference Maximum entropy
discrimination

Bayes point machines

is used to measure these similarities and to seek the grouping that optimizes the
criterion [2] (Jebara 2004).

Another approach to unsupervised learning uses an information theoretic
approach, which in a sense transcends both the generative and discriminative
approaches. For example, from Table 1 both the maximum mutual information
and maximum entropy discrimination approaches to learning are connected to
information theory. Information theory addresses the trade-off between memory
storage cost and accuracy. Almost all work in unsupervised learning can be viewed
in terms of learning a probabilistic model of the data. The machine can build a
model of the data which assumes that the data points are independently drawn from
some distribution P(x). In general, the true distribution of the data is unknown,
but we can learn a model of this distribution, say Q(x). Information theory is used
to estimate the accuracy of such a model at a given memory storage cost. Such a
model can be used for classification. Furthermore, an information theoretic measure
can be used as a similarity criterion for clustering. This approach is appealing,
because it can capture descriptions beyond second order (variance) statistics. The
major problem of information theoretic based clustering has been the difficulty to
evaluate the metric without imposing unrealistic assumptions on the data distri-
butions. Successful implementations carefully estimate the information theoretic
measure [2].

In this information theoretic approach to medical image analysis, where the
number of significant segments in an image is unknown a priori, we apply a method
of information theoretic unsupervised learning. A simple information theoretic
approach to clustering, proposed by Sugar and James [5], is called the “jump”
method as explained below. The “jump” method performs well for high dimensional
Gaussian data, but it behaves unreliably for clusters corresponding to natural image
segments. To make this approach more practical, Corona developed an improved
“jump” method (IJM) [6]. IJM performs well with synthetic data and has been
validated with standard clustering datasets as well as with medical images with
known ground truths. In this chapter, we will briefly introduce the original jump
method and improvements to address some of its drawbacks. The applications of
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the IJM will be described in segmentation of medical images. The potential of the
IJM in compression and 3-D visualization of medical images will also be addressed.

2 The “Jump” Method

Suppose one has p-dimensional data with n points to be clustered, but the exact
number of clusters K is unknown a priori. First, a method is needed to quantify the
quality of the clustering given the number of clusters, that is, a measure of the inter-
cluster dispersion. One such measure is the minimal achievable distortion, dK . This
distortion is defined as the mean squared Mahalanobis distance of every point in the
cluster to the nearest cluster’s centroid (or cluster representative), i.e.

dK D 1

p
min

c1;c2;:::;cK

�
1

n

XK

kD1

X
i2k

.xi � ck/T †�1 .xi � ck/

�
; (1)

where xi is the ith data point that belongs to the kth cluster, ck is the centroid
or representative point of the kth cluster, †�1 is the inverse covariance matrix
for each cluster (assumed to be approximately equal for all clusters), and K is
the number of clusters considered. One can create a monotonically decreasing
curve by gradually increasing the value of K, and re-estimating Eq. (1) at each
step; that is, consider the sequence dK D fdKD1, dKD2, : : : , dKDK maxg. This curve
contains important information that can be used to estimate a suitable number of
representatives for the data.

Sugar and James developed a simple information theoretic approach where a
classic clustering algorithm (e.g., k-means with † D I) is used to generate a curve
of the number of clusters, K, versus an estimate of the associated distortion, dK [5].
What they observed is that there tends to be a discontinuous “jump” in this curve at
the appropriate number of clusters K (see Figs. 1 and 3). The jump operator can be
defined as

J Y
K D 1

d Y
K

� 1

d Y
K�1

; (2)

where Y > 0 is a suitable power transformation acting on dK [5]. It can be
theoretically shown that for Gaussian clusters sharing the same covariance matrix,
the distortion curve becomes linear for Y D p/2, if the dataset dimensionality p is
large enough. Furthermore, if one defines d� Y

K D 0 D 0, the detection of the absence of
clustering structure (i.e., K D 1) is feasible. Finally, the number of clusters where
the largest jump occurs provides the estimate of the number of clusters in the
dataset, i.e.

K� D maxK fJKg : (3)
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Fig. 1 The “jump” method, with linear behavior of the transformed dK curve for a mixture of five
spherical Gaussians. The box on the left shows the mixture of Gaussian components. The middle
plot exhibits the estimated dK curve. The rightmost plot illustrated the transformed distortion curve
of d� Y

K with Y D p/2 with a fitted line for K > K*. The jump operator calculates the difference of
successive values on the rightmost plot, thus converting the problem into finding a maximum [7]

Finally, it should be noted that this “jump” method approach is hierarchical. That
is, the relative height arrangement of the jump operator reflects more likely cluster
configurations. This means that a proper sub-clustering may show up as a distinct
second highest jump operator peak (see Fig. 2).

