
Preface

Let us start by considering a finite set of operators ax , called annihilation operators,
and a+

x , called creation operators, indexed by x in the finite set X. They have the
commutation relations, for x, y ∈ X,

[
ax, a

+
y

] = δx,y

[ax, ay] = [
a+
x , a+

y

] = 0.

First we realize these operators in a purely algebraic way. We define them as gen-
erators of a complex associative algebra with the above commutation relations as
defining relations. We denote this algebra by W(X). It is a special form of a Weyl
algebra. A normal ordered monomial of the ax, a

+
x , x ∈ X is what we call a mono-

mial of the form

a+
x1

· · ·a+
xm

ay1 · · ·ayn .

The normal ordered monomials form a basis of W(X). This means any element of
W(X) can be represented in a unique way according to the formula

∑
K(x1, . . . , xm;y1, . . . , yn)a

+
x1

· · ·a+
xm

ay1 · · ·ayn,

where K is a function symmetric both in the xi and in the yi .
We can then move on to consider a continuous set of annihilation and creation

operators, e.g., ax, a
+
x , x ∈R, with the commutation relations

[
ax, a

+
y

] = δ(x − y)

[ax, ay] = [
a+
x , a+

y

] = 0

where δ(x−y) is Dirac’s δ-function. These operators are harder to define rigorously.
One possibility is to use the integrals

a(ϕ) =
∫

dx ϕ(x)ax

v
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a+(ψ) =
∫

dx ψ(x)a+
x ,

where the arguments ϕ and ψ are square-integrable functions. Then the non-
vanishing commutation relations read

[
a(ϕ), a+(ψ)

] =
∫

dx ϕ(x)ψ(x).

Everything in this context can be well defined using what is called Fock space.
Another way to approach the problem was chosen by Obata [35]. He uses an

infinite system of nested Hilbert spaces, first defines ax , and then the adjoint a+
x in

the dual system.
In quantum field theory, one uses for operators the representation developed by

Berezin [8]

∑

m,n

∫
· · ·

∫
dx1 · · ·dxmdy1 · · ·dynKm,n(x1, . . . , xm;y1, . . . , yn)

× a+
x1

· · ·a+
xm

ay1 · · ·ayn, (∗)

where Km,n might be quite irregular generalized functions. The multiplication of
these operators can be performed by using the commutation relations. Berezin pro-
vides for that purpose an attractive functional integral.

Another way to perform the multiplication of these operators is to define a con-
volution for the coefficients K , using the commutation relations formally, and then
to forget about the ax and a+

x and work only with the convolution. This can be
done in a rigorous way. This is the theory of kernels introduced by Hans Maassen
[31] and continued by Paul-André Meyer [34]. These kernels are therefore called
Maassen-Meyer-kernels. The theory works for Lebesgue measurable kernels [41].

We now mention the usual way of defining a(ϕ) and a+(ϕ). Denote by

R= {∅} +R+R
2 + · · ·

the space of all finite sequences of real numbers, where we use the + sign for union
of disjoint sets. Equip it with the measure

ê(λ)(f ) = f (∅) +
∞∑

n=1

1

n!
∫

· · ·
∫

dx1 · · ·dxnf (x1, . . . , xn),

where the function f (x1, . . . , xn) is supposed to be symmetric in the xi . The notation
ê(λ) is used because this is essentially the exponential of the Lebesgue measure λ.
Then Fock space is defined to be

L2
s

(
R, ê(λ)

)
,
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where the letter s stands for symmetric. If L2
s (R

n) = L(n) is the space of symmetric
Lebesgue square-integrable functions on R

n, then

a(ϕ) : L(n + 1) → L(n),

(
a(ϕ)f

)
(x1, . . . , xn) =

∫
dx0ϕ(x0)f (x0, x1, . . . , xn)

and

a+(ϕ) : L(n) → L(n + 1),
(
a+(ϕ)f

)
(x0, x1, . . . , xn)

= ϕ(x0)f (x1, . . . , xn) + ϕ(x1)f (x0, x2, . . . , xn) + · · ·
+ ϕ(xn)f (x0, x1, . . . , xn−1).

Thus a(ϕ) and a+(ϕ) can be defined on the pre-Hilbert space

∞⊕

n=0,f

L(n) ⊂ L2
s

(
R, ê(λ)

)
,

where the suffix f means, that any element f = (f0, f1, . . . , fn, . . . ) has components
fn = 0 for sufficiently large n.

This approach is based on the duality of the Hilbert space L2
s (R, e(λ)) with itself.

