
Chapter 2
Morphological Processing of Semitic Languages

Shuly Wintner

2.1 Introduction

This chapter addresses morphological processing of Semitic languages. In light
of the complex morphology and problematic orthography of many of the Semitic
languages, the chapter begins with a recapitulation of the challenges these phe-
nomena pose on computational applications. It then discusses the approaches that
were suggested to cope with these challenges in the past. The bulk of the chapter,
then, discusses available solutions for morphological processing, including analysis,
generation, and disambiguation, in a variety of Semitic languages. The concluding
section discusses future research directions.

Semitic languages are characterized by complex, productive morphology, with a
basic word-formation mechanism, root-and-pattern, that is unique to languages of
this family. Morphological processing of Semitic languages therefore necessitates
technology that can successfully cope with these complexities.1 Several linguistic
theories, and, consequently, computational linguistic approaches, are often devel-
oped with a narrow set of (mostly European) languages in mind. The adequacy of
such approaches to other families of languages is sometimes sub-optimal. A related
issue is the long tradition of scholarly work on some Semitic languages, notably
Arabic [109] and Hebrew [117], which cannot always be easily consolidated with
contemporary approaches.

Inconsistencies between modern, English-centric approaches and traditional
ones are easily observed in matters of lexicography. In order to annotate corpora
or produce tree-banks, an agreed-upon set of part-of-speech (POS) categories is

1Parts of this introduction are based on and adapted from [137].

S. Wintner (�)
University of Haifa, Haifa, Israel
e-mail: shuly@cs.haifa.ac.il

I. Zitouni (ed.), Natural Language Processing of Semitic Languages,
Theory and Applications of Natural Language Processing,
DOI 10.1007/978-3-642-45358-8__2, © Springer-Verlag Berlin Heidelberg 2014

43

mailto:shuly@cs.haifa.ac.il


44 S. Wintner

required. Since early approaches to POS tagging were limited to English, resources
for other languages tend to use “tag sets”, or inventories of categories, that are minor
modifications of the standard English set. Such an adaptation is problematic for
Semitic languages. As noted in the previous chapter, there are good reasons to view
nouns, adjectives and numerals as sub-categories of a single category, nominals.
Furthermore, the distinction between verbs and nominals is blurry. Netzer et al.
[101] discuss a similar issue related to the correct tagging of modals in Hebrew.
Even the correct citation form to use in dictionaries is a matter of some debate, as
Arabic traditional dictionaries are root-based, rather than lemma-based [43].

These issues are complicated further when morphology is considered. The rich,
non-concatenative morphology of Semitic languages frequently requires innovative
solutions that standard approaches do not always provide. After a brief introduction
of some basic notions (Sect. 2.2), we recapitulate some of these challenges in
Sect. 2.3, and review the long line of proposed computational solutions in Sect. 2.4.
Section 2.5 lists some available computational implementations for the morphology
of various Semitic languages. Section 2.6 then discusses implementations of
morphological disambiguation for several Semitic languages. We conclude the
chapter with directions for future research.

2.2 Basic Notions

The word ‘word’ is one of the most loaded and ambiguous notions in linguistic
theory [76]. Since most computational applications deal with written texts (as
opposed to spoken language), the most useful notion is that of an orthographic
word. This is a string of characters, from a well-defined alphabet of letters, delimited
by spaces, or other delimiters, such as punctuation. A text typically consists of
sequences of orthographic words, delimited by spaces or punctuation; orthographic
words in a text are often referred to as tokens.

Orthographic words are frequently not atomic: they can be further divided to
smaller units, called morphemes. Morphemes are the smallest meaning-bearing
linguistic elements; they are elementary pairings of form and meaning. Morphemes
can be either free, meaning that they can occur in isolation, as a single orthographic
word; or bound, in which case they must combine with other morphemes in order
to yield a word. For example, the word two consists of a single (free) morpheme,
whereas dogs consists of two morphemes: the free morpheme dog, combined with
the bound morpheme -s. The latter form indicates the fact that it must combine with
other morphemes (hence the preceding dash); its function is, of course, denoting
plurality. When a word consists of some free morpheme, potentially with combined
bound morphemes, the free morpheme is called a stem, or sometimes root.

Bound morphemes are typically affixes. Affixes come in many varieties: prefixes
attach to a stem before the stem (e.g., re- in reconsider), suffixes attach after the stem
(-ing in dreaming), infixes occur inside a stem (e.g., the t in Arabic ijtahada, from
jahada), and circumfixes surround the stem they combine with (e.g., Hebrew ti–u in
tigdelu “you will grow”). Some bound morphemes are likely clitics [140], but as in
the previous chapter, we blur the distinction between clitics and affixes here.



2 Morphological Processing 45

Morphological processes define the shape of words. They are usually classified to
two types of processes. Derivational morphology deals with word formation; such
processes can create new words from existing ones, potentially changing the cate-
gory of the original word. For example, the processes that create faithfulness from
faithful, and faithful from faith, are derivational. Such processes are typically not
highly productive; for example, one cannot derive *loveful from love. In contrast,
inflectional morphology yields inflected forms, variants of some base, or citation
form, of words; these forms are constructed to adhere to some syntactic constraints,
but they do not change the basic meaning of the base form. Inflectional processes are
usually highly productive, applying to most members of a particular word class. For
example, English nouns inflect for number, so most nouns occur in two forms, the
singular (which is considered the citation form) and the plural, regularly obtained
by adding the suffix -s to the base form.

Word formation in Semitic languages is based on a unique mechanism, known
as root-and-pattern. Words in this language family are often created by the
combination of two bound morphemes, a root and a pattern. The root is a sequence
of consonants only, typically three; and the pattern is a sequence of vowels and
consonants with open slots in it. The root combines with the pattern through a
process called interdigitation: each letter of the root (radical) fills a slot in the
pattern. For example, the Hebrew root p.t.x, denoting a notion of opening, combines
with the pattern maCCeC (the slots are denoted by C), typically denoting tools and
instruments, to yield maptex “key”.

In addition to the unique root-and-pattern morphology, Semitic languages are
characterized by a productive system of more standard affixation processes. These
include prefixes, suffixes, infixes and circumfixes, which are involved in both
inflectional and derivational processes (see the previous linguistic-introduction
chapter). Consider the Arabic word wasayaktubuwnaha “and they will write it”.
A possible analysis of this complex word defines the stem as aktub “write”, with
an inflectional circumfix, y—uwna, denoting third person masculine plural, an
inflectional suffix, -ha “it”, and two prefixes, sa- “will” and wa- “and”. For more
information on Arabic morphology from a computational perspective, see [127];
[63, Chap. 4]. For a good introduction to computational morphology in general,
consult [112, 128].

2.3 The Challenges of Morphological Processing

Morphological processing is a crucial component of many natural language
processing (NLP) applications. Whether the goal is information retrieval, question
answering, text summarization or machine translation, NLP systems must be aware
of word structure. For some languages and for some applications, simply stipulating
a list of surface forms is a viable option; this is not the case for languages with
complex morphology, in particular Semitic languages, both because of the huge
number of potential forms and because of the difficulty of such an approach to



46 S. Wintner

handle out-of-lexicon items (in particular, proper names), which may combine with
prefix or suffix particles. For example, the Hebrew prefix l- “to” can combine with
any proper name denoting a location, an organization or a person.