3 The Improved “Jump” Method

3.1 The Major Drawbacks of the “Jump” Method

The major drawbacks of the “jump” method are rooted in the fixing of the value
Y D p/2 by applying the restrictive assumptions:

• Because the k-means algorithm performance is extremely dependent on the
choice of the initial cluster centers, the accuracy of the distortion curve may be
compromised by a poor initialization; i.e., the standard k-means implementation
can get “trapped” in local optima, which yields a poor estimation of dK using
k-means and results in very noisy or inaccurate “jump” selections.

• The method assumes high dimensionality (p ! 1), accurate dK values, well
balanced clusters, identity covariance matrix, sufficiently large distance between
centroids, etc., and the power transformation can only be determined under these
assumptions for underlying Gaussian distributions. Real-world data easily violate
these assumptions.

• If strong correlations are present among variables, or if the clusters have
intriguing or complicated shapes, linear algorithms such as k-means will not
capture the data essence [6].
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Fig. 2 The hierarchical aspect of the “jump” method. (a) The raw data generated from nine
three-dimensional Gaussians that form three super-clusters. (b) The raw distortion curve. (c) The
transformed distortion curve with Y D p/2 D 3/2. (d) The jump statistic, defined as the first forward
difference of the transformed distortion. Note that the most obvious configuration is the three super-
clusters, with the nine individual clusters at a close second in terms of the jump operator [6]

3.2 The Improvements to the “Jump” Method

The IJM works by first fixing the cluster number K and then searching for its best
associated transformation, finding Y D peff/2 for each K, where peff is called the
effective dimension:

• Spectral clustering (SC) and probabilistic initialization techniques can be used to
alleviate the suboptimal convergence of the k-means algorithm.

• Handling realistic data necessitates that the power transform be adaptively
modified according to the data at hand. One can make use of the hierarchical
property of the “jump” method to create a criterion, the margin, which measures
the quality of each of the K partitions. This approach allows the measurement
of the operator performance in terms of linearity and the relative “jump” peak
height. By maximizing this new objective function, one obtains a suitable power
transformation, Y, which ensures a more robust solution to the number of clusters
in a dataset.
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Fig. 3 The jump and highest
margin operator for data
shown in Fig. 1 [6]

• Find a suitable kernel method to map the original dataset onto a “better” space
where the mapped data is well behaved, such that the “jump” method can be used
there effectively.

3.3 The Margin Operator of the IJM

The original “jump” method possesses a hierarchical nature, in the sense that the
relative heights of the peaks of the jump operator JY

K indicate the degree of validity
of the solution (or a valid sub-clustering). With this in mind, one can further define
another operator called the margin operator,

M Y
K D J Y

K

maxˇ¤K

n
J Y

ˇ

o : (4)

For a fixed Y, the margin operator MY
K attempts to quantify the quality of a

configuration with K clusters with respect to its closest competitor. Therefore, the
larger the value of the margin operator becomes (for any positive Y), the better the
cluster configuration is. Thus, by maximizing the margin value with respect to Y, as
in

M �
K D maxY >0

˚
M Y

K

�
; (5)

it becomes possible to quantify the quality of a clustering configuration with K
partitions in terms of cluster compactness and the degree of decorrelation of its
variables. The higher the margin, the better the configuration is with respect to the
others. Hence, the margin measures the quality of the configuration. The maximum
jump peaks must have margin values greater than unity (see Fig. 3).
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After solving the eigenproblem posed by the spectral clustering (SC) algorithm
for a number of training points, the cluster indicator vectors (i.e., eigenvectors) and
the extended kernel matrix are used to expand the solution to the rest of the points
[8]. To find the labels for K clusters, one performs kernel principal component
analysis (kPCA), solving for at least the K � 1 eigenvectors associated with the
highest eigenvalues. The ith entries of these eigenvectors represent the components
of the ith point in a new K � 1 dimensional space. In principle, when using a
properly parameterized radial basis function (RBF) kernel, the points in the same
cluster become collinear in this new space. Thus, by projecting all points onto the
unit hyper sphere, one can use spherical k-means [8] and compute the required
values to build the dK curve (see Fig. 4).

