
Chapter 1
An Introduction to Recommendation Systems
in Software Engineering

Martin P. Robillard and Robert J. Walker

Abstract Software engineering is a knowledge-intensive activity that presents
many information navigation challenges. Information spaces in software engineer-
ing include the source code and change history of the software, discussion lists
and forums, issue databases, component technologies and their learning resources,
and the development environment. The technical nature, size, and dynamicity of
these information spaces motivate the development of a special class of applications
to support developers: recommendation systems in software engineering (RSSEs),
which are software applications that provide information items estimated to be
valuable for a software engineering task in a given context. In this introduction, we
review the characteristics of information spaces in software engineering, describe
the unique aspects of RSSEs, present an overview of the issues and considerations
involved in creating, evaluating, and using RSSEs, and present a general outlook
on the current state of research and development in the field of recommendation
systems for highly technical domains.

1.1 Introduction

Despite steady advancement in the state of the art, software development remains a
challenging and knowledge-intensive activity. Mastering a programming language
is no longer sufficient to ensure software development proficiency. Developers are
continually introduced to new technologies, components, and ideas. The systems on
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which they work tend to keep growing and to depend on an ever-increasing array of
external libraries and resources.

We have long since reached the point where the scale of the information space—
facing a typical developer easily exceeds an individual’s capacity to assimilate it.
Software developers and other technical knowledge workers must now routinely
spend a large fraction of their working time searching for information, for example,
to understand existing code or to discover how to properly implement a feature.
Often, the timely or serendipitous discovery of a critical piece of information can
have a dramatic impact on productivity [6].

Although rigorous training and effective interpersonal communication can help
knowledge workers orient themselves in a sea of information, these strategies are
painfully limited by scale. Data mining and other knowledge inference techniques
are among the ways to provide automated assistance to developers in navigating
large information spaces. Just as recommendation systems for popular e-commerce
Web sites can help expose users to interesting items previously unknown to
them [15], recommendation systems can be used in technical domains to help
surface previously unknown information that can directly assist knowledge workers
in their task.

Recommendation systems in software engineering (RSSEs) are now emerging
to assist software developers in various activities—from reusing code to writing
effective bug reports.

1.2 Information Spaces in Software Engineering

When developers join a project, they are typically faced with a landscape [4]
of information with which they must get acquainted. Although this information
landscape will vary according to the organization and the development process
employed, the landscape will typically involve information from a number of
sources.

The project source code. In the case of large software systems, the codebase itself
will already represent a formidable information space. According to Ohloh.net,
in October 2013 the source code of the Mozilla Firefox Web browser totaled close
to 10 million lines written in 33 different programming languages. Understanding
source code, even at a much smaller scale, requires answering numerous different
types of questions, such as “where is this method called?” [19]. Answering
such structural questions can require a lot of navigation through the project
source code [11, 17], including reading comments and identifiers, following
dependencies, and abstracting details.

The project history. Much knowledge about a software project is captured in
the version control system (VCS) for the project. Useful information stored
in a VCS includes systematic code change patterns (e.g., files A and B were
often changed together [22]), design decisions associated with specific changes
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(stored in commit logs), and, more indirectly, information about which developers
have knowledge of which part of the code [13]. Unfortunately, the information
contained in a VCS is not easily searchable or browsable. Useful knowledge
must often be inferred from the VCS and other repositories, typically by using a
combination of heuristics and data mining techniques [21].

Communication archives. Forums and mailing lists, often used for informal
communication among developers and other stakeholders of a project, contain
a wealth of knowledge about a system [3]. Communication is also recorded in
issue management systems and code review tools.

The dependent APIs and their learning resources. Most modern software devel-
opment relies on reusable software assets (frameworks and libraries) exported
through application programming interfaces (APIs). Like the project source code
itself, APIs introduce a large, heavily structured information space that devel-
opers must understand and navigate to complete their tasks. In addition, large
and popular APIs typically come with extensive documentation [5], including
reference documentation, user manuals, and code examples.