We use Bourbaki’s measure theory [10] and employ the duality between measures
and functions. The space R is locally compact when provided with the obvious
topology. Use the notation Ms(R) for the space of symmetric measures and Ks(R)

for the space of symmetric continuous functions of compact support. We can now
define, for a measure ν on R and a symmetric function f ∈ Ks(R),

a(ν) : Ks(R) → Ks(R),

(
a(ν)f

)
(x1, . . . , xn) =

∫
ν(dx0)f (x0, x1, . . . , xn)

and for a continuous function ϕ with compact support in R

a+(ϕ) : Ks(R) → Ks(R),
(
a+(ϕ)f

)
(x0, x1, . . . , xn)

= ϕ(x0)f (x1, . . . , xn) + ϕ(x1)f (x0, x2, . . . , xn) + · · ·
+ ϕ(xn)f (x0, x1, . . . , xn−1)

which is essentially the same formula as above.
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By making use of the δ-function we have raised both a conceptual and a semantic
problem. Denote the point measure at the point x by εx , with

∫
εx(dy)ϕ(y) = ϕ(x).

In the physical literature, the δ-function can have three different meanings corre-
sponding to the different differentials with which it is combined:

δ(x − y)dy = εx(dy)

δ(x − y)dx = εy(dx)

δ(x − y)dxdy = Λ(dx,dy),

where Λ is the measure on R
2 concentrated on the diagonal and given by

∫
Λ(dx,dy)ϕ(x, y) =

∫
dxϕ(x, x).

We will use both types of notation: one is mathematically clearer, the other one is
often more convenient for calculations. In mathematics one very often uses δx for
the point measure εx . We tend to avoid this notation.

Now we can define easily

a(x) = a(εx) : Ks(R) → Ks(R),
(
a(x)f

)
(x1, . . . , xn) = f (x, x1, . . . , xn).

The definition of the creation operator is more difficult. Consider the measure-
valued function

x → εx

and define

a+(dx) = a+(
ε(dx)

) : Ks(R) → M (R),
(
a+( dx)f

)
(x0, x1, . . . , xn)

= εx0(dx)f (x1, . . . , xn) + εx1(dx)f (x0, x2, . . . , xn) + · · ·
+ εxn(dx)f (x0, x1, . . . , xn−1),

where the result is a sum of point measures on R. With the help of these operators
it is possible to establish a quantum white noise calculus.

We have the commutation relation

[
a(x), a+(dy)

] = εx(dy).
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There is an important operator called the number operator informally given as

N =
∫

R

dx a+(x)a(x).

The differential of the number operator can be defined rigorously by

n(dx) = a+(dx)a(x),

(
n(dx)f

)
(x1, . . . , xn) =

n∑

i=1

εxi
(dx)f (x1, . . . , xn).

The normal ordered monomials have the form

Mlmn = M(s1, . . . , sl; t1, . . . , tm;u1, . . . , un)

= a+(ds1) · · ·a+(dsl)a
+(dt1) · · ·a+(dtm)a(t1) · · ·a(tm)a(u1) · · ·

× a(um)du1 · · ·dun.

We define a measure on R5 by

mplmnq =m(x1, . . . , xp; s1, . . . , sl; t1, . . . , tm;u1, . . . , un;y1, . . . , yq)

= 〈∅|a(x1) · · ·a(xp)dx1 · · ·dxpMlmn(s1, . . . , sl; t1, . . . , tm;u1, . . . , un)

a+(dy1) · · ·a+(dyq)|∅〉.
Fix a Hilbert space k, and denote by B(k) the space of bounded operators on it.
Consider a Lebesgue locally integrable function

F = (Flmn)lmn∈N3 :R3 → B(k)

Flmn = Flmn(s1, . . . , sl; t1, . . . , tm;u1, . . . , un)

which is symmetric in the variables si , ti and ui , and two functions f,g ∈ Ks(R, k),

f = fp(x1, . . . , xp)

g = gq(y1, . . . , yq).

We associate with F the sesquilinear form B(F ) given by

〈f |B(F )|g〉 =
∑ 1

p!l!m!n!q!
∫

mplmnqf +
p Flmngq

where f + denotes the adjoint vector to f . This formula may look terrifying, but
it becomes more manageable by using multi-indices. It gives to Berezin’s formula
(∗) above a rigorous mathematical meaning, and it has the big advantage that it is a
classical integral, so that we have all the tools of classical measure theory available.
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These considerations can easily be generalized from R to any locally compact
space X, and to an arbitrary measure λ on X instead of the Lebesgue measure. We
will need that in Example 2 below.