Using the dK information, one can calculate the corresponding M�
K for each

configuration tested (i.e., M�
K D 0, M�

K D 1, : : : , M�
K D K max). A simple comparison

among the values of M�
K is sufficient to determine a suitable number of clusters

and appropriate parameters for the construction of the kernel matrix (i.e., model
selection). The clustering is readily obtained from the identified parameters.

3.4 The Image Segmentation Technique: Application of IJM

In our IJM experiments, the RGB uterine cervix image is first transformed to the
L*a*b* space, which is a more perceptual color space (this step is not applied to
non-visual medical data) [9]. Then, the image color levels are quantized to only
Nq levels using the criteria of minimum variance. Next, the color-quantized image
is subdivided into windows centered at each pixel, and a normalized histogram is
computed for each window. A �2 score can then be used to compare the pixels as
computed from these histograms [10]. The �2 score is defined as

�2
ij D 1

2

KX
kD1

�
hi .k/ � hj .k/

�2

hi .k/ C hj .k/
; (6)

where hi and hj are histograms for the windows located on the ith and jth pixels,
and hi(k) indicates the repetition frequency of the kth bin (out of Nq bins) in the
corresponding histogram for the ith pixel. Finally, a �2 (chi-squared) RBF kernel
and its kernel matrix can be computed from k(hi, hj) D exp(��2

ij/��), where k(hi,
hj) is the element in the ith row and jth column of the kernel matrix, and �� is the
kernel standard deviation, as determined previously from the model selection.

The information theoretic IJM is applied to image segmentation by examining
the local statistics of an indexed version of the image. Corona details many tests
of IJM on synthetic data and evaluates this method’s performance on standard
clustering benchmark datasets in his dissertation [6]. The performance of the IJM
in segmenting uterine cervix images is also presented. This application is important
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Fig. 4 The collinearity property in the new space (middle boxes) approximately transforms each
of the clusters into lines radiating from the origin. After mapping these collinear points onto
the surface of a hyper sphere (rightmost boxes), the clustering problem in most cases reduces
in complexity, and an algorithm such as spherical k-means can be applied to find the dK curve
and, subsequently, the number of clusters. The quality of the line formation depends on the RBF
parameter � and the shape of the original clusters. One can sweep � and select the value that
generates the best clusters according to the IJM criteria. The p D 3 raw data in the top row is highly
correlated with N D 400 in each cluster, and it would be handled poorly by standard k-means. The
p D 2 raw data in the bottom row could not be correctly segmented by any linear algorithm such as
k-means [6, 7]

because these kinds of medical images have no established ground truth, and even
segmentations derived by experts differ due to subjective bias. It remained for
IJM to be validated for an application involving medical images. This validation
is carried out with MRI datasets of the human brain that have a labeled ground truth
available.
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4 IJM Validation Results

The IJM has been shown to perform well with benchmark clustering datasets. This
is remarkable because IJM proves to be one of the few methods available that
can cluster real-world data without knowing the number of clusters a priori. We
desire eventually to apply the IJM to the segmentation of medical images to aid
in the creation of automated diagnostic tools. One such application proposed here
is the segmentation of uterine cervix images. However, the remaining issue is that
the pathological uterine cervix images lack an established ground truth. Therefore,
there is a need to validate the application of IJM to medical images, using medical
image data with an available ground truth. This validation is done with a standard
benchmark MRI dataset.

4.1 MRI Benchmark Test

Experiments are conducted with the standard benchmark MRI data of the
human brain (BrainWeb: Simulated Brain Database; http://www.bic.mni.mcgill.
ca/brainweb/), where the gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) are segmented from the background using the proposed technique. This
dataset contains MRI cross-sectional images of a normal brain with no noise or field
inhomogeneity [11]. The MRI raw data is given in terms of T1, T2, and the proton
density, which were all available in both 8-bit and 12-bit formats, where the data has
been stretched from the minimum to maximum value. These three modalities can
be used to generate a pseudo-RGB space [12]. Analysis of the means and variances
of the data for the various tissues shows that the space is not fully spanned, so
an appropriate pseudo-color transformation can be performed on the raw data to
improve the perception between the various tissue types (see Fig. 5; [7]).