The development environment. The development environment for a software sys-
tem includes all the development tools, scripts, and commands used to build and
test the system. Such an environment can quickly become complex to the point
where developers perform suboptimally simply because they are unaware of the
tools and commands at their disposal [14].

Interaction traces. It is now common practice for many software applications to
collect user interaction data to improve the user experience. User interaction data
consists of a log of user actions as they visit a Web site or use the various com-
ponents of the user interface of a desktop or mobile application [8]. In software
engineering, this collection of usage data takes the form of the monitoring of
developer actions as they use an integrated development environment such as
Eclipse [10].

Execution traces. Data collected during the execution of a software system [16,
Table 3] also constitutes a source of information that can be useful to software
engineers, and in particular to software quality assurance teams. This kind of
dynamically collected information includes data about the state of the system, the
functions called, and the results of computation at different times in the execution
of the system.

The web. Ultimately, some of the knowledge sought by or useful to developers
can be found in the cloud, hosted on servers unrelated to a given software
development project. For example, developers will look for code examples on
the web [2], or visit the StackOverflow Questions-and-Answers (Q&A) site in the
hopes of finding answers to common programming problems [12]. The problem
with the cloud is that it is often difficult to assess the quality of the information
found in some Web sites, and near impossible to estimate what information exists
beyond the results of search queries.

Together, the various sources of data described above create the information
space that software developers and other stakeholders of a software project will
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face. Although, in principle, all of this information is available to support ongoing
development and other engineering activities, in reality it can be dispiritingly hard
to extract the answer to a specific information need from software engineering
data, or in some cases to even know that the answer exists. A number of aspects
of software engineering data make discovering and navigating information in this
domain particularly difficult.

1. The sheer amount of information available (the information overload problem),
while not unique to software engineering, is an important factor that only grows
worse with time. Automatically collected execution traces and interaction traces,
and the cumulative nature of project history data, all contribute to making this
challenge more acute.

2. The information associated with a software project is heterogeneous. While a
vast array of traditional recommender systems can rely on the general concepts
of item and rating [15], there is no equivalent universal baseline in software
engineering. The information sources described above involve a great variety of
information formats, including highly structured (source code), semi-structured
(bug reports), and loosely structured (mailing lists, user manuals).

3. Technical information is highly context-sensitive. To a certain extent, most
information is context-sensitive; for example, to interpret a restaurant review,
it may be useful to know about the expectations and past reviews of the author.
However, even in the absence of such additional context, it will still be possible
to construct a coarse interpretation of the information, especially if the restaurant
in question is either very good or very bad. In contrast, software engineering
data can be devoid of meaning without an explicit connection to the underlying
process. For example, if a large amount of changes are committed to a system’s
version control system on Friday afternoons, it could mean either that team
members have chosen that time to merge and integrate their changes or that a
scheduled process updates the license headers at that time.

4. Software data evolves very rapidly. Ratings for movies can have a useful lifetime
measured in decades. Restaurant and product reviews are more ephemeral, but
could be expected to remain valid for at least many months. In contrast, some
software data experiences high churn, meaning that it is modified in some cases
multiple times a day [9]. For example, the Mozilla Firefox project receives
around 4,000 commits per month, or over 100 per day. Although not all software
data gets invalidated on a daily basis (APIs can remain stable for years), the
highly dynamic nature of software means that inferred facts must, in principle,
continually be verified for consistency with the underlying data.

5. Software data is partially generated. Many software artifacts are the result of a
combination of manual and automated processes and activities, often involving
a complex cycle of artifact generation with manual feedback. Examples include
the writing of source code with the help of refactoring or style-checking tools,
the authoring of bug reports in which the output or log of a program is copied
and pasted, and the use of scripts to automatically generate mailing list messages,
for example, when a version of the software is released. These complex and
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semiautomated processes can be contrasted, for example, with the authoring of
reviews by customers who have bought a certain product. In the latter case, the
process employed for generating the data is transparent, and interpreting it will
be a function of the content of the item and the attributes of the author; the
data generation process would not normally have to be taken into account to
understand the review.