The δ-function, or equivalently the point measure ε0, can be approximated by
measures continuous with respect to the Lebesgue measure. If ϕ ≥ 0 is a continuous
function of compact support on R, with

∫
dx ϕ(x) = 1, put

ϕζ (x) = 1

ζ
ϕ

(
x

ζ

)

and

ϕx
ζ (y) = ϕζ (x − y).

Then for ζ ↓ 0

ϕx
ζ (y)dx = ϕζ (x − y)dx → εy(dx) = δ(x − y)dx

and

ϕx
ζ (y)dy = ϕζ (x − y)dy → εx(dy) = δ(x − y)dy.

Recall

a+(ϕ) =
∫

ϕ(x)a+(dx), a(ϕ) =
∫

dx ϕ(x)ax.

These were the operators defined above. We have

a+(
ϕx

ζ

)
dx → a+(dx), a

(
ϕx

ζ

) → ax

since

(
a+(

ϕx
ζ

)
dxf

)
(x0, x1, . . . , xn)

= (
ϕζ (x − x0)f (x1, . . . , xn) + · · · + ϕζ (x − xn)f (x0, x1, . . . , xn−1)

)
dx

→ εx0(dx)f (x1, . . . , xn) + · · · + εxn(dx)f (x0, x1, . . . , xn−1),

and

(
a
(
ϕx

ζ

)
f

)
(x1, . . . , xn) =

∫
dx0ϕ

x
ζ (x0)f (x0, x1, . . . , xn) → f (x, x1, . . . , xn).

In this context the operators a+(ϕx
ζ ) and a(ϕx

ζ ) are called coloured noise opera-
tors, and the transition ζ ↓ 0 is called, for historical reasons, the singular coupling
limit.

Without introducing any heavy apparatus we can treat four examples, where we
restrict ourselves to the zero-particle case and to the one-particle case, i.e. just to the
vacuum |∅〉 and L(1) = L1(R, k), and do not need the whole Fock space.
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1. A two-level atom coupled to a heat bath of oscillators, or equivalently the
damped oscillator

We restrict to the one-excitation case: We have either all oscillators in the
ground state and the atom in the upper level, or one oscillator is in the first state
and the atom is in the lower state. In the rotating wave approximation the Hamil-
tonian can be reduced to

H =
∫

ωa+(dω)a(ω) + E10a
+(ϕ) + E01a(ϕ),

where

E01 =
(

0 0
1 0

)
, E10 =

(
0 1
0 0

)
, E11 =

(
1 0
0 0

)

and ϕ is a continuous function ≥ 0, with compact support in R, and
∫

dtϕ(t) = 1.
We consider a+(ϕ) and a+(ϕ) as coloured noise operators, replace ϕ by ϕζ ,
calculate the resolvent and perform the singular coupling limit. This means, in
frequency space, that ϕ approaches 1 and not δ. Then the resolvent converges to
the resolvent of a one-parameter strongly continuous unitary group on the space

H =
(
C

(
1

0

)
⊗C|∅〉

)
⊕

(
C

(
0

1

)
⊗ L(1)

)
.

The one-parameter group can be calculated explicitly, then we obtain the Hamil-
tonian as a singular operator, and calculate the spectral decomposition of the
Hamiltonian explicitly.

After establishing a more general theory on the entire Fock space we recog-
nize the interaction representation V (t) of the time-development operator in the
formal time representation as the restriction of Ut

0 to H, where Ut
s is the solution

of the quantum stochastic differential equation (QSDE)

dtU
t
s = −i

√
2πE01a

+(dt)U t
s − i

√
2πE10U

t
s a(t)dt − πE11dt

with Us
s = 1; so Ut

s is an operator on

L2(
R,C2) ⊃ H.

2. A two-level atom interacting with polarized radiation
This is very similar to the first example, but we have to consider not only the

frequency but also the direction and the polarization of the photons. So for the
photons we are concerned with the space

X = L2(
R× S

2 × {1,2,3}),
where the first factor stands for the formal time (replacing the frequency via
Fourier transform), the second one for the direction and the third one for the
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polarization. We have added a fictional longitudinal polarization in order to make
the calculations easier. We provide X with the measure

〈λ|f 〉 =
∫∫

dtω2
0dn

∑

i=1,2,3

f (t,n, i),

where dn is the surface element on the unit sphere such that
∫

S2
dn = 4π

and ω0 is the transition frequency. Define

X= {∅} + X + X2 + · · ·
and consider

Γ = L2(
X,C2).

Denote by Π(n) the projector on the plane perpendicular to n,

Π(n)ij = δij − ninj .