An alternative solution would be a dedicated morphological analyzer, imple-
menting the morphological and orthographic rules of the language. Ideally, a
morphological analyzer for any language should reflect the rules underlying deriva-
tional and inflectional processes in that language. Of course, the more complex
the rules, the harder it is to construct such an analyzer. The main challenge of
morphological analysis of Semitic languages stems from the need to faithfully
implement a complex set of interacting rules, some of which are non-concatenative.

Once such a grammar is available, it typically produces more than one analysis
for any given surface form; in other words, Semitic languages exhibit a high degree
of morphological ambiguity, which has to be resolved in a typical computational
application. The level of morphological ambiguity is higher in many Semitic lan-
guages than it is in English, due to the rich morphology and deficient orthography.
This calls for sophisticated methods for disambiguation. While in English (and other
European languages) morphological disambiguation may amount to POS tagging,
Semitic languages require more effort, since determining the correct POS of a given
token is intertwined with the problem of segmenting the token to morphemes, the set
of morphological features (and their values) is larger, and consequently the number
of classes is too large for standard classification techniques. Several models were
proposed to address these issues.

Contemporary approaches to part-of-speech tagging are all based on machine
learning: a large corpus of text is manually annotated with the correct POS for
each word; then, a classifier is trained on the annotated corpus, resulting in
a system that can predict POS tags for unseen texts with high accuracy. The
state of the art in POS tagging for English is extremely good, with accuracies
that are indistinguishable from human level performance. Various classifiers were
built for this task, implementing a variety of classification techniques, such as
Hidden Markov Models (HMM) [26], Average Perceptron [37], Maximum Entropy
[111, 130, 131, 133, 134], Support Vector Machines (SVM) [58], and others.

For languages with complex morphology, and Semitic languages in particular,
however, these standard techniques do not perform as well, for several reasons:

1. Due to issues of orthography, a single token in several Semitic languages can
actually be a sequence of more than one lexical item, and hence be associated
with a sequence of tags. For example, the Hebrew form šbth can be interpreted
as š+b+h+th “that+in+the+tea”, corresponding to a tag sequence consisting of a
subordinating conjunction, followed by a preposition, a determiner and a noun.

2. The rich morphology implies a much larger tagset, since tags reflect the wealth of
morphological information which words exhibit. The richer tagset immediately
implies problems of data sparseness, since most of the tags occur only rarely, if
at all, in a given corpus. For example, the MILA Hebrew morphological analyzer
[80] produces 22 different parts of speech, some with subcategories; 6 values for
the number feature (including disjunctions of values), 4 for gender, 5 for person,



2 Morphological Processing 47

7 for tense and 3 for nominal state. Possessive pronominal suffixes can have 15
different values, and prefix particle sequences can theoretically have hundreds of
different forms. While not all the combinations of these values are possible, the
number of possible analyses (i.e., the size of the tagset) is in the thousands.

3. As a result of both orthographic deficiencies and morphological wealth, word
forms in Semitic languages tend to be ambiguous. Itai and Wintner [80] report
an average of 2.6 analysis per word in their corpora. In some cases, different
analyses are identical in all their features, except the lexical item, a phenomenon
that makes morphological disambiguation closer to the problem of word sense
disambiguation than to standard POS tagging.

4. Word order in Semitic is relatively free, and in any case freer than in English.

An additional challenge of morphological processing of Semitic languages, with
an emphasis on Arabic, stems from the form–function discrepancy. The form of
words in these languages typically provides good hints for some of the morpho-
logical features of the word, or its function; in many cases, however, the form and
the function are in disagreement. A concrete example is the phenomenon of broken
plural forms in Arabic. For a significant number of nouns, the plural form is not
obtained by the concatenation of a plural suffix, but rather by an internal change
(not unlike umlauting) that renders the surface form, which is plural in function,
singular in form. A related phenomenon involves gender agreement in Arabic: while
adjectives must agree with their head nouns in gender, when the noun is plural
and irrational (non-human), the adjective must be feminine singular (see a detailed
discussion in [3]).

Somewhat similarly, Hebrew nouns are marked for gender by a small number
of suffixes; but several masculine-appearing nouns are actually feminine, and vice
versa. Furthermore, Hebrew has two plural suffixes, -im for plural nouns and -wt for
feminine nouns, but a non-negligible number of feminine nouns take the masculine
suffix and vice versa.

Finally, it is important to note that morphological processing of Semitic
languages is often handicapped by subtle orthographic issues [28]. Hebrew, for
example, has a writing system that encodes vocalic information using a large set
of diacritics; this system, however, is rarely in use, and most contemporary texts
are written without the diacritics. Unfortunately, while a standard for non-vocalized
Hebrew exists [53], it is not adhered to by most authors, and consequently the same
word may be spelled in different ways, sometimes even within the same document.
Arabic suffers from related problems, especially when the various dialects are
considered, in which standardized forms do not exist [71].

2.4 Computational Approaches to Morphology

No single method exists that provides an adequate solution for the challenges
involved in morphological processing of Semitic languages. The most common
approach to morphological processing of natural language is finite-state technology



48 S. Wintner

[22, 81, 83, 89, 113]. The adequacy of this technology for Semitic languages has
frequently been challenged, but clearly, with some sophisticated developments,
such as flag diacritics [19], multi-tape automata [88] or registered automata [36],
finite-state technology has been effectively used for describing the morphological
structure of several Semitic languages [8, 16, 17, 68, 85, 88, 138]. We survey this
technology in the present section.

2.4.1 Two-Level Morphology

Two-level morphology was “the first general model in the history of computational
linguistics for the analysis and generation of morphologically complex languages”
[84]. Developed by Koskenniemi [89], this technology facilitates the specification
of rules that relate pairs of surface strings through systematic rules. Such rules,
however, do not specify how one string is to be derived from another; rather,
they specify mutual constraints on those strings. Furthermore, rules do not apply
sequentially. Instead, a set of rules, each of which constrains a particular string-
pair correspondence, is applied in parallel, such that all the constraints must
hold simultaneously. In practice, one of the strings in a pair would be a surface
realization, while the other would be an underlying form. Thus, for example, the
Hebrew surface form [xicim] “arrows” can correspond to the underlying form
xec+im through the mapping:

x i c 0 i m
x e c + i m

where ‘0’ is the empty string. The example reflects a rule that maps [i] to e in
the context of the plural suffix im; the upper string is the surface realization, and
the lower is its underlying form. The underlying forms are further constrained by
consulting a lexicon.

One of the greatest advantages of two-level morphology is that rules are entirely
declarative: indeed, the original formulation of [89] allows for both analysis and
generation within the same grammar. The formalism was later implemented as
part of the Xerox tools (Sect. 2.4.3); two-level rules are compiled to finite-state
transducers, which indeed allow for both analysis and generation.

2.4.2 Multi-tape Automata

Two-level morphology was applied to one Semitic language, Akkadian, by Kataja
and Koskenniemi [85]. However, the applicability of the technology to Semitic
languages in general was challenged by Lavie et al. [91], who describe some
difficulties of this technology in accounting for Hebrew verb inflections. Lavie et al.
[91] conclude: “The Two Level rules are not the natural way to describe: : : verb



2 Morphological Processing 49

inflection process. The only alternative choice: : : is to keep all bases: : : it seems
wasteful to save all the secondary bases of verbs of the same pattern.”

Addressing such issues, [88] expands the traditional two-level model to n-tape
automata, following insight originally suggested by Kay [86] and Kataja and
Koskenniemi [85]. The two levels of expression are expanded: one of them is
retained for the surface form, but the lexical string can now be spread across multiple
representations (e.g., one for the root and one for the pattern). Thus, elements that
are separated on the surface (such as the root’s consonants) can be adjacent on a
particular lexical level.