Finally, in addition to the challenging attributes of software engineering data that
we noted above, we also observe that many problems in software engineering are
not limited by data, but rather by computation. Consider a problem like change
impact analysis [1, 20]: the basic need of the developer—to determine the impact
of a proposed change—is clear, but in general it is impossible to compute a precise
solution. Thus, in software engineering and other technical domains, guidance in the
form of recommendations is needed not only to navigate large information spaces
but also to deal with formally undecidable problems, or problems where no precise
solutions can be computed in a practical amount of time.

1.3 Recommendation Systems in Software Engineering

In our initial publication on the topic, we defined a recommendation system for
software engineering to be [18, p.81]:

. . . a software application that provides information items estimated to be valuable for a
software engineering task in a given context.

With the perspective of an additional four years, we still find this definition to be
the most useful for distinguishing RSSEs from other software engineering tools.
RSSEs’ focus is on providing information as opposed to other services such as
build or test automation. The reference to estimation distinguishes RSSEs from
fact extractors, such as classical search tools based on regular expressions or the
typical cross-reference tools and call-graph browsers found in modern integrated
development environments. At the same time, estimation is not necessarily predic-
tion: recommendation systems in software engineering need not rely on the accurate
prediction of developer behavior or system behavior. The notion of value captures
two distinct aspects simultaneously: (1) novelty and surprise, because RSSEs
support discovering new information and (2) familiarity and reinforcement, because
RSSEs support the confirmation of existing knowledge. Finally, the reference to a
specific task and context distinguishes RSSEs from generic search tools, e.g., tools
to help developers find code examples.

Our definition of RSSEs is, however, still broad and allows for great variety in
recommendation support for developers. Specifically, a large number of different
information items can be recommended, including the following:
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Source code within a project. Recommenders can help developers navigate the
source code of their own project, for example, by attempting to guess the areas
of the project’s source code a developer might need, or want, to look at.

Reusable source code. Other recommenders in software engineering attempt to
help users discover the API elements (such as classes, functions, or scripts) that
can help to complete a task.

Code examples. In some cases, a developer may know which source code or API
elements are required to complete a task, but may ignore how to correctly employ
them. As a complement to reading textual documentation, recommendation
systems can also provide code examples that illustrate the use of the code
elements of interest.

Issue reports. Much knowledge about a software project can reside in its issue
database. When working on a piece of code or attempting to solve a problem,
recommendation systems can discover related issue reports.

Tools, commands, and operations. Large software development environments are
getting increasingly complex, and the number of open-source software devel-
opment tools and plug-ins is unbounded. Recommendation systems can help
developers and other software engineers by recommending tools, commands, and
actions that should solve their problem or increase their efficiency.

People. In some situations recommendation systems can also help finding the best
person to assign a task to, or the expert to contact to answer a question.

Although dozens of RSSEs have been built to provide some of the recom-
mendation functionality described above, no reference architecture has emerged
to-date. The variety in RSSE architectures is likely a consequence of the fact that
most RSSEs work with a dominant source of data, and are therefore engineered
to closely integrate with that data source. Nevertheless, the major design concerns
for recommendation systems in general are also found in the software engineering
domain, each with its particular challenges.

Data preprocessing. In software engineering, a lot of preprocessing effort is
required to turn raw character data into a sufficiently interpreted format. For
example, source code has to be parsed, commits have to be aggregated, and
software has to be abstracted into dependency graphs. This effort is usually
needed in addition to more traditional preprocessing tasks such as detecting
outliers and replacing missing values.

Capturing context. While in traditional domains, such as e-commerce, recom-
mendations are heavily dependent on user profiles, in software engineering, it is
usually the task that is the central concept related to recommendations. The
task context is our representation of all information about the task to which
the recommendation system has access in order to produce recommendations.
In many cases, a task context will consist of a partial view of the solution to the
task: for example, some source code that a developer has written, an element
in the code that a user has selected, or an issue report that a user is reading.
Context can also be specified explicitly, in which case the definition of the context
becomes fused with that of a query in a traditional information retrieval system.
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In any case, capturing the context of a task to produce recommendations involves
somewhat of a paradox: the more precise the information available about the
task is, the more accurate the recommendations can be, but the less likely the
user can be expected to need recommendations. Put another way, a user in great
need of guidance may not be able to provide enough information to the system to
obtain usable recommendations. For this reason, recommendation systems must
take into account that task contexts will generally be incomplete and noisy.