The same procedure is followed for the MRI experiment as for the uterine
cervix images. However, in this case, the number of clusters is selected using
the second highest margin, instead of the maximum margin [6, 10]. The reason
for this is the hierarchical nature of the results. Put simply, the maximum margin
M�

K reflects the most obvious cluster configuration in terms of cluster separation.
The second highest margin is associated with less obvious and, sometimes, more
interesting configurations. For example, the background and foreground often tend
to strongly separate into two clusters, while we are actually interested in different
types of foreground. Prior to the application of the clustering algorithm, the MRI
data is preprocessed [11, 13]. The anatomical labels are used to create a mask that
automatically removes most of the skull. The three modalities can be treated as
a quasi-RGB image [12]. The original dataset does not span the entire range of
possible values, so a transformation (to a pseudo-color space) is made to stretch out
the ranges and to increase the perceptibility between the different tissue types. The
transformed image is segmented using the procedure previously described (without

http://www.bic.mni.mcgill.ca/brainweb/
http://www.bic.mni.mcgill.ca/brainweb/
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Fig. 5 The original eight bit MRI data in pseudo-RGB (left) transformed into a perceptually
enhanced image (right)
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Fig. 6 Model selection methods as applied to an MRI of the human brain. The top plot displays
the number of clusters Kest using the second best margin scores, where 15 out of 20 are for K D 4.
(the best margin scores are always for K D 2. due to the striking difference between the tissue data
and the background). The middle plot is of the corresponding margin scores, where the maximum
margin at � D 1.025 is highlighted in red (also for K D 4.). The bottom plot is the cluster balance.
Note the 20 trial standard deviation values are on a logarithmic scale [7]

the L*a*b* transformation). The anatomically labeled data can provide a ground
truth to compare with the segmentation results of the IJM.

Figure 6 shows an example output of the model selection plots for such an MRI;
the number of clusters with the second highest margin scores is K D 4, with a
peak value located at the kernel standard deviation of � D 1.025 in this run. Due
to internal randomness of the training and testing sets, the algorithm’s results do
somewhat vary from run to run. Recall that the jump method is hierarchical, so
the second peak in JY

K can correspond to a valid sub-clustering of the data. For
the model selection plots, the horizontal axes represent the standard deviation of
the RBF kernel used. The top plots represent the selection of the number of clusters,
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Fig. 7 The original MRI after preprocessing (left), the false-colored cluster labels (middle) and
the resulting segmented image (right) [7]

Fig. 8 The successful segmentation results from applying the IJM algorithm, with the background
(segment 1), the gray matter (segment 2), the white matter (segment 3), and the cerebrospinal fluid
(segment 4) [7]

called Kest. The middle plots depict the values for the margin, while the bottom plots
show the cluster balance values. The cluster balance is a measure of uniformity of
the size of the clusters. Equal-size cluster configurations have a balance equal to one.
Very different cluster sizes are associated with a balance close to zero. Figures 7 and
8 illustrate an example of MRI segmentation using the parameters selected from the
model selection plot in Fig. 6. The confusion matrix for this experiment is shown in
Table 2. The segmentation results using only eight color levels and a window size
of three pixels for the four clusters are 100 % correct for the background, 94.58 %
correct for the white matter, and only 92.75 and 90.82 % correct for the CSF and
gray/glial matter associated segments, respectively. The overall accuracy is 95.48 %.

The IJM has been shown to perform at 95 % agreement with a labeled MRI
dataset, taking into account hierarchical issues. An MRI of the human brain has
a distinct background, so it is most obviously clustered into two segments; the
sub-clustering of the brain tissue is the issue of importance. The variation in
illumination in the uterine cervix images is handled by factoring in cluster balance.
The segmentation of the human brain MRI neglects the consideration of cluster
balance, yet it still achieves acceptable results.
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Table 2 The confusion matrix for MRI segmentation using a window size of three pixels, Nq D 8,
and �2 RBF kernel with standard deviation of � D 1.025

True/predicted Segment 1 Segment 2 Segment 3 Segment 4 Accuracy (%)

Background 11;234 0 0 0 100:00

Gray matter 4 6;790 120 562 90:82

White matter 0 508 8;861 0 94:58

CSF 127 73 0 2;560 92:75

The overall accuracy is 95.48 % [7]

