
Chapter 2
Bremsstrahlung in Collisions of Structureless
Charged Particles with Atoms and Ions

2.1 Peculiar Features of PBrS

In this section we discuss the peculiar features of PBrSwhich distinguish this mecha-
nism fromOBrS and which strongly influence the total emission spectrum. Focusing
on the physical nature of these phenomena and to avoid unnecessary complexities,
we consider the BrS process of a non-relativistic charged structureless particle with
mass m and charge Z0 on a spherically-symmetric many-electron target (called an
atom, for brevity) within the framework of the simplest approximations, which are
(a) the plane-wave first Born approximation for the scattering process, and (b) the
dipole-photon scheme for the description of the photon-atom and photon-projectile
coupling. Such treatment, although quite often being insufficient for the quantitative
description of the process, allows one to carry out a simple qualitative analysis and
to explain all specific features of PBrS.

Let p j and ε j = p2j/2m denote the momenta and energy of initial ( j = 1) and
final ( j = 2) states of the projectile. The initial and the final states of the target atom
are assumed to be the ground one. To simplify the formalism we consider the BrS
process in the collision with a spherically symmetric neutral atom. This restriction is
rather of a formal but not of a principal nature, since the effects described below also
occur in the BrS process on a target with a ground state of an arbitrary symmetry.

In the course of the collision, a photon can be emitted via one of the two mecha-
nisms, which are schematically described by Fig. 1.1. The diagrammatic representa-
tion of the BrS amplitude is presented in Fig. 2.1 [14]. The thin solid line stands for
the projectile, thewave functions ofwhich are described by planewaves exp

(
ip j · r

)
.

The long-dashed line corresponds to the emitted photon which is characterized by
the energy ω and the unit vector of polarization e. In the upper two diagrams, which
illustrate the OBrS process, the short-dashed vertical line depicts the interaction of
the projectile with the atomic static field. The lower diagrams describe the PBrS
process in which the Coulomb interaction between the projectile and atomic elec-
trons (vertical dashed line) leads to the virtual excitation 0 → n of the atom.
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Fig. 2.1 Diagrammatic rep-
resentation of the amplitude
of BrS of a fast electron on
an atom in the Born approxi-
mation. Two upper diagrams
describe ordinary BrS, two
lower ones—polarizational
BrS
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Considering the twomechanisms of the photon emission one derives the following
expression for the total amplitude of the process [14, 100, 454] (see also [414] and
references therein):

ftot = ford + fpol = 4π(e · q)

q2

[
Z2
0

m

Z − F(q)

ω
+ Z0 ω α(ω, q)

]

, (2.1)

where e and ω are the photon polarization vector and energy, q = p1 − p2 is the
momentum transfer.

The first term in (2.1) describes the OBrS part of the amplitude. It is proportional
to Z − F(q), where Z is the charge of the nucleus and F(q) = ∫ drρ(r) exp(iq · r)
is the form-factor of atomic electrons (ρ(r) stands for an isotropic distribution of the
electron charge). Hence, ford is dependent on the static distribution of the charge in
the atom. The PBrS amplitude fpol is expressed via a generalized atomic dynamic
polarizability α(ω, q)which appears as a result of the action of two field on the atom:
the field of the projectile and the electromagnetic field of the emitted photon.1

The first feature which clearly distinguishes between the twomechanisms follows
immediately from (2.1). The OBrS amplitude is inversely proportional to the mass
of projectile, while the polarizational part is independent of it. The explanation for
this fact follows from the basic principles of electrodynamics (see, e.g., [2]). In the
OBrS process it is the projectile that emits the photon. The intensity of this radiation
is proportional to the square of the projectile acceleration in the external field of a
target. In turn, the acceleration is proportional to 1/m and this dependence appears
in ford. In contrast, during the PBrS process the projectile serves as a source of the
external field acting on the atomic electrons, and thus the amplitude of this process
is almost insensitive to the variations of m [414]. Moreover, the intensity of PBrS
for a heavy projectile is comparable and can be even higher than that of an electron
of the same velocity [33, 98].

1 Explicit formulae for α(ω, q) is presented in Sect. 2.2.1, (2.14).
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Other qualitative differences between the twomechanisms of the photon emission
one can trace by comparing the dependencies of ford and fpol on the photon energy
and on the momentum transfer.

TheOBrS amplitude is a smooth function ofω. The only peculiarity appears in the
soft-photon region ω → 0 where a simple perturbative approach, giving an infinite
magnitude of ford, fails to describe the process. This phenomenon, known as the
“infrared catastrophe”, had been recognized and understood long ago (e.g. [2]). The
q dependence of ford is concentrated in the factor Z − F(q). The atomic form-factor
F(q) is the Fourier image of the electron charge distribution and is a monotonically
decreasing function of q. Qualitatively, the value F(q) defines the number of atomic
electrons inside the sphere of a radius r ∼ 1/q. Hence, this function reaches its
maximum value at q = 0 where F(0) = Z and decreases monotonically with the
increase of q. In the case of large q, limq→∞ F(q) = 0. The natural scale to measure
the magnitude of q is the inverse radius of the target, R−1

at . Thus, the amplitude of
OBrS is large for q > R−1

at while in the region q � R−1
at it becomes negligibly small.

Such behaviour has a clear explanation [348]. To radiate a photon via the ordinary
mechanism a projectile must penetrate inside the atom, at a distance r < Rat, where a
strong nuclear potential −Z/r is less screened by the electron cloud. In the opposite
limit, when r � Rat, the nucleus is fully screened by the electrons (in the case of
a neutral target) and the probability for a projectile to get the acceleration and to
radiate vanishes.

The PBrS appears as a result of the alteration of the atomic dipole moment
induced during the collision.There are two external fields—the field the photon and
the Coulomb field of the projectile—which act on the atom in this process. The
dynamic response of the target depends, therefore, on the parameters of both fields.
Formally, it is reflected in the dependence of the generalized dynamic polarizability
α(ω, q) on two variables. We use the term ‘generalized’ when addressing to α(ω, q)

in order to stress the dependence on q, and, thus, to distinguish this quantity from
the dipole dynamic polarizability, αd(ω), to which α(ω, q) reduces in the limit of
small transferred momenta:

lim
q→0

α(ω, q) = α(ω) . (2.2)

The dependence on q appears because of the action of the external Coulomb
field of the projectile. This field distorts the electrons’ orbits and induces a dipole
moment of the atomic system. The dipole polarization of the electron cloud is most
pronounced if the Coulomb field of the projectile is uniform on the scale of Rat,
i.e. when the projectile is outside the target, r � Rat. These distances correspond
to small values of the transferred momentum q � R−1

at where, in accordance with
(2.2), the PBrS amplitude, as well as the cross section, can be expressed through
αd(ω). For small distances, r � Rat, the field of the projectile is almost spherically
symmetric, so that it induces small dipole moment on the target. Hence, in contrast
to the OBrS process, it is the large distances between the projectile and the target
which are of the most importance for the PBrS mechanism [45, 454].
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Therefore, although in the case of light projectiles (electron, positron) two
mechanisms of BrS formation must be treated simultaneously, it is possible, in prin-
ciple, to distinguish the photons emitted via the polarizational mechanism from those
which are formed through the ordinary one. To do this it is necessary to detect the
emitted photon in coincidence with the scattered particle. Then, the “polarizational”
photons will be observed together with the projectile scattered at small angles (cor-
responding to the transferred momenta q < R−1

at ), while large scattering angles
correspond to the emission of the “ordinary” photon. This consideration is valid
for neutral atoms but does not hold for ions, since in the latter case a long-range
Coulomb potential leads to the emission of the photon via the ordinary mechanism
for small-angle scattering of the projectile.