Using multi-tape automata, [88] provides elegant solutions for derivational and
inflectional morphology of two Semitic languages, Syriac and Arabic. The same
approach is then extended by Habash et al. [68], who define a multi-tape automaton
consisting of five tapes: one for the pattern and affixational morphemes, one for
the root, one for the vocalism, one for phonological information and one for the
orthography. This model is then successfully applied to both MSA and dialectal
Arabic [6, 65, 68] The model is detailed in [7].

Hulden [79], however, notes that no other systems were built using this tech-
nology, and conjectures that the reason may be that “when the number of tapes
grows, the required joint symbol alphabet grows with exponential rapidity unless
special mechanisms are devised to curtail this growth. This explosion in the number
of transitions in an n-tape automaton can in many cases be more severe than
the growth in the number of states of a complex grammar.” To alleviate the
problem, [79] describes an algorithm that simulates an n-tape automaton with a
simple single-tape finite-state machine. Consequently, the elegant representation
of multi-tape automata can be retained, while the conversion algorithm facilitates
an implementation using standard tools such as the ones discussed in Sect. 2.4.3.
Indeed, [79] uses Foma [78] to efficiently implement a grammar of Arabic verbal
morphology over 2,000 roots.

2.4.3 The Xerox Approach

One of the most popular toolboxes for developing finite-state grammars comes from
Xerox, and is discussed in detail by Beesley and Karttunen [22]. The Xerox tools
consist of several description languages, including a formalization of two-level
morphology, but also a variant, XFST, of the calculus proposed by Kaplan and
Kay [83]. Along with the description languages come compilers that convert
morphological grammars to finite-state transducers, and programs that implement
analysis and generation with these transducers.

To address the special needs of languages with non-concatenative morphology,
XFST provides two special mechanisms. First, the compile-replace mechanism [21]
facilitates the reapplication of the regular-expression compiler to its own output.
This allows for a compact definition of some non-concatenative morphological
processes, and [19] uses it to construct a morphological grammar of Arabic. Second,



50 S. Wintner

Beesley [20] proposes a method, called flag diacritics, which adds features to
symbols in regular expressions to enforce dependencies between separated parts
of a string. These dependencies are then enforced by different kinds of unification
actions.

While the Xerox tools have for many years been the de-facto standard of finite-
state technology, they have also been proprietary, a fact that limited their distribution
and popularity. Several competing formalisms were developed over the years, of
which we note Foma [78] because it is, to a large extent, compatible with the syntax
of several Xerox tools, while being completely open-source.

2.4.4 Registered Automata

Finite-state registered automata [36] were developed with the goal of facilitating the
expression of various non-concatenative morphological phenomena in an efficient
way. The main idea is to augment standard finite-state automata with (finite) amount
of memory, in the form of registers associated with the automaton transitions. This is
done in a restricted way that saves space but does not add expressivity. The number
of registers is finite, usually small, and eliminates the need to duplicate paths as it
enables the automaton to ‘remember’ a finite number of symbols. Technically, each
arc in the automaton is associated (in addition to an alphabet symbol) with an action
on the registers. Cohen-Sygal and Wintner [36] define two kinds of actions, read and
write. The former allows an arc to be traversed only if a designated register contains
a specific symbol. The latter writes a specific symbol into a designated register when
an arc is traversed.

Cohen-Sygal and Wintner [36] show that finite-state registered automata can
efficiently model several non-concatenative morphological phenomena, including
circumfixation, root and pattern word formation in Semitic languages, vowel har-
mony, limited reduplication etc. The representation is highly efficient: for example,
to account for all the possible combinations of r roots and p patterns, an ordinary
FSA requires O.r �p/ arcs whereas a registered automaton requires only O.r Cp/

arcs. Unfortunately, no implementation of the model exists as part of an available
finite-state toolkit.

2.4.5 Analysis by Generation

Most of the approaches discussed above allow for a declarative specification of
(morphological) grammar rules, from which both analyzers and generators can be
created automatically. A simpler, less generic yet highly efficient approach to the
morphology of Semitic languages had been popular with actual applications. In this
framework, which we call analysis by generation here, the morphological rules
that describe word formation and/or affixation are specified in a way that supports



2 Morphological Processing 51

generation, but not necessarily analysis. Coupled with a lexicon of morphemes
(typically, base forms and concatenative affixes), such rules can be applied in one
direction to generate all the surface forms of the language. This can be done off-line,
and the generated forms can then be stored in a database; analysis, in this paradigm,
amounts more or less to simple table lookup.

Some of the very first morphological processors of Semitic languages were
developed in this way. Probably the first example is the Hebrew morphological
system of [29, 122], see Sect. 2.5.3. Exactly the same approach is now used in the
MILA morphological analyzer of Hebrew [80] (Sect. 2.5.3). And a very similar
approach underlies the most popular morphological analyzer of Arabic, BAMA
[27]: Again, a set of rules (called the compatibility table) determines how lexemes
and affixes (stored in separate lexicons) can combine; at analysis time, a surface
form is divided to a sequence of prefix C lexeme C suffix in all possible ways, and
the lexicons are consulted to determine which potential combination is indeed valid
(see Sect. 2.5.2).

2.4.6 Functional Morphology

Functional morphology [51] is a computational framework for defining language
resources, in particular lexicons. It is a language-independent tool, based on a word-
and-paradigm model, which allows the grammar writer to specify the inflectional
paradigms of words in a specific language in a similar way to printed paradigm
tables. A lexicon in functional morphology consists of a list of words, each
associated with its paradigm name, and an inflection engine that can apply the
inflectional rules of the language to the words of the lexicon.

This framework was used to define morphological grammars for several
languages, including modeling of non-concatenative processes such as vowel
harmony, reduplication, and templatic morphology [50]. In particular, [125] uses
this paradigm to implement a morphological processor of Arabic.

2.5 Morphological Analysis and Generation of Semitic
Languages

We survey in this section the current state of the art in morphological analysis
and generation of various Semitic languages. While much effort was put into the
development of systems for processing (Modern Standard) Arabic and Hebrew, for
other languages the development of such tools lags behind.

We use the term analysis in this chapter to refer to the task of producing all the
possible analyses of a given word form, independently of its context. The problem
of producing the correct analysis in the context is called disambiguation here, and
is discussed in detail in Sect. 2.6.



52 S. Wintner

2.5.1 Amharic

Computational work on Amharic began only recently. Fissaha and Haller [49]
describe a preliminary lexicon of verbs, and discuss the difficulties involved in
implementing verbal morphology with XFST. XFST is also the framework of choice
for the development of an Amharic morphological grammar [8, 9]; but evaluation
on a small set of 1,620 words reveal that while the coverage of the grammar
on this corpus is rather high (85–94 %, depending on the part of speech), its
precision is low and many word forms (especially verbs) are associated with wrong
analyses.

Argaw and Asker [11] describe a stemmer for Amharic. Using a large dictionary,
the stemmer first tries to segment surface forms to sequences of prefixes, stem, and
affixes. The candidate stems are then looked up in the dictionary, and the longest
found stem is chosen (ties are resolved by the frequency of the stem in a corpus).
Evaluation on a small corpus of 1,500 words shows accuracy of close to 77 %.