4.2 Segmentation of Color Uterine Cervix Images

In the uterine cervical images, changes in three distinct and usually concentric
regions are of importance to specialists for early detection of cervical cancer.
Because cervical cancer slowly develops, it causes a detectable and treatable
precursor condition known as cervical intraepithelial neoplasia (CIN). CIN causes
abnormal regions and changes in the cervix that are of interest to specialists for
several reasons. The columnar epithelium (CE) region immediately surrounds the
central cervix opening, and it is near the center of the image. The CE region is
bright red and is usually the darkest in the luminance plane. The acetowhite (AW)
region is the most common abnormality immediately surrounding the (CE) region. It
appears white or very pale pink and is usually the brightest region in the luminance
plane. The outermost region is the squamous epithelium (SE), which has a reddish
hue usually between that of AW and CE [6]. The acetowhite region is produced by
applying a 5 % acetic acid solution to the cervix, which causes the abnormal cells
to become turgid (swollen) and increases their reflectivity relative to the normal CE.
They become turgid partly because their cellular machinery is not working normally,
causing them to produce different kinds of cytokeratin (cellular structural proteins),
hence they are unable to hold their normal shape [14].

The IJM was also used to segment color uterine cervix images into these three
regions for an abnormal case. The model selection results are shown in the form
of plots (see Fig. 9) as described in the previous subsection. Figure 10 shows an
example of uterine cervix image segmentation. The model selection plots indicate
that K D 3 is a good configuration, which is located at � D 0.866. The segmentation
using these parameters is shown in Fig. 11. It should also be noted that in the
generation of this segmentation cluster balance was also factored in. Cluster balance
is a measure of size similarity between clusters. For MRI data, one does not
expect the clusters to similar in size to each other, while for uterine cervix images
one might. Thus, the cluster balance was calculated for each configuration and
multiplied by the margin to determine the overall quantity to be maximized. This
balancing tends to stabilize the segmentation of the uterine cervix images against
smaller sub-clusters of the same region, such as the brightest region in Segment 2
of Fig. 11.
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Fig. 9 Model selection methods as applied to a uterine cervix image. The top plot displays the
number of clusters Kest with the overall best margin scores, where 15 out of 20 are for K D 3. The
middle plot is of the corresponding margin scores, where the maximum margin at � D 0.886 is
highlighted in red (also for K D 3). The bottom plot is of the cluster balance. Note that the 20 trial
standard deviation values are on a logarithmic scale [7]

Fig. 10 The original uterine cervix image after preprocessing (left) and the segmented image
(right) [7]

The direction of ongoing and future work is two-pronged. One is to apply the
IJM to the segmentation of MRIs of abnormal human brains, and the other is to
apply the IJM to the segmentation of cell images. Abnormal brain features tend
to be small and distinct. This poses quite a challenging problem for the current
implementation of the IJM. Evaluations have identified limitations of the IJM in
such cases. To overcome these limitations, an iterative hierarchical approach is
suggested along with a dynamic window size. These limitations and this proposed
solution are detailed below.
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Fig. 11 Demonstration of uterine cervix image segmentation using the model selection in IJM [7]

In addition, much work has been done in automating the entire process for
diagnosing cervical cancer. In addition to segmenting the uterine cervix images,
there is also a need to preprocess and segment micrograph slides of cell smears.
Many methods have been applied to this problem, and there is an aim to bring
the IJM to bear on the preprocessing and segmentation of such cell images. This
technique could aid in the development of a diagnostic tool for cervical cancer.

5 MRIs with MS Lesions

5.1 The IJM Failure with MRIs with MS Lesions

After successfully segmenting MRIs of a normal brain with the IJM, the next
step of the validation process is to attempt to segment the MRI of a brain with
multiple sclerosis (MS) lesions. This is a more challenging segmentation problem
not just because of the existence of another cluster (K D 5 is expected), but also
because the MS lesions are relatively small compared to the other tissue areas.
Upon performing experiments, indeed five clusters are weakly indicated with the
third highest margin (K D 8 is the found for second highest margin), however, the
segmentation results are incorrect (see Figs. 12 and 13). The gray matter segment
splits into the two additional transition zones between gray matter/white matter,
and the gray matter/CSF, respectively, to form five clusters; the MS lesions remain
undistinguished. The bulk of the MS lesion is included with the CSF cluster, while
the transition zone between the MS lesion and the white matter is included with the
transition zone between the gray and white matter. This failure prompted a study of
the limitations of the implementation of the IJM.
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Fig. 12 The original MRI with MS lesions after preprocessing (left), the false-colored cluster
labels (middle), and the resulting segmented image (right) [15]