The dependence of α(ω, q) on ω reflects the ability of the electron cloud to be
dynamically polarized by an external electromagnetic field of a given frequency. In a
many-electron atom, the electrons are distributed among the atomic subshells. Each
subshell is characterized by an ionization potential I . In terms of classical mechanics,
this corresponds to the frequency of the rotation of electrons of a given subshell
around the nucleus. Using this analogy, one may say that the dynamic response of
the electron cloud to the external field increases for those ω which are close to the
ionization thresholds of the target subshells. Therefore, in the region

I1 < ω < I1s, (2.3)

where I1 and I1s stand, respectively, for the ionization potentials of the outermost
shell and of the 1s shell, the function α(ω, q) is non-monotonic with extrema in
vicinities of the ionization potentials [6, 7, 414, 454] .

This happens, in particular, when the photon energy lies within the region of
a giant dipole resonance of the photoionization cross section of a many-electron
atomic subshell [8]. As far as we are aware, for the first time wide maxima in the
emission spectrawere observed experimentally in electron scattering from solid-state
Ba, La and Ce [285, 286]. Later the theoretical explanation was given [432] which
related the maxima to the virtual excitations of the 3d-subshell electrons. In [451] a
powerful maximum was observed in the emission spectrum in electron-La collision.
In the subsequent paper [45] for the first time an important conclusion was drawn
about the common nature of the giant resonances in photoionization and those in
PBrS spectra. To reveal this similarity one recalls that at large distances between the
projectile and the atom the amplitude of the PBrS process is proportional to the dipole
dynamic polarizability, αd(ω). The imaginary part of this quantity is related to the
photoionization cross section σγ (ω) through (e.g. [81]): Im αd(ω) = c/4πω σγ (ω),
where c ≈ 137 is the speed of light. Since the OBrS amplitude is real, the modulus
square of the imaginary part of fpol enters the total BrS cross section as an additive
term. Therefore, a maximum in σγ (ω) manifests itself in the BrS spectrum as well
reflecting the collective nature of the dynamic response of atomic electrons.

Although based on the assumption that main contribution to fpol comes from the
region of large distances r � Rat, which does not always lead to a correct quantitative
result, the qualitative arguments of [45] provided a clear physical explanation of the
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nature of powerful maxima in emission spectra. The experiments, carried out later,
supported the theoretical prediction. The maxima in the BrS spectra were measured
for Ba and several rare-earth elements [382, 430, 450, 453], for La and for atoms
from the lanthanum group [452], for Xe [160–163, 401, 426–428, 430] and for Ba
[430] (see also the review paper [429] in [358]). In all these experiments, performed
for various energies of the incoming electron (ranging from several hundreds of eV
up to several keV), the powerful BrS maxima were observed for photon energies
within the ranges of the giant resonances in the photoionization cross section of the
4d subshells.

In general, in the wholeω-region defined by (2.3), a highly non-monotonic behav-
iour of the generalized polarizability of a many-electron atom results in a series of
peculiarities (maxima, minima, cusps) in the total BrS spectrum. The important role
of the polarizational mechanism in forming the total BrS spectra in atomic collisions
over a wide range of photon energies was analyzed theoretically (see the reviews
[7, 9, 65, 66, 260, 261, 335, 351, 358, 414, 435] and experimentally [157–159, 161,
203, 345, 346, 356, 357, 435].

For the photon energies noticeably higher than the 1s ionization potential,ω � I1s
(but still in the dipole-photon domain, λ � Rat, with λ = 2πc/ω being the radiation
wavelength) the atomic electrons can be effectively treated as (quasi-)free ones.
Consequently, the ω dependence of α(ω, q) is much like that for the cloud of free
electrons. The leading term in the expansion of α(ω, q) in powers of ω/I1s reads
[12,100]:

α(ω, q) ≈ − F(q)

ω2 . (2.4)

As a result, for a fast electron (m = 1, Z0 = −1) the total amplitude (2.1) reduces
to the BrS amplitude on a bare nucleus [100]:

ftot
∣∣
∣
ω�I1s

≈ 4π(e · q)

q2

Z

ω
. (2.5)

This shows that for large ω the atomic electrons do not participate in the screening of
the nucleus and do not contribute to theBrS cross section. Thus, in the regionω � I1s
the polarizational channel results in a (dynamic) de-screening of the nucleus.

The physical reason for this effect (following [12] we use the term ‘stripping’
effect) is that, for ω � I1s, the electrons of all atomic subshells may be treated as
free ones [100]. If the incident electron is also free (the Born approximation), then
there is no dipole radiation by a system of free electrons [278].

These arguments were exploited in [12] to construct an approximate expression
for the total BrS amplitude for photon energies lower than the 1s-shell ionization
threshold. To this end, the target electrons are divided into two groups, the ‘inner’
and the ‘outer’ electrons. The ‘inner’ electrons have binding energies Iin > ω, and,
therefore, their orbits are not distorted noticeably by an external electromagnetic
field of a frequency ω. As a result, the contribution of the inner electrons to the PBrS
amplitude is ignored. The ‘outer’ electrons have binding energies Iout less than ω, so
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that they behave as quasi-free particles under the action of the field, and contribute
to fpol in accordance with (2.4) where F(q)must be substituted with the form-factor
of the outer electrons, Fout(q). As a result the total BrS amplitude acquires the form

ftot
∣∣∣
Iout<ω<Iin

≈ 4π(e · q)

q2

Z − Fin(q)

ω
, (2.6)

where Fin(q) stands for the form-factor of the inner electrons.This expressiondemon-
strates that the outer electrons do not participate in the screening of the nucleus (or,
in other words, the nucleus is ‘stripped’ by a total number Nout of the outer elec-
trons) [12]. The physical reason for this partial ‘stripping’ is as formulated above: for
ω � Iout the outer electrons are quasi-free, and, thus, no dipole radiation is emitted
by the system ‘projectile electron + the outer electrons’.