Producing recommendations. Once preprocessed data and a sufficient amount of
task context are available, recommendation algorithms can be executed. Here
the variety of recommendation strategies is only bounded by the problem space
and the creativity of the system designer. However, we note that the traditional
recommendation algorithms commonly known as collaborative filtering are only
seldom used to produce recommendations in software engineering.

Presenting the recommendations. In its simplest form, presenting a recommenda-
tion boils down to listing items of potential interest—functions, classes, code
examples, issue reports, and so on. Related to the issue of presentation, however,
lies the related question of explanation: why was an item recommended? The
answer to this question is often a summary of the recommendation strategy:
“average rating,” “customers who bought this item also bought,” etc. In software
engineering, the conceptual distance between a recommendation algorithm and
the domain familiar to the user is often much larger than in other domains. For
example, if a code example is recommended to a user because it matches part
of the user’s current working code, how can this matching be summarized? The
absence of a universal concept such as ratings means that for each new type of
recommendation, the question of explanation must be revisited.

1.4 Overview of the Book

In the last decade, research and development on recommendation systems has seen
important advances, and the knowledge relevant to recommendation systems now
easily exceeds the scope of a single book. This book focuses on the development
of recommendation systems for technical domains and, in particular, for software
engineering. The topic of recommendation systems in software engineering is broad
to the point of multidisciplinarity: it requires background in software engineering,
data mining and artificial intelligence, knowledge modeling, text analysis and
information retrieval, human–computer interaction, as well as a firm grounding in
empirical research methods. This book was designed to present a self-contained
overview that includes sufficient background in all of the relevant areas to allow
readers to quickly get up to speed on the most recent developments, and to
actively use the knowledge provided here to build or improve systems that can take
advantage of large information spaces that include technical content.

Part I of the book covers the foundational aspects of the field. Chapter 2
presents an overview of the general field of recommendation systems, including
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a presentation of the major classes of recommendation approaches: collaborative
filtering, content-based recommendations, and knowledge-based recommendations.
Many recommendation systems rely on data mining algorithms; to help readers ori-
ent themselves in the space of techniques available to infer facts from large data sets,
Chap. 3 presents a tutorial on popular data mining techniques. In contrast, Chap. 4
examines how recommendation systems can be built without data mining, by relying
instead on carefully designed heuristics. To-date, the majority of RSSEs have
targeted the recommendation of source code artifacts; Chap. 5 is an extensive review
of recommendation systems based on source code that includes many examples of
RSSEs. Moving beyond source code, we examine two other important sources
of data for RSSE: bug reports in Chap. 6, and user interaction data in Chap. 7.
We conclude Part I with two chapters on human–computer interaction (HCI) topics:
the use of developer profiles to take personal characteristics into account, in Chap. 8,
and the design of user interfaces for delivering recommendations, in Chap. 9.

Now that the field of recommendation systems has matured, many of the basic
ideas have been tested, and further progress will require careful, well-designed
evaluations. Part II of the book is dedicated to the evaluation of RSSEs with four
chapters on the topic. Chapter 10 is a review of the most important dimensions and
metrics for evaluating recommendation systems. Chapter 11 focuses on the problem
of creating quality benchmarks for evaluating recommendation systems. The last
two chapters of Part II describe two particularly useful types of studies for evaluating
RSSEs: simulation studies that involve the execution of the RSSE (or of some of its
components) in a synthetic environment (Chap. 12), and field studies, which involve
the development and deployment of an RSSE in a production setting (Chap. 13).