Fig. 13 The failed segmentation results from applying the IJM algorithm, with the background
(segment 1), the gray matter/white matter transition zone (segment 2), the white matter (seg-
ment 3), the gray matter/CSF transition zone (segment 4), and the cerebrospinal fluid (CSF)
(segment 5) [15]

5.2 Limitations of the Proposed Image Segmentation
Technique

In the above segmentation algorithm, the image color levels are quantized to only Nq

levels; this color-quantized image is subdivided into windows centered at each pixel,
and a normalized histogram is computed for each window. The estimation of the
distortion and hence the margin operator is then calculated from these histograms.
One limitation of this implementation is that the number of quantization levels must
be less than or equal to the number of pixels in a window. Two issues are at the root
of the failure of this IJM implementation. One issue is due to the size of the window
and the other is due to the number of quantization levels.

Relying on the window to determine local statistics is good for a relatively
smoothly varying image, such as the uterine cervix images. However, for images
with a sharp background, discontinuities, or rapidly changing edges, the local
statistics can become peculiar in the transition zones between regions. If such
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boundaries are long and crenelated like those between the internal tissues of the
brain, then local statistics from the windows can “trick” the algorithm into detecting
another statistically significant segment. This new segment is the aggregate of the
transition zone, which in the case of the MRIs can have an area larger than the
area of the MS lesion tissue. This pseudo-clustering tendency also helps to explain
an unexpected observation. Sometimes improving the perception contrast between
regions can actually lead to poorer segmentation results. Again this is due to having
more sharp transition zones. Decreasing the window size will minimize this effect
for all pixels, except for those directly on the edge boundary.

Reducing the window size can mitigate the transition zone effect, but this can
have an unintended consequence; it reduces the number of quantization levels. This
reduction is significant because the ability to discern between regions in an image
is limited by pixel indexing. Limiting quantization goes back to the core issue
of this application of information theory, storage efficiency versus the ability to
discriminate. As it turns out, the normal brain MRIs are handled well with a 3 � 3
window with eight quantization levels (labeled as zero through seven). Examining
the raw index image shows that the different tissues are distinctly labeled. However,
examining the MS lesion image reveals that the MS lesions are not distinctly labeled
(with index 19) until there are at least 20 quantization levels. This number of levels
is required to accommodate the transition zones between regions and the MS lesion
tissue. All the various color regions that are comparable in size to the MS lesion
area would bring the effective cluster number to at least seven or eight. Thus the
MS lesions are not even distinguishable unless at least a 5 � 5 window is used.
However, using a window size and number of quantization levels so large also turns
the transition regions into statistically significant pseudo-clusters. The current IJM
implementation here fails in the proper segmentation of the MS lesions. This issue
was not previously encountered when applying the IJM to synthetic test data and
medical images.

5.3 The Proposed Solution: An Iterative Hierarchical Scheme

One means to deal with the problematic transition zones is to divide them before
they become a problem. Hence, this approach is to “divide and conquer.” This
scheme would involve utilizing the hierarchical information of the IJM in a different
manner. Recall, that for the MRIs, the largest margin indicated K D 2 clusters. This
result suggests that the correct approach is to first segment the MRI into two clusters,
“cleaving” the background from the brain tissue cluster. Next, one reapplies the IJM
to further segment the brain tissue super-cluster using a masked image, etc. In such
an iterative scheme, the various segments can be progressively cleaved from each
other, dividing the transition zones along the way and making them less significant.
This process can be continued until some parameter threshold or statistical feature of
the subsequent segmented image signals the iterative program to stop. This process
could be automated to iteratively segment the image according to the number of
clusters with the largest margin as obtained from the IJM, using the full power of its
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Fig. 14 Left: The original 3 � 3 window (yellow) superimposed on a sample point selected from
the mask (white). Right: The window adaptively enlarged to include nine local points to form a
comparable local histogram

hierarchical character. In this manner, the quantization restriction can be partially
decoupled from the transition zone problem.

5.4 An Adaptive Window Size

The problem with iteratively segmenting an image is that the shapes of the future
iterations of image masks are unknown. Consider the cases of a small “peninsula” or
“island” of pixels with fewer neighbors than the window size (see Fig. 14). Another
case would be an edge with a reduced number of neighbors. These samples near the
mask boundary would degrade the subsequent statistical analysis of the histograms.
Furthermore, as the sub-clusters get smaller and demonstrate more complicated
edges, the performance of the IJM will deteriorate. In a sense, the transition zone
problem is replaced with a mask edge effect problem.