Although the ‘stripping’ approximation does not account for specific details of
the PBrS amplitude in the vicinity of each threshold, it allows one to estimate the
behaviour the BrS cross section below and above the threshold. In particular, the
asymmetry of the giant resonances in the experimentally measured emission spectra
[382, 426, 452] was explained. The experiments indicated that the magnitude of
total BrS cross section far above the 4d-thresholds exceeds that below the threshold.
The explanation is as follows. Equation (2.6) suggests, that the difference between
the amplitude ftot at ω � I j (I j is the ionization potential of atomic j th subshell)
exceeds ftot at ω � I j by a factor proportional to Fj (q). The latter can be estimates
as Fj (q) ≈ N j , where N j is the number of the electrons in the subshell. Therefore,
the difference between the two amplitudes is proportional to N j , and the increase in
the cross section is σ(ω � I j ) − σ(ω � I j ) ∝ N 2

j [12].
This qualitative explanation was confirmed by numerical calculations [13] carried

out within the framework of the non-relativistic BA. Later, the ‘stripping’ approxi-
mation was extended beyond the BA [73, 236, 251, 252].

In the range of photo energies below the first ionization threshold, I1, of the
target,one can expect the decrease in the contribution of the PBrS channel to the total
spectrum. It follows from (2.1), that this limit fpol ∝ ωα(0, q) ∼ ωαd, where αd is a
static dipole polarizability of the target. Thus, fpol → 0 as ω → 0 in contrast to the
OBrS term which behaves as ∝ 1/ω. Thus, the ratio fpol/ ford ∼ mω2αd/e vanishes
as ω goes to zero. For low but non-zero values of ω the contribution of the PBrS
channel strongly depends on the magnitude of the static polarizability. The higher
the magnitude of αd is, the wider is the ω interval where the contribution of fpol
might be noticeable.

These arguments are valid also beyond the range of validity of the first BA, on
the basis of which (2.1) was derived. In the low-frequency limit, the OBrS ampli-
tude is expressed in terms of the elastic scattering amplitude, ford ∝ fel/ω (e.g.,
[81]). On the other hand, the PBrS process occurs most effectively at large distances
between the projectile and the target, where the wavefunction of the projectile is not
distorted strongly by the potential, so that one can extend the range of applicabil-
ity of the BA for the PBrS channel even to the domain of low projectile velocities.
Therefore, the ratio of the amplitudes still is proportional to ω2αd. In [455], the
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role of the polarizational channel was studied in the inverse BrS process (i.e. BrS
absorption) for slow electrons scattered from atoms. It was demonstrated that for an
e−−Ar scattering the polarizational mechanism changes noticeably the absorption
coefficients, whereas for an e−−Ne scattering its influence is much less. This quan-
titative effect is due to large difference in the static polarizabilities: αAr

d = 11.10
a.u. and αNe

d = 2.66 a.u. [360]. Rather strong effect of the target polarization on
the BrS spectra was reported in [142, 186–188] for low-energy (ε1 = 0.4 . . . 3.5eV)
electron–rare-gas atom collisions.

In the collisions of slow heavy particles with atoms both the OBrS and the PBrS
mechanisms fail, as a rule, to describe adequately the radiation spectrum. In such
processes another channel, known as molecular orbital radiation, becomes important
(see, e.g., [173]). Nevertheless, the PBrS is important in asymmetric slow collisions
of atoms and ions in the region of large impact parameters [388]. The intensity of
the OBrS is negligibly small due the large masses of the colliders.

In the collision of a slow charged particle with an excited hydrogen atom, H∗,
there appears additional and quite peculiar source of low-frequency photon emission
[240]. The specific feature of the hydrogen atom introduces the linear Stark effect
(see, e.g., [279]). The electric field of the projectile splits initially degenerated levels
of H∗. Atomic states with a given principal number form a Stark multiplet. The
components of the multiplet already possess a dipole moment. The vector of this
dipole moment rotates following the movement of the projectile, and the radiation
appears as a result of this rotation.We stress that thismechanismofBrS is intrinsic for
systems with a linear Stark effect. This is also a distinguishing feature from the ‘real’
PBrS which also appears because of the alteration of the target’s dipole moment. In
the latter case, it is really the induced dipole moment intrinsic for systems with a
quadratic Stark effect. As a result the character of these spectra at low frequencies
are quite different [240].

Once the internal dynamic structure of a target is taken into account, the next
logical step is to consider the radiative processes which are accompanied by the
excitation or ionization of the target. Following [39, 56] we call BrS processes of
this type ‘inelastic’ BrS contrary to the ‘elastic’ one, when the target does not change
its state after the collision.

It is important to establish the contribution of inelastic channels to the total emis-
sion spectrum. This is not purely of theoretical interest since experimentally it is
quite difficult to separate elastic and inelastic channels. To do this it is necessary
to observe the final state of the target with simultaneous detection of the photon.
The comparison of the contributions of the ‘elastic’ and ‘inelastic’ channels is dis-
cussed in more detail in Sects. 5.3 (non-relativistic collisions) and 6.4 (relativistic
collisions). Here we only mention the main results obtained.

It has been demonstrated that over a wide region of the photon frequencies, the
elastic channel dominates over the inelastic one in the total BrS spectrum for both
heavy [37, 56, 98, 414] and light [36, 56, 98, 414] projectiles scattered on a many-
electron atom. Semi-quantitatively, the cross sections of the elastic BrS, of both the
ordinary and the polarizational nature, exceed those of the inelastic by a factor Z .
The explanation is as follows [36, 37]. During the elastic BrS the contributions of

http://dx.doi.org/10.1007/978-3-642-45224-6_5
http://dx.doi.org/10.1007/978-3-642-45224-6_6
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each atomic electron to the polarizational part of the total amplitude (see (2.1) are
coherent, as in the process of Rayleigh scattering of light. Considering the case of a
neutral atom and having in mind that the ordinary part of the elastic BrS spectrum
is approximately proportional to the nuclear charge squared, one finds that the total
elastic cross section is proportional to Z2. In contrast, during the inelastic BrS the
contributions of each electrons must be summed in the cross section rather than in
the amplitude. Hence, the inelastic BrS cross section is proportional to Z and is
parametrically small in the case of a many-electron target, when Z � 1.

The region of the photon frequencies, in which the coherence effect plays an
essential role, is estimated as [36, 37, 56]

I1 < ω <
v1
Rat

(2.7)

where v1 is the initial velocity of projectile. Beyond the region of coherence inelastic
BrS becomes more important. An exception of this rule occurs in collisions of fast
heavy charged particles with atoms/ions collisions (as well as in atom-atom, ion-
atom and ion-ion) in the region of high photon frequencies. In this region the process
of inelastic BrS has a threshold, which is equal to ωmax ≈ v21/2. However, the elastic
BrS takes place at higher energies, up to ω ≥ 2v21, dominating in this region in the
total photon emission spectrum. Therefore, the photon energy range v21/2 ≤ ω ≤ 2v21
is convenient for the observation of the elastic PBrS. We note that in this ω region
there is a peculiar feature in the spectrum of PBrS [241] similar to that which occurs
in inelastic scattering, where it is known as the Bethe ridge [279]. In more detail we
discuss this phenomenon in Sect. 4.7.