The state of the art in Amharic, however, is most probably HornMorpho [56,57]:
it is a system for morphological processing of Amharic, as well as Tigrinya (another
Ethiopian Semitic language) and Oromo (which is not Semitic). The system is
based on finite-state technology, but the basic transducers are augmented by feature
structures, implementing ideas introduced by Amtrup [10]. Manual evaluation on
200 Tigrinya verbs and 400 Amharic nouns and verbs shows very accurate results:
in over 96 % of the words, the system produced all and only the correct analyses.

2.5.2 Arabic

Recent years saw an increasing interest in computational approaches to Arabic
morphology [5]. Attempts to automatically analyze the structure of Arabic words
date back over 50 years [34]. Several early works were done in the finite-state
framework of the Xerox tools (Sect. 2.4.3). Beesley [17] describes an early system
for morphological analysis and generation. The input is given in the standard Arabic
script, either vocalized or not, and the output includes the root, the pattern, a list
of affixes and a plethora of morphological information in the form of feature-
value pairs. The implementation was carried out in an early version of the Xerox
tools, which resembles to a high degree the two-level formalism. Beesley [18]
uses the newly-introduced flag diacritics in XFST to provide a more elegant
morphological grammar, whose implementation as an online web-based service
is described in [19]. In a similar vein, [88] demonstrates the utility of multi-tape
automata (Sect. 2.4.2) by providing examples from Arabic.

Other works from approximately the same period seem to be more focused
on an actual application, rather than on elegant and efficient representation of
morphological processes. Al-Shalabi and Evens [4] extend an earlier system and



2 Morphological Processing 53

a large-scale lexicon to an analyzer for (mainly regular, but also some irregular)
verb forms. Berri et al. [25] describe a morphological analyzer that uses an object-
oriented model to represent morphological rules affecting both verbs and nouns,
along with a dedicated algorithm that identifies affixes and separates them from the
stem. Rules are divided into regular and exception handling. No details are provided
on the coverage of the system. Darwish [39] discusses the rapid development of a
shallow morphological analyzer. Given a large set of word–root pairs, the system
learns to identify the roots of (mainly regular) word forms. Evaluation on a large set
reveals high coverage but, unsurprisingly, rather low accuracy.

The state of the art in Arabic morphological analysis, however, is most likely
BAMA, the morphological analyzer of Buckwalter [27], which combines wide
coverage with detailed, linguistically informative analyses. BAMA is based on
a large-scale lexicon of base forms, along with lists of prefixes and suffixes.
A second part of this database includes a list of compatibility rules, which govern
the combination of stems with affixes. Finally, an efficient engine implements the
rules as well as lexical lookup. The result is a highly-efficient, broad-coverage
(and freely-available) analyzer. BAMA (most recently called SAMA, or Standard
Arabic Morphological Analyzer) is the official morphological analyzer used by the
Linguistic Data Consortium (LDC) for the Penn Arabic Treebank [93], a language
resource used by most practitioners interested in Arabic disambiguation and
parsing.

Based on this analyzer, [61] has built Aragen, a system for generating Arabic
word forms from underlying morphological descriptions. Using the same databases
of [27], Aragen implements a different engine that reverses the operation of the
analyzer. The current state of the art in Arabic morphological generation is a revised
version of Aragen, called Almorgeana [62].

A different approach was advanced in the context of the NooJ platform [123].
NooJ is a linguistic development environment that facilitates the definition of
large-coverage dictionaries and grammars, compiling them into systems that can
efficiently parse real-world corpora. NooJ has been used for the construction of
Arabic morphological and syntactic processors [23], as well as for part-of-speech
tagging and morphological analysis [82].

More recent approaches to Arabic morphology are done with an eye to syntactic
processing. For example, [125,126] addresses Arabic morphology in the framework
of Functional Morphology [51]. His system, ElixirFM, extends the original func-
tionality of the framework by addressing the specific needs of Arabic morphology.
The system not only provides (derivational and inflectional) analyses of word
forms, but can also recognize their grammatical functions. A different system,
Kawaakib [12], combines a set of both morphological and syntactic operators that
are represented as finite-state automata.

For a full, detailed and lucid exposition of computational processing of Arabic,
with a focus on morphology, refer to [63].



54 S. Wintner

2.5.3 Hebrew

Computational work on Hebrew began almost fifty years ago.2 Very early
approaches [29, 122] were superseded by a large-scale project dealing with various
aspects of computational linguistics, natural language processing and information
retrieval: the Responsa project [30,31,52]. Algorithms were developed for automatic
generation of all the possible inflected and derived forms of all the bases in Hebrew,
including those obtained by the combination of prepositions, conjunctions, articles
etc. Based on the generation algorithm, a file was created which included all
the possible Hebrew word forms, approximately 2,500,000 words. The analyzer
implements a program which strips the possible affixes off the input word and
checks whether the obtained result is indeed a legal word. Thus, morphological
analysis and generation are incorporated in a complete system for computational
processing of Hebrew (albeit not Modern, contemporary Hebrew). A more modern
implementation of this system was later commercialized [32, 33].

A different approach to Hebrew morphology is based on the Phonemic Script
[105], which is an unambiguous writing system for Hebrew, preserving the deep
structure of the words. Based on this script, a wide variety of programs were
developed, including a program for vocalization [104], a program for the prepa-
ration of concordances and indexes [103], especially developed for a database of
legal texts [106], a series of programs for morphological analysis and generation
[60, 108, 120, 121] and programs for converting phonemic script to the standard
Hebrew script [107].

Morphological analysis is one aspect of a commercial system, Context, designed
for information retrieval [110]. Another commercial system, Avgad [24], is based
on a dictionary of 25,000 entries, which form the base for “hundreds of thousands”
of Hebrew words (including inflected forms). It was used by Segal (Morphologi-
cal analyzer for unvocalized Hebrew words, http://www.cs.technion.ac.il/~erelsgl/
hmntx.zip, unpublished work, 1997) in order to construct a freely available mor-
phological analyzer: the analyzer was built by automatically generating possible
base forms, inflecting them in all possible ways and verifying the results against the
existing analyzer.

The current state of the art in Hebrew morphological analysis is based on
the HAMSAH morphological grammar [138], which is implemented in XFST
(Sect. 2.4.3). This grammar was reimplemented in Java (for the rationale behind
the reimplementation, see [136]) and is currently being maintained and distributed
by the Knowledge Center for Processing Hebrew [80]. The coverage of the system
is high, and it is constantly being tested on new documents, in order to extend its
lexicon as needed.

It is worth mentioning here that a different morphological grammar was
developed for Hebrew, focusing on transcribed spoken interactions of children

2This section is adapted from [135].

http://www.cs.technion.ac.il/~erelsgl/hmntx.zip
http://www.cs.technion.ac.il/~erelsgl/hmntx.zip


2 Morphological Processing 55

and adults [102]. In the context of the CHILDES project [95], corpora of such
interactions are being developed for dozens of languages, many of which are
also accompanied by morphological annotations. Nir et al. [102] describe such a
corpus, transcribed in a way that reflects not only the consonantal distinctions that
the standard Hebrew script makes, but also vocalic distinctions that it does not,
including the location of the main stress on each word. This transcription makes
the morphological grammar harder to develop, but it results in a very low degree of
ambiguity. The grammar now has full lexical and rule coverage of the two corpora
it is applied to, and more corpora are expected to be analyzed in the near future.

2.5.4 Other Languages

Morphological resources for other Semitic languages are almost nonexistent. A few
notable exceptions include Biblical Hebrew, for which morphological analyzers
are available from several commercial enterprises; Akkadian, for which some
morphological analyzers were developed [16, 85, 94]; Syriac, which inspired the
development of a new model of computational morphology [88]; and dialectal
Arabic [44, 65, 68, 72].