The root of this problem is that for pixels near an already cleaved boundary,
the effective window size has changed. In order to counter this effect, the window
size must be adaptive for the segmentation of the masked images. The purpose
of the window is to provide a consistent pool of neighboring pixels in order to
characterize the local statistics. When segmenting a single image into multiple
clusters, every sample pixel has the same window size; those on the edge of
the image can be used with simple symmetric padding. However, this uniformity
is broken in the subsequent steps of the iterative hierarchical scheme, and the
effects of quasi-symmetric extrapolations could actually amplify the transitions near
boundaries. In order to carry out the original purpose of the window, its size must be
adaptive for the masked images. The suggested implementation enlarges the original
square window into a successively more circular shape until a sufficient number of
neighboring pixels are sampled.

The following description outlines the procedure to adaptively enlarge the
window size. A pixel contained within the mask is selected. The initial window
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is applied, and the number of existing neighbors is counted. If the number falls
below the default window size, then the window size is enlarged. Allow at most
three enlargements or until the default window size is passed. Randomly remove
any excess pixels or randomly duplicate the pixels found until the window has the
same number of pixels as the default window size. Now the histogram statistics for
almost every sample pixel derived from the segment mask should be comparable.
In this manner, the effects of transition zones are again reduced, because more
of the pixels in the “bulk” are included in the histograms of sample pixels near
boundaries. This procedure should also allow relatively small clusters like the
MS lesion tissue to be robustly detectable, provided sufficient quantization levels.
Hence, using an iterative hierarchical scheme and an adaptive window size should
allow the proper segmentation of MRIs containing MS lesions using the IJM with
at least 20 quantization levels.

6 Application to Pap Test Images

Another medical segmentation imaging problem of interest is the processing of
cytological images in separating the nucleus from the cytoplasm. An example of
this is seen in the micrographs of stained cells derived from the Papanicolaou (Pap)
smear test. In the diagnosis of cervical cancer, cervical uterine photographic images
are examined, and if a suspicious region is identified, then it is swabbed. The col-
lected cells are then smeared onto a slide, stained, magnified through a microscope,
and photographed. Precancerous or cancerous cells often exhibit a condition called
polyploidy, where they have multiple copies of the same chromosome in their nuclei.
Polyploidy usually causes their nuclei to be larger than normal. Hence, an automated
system that can measure the ratio of the area of the nuclei to cytoplasm in Pap test
images could be useful as a diagnostic aid. There are many approaches to such a
system; one is reviewed below.

Current routine clinical tests for cervical cancer include the cytology-based Pap
smear test and HPV testing to identify DNA or RNA in cervical cells. Because
the recently developed HPV vaccination does not protect against all HPV types,
cervical screening tests are still required [16]. Because cervical cancer develops
slowly and has a precursor condition known as dysplasia or CIN, it can be detected
through screening of at-risk women and treated to prevent the development of
invasive cancer [17]. However, the true sensitivity of the conventional Pap smear
has been reported to be as low as 51 %, requiring annual screenings to detect
CIN, making the Pap smear impractical to implement in resource-poor regions [18,
19]. The development of automated diagnostic tools could increase the universal
effectiveness and availability of the Pap test.

Several combinations of imaging modalities and classification algorithms have
been used by researchers to detect some of the abnormalities due to CIN [20].
However, the problem of isolating and segmenting specific abnormalities, such as
mosaicism and punctations, is not addressed by most methods. In previous work,
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an automated computer vision system has been developed for the detection and
characterization of CIN in an attempt to overcome the inadequacies of existing
approaches used for automated diagnosis of CIN [9]. This system is capable of
automatically segmenting the cervix region of interest (ROI) from raw cervico-
graphic images; removing specular reflection (SR); segmenting the cervix ROI
into acetowhite (AW), columnar epithelium (CE), and squamous epithelium (SE);
classifying AW regions into AW, mosaic, or punctation tiles; segmenting mosaic
and punctation from AW tiles; and assessing of disease severity [9, 18].

We intend to utilize the IJM [6] for precise segmentation of the macro-features
as well as a hybrid watershed model for segmentation of cytological cell images
acquired by Pap test to assess abnormalities in the cell nuclei [21]. The significance
of including the cell structure analysis is to provide a cross-validation of cervical
abnormalities assessed by two different approaches, namely from the analysis
of the color cervix images and of the cervical cell images. Such an automated
system for analyzing both cervix images and cervical cell images would provide
an improved diagnostic tool for cross-validating the results from both imaging
modalities. Based upon the validation of the IJM unsupervised learning algorithm,
the high cost of generating manual ground truth from specialists, who are not in
general readily available in resource-poor regions, can be reduced [18]. With the
proposed modifications to its implementation discussed in Sects. 5.3 and 5.4, it
should be possible to segment these images using the IJM. The clusters in the Pap
test images have sharp edges and are better balanced than the MS lesion case in the
MRIs.