Numerical comparison of the relative role of elastic and inelastic channels in
proton-atom collisions was performed in [59, 237, 241].

In electron/positron–many-electron atom scattering elastic BrS dominates para-
metrically over the inelastic one in the region (2.7). However, if one is interested in
accurate data on the total BrS cross section it is necessary to include the inelastic
channels into the computational scheme. Up to now, mostly due to technical difficul-
ties, numerical investigations of the role of inelastic BrS have not been as extensive as
in the elastic case. The achievements in this field include the model theoretical study
carried out in [428, 456] in connection with the experimental data on the intensity of
the BrS spectrum in e−+Xe collision as a function of the incoming electron energy
ε1 [401, 428] (see also [157, 158] for the experimental data in non-relativistic e−+Ar
collision and the calculations made in [51] for the relativistic e−+Ar).

For low-Z targets the absolute magnitudes of both terms from (2.1), f ord and
f pol, and the terms f (m)

ord and f (m)
pol from the inelastic BrS amplitude (see (5.22) in

Sect. 5.3) are all of the same order. In this case, it is the charge of the projectile
which introduces peculiarities in the total radiative spectrum. It can be shown that,
both for high frequencies of the photon, ω � v1/Rat [37, 98] and for the low ones,
ω � 1 [37, 237] the role of inelastic channels is negligibly small compared with the
elastic BrS in the case of electron scattering, while for the positron-atom collision the
situation is the opposite. It occurs mainly because of the difference in the behaviour

http://dx.doi.org/10.1007/978-3-642-45224-6_4
http://dx.doi.org/10.1007/978-3-642-45224-6_5
http://dx.doi.org/10.1007/978-3-642-45224-6_5
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of the interference between the ordinary and polarizational amplitudes in inelastic
BrS. The interference is negative in the case of the electron projectile and positive
in the positron case. The simplest way to trace this effect is to consider the inelastic
BrS amplitude (5.22) in the limit of high photon frequencies, as was done above for
elastic BrS. Having done this, one notices that for a projectile electron the ordinary
and polarizational terms cancel each other out [37, 100, 414] while for a positron the
effect is opposite [98, 414].

To conclude this section we mention theoretical approaches used to describe
the BrS process in non-relativistic collisions. These can be subdivided into three
parts: (a) methods applied to describe the scattering process, (b) models used for the
interaction with the photon, and (c) approximations used to describe the dynamic
atomic response.

The theoretical approaches to the scattering process range from the plane-wave
BA to more sophisticated ones. Since the OBrS phenomenon has much longer his-
tory, these methods were first tested in application to this process and later on were
applied to the PBrS problem. In application to the BrS problem in electron–atom
scattering the models beyond the plane-wave BA used in both the non-relativistic
and the relativistic domains include the corrections due to the Elwert factor and its
modifications [70, 73, 131, 281],the use of Sommerfeld-Maue functions [81, 131,
281], the approaches based on the classical [135, 227]and semi-classical [49, 65,
234] scattering theories. The best available results have been obtained using the
distorted partial-wave expansion of the projectile wavefunction. This scheme has
been applied to study the ordinary BrS process of non-relativistic projectiles in the
dipole-photon approximation [405, 406, 445, 446]. The most adequate description
of the process has been obtained by applying the (relativistic) DPWA accompanied
by the multipole series for the projectile-photon interaction operator, see, for exam-
ple, the review articles [189, 327, 347, 348, 350] and research papers [133, 223, 281,
380, 381, 407–412, 443]. and references therein.

In many papers on the PBrS problem the non-relativistic Born approximation was
used for both light (a positron, an electron) and heavy (a proton, an ion) projectiles.
Although the range of validity of the Born approximation for PBrS is larger than
for OBrS, to obtain more accurate data on the total BrS cross sections of a light
projectile it is necessary to go beyond this scheme. Therefore, the non-relativistic
DPWA formalism was developed [20, 27–29, 244] and applied to calculate the cross
sections d σ and d2 σ over a broad spectral range [246, 248–250, 253, 257, 365]
for non-relativistic electrons scattered on many-electron atoms. The partial-wave
approach was also used to study the PBrS process of slow electrons [166, 273–275,
455]. To describe low-energy (ε1 ∼ 100 . . . 101 eV) electron scattering from highly
polarizable targets (metallic clusters, fullerenes) it is necessary to go beyond the
frozen-core static potential (even supplemented with the static long-range polariza-
tional potential Vpol = −αd(0)/2r4). To this end, the approach was developed [113,
200] to calculate the partial wavefunctions of the scattering electron as solutions of
the Dyson equation with the non-local polarization potential [19, 107, 175].

In most of the papers the dynamic atomic response to the joint actions of the
field of the projectile and of the radiation field was treated within the frame of the

http://dx.doi.org/10.1007/978-3-642-45224-6_5
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non-relativistic dipole-photon theory (with exception for several papers mentioned
below). Evenwithin this framework the accurate calculation of the generalized polar-
izability α(ω, q) is not a simple task. Apart from the case of a hydrogen atom (or
hydrogen-like ion) where the analytical evaluation is possible [99, 125, 257] one has
to use more sophisticated approaches to calculate this quantity. The methods known
to us include the HF-based calculations with the inclusion of many-body corrections,
[12, 13, 20, 69, 244–248, 253], the statistical model of the atom [59–66] based on the
theory of the inhomogeneous electron gas [292]. Another semi-empirical approach
for effective and quite accurate calculation of α(ω, q) in the vicinity of giant reso-
nances was proposed initially for many-electron targets, [242, 243, 245], and later on
was applied to fullerene and clusters [114, 115, 200, 300, 391]. The approach pro-
posed in [256] is based on the use of the non-relativistic Coulomb Green function,
and is valid for the calculation of α(ω, q) in the vicinities of K- and L-shells.

Beyond the dipole-photon approximation the PBrS was considered in collisions
of a non-relativistic heavy projectile with many-electron atom [38, 39, 56, 57, 168,
389]. In these papers the corrections of the order k Rat � 1were considered and itwas
demonstrated that they lead to the additional modification of the angular distribution
of the radiation. More systematic analysis of the non-dipole corrections has become
available recently within the framework of the full relativistic description of the PBrS
process, see Chap.5.