2.5.5 Related Applications

Also worth mentioning here are a few works that address other morphology-related
tasks. These include a shallow morphological analyzer for Arabic [39] that basically
segments word forms to sequences of (at most one) prefix, a stem and (at most
one) suffix; a system for identifying the roots of Hebrew and Arabic (possibly
inflected) words [40]; various programs for vocalization, or restoring diacritics, in
Arabic [66, 97, 100, 118, 139] and in other Semitic languages [73]; determining case
endings of Arabic words [69]; and correction of optical character recognizer (OCR)
errors [96].

When downstream applications are considered, such as chunking, parsing, or
machine translation, the question of tokenization gains much importance. Morpho-
logical analysis determines the lexeme and the inflections (and, sometimes, also
the derivational) morphemes of a surface form; but the way in which a surface
form is broken down to its morphemes for the purpose of further processing can
have a significant impact on the accuracy of such applications. For example, it is
convenient to assume that Arabic and Hebrew prefixes are separate tokens; but what
about suffixes? Should there be a distinction between the plural suffixes and the
pronominal enclitics of nouns? Several works address these questions, usually in
the context of a specific application.



56 S. Wintner

Several works investigate various pre-processing techniques for Arabic, in the
context of developing Arabic-to-English statistical machine translation systems
[45, 46, 67, 116]. In the reverse direction, [13] and [2] explore the impact of
morphological segmentation on English-to-Arabic machine translation. The effect
of multiple pre-processing schemes on statistical word alignment for machine
translation is explored by Elming and Habash [47]. And Diab [41] investigates the
effect of differently defined POS tagsets (more or less refined) on the task of base
phrase chunking (shallow parsing).

2.6 Morphological Disambiguation of Semitic Languages

Early attempts at POS tagging and morphological disambiguation of Semitic
languages relied on more “traditional” approaches, borrowed directly from the
general (i.e., English) POS tagging literature. The first such work is probably [87],
who defined a set of 131 POS tags, manually annotated a corpus of 50,000 words
and then implemented a tagger that combines statistical and rule-based techniques
that performs both segmentation and tag disambiguation. Similarly, [42] use SVM
to automatically tokenize, POS-tag, and chunk Arabic texts. To this end, they use a
reduced tag set of only 24 tags, with which the reported results are very high. The
set of tags is extended to 75 in [41].

For Hebrew, two HMM-based POS taggers were developed. The tagger of [14]
is trained on an annotated corpus [80]. The most updated version of the tagger,
trained on a treebank of 4,500 sentences, boasts 97.2 % accuracy for segmentation
(detection of underlying morphemes, including a possibly assimilated definite
article), and 90.8 % accuracy for POS tagging [15]. Adler and Elhadad [1] train an
HMM-based POS tagger on a large-scale unannotated corpus of 6 million words, the
reported accuracy being 92.32 % for POS tagging and 88.5 % for full morphological
disambiguation, including finding the correct lexical entry.

As for Amharic, [48] uses condition random fields for POS tagging. As the
annotated corpus used for training is extremely small (1,000 words), it is not
surprising the accuracy is rather low: 84 % for segmentation, and only 74 % for
POS tagging. Two other works use a recently-created 210,000-word annotated
corpus [54] to train Amharic POS taggers with a tag set of size 30. Gambäck
et al. [55] experiment with HMM, SVM and Maximum Entropy; accuracy ranges
between 88 and 95 %, depending on the test corpus. Similarly, [129] investigate
various classification techniques, using the same corpus for the same task. The
best accuracy, achieved with SVM, is over 86 %, but other classification methods,
including conditional random fields and memory-based learning, perform well.

The challenge of morphological disambiguation in Semitic languages, however,
as discussed in Sect. 2.3 above, prompted several novel approaches to the task.
Many of them are based on the work of [75] and [74], who describe morphological
disambiguation of Czech, Estonian, Hungarian, Romanian and Slovene within a
single approach. The main idea is to define separate classifiers for each feature of the



2 Morphological Processing 57

morphological analysis (e.g., POS, number, person, tense, case, etc.) The predictions
of all the classifiers are then combined with a weighted log-linear model to produce
a single, unified analysis. If a morphological analyzer for the language is available,
its output is used to constrain the possible analyses predicted by the classifiers.

This approach exactly has been adapted to Arabic by Habash and Rambow [64]
and to Hebrew by Shacham and Wintner [119]. Habash and Rambow [64] start with
the output of a morphological analyzer [27]. They define ten classifiers, one for
each feature of the morphological analysis, namely POS, gender, number, person,
voice, aspect, a pronominal enclitic and two classifiers for conjunction and particle
proclitics. The classifiers are implemented with SVM, using all the features of the
morphological analyses of words within a ˙2 window of the target word as features.
The predictions of the ten classifiers are combined to yield the most likely analysis
for each word. The best results are achieved by a rule-based classifier, learned from
the training data, that decides when an analysis is “good” based on the predictions
of the basic classifiers. The state of the art in Arabic morphological disambiguation
is represented by the MADA C TOKAN system [70, 115], which implements these
ideas.

Shacham and Wintner [119] basically adapt this approach to Hebrew. They define
classifiers for POS, gender, number, person, tense, definiteness, status, prefixes and
suffixes, implemented with SNoW [114], using all the features of the morphological
analysis in a varying window around the target word as features. They, too,
investigate a few methods for combining the results of the classifiers, but the naïve,
unweighted combination yields the best results.

A different approach is proposed by Smith et al. [124]. While they also use
a morphological analyzer (in the case of Arabic, [27]) to constrain the possible
analyses, prediction is done in the source–channel model, where the source is a
factored, conditionally-estimated random field [90]. The model is applied to Arabic
(and also to Czech and Korean), and the results are competitive with [64] (the same
tag set of 139 tags is used).

Recently, [98, 99] proposed an alternative approach to POS tagging of Arabic,
which they refer to as full-word tagging. Given a large annotated corpus of some
500,000 words, they observe that almost 1,000 different (complex) tags occur in
the corpus. They use Memory-based Learning [38] to train a classifier to assign
any one of those tags. This is a difficult task: almost one quarter of the tags occur
only once in the corpus, so data sparseness is a serious issue. On the other hand,
the ambiguity of full word forms is low: only 1.1 analyses per word, on average,
with a maximum of 7. This approach results in more accurate disambiguation than
any other approach. Furthermore, projecting the complex POS tags to simpler ones,
in this case the extra-reduced tagset of [64], results in more accurate “basic” POS
tagging than a direct approach that predicts the simpler tags only. Most interestingly,
the results show that running either a segmentation classifier or a vocalization one
as a pre-process does not improve the accuracy of morphological disambiguation.

Again, the reader is referred to [63] for a full discussion of Arabic morphological
disambiguation. For other Semitic languages than the ones described here, unfortu-
nately, we are unaware of any works addressing morphological disambiguation.



58 S. Wintner

2.7 Future Directions

The discussion above establishes the inherent difficulty of morphological processing
with Semitic languages, as one instance of languages with rich and complex
morphology. Having said that, it is clear that with a focused effort, contemporary
computational technology is sufficient for tackling the difficulties. As should be
clear from Sect. 2.5, the two Semitic languages that benefitted from most attention,
namely MSA and Hebrew, boast excellent computational morphological analyzers
and generators. Similarly, Sect. 2.6 shows that morphological disambiguation of
these two languages can be done with high accuracy, nearing the accuracy of
disambiguation with European languages.