6.1 A Hybrid Watershed Method for Generating Cervical Cell
Profiles

A combination of global histogram thresholding and local watershed segmentation
was used to generate the cervical cell profiles for final separation of the cell nuclei
from the cell cytoplasm to assess the abnormalities in the cells. The preprocessing
steps are described in detail in reference [21]. The selection of useful cervical cell
images to be analyzed can be automatically achieved by the IJM clustering, and
subsequently the cell nuclei can be precisely segmented. Figure 15 shows some
examples of cervical cell segmentation results with this technique.

6.2 Experimental Results

All uterine cervix images and cervical cell cytology images were provided by
the National Library of Medicine from the data collected by the National Cancer
Institute at the National Institutes of Health. Figure 15 shows typical segmentation
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Fig. 15 Examples of segmentation of cervical cell images and the corresponding Dice coefficients
(DC refers to cell Dice coefficient and DCY refers to cytoplasm Dice coefficient) as measures of
segmentation quality [18, 21]

results of cervical cell images with semiautomated and manual segmentation, where
corresponding Dice coefficients [22] are used as the segmentation quality measures.
Dice’s coefficient is defined as:

D D 2 � jSAuto \ SManuj
jSAuto C SManuj ; (7)

in which SAuto is the pixel set from automatic segmentation, and SManu is the
pixel set from manual segmentation. The proposed IJM algorithm is expected to
improve these segmentation results by automatically identifying and discarding the
background and objects of no interest [18].

7 Conclusion

7.1 Further Development

The application of information theoretic techniques such as the IJM to medical
image analysis is promising. The current outlook is to successfully apply the
IJM to the segmentation of MRIs of abnormal human brains, such as brains with
MS lesions. One scheme could involve scanning through the MRI slices for MS
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lesions using IJM. Once found, a simple Gaussian model of the pixel values can
be constructed and applied to the full volume, allowing an estimation of the total
MS lesion volume that can be tracked over time. Alternatively, a three-dimensional
voxel segmentation of the MS lesion could be developed by applying the IJM.

Finally, the IJM also is promising in its application to segmenting cell images,
such as those derived from the Pap smear test. In the preprocessing step, the IJM
could aid in discarding “junk” slide images from those containing useful images.
When useful images are found, the IJM offers an additional method to segment such
images into nucleus and cytoplasm clusters. Cell overlaps could even be identified to
correct the estimation of the cytoplasm area. Then the ratio of nuclear to cytoplasm
area can be calculated and used as a diagnostic aid. These steps combined with the
uterine cervix image segmentation described earlier can be used as components of
an automated, integrated diagnostic system for cervical cancer.

7.2 Outlook for Application

The IJM effectively performs an optimized transformation of the distortion-rate
curve D(R) to reveal a distinct signature of the cluster configurations in an unlabeled
image. This improved clustering technique, based on an information theoretic
approach, demonstrates high accuracy in segmentation of the standard benchmark
MRI data of a normal human brain.

Limitations of the current implementation of the IJM are found that cause it
to fail to correctly segment the MRI data of a human brain with MS lesions. The
root source of the failure was identified as the joint effect of the requirement for a
relatively high number of quantized levels (20) and the problematic transition zones
between tissues that can be sources of pseudo-clusters. An iterative hierarchical
scheme with adaptive window sizes is proposed to make the IJM more robust in its
segmentation.

This chapter discusses an element of a computer vision system with embedded
novel segmentation models for analyzing both cervix and cervical cell images for
detection of precancerous lesions. Application of the proposed IJM in segmentation
of uterine cervix images, with ground truth unavailable in most cases, has potential
to identify abnormal tissue characteristics at an early stage, thus providing a
diagnostic aid to assessment of uterine cervical cancer. Such a system allows cross-
validation of the CIN abnormalities detected by two different testing methods and
may reduce frequent false-positive results obtained by the routine Pap test. This
system may also provide a low-cost yet valuable analysis tool to aid in preventive
assessment of cervical cancer in resource-poor regions [18].
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