2.2 Non-Relativistic Distorted Partial Waves Approximation

In this sectionwe consider theBrS emission formed in electron–atom collisions in the
domain of intermediate energies ε of the incoming electron. The term ‘intermediate
energy’ implies that the initial, ε1, and final, ε2, energies are, on the one hand,
not too high to justify the application of the Born approximation, but on the other
hand, not too low to implicate the consideration of the exchange effects between the
projectile and the target electrons. An adequate description of the collision process at
intermediate energies is obtained by using the distorted partial-wave approximation
(DPWA) (see, for example, [330]). It is used below to construct the BrS amplitude
and evaluate the partial-wave series of the cross sections [20, 29].

2.2.1 DPWA Series for BrS Amplitude

The total BrS amplitude
ftot = ford + fpol (2.8)

treated in the first order of the non-relativistic perturbation theory in the electron–
dipole-photon interaction, can be presented by the Feynman diagrams presented in
Fig. 2.2. The first diagram stands for the OBrS amplitude, ford, while the last two
describe the term fpol. The solid straight lines in the diagrams describe the initial

http://dx.doi.org/10.1007/978-3-642-45224-6_5


2.2 Non-Relativistic Distorted Partial Waves Approximation 27

1
ε ,p

12
ε ,p

2 2
ε ,p

21
ε ,p

11
ε ,p

1 2
ε ,p

2

n

0
ω

+

ω

n

0

+
ω

Fig. 2.2 Diagrammatic representation of the amplitude of BrS in the lowest order of the non-
relativistic perturbation theory in electron–dipole-photon photon interaction. The first diagram
describes the OBrS process, the second and the third one stand for PBrS

and the final states of the incoming particle (for clarity, we will term the projectile
as ‘electron’) in the static field of the target atom (or ion). Other notations are as in
Fig. 2.1.

As drawn, the BrS amplitude does not account for the exchange between the
projectile and the target electrons. We also assume that the electron energy before,
ε1, and after, ε2, the collision are high enough in comparison with the ionization
potentials of the atomic subshells which provide the main contribution to the target
polarization by the electromagnetic field of the frequency ω. The latter satisfies the
strong inequalityωRat/c � 1which implies the validity of the dipole approximation,
when the emission wavelength λ = 2πc/ω exceeds greatly the atomic size Rat.

General analytical expressions for the terms ford and fpol, corresponding to the
presented diagrams, are as follows:

ford =
〈
p(−)
2 |e · r| p(+)

1

〉
, (2.9)

fpol = −
∑

n

⎡

⎣
〈0 |e · D| n〉

〈
p(−)
2 n

∣
∣∣V̂
∣
∣∣ p(+)

1 0
〉

ωn0 − ω − i0
+
〈
p(−)
2 0

∣
∣∣V̂
∣
∣∣ p(+)

1 n
〉
〈n |e · D| 0〉

ωn0 + ω

⎤

⎦ . (2.10)

Here |p(+)
1 〉 and |p(−)

2 〉 denote, correspondingly, the initial and the final scattering
states of the electron with the asymptotic momenta p1 and p2. The ‘±’ superscripts
correspond to the outgoing (‘+’) and to the incoming (‘−’) spherical waves in the
asymptotic form of the electron wavefunction. The general form of the DPWA series
for these states are:

∣∣∣p(±)〉 = 4π
√

π

p

∑

lm

il exp (±iδl(p))
Pν(r)

r
Y ∗

lm(np)Ylm(nr) . (2.11)

Here δν are the phaseshifts, the notation v stands for a set of quantum numbers
(p, l). The radial wave functions Pν(r) satisfy the Schrödinger equation in the static
potential created by the target atom in its ground state (the so-called ‘frozen core’
approximation). The factor in front of the sum implies that the radial wave functions
are normalized to the delta function of energy measured in Rydberg. The notation
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Ylm(na) stands for the spherical harmonics [420] dependent on the spherical angles
of the unit vector na along the vector a.

Vector D in (2.10) is the operator of the dipole interaction of the atomic electrons
with the electromagnetic field, ωn0 = En − E0 is the energy of the atom’s transition
from the ground state 0 to the virtually excited state n (including excitations into the
continuum).

The PBrS amplitude (2.10) can be expressed in terms of the generalized dynamic
polarizability α(ω, q) [244]. To facilitate this, one can make use of the Fourier
transformation of the operator V̂ , which stands for the Coulomb interaction between
the projectile (r) and the atomic electrons (ra):

V̂ =
∑

a

1

|r − ra| = 1

2π2

∑

a

∫
d3Q
Q2 exp(−iQ · (r − ra)). (2.12)

Here the sum is carried out over all electrons.
Introducing (2.12) into (2.10) one derives:

fpol = − 1

2π2

∫
d3Q
Q2

〈
p(−)
2

∣
∣∣e−iQ·r

∣
∣∣ p(+)

1

〉

×
∑

n

[
〈0 |e · D| n〉 〈n ∣∣∑a e

iQ·ra ∣∣ 0
〉

ωn0 − ω − i0
+
〈
0
∣
∣∑

a e
iQ·ra ∣∣ n

〉 〈n |e · D| 0〉
ωn0 + ω

]

. (2.13)

For a spherically symmetric target the
∑

n[. . . ] is related to the generalized dynamic
polarizability of the atom, α(ω, Q):

i(e · Q)α(ω, Q) =
∑

n

∑

a

[
〈0 |e · D| n〉 〈n ∣∣ eiQ·ra ∣∣ 0

〉

ωn0 − ω − i0
+
〈
0
∣
∣ eiQ·ra ∣∣ n

〉 〈n |e · D| 0〉
ωn0 + ω

]

. (2.14)

In the limit of small Q the polarizability α(ω, Q) reduces to the dipole dynamic
polarizability, α(ω):

lim
Q→0

α(ω, Q) = α(ω) = 2

3

∑

n

ωn0 〈0 |D| n〉 〈n ∣∣∑a ra
∣∣ 0
〉

ω2
n0 − ω2 − i0

. (2.15)

Thus, for fpol one can write

fpol = − i

2π2

∫
dQ

e · Q
Q2

〈
p(−)
2

∣∣∣e−iQ·r
∣∣∣p(+)

1

〉
α(ω, Q). (2.16)

Expression (2.16) is obtained within the frame of the DPWA. In connection with
the PBrS process was applied for the first time in [20] (see, also, [28, 29]). Expression
(2.16), however, differs from the formulae for fpol presented in the cited works in
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that that it explicitly establishes a relationship between the amplitude of PBrS and
the generalized polarizability of the target. This form of representation of fpol has
several advantages.

In many cases the dynamic response of an atom to the field of a projectile and
that of a photon, which leads to the PBrS emission, bears essentially many-electron
features. Therefore, its correct description implies the use of the methods developed
within the framework of many-body perturbation theory. The fact, that fpol can be
expressed only via α(ω, Q), which contains all the necessary information on the
atomic dynamic response, can simplify theoretical and numerical analysis of the
PBrS process (see, Chap.4 for the examples).