However, for the less-studied languages, including Amharic, Maltese and others,
much work is still needed in order to produce tools of similar precision. Resembling
the situation in Arabic and Hebrew, this effort should focus on two fronts: devel-
opment of formal, computationally-implementable sets of rules that describe the
morphology of the language in question; and collection and annotation of corpora
from which morphological disambiguation modules can be trained.

As for future technological improvements, we note that “pipeline” approaches,
whereby the input text is fed, in sequence, to a tokenizer, a morphological analyzer,
a morphological disambiguation module and then a parser, have probably reached a
ceiling, and the stage is ripe for more elaborate, unified approaches. Several works
indeed explore such possibilities, focusing in particular on joint morphological
disambiguation and parsing [35, 59, 92, 132]. We defer an extensive discussion of
these (and other) approaches to the next Chapter on parsing.

Acknowledgements I am tremendously grateful to Nizar Habash for his help and advice; it would
have been hard to complete this chapter without them. All errors and misconceptions are, of course,
solely my own.

References

1. Adler M, Elhadad M (2006) An unsupervised morpheme-based HMM for Hebrew morpho-
logical disambiguation. In: Proceedings of the 21st international conference on computational
linguistics and 44th annual meeting of the Association for Computational Linguistics, Sydney.
Association for Computational Linguistics, pp 665–672. http://www.aclweb.org/anthology/P/
P06/P06-1084

2. Al-Haj H, Lavie A (2010) The impact of Arabic morphological segmentation on broad-
coverage English-to-Arabic statistical machine translation. In: Proceedings of the conference
of the Association for Machine Translation in the Americas (AMTA), Denver

3. Alkuhlani S, Habash N (2011) A corpus for modeling morpho-syntactic agreement in Arabic:
gender, number and rationality. In: Proceedings of the 49th annual meeting of the Association
for Computational Linguistics: human language technologies, Portland. Association for
Computational Linguistics, pp 357–362. http://www.aclweb.org/anthology/P11-2062

http://www.aclweb.org/anthology/P/P06/P06-1084
http://www.aclweb.org/anthology/P/P06/P06-1084
http://www.aclweb.org/anthology/P11-2062


2 Morphological Processing 59

4. Al-Shalabi R, Evens M (1998) A computational morphology system for Arabic. In: Rosner
M (ed) Proceedings of the workshop on computational approaches to Semitic languages,
COLING-ACL’98, Montreal, pp 66–72

5. Al-Sughaiyer IA, Al-Kharashi IA (2004) Arabic morphological analysis techniques: a
comprehensive survey. J Am Soc Inf Sci Technol 55(3):189–213

6. Altantawy M, Habash N, Rambow O, Saleh I (2010) Morphological analysis and generation
of Arabic nouns: a morphemic functional approach. In: Proceedings of the seventh interna-
tional conference on language resources and evaluation (LREC), Valletta

7. Altantawy M, Habash N, Rambow O (2011) Fast yet rich morphological analysis. In: Proceed-
ings of the 9th international workshop on finite-state methods and natural language processing
(FSMNLP 2011), Blois

8. Amsalu S, Gibbon D (2005) A complete finite-state model for Amharic morphographemics.
In: Yli-Jyrä A, Karttunen L, Karhumäki J (eds) FSMNLP. Lecture notes in computer science,
vol 4002. Springer, Berlin/New York, pp 283–284

9. Amsalu S, Gibbon D (2005) Finite state morphology of Amharic. In: Proceedings of RANLP,
Borovets, pp 47–51

10. Amtrup JW (2003) Morphology in machine translation systems: efficient integration of finite
state transducers and feature structure descriptions. Mach Transl 18(3):217–238. doi:http://
dx.doi.org/10.1007/s10590-004-2476-5

11. Argaw AA, Asker L (2007) An Amharic stemmer: reducing words to their citation forms.
In: Proceedings of the ACL-2007 workshop on computational approaches to Semitic lan-
guages, Prague

12. Audebert C, Gaubert C, Jaccarini A (2009) Minimal resources for Arabic parsing: an
interactive method for the construction of evolutive automata. In: Choukri K, Maegaard B
(eds) Proceedings of the second international conference on Arabic language resources and
tools, The MEDAR Consortium, Cairo

13. Badr I, Zbib R, Glass J (2008) Segmentation for English-to-Arabic statistical machine
translation. In: Proceedings of ACL-08: HLT, short papers, Columbus. Association for
Computational Linguistics, pp 153–156. http://www.aclweb.org/anthology/P/P08/P08-2039

14. Bar-Haim R, Sima’an K, Winter Y (2005) Choosing an optimal architecture for segmentation
and POS-tagging of Modern Hebrew. In: Proceedings of the ACL workshop on computational
approaches to Semitic languages, Ann Arbor. Association for Computational Linguistics,
pp 39–46, http://www.aclweb.org/anthology/W/W05/W05-0706

15. Bar-haim R, Sima’an K, Winter Y (2008) Part-of-speech tagging of Modern Hebrew text.
Nat Lang Eng 14(2):223–251

16. Barthélemy F (1998) A morphological analyzer for Akkadian verbal forms with a model of
phonetic transformations. In: Proceedings of the Coling-ACL 1998 workshop on computa-
tional approaches to Semitic languages, Montreal, pp 73–81

17. Beesley KR (1996) Arabic finite-state morphological analysis and generation. In: Proceedings
of COLING-96, the 16th international conference on computational linguistics, Copenhagen

18. Beesley KR (1998) Arabic morphological analysis on the internet. In: Proceedings of the 6th
international conference and exhibition on multi-lingual computing, Cambridge

19. Beesley KR (1998) Arabic morphology using only finite-state operations. In: Rosner M (ed)
Proceedings of the workshop on computational approaches to Semitic languages, COLING-
ACL’98, Montreal, pp 50–57

20. Beesley KR (1998) Constraining separated morphotactic dependencies in finite-state gram-
mars. In: FSMNLP-98, Bilkent, pp 118–127

21. Beesley KR, Karttunen L (2000) Finite-state non-concatenative morphotactics. In: Proceed-
ings of the fifth workshop of the ACL special interest group in computational phonology,
SIGPHON-2000, Luxembourg

22. Beesley KR, Karttunen L (2003) Finite-state morphology: xerox tools and techniques. CSLI,
Stanford

23. Belguith LH, Aloulou C, Ben Hamadou A (2008) MASPAR: De la segmentation à l’analyse
syntaxique de textes arabes. Rev Inf Interact Intell I3 7(2):9–36

http://dx.doi.org/10.1007/s10590-004-2476-5
http://dx.doi.org/10.1007/s10590-004-2476-5
http://www.aclweb.org/anthology/P/P08/P08-2039
http://www.aclweb.org/anthology/W/W05/W05-0706


60 S. Wintner

24. Bentur E, Angel A, Segev D (1992) Computerized analysis of Hebrew words. Hebrew
Linguist 36:33–38. (in Hebrew)

25. Berri J, Zidoum H, Atif Y (2001) Web-based Arabic morphological analyzer. In: Gelbukh A
(ed) CICLing 2001. Lecture notes in computer science, vol 2004. Springer, Berlin,
pp 389–400

26. Brants T (2000) TnT: a statistical part-of-speech tagger. In: Proceedings of the sixth
conference on applied natural language processing, Seattle. Association for Computational
Linguistics, pp 224–231. doi:10.3115/974147.974178, http://www.aclweb.org/anthology/
A00-1031