Part III of the book takes a detailed look at a number of specific applications
of recommendation technology in software engineering. By discussing RSSEs in an
end-to-end fashion, the chapters in Part III provide not only a discussion of the major
concerns and design decisions involved in developing recommendation technology
in software engineering but also insightful illustrations of how computation can
assist humans in solving a wide variety of complex, information-intensive tasks.
Chapter 14 discusses the techniques underlying the recommendation of reusable
source code elements. Chapters 15 and 16 present two different approaches to
recommend transformations to an existing codebase. Chapter 17 discusses how
recommendation technology can assist requirements engineering, and Chap. 18
focuses on recommendations that can assist tasks involving issue reports, such as
issue triage tasks. Finally, Chap. 19 shows how recommendations can assist with
product line configuration tasks.

1.5 Outlook

As the content of this book shows, the field of recommendation systems in software
engineering has already benefited from much effort and attention from researchers,
tool developers, and organizations interested in leveraging large collections of
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software artifacts to improve software engineering productivity. We conclude this
introduction with a look at the current state of the field and the road ahead.

Most of the work on RSSEs to-date has focused on the development of algorithms
for processing software data. Much of this work has proceeded in the context of the
rapid progress in techniques to mine software repositories. As a result, developers
of recommendation systems in software engineering can now rely on a mature body
of knowledge on the automated extraction and interpretation of software data [7].
At the same time, developments in RSSEs had, up to recently, proceeded somewhat
in isolation of the work on traditional recommender systems. However, the parallel
has now been recognized, which we hope will lead to a rapid convergence in
terminology and concepts that should facilitate further exchange of ideas between
the two communities.

Although many of the RSSEs mentioned in this book have been fully imple-
mented, much less energy has been devoted to research on the human aspects
of RSSEs. For a given RSSE, simulating the operation of a recommendation
algorithm can allow us to record very exactly how the algorithm would behave in
a large number of contexts, but provides no clue as to how users would react to
the recommendations (see Part II). For this purpose, only user studies can really
provide an answer. The dearth of user studies involving recommendation systems
in software engineering can be explained and justified by their high cost, which
would not always be in proportion to the importance of the research questions
involved. However, the consequence is that we still know relatively little about how
to best integrate recommendations into a developer’s workflow, how to integrate
recommendations from multiple sources, and more generally how to maximize the
usefulness of recommendation systems in software engineering.

An important distinction between RSSEs and traditional recommendation sys-
tems is that RSSEs are task-centric, as opposed to user-centric. In many recom-
mendation situations, we know much more about the task than about the developer
carrying it out. This situation is reflected in the limited amount of personalization
in RSSEs. It remains an open question whether personalization is necessary or even
desirable in software engineering. As in many cases, the accumulation of personal
information into a user (or developer) profile has important privacy implications.
In software engineering, the most obvious one is that this information could be
directly used to evaluate developers. A potential development that could lead to
more personalization in recommender systems for software engineering is the
increasingly pervasive use of social networking in technical domains. Github is
already a platform where the personal characteristics of users can be used to navigate
information. In this scenario, we would see a further convergence between RSSEs
and traditional recommenders.

Traditional recommendation systems provide a variety of functions [15,
Sect. 1.2]. Besides assisting the user in a number of ways, these functions
also include a number of benefits to other stakeholders, including commercial
organizations. For example, recommendation systems can help increase the number
of items sold, sell more diverse items, and increase customer loyalty. Although,
in the case of RSSEs developed by commercial organizations, these functions
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can be assumed, we are not aware of any research that focuses on assessing the
nontechnical virtues of RSSEs. At this point, most of the work on assessing RSSEs
has focused on the support they directly provide to developers.

1.6 Conclusion

The information spaces encountered in software engineering contexts differ
markedly from those in nontechnical domains. Five aspects—quantity, hetero-
geneity, context-sensitivity, dynamicity, and partial generation—all contribute to
making it especially difficult to analyze, interpret, and assess the quality of software
engineering data. The computational intractability of many questions that surface
in software engineering only add to the complexity. Those are the challenges facing
organizations that wish to leverage their software data.

Recommendation systems in software engineering are one way to cope with
these challenges. At heart, RSSEs must be designed to acknowledge the realities
of the tasks, of the people, and of the organizations involved. And while developing
effective RSSEs gives rise to new challenges, we have already learned a great deal
about the techniques to create them, the methodologies to evaluate them, and the
details of their application.
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