The representation of fpol in the form (2.16) allows one to easily carry out the
Born limit of the PBrS amplitude. For doing this, one substituting the distorted

waves
∣∣∣p(±)

1,2

〉
with the wavefunctions of a free movement,

∣∣∣p̃(±)
1,2

〉
= exp(ip1,2 · r),

and accounting for the relation

〈p̃(−)
2 |exp(−iQ · r)| p̃(+)

1 〉 = (2π)3δ(q − Q),

one obtains an expression for fpol within the frame of the plane-wave Born approx-
imation (cf. (2.1)):

f Bpol = −4π i
e · q
q2 α(ω, q). (2.17)

This expression for the PBrS amplitude as well as the corresponding formulae for
the spectral and angular distribution of the radiation were presented for the first time
in [14].

Using (2.11) in (2.9) and (2.16) one obtains, after some angular algebra, the
expansion of ford and fpol in partial series. The structure of both series is similar and
is given by the following general expression:

f = 16π3

√
p1 p2

√
4π

3

∑

l1l2

il1−l2ei
(
δl1 (p1)+δl2 (p2)

)
(−1)l>

√
l>Tl2l1

(
ne, np1 , np2

)
Rl2l1 .

(2.18)

Here l2 = l1 ±1 in accordance with the dipole selection rules, l> = max{l1, l2}. The
factor Tl2l1

(
ne, np1 , np2

)
, dependent on the angular variables of the vectors e, p1 and

p2, is equal to

Tl2l1

(
ne, np1 , np2

) =
∑

m1m2
m

(−1)m2

(
l2 1 l1

−m2 m m1

)
Y ∗
1m(ne)Y

∗
l1m1

(np1)Yl2m2(np2).

(2.19)

Here

(
l2 1 l1

−m2 m m1

)
is the 3j-symbol [420].

http://dx.doi.org/10.1007/978-3-642-45224-6_4
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In (2.18) the notation Rl2l1 stands for

Rl2l1 =
⎧
⎨

⎩

+Rord
l2l1

for OBrS

−Rpol
l2l1

for PBrS.

The partial amplitudes of the ordinary and the polarizational BrS are expressed via
the following integrals:

Rord
l2l1 = 〈ν2‖r‖ν1〉 =

∫ ∞

0
dr Pν2(r) r Pν1(r) (2.20)

Rpol
l2l1

= 2

π

∫ ∞

0
dQ Q 〈ν2‖ j1(Qr)‖ν1〉α(ω, Q). (2.21)

where j1(Qr) is the spherical Bessel function [1].
The ordinary BrS emission is formed mainly at the distances ρ lower and equal,

in order of magnitude, to the atomic radius, ρ � Rat (see, for example, [81, 350]. In
contrast, in the PBrS process the large distances ρ ∼ p1/ω play the most important
role [45, 455]. Thus, the specific angular momenta in the ordinary BrS process are
lord ∼ p1Rat, while for the polarizational BrS, lpol ∼ p21/ω. It follows then that
for sufficiently high projectile velocities lpol � lord > 1. From the computational
viewpoint this inequality means that the sum over l1 and l2 in (2.18) in the case of
PBrS converges rather slowly, and one has to calculate a large number of partial
terms to obtain an accurate result for fpol.

To avoid the technical difficulty related to slow convergence of the partial series
in fpol one can take advantage of the fact that the projectile’s radial wavefunctions of
large orbitalmomenta areweakly distorted by the static atomic potential and, thus, are
close to those of a free movement. Hence, it is possible to re-write the expression for
fpol, explicitly extracting theBorn amplitude (2.17) from (2.18). Then, the remainder,
Δ fpol = fpol − f Bpol will be represented by a rapidly convergent partial series [244].

Having done this one obtains the following representation of fpol:

fpol = f Bpol + Δ fpol (2.22)

The structure of the term Δ fpol is given by the general expression (2.18) where the
partial amplitudes Rl2l1 are substituted with

ΔR pol
l2l1

= Rpol
l2l1

− e−i
(
δl1 (p1)−δl2 (p2)

)
R̃pol

l2l1
. (2.23)

The notation R̃pol
l2l1

is used for the integral

R̃pol
l2l1

= 2

π

∫ ∞

0
dQ Q 〈ν̃2‖ j1(Qr)‖ν̃1〉α(ω, Q) (2.24)
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The matrix element in the integrand in (2.24) is calculated between the radial wave
functions of a free particle: ‖ν̃〉 = (p/π)1/2r jl(pr).

2.2.2 BrS Cross Section

The two-fold differential BrS cross section, which characterizes the spectral and the
angular distributions of radiation, is given by

d2 σ

dωdΩk
= 1

(2π)4

ω3

c3
p2
p1

∫
dΩp2

∑

λ

| ftot|2 (2.25)

Here dΩk is the element of the solid angle of the emission along the vector k which is
the photon momentum. The integral is carried out over the solid angle, dΩp2 , of the
scattered electron. The sum is taken over the photon polarizations, λ. For arbitrary
vectors a and b the following general formula can be applied (see, e.q., [81]):

∑

λ

(eλ · a)(eλ · b) = a · b − (a · k)(b · k)

k2
. (2.26)

The cross section (2.25) defines the probability of the photon emission within the
energy interval [ω,ω + dω] in the solid angle dΩk, normalized to the flux of the
incident electrons.

Integrating (2.25) over the emission angles one defines the spectral distribution
of BrS, which is characterized by the differential cross section:

dσ

dω
=
∫

dΩk
d2σ

dωdΩk
. (2.27)

In the dipole approximation, the double differential cross section d2σ /dωdΩk

has a quite simple dependence on the emission angle θk = ̂k, p1 [69]:

d2σ

dωdΩk
= 1

4π

dσ

dω

(
1 − β(ω) P2(cos θk)

)
. (2.28)

P2(y) = (3y2 − 1)/2 is the Legendre polynomial of the second order. In analogy
with the photoionization process, the quantity β(ω), which defines the profile of the
angular distribution of the dipole radiation, is called angular anisotropy parameter
[121].

Using (2.18)–(2.21) to construct the total BrS amplitude (2.8), and then substitut-
ing the result into (2.25) one obtains the following partial series for the cross section
dσ /dω and for the angular anisotropy parameter [29, 244]:
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dσ

dω
= 32π2

3p21

ω3

c3

∞∑

l=0

∑

l ′=l±1

l>
∣∣Rtot

l ′l
∣∣2 = dσord

dω
+ dσpol

dω
+ dσint

dω
. (2.29)

β(ω) =
(
dσ

dω

)−1 16π2

3p21

ω3

c3

×
∑

l

(l + 1)

⎧
⎨

⎩
l
∑

l ′= l±1

∣∣Rtot
l ′l
∣∣2

2l ′ + 1
− 6

l + 2

2l + 3
Re
[
eiΔl Rtot

l+1l

(
Rtot

l+1l+2

)∗]
⎫
⎬

⎭
,

(2.30)

where the following short-hand notations are used:

Rtot
l ′l = Rord

l ′l − Rpol
l ′l , Δl = δl(p1) − δl+2(p1) .