After some approximations we obtain the Hamiltonian

H =
∫

dnω2
0ω

∑

i,l

Π(n)i,la
+(dω,n, i)a(ω,n, l)

+
∫

dnω2
0ϕ(ω)

∑

i,l

Π(k)i,l
(
E10qia(ω,n, l)dω + E01qia

+(dω,n, l)
)

where (q1, q2, q3) is a vector proportional to the dipole moment. We perform
the singular coupling limit via the resolvent, and arrive at a strongly continuous
unitary one-parameter group on

H =
(
C

(
1

0

)
⊗C|∅〉

)
⊕

(
C

(
0

1

)
⊗ L2(X,λ)

)
.

We calculate the time evolution explicitly, calculate the Hamiltonian as a singular
operator and give its spectral decomposition. If V (t) is the interaction represen-
tation of the time evolution in a formal time representation, then V (t) turns out to
be the restriction of Ut

s to H. Here Ut
s is the solution of the differential equation

dtU
t
s = −i

√
2π

∫

S2

∑

il

Π(n)il
(
E01qia

+(
d(t,n), l

)
Ut

s

+ E10U
t
s qia(t,n, l)ω2

0dndt
) − πγE11U

t
s dt
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with

γ = 8π

3
|q|2.

This is a new type of QSDE and should be investigated further.
3. The Heisenberg equation of the amplified oscillator

In the coloured noise approximation the Hamiltonian reads

H =
∫

ωa+(dω)a(ω) +
∫

b+a+(ϕ) +
∫

ba(ϕ)

where b and b+ are the usual oscillator operators with the non-vanishing com-
mutator [b, b+] = 1. Whereas the evolution corresponding to H is difficult and
will be treated in Chap. 9, the Heisenberg evolution is very easy. Define

H =Cb+ ⊕ {
a(ψ) : ψ ∈ L2(R)

}
,

then H stays invariant under the mapping

A �→ eiHtAe−iHt .

Hence we obtain a one-parameter group on the space H. We perform the weak
coupling limit via the resolvent and obtain, similarly to the first example, that
evolution forms a strongly continuous one-parameter group on H. We identify
H with the H of Example 1 and define Eij accordingly. Then the interaction
representation V (t) of the evolution is the restriction to H of the solution Ut

s to
the QSDE

dtU
t
s = i

√
2πa+(dt)E01U

t
s − i

√
2πE10U

t
s a(t)dt + πE11U

t
s dt.

We calculate the evolution on H explicitly, determine the Hamiltonian and its
spectral decomposition. Whereas this example looks algebraically very similar
to the first one, it is analytically very different. The evolution is not unitary, but
it does leave invariant the hermitian form

(c, f ) �→ |c|2 − ‖f ‖2.

The spectrum of the Hamiltonian consists of the real line and the points ±iπ .
4. The pure number process

We consider the coloured noise Hamiltonian

H =
∫

ωa+(dω)a(ω) + a+(ϕ)a(ϕ).

The one-particle space L(1) = L2(R) stays invariant. We calculate on this sub-
space the resolvent, and determine the weak coupling limit. We again compute
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the unitary one-parameter group, the Hamiltonian and its spectral decomposition.
The interaction representation is the restriction of the solution of the QSDE

dtU
t
s = −i2π

1 + iπ
a+(dt)U t

s a(t).

After using coloured noise we establish a white noise theory. Then we attack the
general Hudson-Parthasarathy differential equation, i.e., the QSDE

dUt
s = A1a

+(dt)U t
s + A0a

+(dt)U t
s a(t) + A−1U

t
s a(t)dt + Bdt

with Us
s = 1. The solution can be given as an infinite power series in normal or-

dered monomials. The coefficients Ai,B are in B(k) for some Hilbert space k. If the
coefficients satisfy some well-known conditions, the evolution is unitary. We give
an explicit formula for the Hamiltonian. In Chap. 10 we show how this differential
equation can be approximated by coloured noise.

In order to treat the amplified oscillator we investigate the QSDE

dtU
t
s = −ia+(dt)b+Ut

s − ibUt
s a(t)dt − 1

2
bb+.

This is an example of a QSDE with unbounded coefficients. For this we need the
white noise theory, and establish an infinite power series in normal ordered polyno-
mials. Using an algebraic theorem due to Wick, we sum the series and obtain an a
priori estimate. We prove unitarity, strong continuity and the Heisenberg evolution
of Example 3. With the help of the Heisenberg evolution we get estimates which
allow the calculation of the Hamiltonian.
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