27. Buckwalter T (2004) Buckwalter Arabic morphological analyzer version 2.0. Linguistic Data
Consortium, Philadelphia

28. Buckwalter T (2004) Issues in Arabic orthography and morphology analysis. In: Farghaly
A, Megerdoomian K (eds) COLING 2004 computational approaches to Arabic script-based
languages, COLING, Geneva, pp 31–34

29. Choueka Y (1966) Computers and grammar: mechnical analysis of Hebrew verbs.
In: Proceedings of the annual conference of the Israeli Association for Information Process-
ing, Rehovot, pp 49–66. (in Hebrew)

30. Choueka Y (1972) Fast searching and retrieval techniques for large dictionaries and concor-
dances. Heb Comput Linguist 6:12–32. (in Hebrew)

31. Choueka Y (1980) Computerized full-text retrieval systems and research in the humanities:
the Responsa project. Comput Humanit 14:153–169

32. Choueka Y (1990) MLIM – a system for full, exact, on-line grammatical analysis of
Modern Hebrew. In: Eizenberg Y (ed) Proceedings of the annual conference on computers
in education, Tel Aviv, p 63. (in Hebrew)

33. Choueka Y (1993) Response to “computerized analysis of Hebrew words”. Heb Linguist
37:87. (in Hebrew)

34. Cohen D (1970) Essai d’une analyse automatique de l’arabe. In: Etudes de linguistique
sémitique et arabe, De Gruyter, Germany, pp 49–78

35. Cohen SB, Smith NA (2007) Joint morphological and syntactic disambiguation. In: Pro-
ceedings of the 2007 joint conference on empirical methods in natural language processing
and computational natural language learning (EMNLP-CoNLL), Prague. Association for
Computational Linguistics, pp 208–217. http://www.aclweb.org/anthology/D/D07/D07-1022

36. Cohen-Sygal Y, Wintner S (2006) Finite-state registered automata for non-concatenative
morphology. Comput Linguist 32(1):49–82

37. Collins M (2002) Discriminative training methods for hidden markov models: theory and
experiments with perceptron algorithms. In: Proceedings of the ACL-02 conference on
empirical methods in natural language processing, EMNLP ’02, Philadelphia, Vol 10.
Association for Computational Linguistics, pp 1–8. doi:http://dx.doi.org/10.3115/1118693.
1118694

38. Daelemans W, van den Bosch A (2005) Memory-based language processing. Studies in
natural language processing. Cambridge University Press, Cambridge

39. Darwish K (2002) Building a shallow Arabic morphological analyzer in one day. In: Rosner
M, Wintner S (eds) ACL’02 workshop on computational approaches to Semitic languages ,
Philadelphia, pp 47–54

40. Daya E, Roth D, Wintner S (2007) Learning to identify Semitic roots. In: Soudi A,
Neumann G, van den Bosch A (eds) Arabic computational morphology: knowledge-based
and empirical methods, text, speech and language technology, vol 38. Springer, Dordrecht,
pp 143–158

41. Diab M (2007) Improved Arabic base phrase chunking with a new enriched POS tag set.
In: Proceedings of the 2007 workshop on computational approaches to Semitic languages:
common issues and resources, Prague, pp 89–96. http://www.aclweb.org/anthology/W/W07/
W07-0812

42. Diab M, Hacioglu K, Jurafsky D (2004) Automatic tagging of Arabic text: from raw text to
base phrase chunks. In: Proceedings of HLT-NAACL 2004, Boston

http://www.aclweb.org/anthology/A00-1031
http://www.aclweb.org/anthology/A00-1031
http://www.aclweb.org/anthology/D/D07/D07-1022
http://dx.doi.org/10.3115/1118693.1118694
http://dx.doi.org/10.3115/1118693.1118694
http://www.aclweb.org/anthology/W/W07/W07-0812
http://www.aclweb.org/anthology/W/W07/W07-0812


2 Morphological Processing 61

43. Dichy J, Farghaly A (2003) Roots and patterns vs. stems plus grammar-lexis specifications: on
what basis should a multilingual lexical database centered on Arabic be built. In: Proceedings
of the MT-Summit IX workshop on machine translation for Semitic languages, New Orleans,
pp 1–8

44. Duh K, Kirchhoff K (2005) POS tagging of dialectal Arabic: a minimally supervised
approach. In: Proceedings of the ACL workshop on computational approaches to Semitic
languages, Ann Arbor. Association for Computational Linguistics, pp 55–62. http://www.
aclweb.org/anthology/W/W05/W05-0708

45. El Kholy A, Habash N (2010) Orthographic and morphological processing for English-Arabic
statistical machine translation. In: In actes de traitement automatique des langues naturelles
(TALN), Montréal

46. El Kholy A, Habash N (2010) Techniques for Arabic morphological detokenization and
orthographic denormalization. In: Proceedings of LREC-2010, Valletta (Malta)

47. Elming J, Habash N (2007) Combination of statistical word alignments based on multiple
preprocessing schemes. In: Human language technologies 2007: the conference of the North
American chapter of the Association for Computational Linguistics, Companion Volume,
Short Papers, Prague, pp 25–28. http://www.aclweb.org/anthology/N/N07/N07-2007

48. Fissaha Adafre S (2005) Part of speech tagging for Amharic using conditional random fields.
In: Proceedings of the ACL workshop on computational approaches to Semitic languages,
Ann Arbor. Association for Computational Linguistics, pp 47–54. http://www.aclweb.org/
anthology/W/W05/W05-0707

49. Fissaha S, Haller J (2003) Amharic verb lexicon in the context of machine translation.
In: Proceedings of the TALN workshop on natural language processing of minority languages,
Batz-sur-Mer

50. Forsberg M (2007) Three tools for language processing: BNF converter, functional morphol-
ogy, and extract. PhD thesis, Göteborg University and Chalmers University of Technology

51. Forsberg M, Ranta A (2004) Functional morphology. In: Proceedings of the ninth ACM
SIGPLAN international conference on functional programming (ICFP’04), Snowbird. ACM,
New York, pp 213–223

52. Fraenkel AS (1976) All about the Responsa retrieval project – what you always wanted to
know but were afraid to ask. Jurimetrics J 16(3):149–156

53. Gadish R (ed) (2001) Klalei ha-Ktiv Hasar ha-Niqqud, 4th edn. Academy for the Hebrew
Language, Jerusalem. (in Hebrew)

54. Gambäck B, Olsson F, Argaw AA, Asker L (2009) An Amharic corpus for machine learning.
In: Proceedings of the 6th world congress of African linguistics, Cologne

55. Gambäck B, Olsson F, Argaw AA, Asker L (2009) Methods for Amharic part-of-speech tag-
ging. In: Proceedings of the first workshop on language technologies for African languages,
Athen. Association for Computational Linguistics, Stroudsburg, pp 104–111

56. Gasser M (2009) Semitic morphological analysis and generation using finite state transducers
with feature structures. In: Proceedings of the 12th conference of the European chapter of the
ACL (EACL 2009), Athens. Association for Computational Linguistics, pp 309–317. http://
www.aclweb.org/anthology/E09-1036

57. Gasser M (2011) HornMorpho: a system for morphological processing of Amharic, Oromo,
and Tigrinya, Bibliotheca Alexandrina, Alexandria, pp 94–99