If one neglects the partial PBrS amplitude Rpol
l2l1

on the right-hand sides of (2.29)
and (2.30), the resulting formula coincides with the known partial-wave expansion
for OBrS [385, 405, 406, 446].

Presentation of the cross section as a sum of three terms, dσord, dσpol and dσint
(2.30), although being somewhat conditional, is convenient for further analysis.

In principle, it is experimentally possible to distinguish the photons emitted via
the polarization mechanism from those generated in the OBrS process.

As has been already mentioned, the domains of the impact parameters in which
one of the two BrS mechanisms dominates are well separated provided the condition
p1/ω � Rat is fulfilled. Small impact parameters ρ < Rat, which are important for
OBrS, correspond to large momentum transfer, q ∼ ρ−1, or, which is equivalent,
to (comparatively) large scattering angles. The polarization mechanism is of less
importance, since the induced dipole moment is small. Formally, the latter statement
follows from the definition of the generalized polarizability, (2.14). Indeed, for large
values transferred momenta, Q � 1/Rat the exponent exp(iQ · ra) rapidly oscillates
in the matrix element, resulting in α(ω, Q) → 0.

As the distance between the projectile and the target becomes larger than the
atomic radius, the Coulomb field of the nucleus is fully screened by the electron
cloud, and the OBrS radiation is suppressed. On the contrary, the contribution of
PBrS for ρ � Rat is enhanced since the field of the projectile is nearly uniform on
the scale of Rat, so that the polarization of the target occurs more effectively. Large
distances correspond to small transferred momenta, q � Rat and, correspondingly,
to small scattering angles.

Therefore, to distinguish between the polarizational and ordinary BrS, the exper-
imental setup should allow one to detect the photon and the scattered electron simul-
taneously. Then the PBrS will be predominantly detected for small-angle scattering
events, while the large-angle scattering will give rise to the photon yield through the
OBrS channel.
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The arguments presented above are valid for neutral atoms. For ionic targets, the
long-range Coulomb field of the net charge of the ion increases the intensity of OBrS
in the domain of small-angle scattering.

For the sake of completeness and for further reference let us present the formulae
for dσ /dω and d2σ /dωdΩk written within the framework of the plane-wave Born
approximation. The formulae can be obtained directly, by using the BrS amplitude
(2.1) in (2.25), or as the Born limit of (2.29) and (2.30) [29]. The result can be written
as follows (see also [13]):

d2σB
dωdΩk

= 1

4π

dσB
dω

[
1 − βB(ω)P2(cos θk)

)
, (2.31)

dσB
dω

= C

qmax∫

qmin

dq

q

∣∣∣∣
Z0

M

(
Z − F(q)

)
+ ω2α(ω, q)

∣∣∣∣

2

, (2.32)

βB(ω) =
(
dσB
dω

)−1

C

qmax∫

qmin

dq

q

∣∣∣
∣

Z0

M

(
Z − F(q)

)
+ ω2α(ω, q)

∣∣∣
∣

2

P2(cos θq).

(2.33)

Here C = 16Z2
0/3c3 p21ω, qmax

min
= p1 ± p2 = p1(1±√

1 − ω/ε1) are the maximum
andminimum values of the transferredmomentum q = |p1−p2|, θq = p1 ·q/p1q =
(qmaxqmin + q2)/2p1q.

2.3 Multipole Series for PBrS Cross Section

Let us analyze the role of quadrupole terms, as well as the higher multipoles, in the
cross section of PBrS [389]. To simplify the consideration we will treat the PBrS
within the BA. In Sect. 4.1 it will be demonstrated that the range of applicability
of BA for the PBrS process for an electron is much broader than that for the OBrS
process. As for the heavy projectiles, the BA can be applied to describe PBrS in
comparatively slow collisions as well [388].

For a heavy projectile, the PBrS cross section differential in ω, the solid angle of
emission and in the transferred momentum q, can be written in the form [389]2:

d3σpol
dωdΩkdq

= 2Z2
0ω

3

πc3v21q

∞∑

N=0

k NAN (ω, q) CN (cos θk, cos θq). (2.34)

Here cos θq = ω/v1q + q/2p1, and the following notation is introduced:

2 The formulae presented in this section can be also derived as a non-relativistic limit of general
relativistic formalism for PBrS described in detail in Sects. 6.5.1 and 6.5.3.

http://dx.doi.org/10.1007/978-3-642-45224-6_4
http://dx.doi.org/10.1007/978-3-642-45224-6_6
http://dx.doi.org/10.1007/978-3-642-45224-6_6
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AN (ω, q) =
N∑

j=0

α j (ω, q)α∗
N− j (ω, q). (2.35)

For atomic targets with filled (or semi-filled) subshells, the expression for a mul-
tipole generalized polarizability α j (ω, q) (with j ≥ 1)3 reads

α j (ω, q) = −4i
∑

n′l ′

∑

l1l2

il1(−1)l+l ′Cl j l2l1 l ′

ω2
n0 − ω2 − i0

〈nl‖ jl1(qr)‖n′l ′〉〈n′l ′‖r j d

dr
‖nl〉.

(2.36)

Here n and l stand for the principal and orbital quantum numbers. The summations
in (2.36) are carried out subject to the following conditions: (1) the integers l2 and j
are of the same parity and l2 ≤ j , (2) l1 = l2 ± 1, (3) the integers l ′ and l + l1 are of
the same parity and l + l1 ≥ l ′ ≥ |l − l1|. The coefficient Cl j l2l1 l ′ is as follows:

Cl j l2l1 l ′ = j !(2l + 1)(2l ′ + 1)(2l1 + 1)(2l2 + 1)

( j − l2)!!( j + l2 + 1)!!
(

l l1 l ′
0 0 0

)(
l2 1 l1
0 0 0

)
. (2.37)

The coefficients CN from (2.37) are expressed in terms of the Legendre polyno-
mials as follows:

CN (cos θk, cos θq) =
∑

L≤N+2

KNL PL(cos θq)PL(cos θk), (2.38)

where

KNL = (2L + 1)N !
(N − L)!!(N + L + 1)!! for L ≤ N .

KNN+2 = − N + 2

(2N + 3)!! for L = N + 2.

In (2.38), parities of the summation index L and the integer N coincide.
Integrating (2.34) over the emission angle one arrives at

d2σpol
dωdq

= 8Z2
0ω

3

c3v21q

∞∑

N=0

k(2N )(2N )!
(2N )!!(2N + 1)!!

(
1 − 2N + 1

2N + 3

)
A2N (ω, q). (2.39)

This expression shows, that there is no interference of the photons of differentmul-
tipolarity in the spectral distribution of the emitted radiation. The interference takes
place in the spectral-angular distribution but vanishes in the cross section integrated
over the emission angle.

3 For j = 0 the term α0(ω, q) coincides with α(ω, q) defined in (2.14).
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The above-written formulae are simplified in the dipole-photon limit supple-
mentedwith the quadrupole correction. Thus, the dipole part of the double differential
cross section (2.39) is as follows:

d2σpol
dωdq

∣∣∣∣
∣
dip

= 16Z2
0ω

3

3c3v21q
|α(ω, q)|2. (2.40)

The quadrupole correction to (2.40) reads:

dσ

dωdq

∣∣∣
∣
quad

= 16Z2
0ω

5

15c5v21q
A2(ω, q), (2.41)

where
A2(ω, q) = 2Re α0(ω, q)α∗

2(ω, q) + |α1(ω, q)|2.

The parameter of the multipole series (2.35), (2.39) is (ωRat/c)2. For the photon
energies comparable to the K-ionization potential of an atomwith Z ∼ 10, this para-
meter can be estimated as ∼0.1–0.2. Hence, the quadrupole term (2.3) can provide
additional 10–20% to the yield of PBrS. The quadrupole contribution increases with
Z leading to a noticeable asymmetry in the angular distribution of emitted radia-
tion with respect to the direction θk = π/2. This effect explains some discrepancy
between the experimental data [205] and the results followed from the theory of
dipole PBrS.

2.4 BrS Spectrum in the Tip Region

Let us estimate the relative contributions of PBrS near the high-frequency edge [27]:

ε1, ω � ε2 . (2.42)

Thus, it is assumed that the incident electron releases nearly all of its energy via the
radiative mechanisms. The target atom is supposed to be in its ground state before
and after the collision.

To evaluate the amplitudes ford and fpol we adopt the Born approximation for
the incoming electron, |p1〉 = exp(ip1 · r), and consider the operator of electron–
dipole-photon interaction in the form of ‘velocity’, V̂γ = e · p̂ , rather in the form
of ‘length’ which was used in Sect. 2.2.1 (see, for example, [385]). Then, instead of
(2.9) and (2.16), one derives:
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ford =
〈
p(−)
2

∣∣e · p̂
∣∣p(+)

1

〉
= (e · p1) φ∗

p2
(p1) (2.43)

fpol = − ω

2π2

∫
dq
q2 (e · q) φ∗

p2
(p1 − q) α(ω, q) . (2.44)

Here φp2(Q) is the Fourier transform of the slow-electron wavefunction ψp2(r):

φp2(Q) =
∫

dr ψp2(r) e
−iQ·q . (2.45)

Let us estimate the amplitudes ford and fpol. In the final state the electron is slow.
Therefore, in the partial-wave expansion (2.11) of its wavefunction one can retain
only the s-wave.4 Then one finds

φp2(p1) = −8π F(p1)

p41

sin δs(p2)

p2
. (2.46)

Here F(p1) is the atomic form-factor and δs(p2) is the s-wave scattering phaseshift.
Introducing the scattering length L = − sin δs(p2)/p2, one obtains for the OBrS
amplitude:

ford = (e · p1)
8π F(p1)

p41
L . (2.47)

To evaluate the integral in (2.44) it is necessary to examine two q-regions:

(A) R−1
at < q � p1, (B) |p1 − q| ≤ R−1

at , (2.48)

so that fpol = f Apol + f Bpol. Here Rat stands for the (average) atomic radius.
In region (A) the factor φ∗

p2
(p1 − q) can be estimated as follows:

φ∗
p2

(p1 − q) ≈ φ∗
p2

(p1) − q · ∂φ∗
p2

(p1)

∂p1
∼ φ∗

p2
(p1)

(

1 − 4(q · p1)

p21

)

. (2.49)

This leads to

f Apol ≈ − 8ω

3πp21
ford

∫

q<R−1
at

dq q2 α(ω, q) ≈ − 4

9π R2
at

ford α(ω) . (2.50)

In the last relation in (2.50) it is taken into account that p21/2 ≈ ω andα(ω, q) ≈ α(ω)

for q � R−1
at (see (2.4)).

4 We do not consider the case of resonant scattering in the final state with higher orbital momentum
[432].
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In region (B) only large distances r > Rat contribute significantly to the Fourier
transform φp2(p1 − q) as far as p2 → 0. Then

φp2(p1 − q) ≈ (2π)3 δ(p1 − p2 − q) − 4π L

(p1 − q)2 − p22
(2.51)

Substituting (2.51) into f Bpol one obtains the following estimate:

f Bpol ≈ − ford
ω2α(ω, p1)

F(p1)L

(
1 − β

L

Rat

)
. (2.52)

Here β is the factor of the order of 1.
Now we may estimate the ratio η of the PBrS-to-OBrS amplitudes:

η = fpol
ford

∼ − 4

9π R2
at

α(ω) − ω2α(ω, p1)

F(p1)L

(
1 − β

L

Rat

)
. (2.53)

Despite the approximations made, one can deduce, basing on (2.53), for which ener-
gies ε1 ≈ ω the PBrS dominates in the tip region.

The quantities α(ω) and α(ω, p1) have real and imaginary parts, and so does the
ratio η. One can expect, that the inequality |η| � 1 might be met for photon frequen-
cies at which Im α(ω) attains its maximum values. The latter are connected with the
maxima of the photoionization cross section σγ (ω) since Im α(ω) = (c/4πω)α(ω).

The OBrS cross section in the tip region tends to zero as (ε1 −ω)1/2 [81]. Hence,
for the incident energies ε1 close to the maxima of σγ (ω), the total BrS cross will
also have maxima which are due to the PBrS channel.

Let us estimate numerically the magnitude of η for Xe [27]. The cross section
σγ (ω) for Xe has a wide maximum above the threshold for the 4d-subshell (I4d =
5.6 Ryd ≈ 76eV). At the maximum which is located at ωmax = 7.5 Ryd, σγ (ω)

attains the value ≈30Mb [183]. The maximum width is approximately 3 Ryd, i.e.
ω = 6…9 Ryd, and for the estimate of η we choose ε1 from this energy region.
Let E1 = 7.5 Ryd. The atomic radius in this case is the radius of the 4d-subshell:
R4d ∼ (2I4d)−1/2 ≈ 0.4 a.u. The imaginary part of the dipole dynamical polarizabil-
ity of the 4d-subshell is Im α(ωmax) = (c/4πωmax)α(ωmax); the scattering length
for Xe is L = −5.4 a.u. Substituting these data into (2.53), one obtains η = −4.5.

This estimate demonstrates that for electron energies close to themaxima of σγ (ω)

the polarizational part of the BrS amplitude can greatly exceed the ordinary one in
the tip region of the spectrum.
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