58. Giménez J, Màrquez L (2004) SVMTool: a general POS tagger generator based on support
vector machines. In: Proceedings of 4th international conference on language resources and
evaluation (LREC), Lisbon, pp 43–46

59. Goldberg Y, Tsarfaty R (2008) A single generative model for joint morphological segmen-
tation and syntactic parsing. In: Proceedings of ACL-08: HLT, Columbus. Association for
Computational Linguistics, pp 371–379. http://www.aclweb.org/anthology/P/P08/P08-1043

60. Goldstein L (1991) Generation and inflection of the possession inflection of Hebrew nouns.
Master’s thesis, Technion, Haifa (in Hebrew)

61. Habash N (2004) Large scale lexeme based arabic morphological generation. In: Proceedings
of traitement automatique du langage naturel (TALN-04), Fez

http://www.aclweb.org/anthology/W/W05/W05-0708
http://www.aclweb.org/anthology/W/W05/W05-0708
http://www.aclweb.org/anthology/N/N07/N07-2007
http://www.aclweb.org/anthology/W/W05/W05-0707
http://www.aclweb.org/anthology/W/W05/W05-0707
http://www.aclweb.org/anthology/E09-1036
http://www.aclweb.org/anthology/E09-1036
http://www.aclweb.org/anthology/P/P08/P08-1043


62 S. Wintner

62. Habash N (2007) Arabic morphological representations for machine translation. In: van den
Bosch A, Soudi A (eds) Arabic computational morphology: knowledge-based and empirical
methods. Springer, Dordrecht

63. Habash N (2010) Introduction to Arabic natural language processing. Synthesis lectures
on human language technologies. Morgan & Claypool, San Rafael. doi:http://dx.doi.org/10.
2200/S00277ED1V01Y201008HLT010

64. Habash N, Rambow O (2005) Arabic tokenization, part-of-speech tagging and morphological
disambiguation in one fell swoop. In: Proceedings of the 43rd annual meeting of the
Association for Computational Linguistics (ACL’05), University of Michigan. Association
for Computational Linguistics, Ann Arbor, pp 573–580. http://www.aclweb.org/anthology/P/
P05/P05-1071

65. Habash N, Rambow O (2006) MAGEAD: a morphological analyzer and generator for
the Arabic dialects. In: Proceedings of the 21st international conference on computational
linguistics and 44th annual meeting of the Association for Computational Linguistics, Sydney.
Association for Computational Linguistics, pp 681–688. http://www.aclweb.org/anthology/P/
P06/P06-1086

66. Habash N, Rambow O (2007) Arabic diacritization through full morphological tagging.
In: Human language technologies 2007: the conference of the North American chapter of
the association for computational linguistics; Companion Volume, Short Papers, Rochester.
Association for Computational Linguistics, pp 53–56. http://www.aclweb.org/anthology/N/
N07/N07-2014

67. Habash N, Sadat F (2006) Arabic preprocessing schemes for statistical machine translation.
In: Moore RC, Bilmes JA, Chu-Carroll J, Sanderson M (eds) HLT-NAACL, New York.
The Association for Computational Linguistics

68. Habash N, Rambow O, Kiraz G (2005) Morphological analysis and generation for Arabic
dialects. In: Proceedings of the ACL workshop on computational approaches to Semitic
languages, Ann Arbor. Association for Computational Linguistics, pp 17–24. http://www.
aclweb.org/anthology/W/W05/W05-0703

69. Habash N, Gabbard R, Rambow O, Kulick S, Marcus M (2007) Determining case in Arabic:
learning complex linguistic behavior requires complex linguistic features. In: Proceeings
of the 2007 joint conference on empirical methods in natural language processing and
computational natural language learning (EMNLP-CoNLL 2007), Prague

70. Habash N, Rambow O, Roth R (2009) MADACTOKAN: a toolkit for Arabic tokenization,
diacritization, morphological disambiguation, POS tagging, stemming and lemmatization.
In: Choukri K, Maegaard B (eds) Proceedings of the second international conference on
Arabic language resources and tools, Cairo, The MEDAR Consortium

71. Habash N, Diab M, Rabmow O (2012) Conventional orthography for Dialectal Arabic.
In: Proceedings of the language resources and evaluation conference (LREC), Istanbul

72. Habash N, Eskander R, Hawwari A (2012) A morphological analyzer for Egyptian Arabic.
In: Proceedings of the twelfth meeting of the special interest group on computational
morphology and phonology, Montréal. Association for Computational Linguistics, pp 1–9.
http://www.aclweb.org/anthology/W12-2301

73. Haertel RA, McClanahan P, Ringger EK (2010) Automatic diacritization for low-resource
languages using a hybrid word and consonant CMM. In: Human language technologies: the
2010 annual conference of the north american chapter of the Association for Computational
Linguistics, HLT ’10, Stroudsburg. Association for Computational Linguistics, pp 519–527

74. Hajič J (2000) Morphological tagging: Data vs. dictionaries. In: Proceedings of ANLP-
NAACL conference, Seattle, pp 94–101

75. Hajič J, Hladká B (1998) Tagging inflective languages: prediction of morphological categories
for a rich, structured tagset. In: Proceedings of the 36th annual meeting of the Association for
Computational Linguistics and 17th international conference on computational linguistics,
Montreal. Association for Computational Linguistics, Stroudsburg, pp 483–490. doi:http://
dx.doi.org/10.3115/980845.980927, http://dx.doi.org/10.3115/980845.980927

http://dx.doi.org/10.2200/S00277ED1V01Y201008HLT010
http://dx.doi.org/10.2200/S00277ED1V01Y201008HLT010
http://www.aclweb.org/anthology/P/P05/P05-1071
http://www.aclweb.org/anthology/P/P05/P05-1071
http://www.aclweb.org/anthology/P/P06/P06-1086
http://www.aclweb.org/anthology/P/P06/P06-1086
http://www.aclweb.org/anthology/N/N07/N07-2014
http://www.aclweb.org/anthology/N/N07/N07-2014
http://www.aclweb.org/anthology/W/W05/W05-0703
http://www.aclweb.org/anthology/W/W05/W05-0703
http://www.aclweb.org/anthology/W12-2301
http://dx.doi.org/10.3115/980845.980927
http://dx.doi.org/10.3115/980845.980927
http://dx.doi.org/10.3115/980845.980927


2 Morphological Processing 63

76. Harley HB (2006) English words: a linguistic introduction. The language library. Wiley-
Blackwell, Malden

77. Hetzron R (ed) (1997) The Semitic languages. Routledge, London/New York
78. Hulden M (2009) Foma: a finite-state compiler and library. In: Proceedings of the demonstra-

tions session at EACL 2009, Athens. Association for Computational Linguistics, pp 29–32.
http://www.aclweb.org/anthology/E09-2008

79. Hulden M (2009) Revisiting multi-tape automata for Semitic morphological analysis and
generation. In: Proceedings of the EACL 2009 workshop on computational approaches to
Semitic languages, Athens. Association for Computational Linguistics, pp 19–26. http://www.
aclweb.org/anthology/W09-0803

80. Itai A, Wintner S (2008) Language resources for Hebrew. Lang Resour Eval 42(1):75–98
81. Johnson CD (1972) Formal aspects of phonological description. Mouton, The Hague
82. Kammoun NC, Belguith LH, Mesfar S (2010) Arabic POS tagging based on NooJ grammars

and the Arabic morphological analyzer MORPH2. In: Proceedings of NooJ 2010, Komotini
83. Kaplan RM, Kay M (1994) Regular models of phonological rule systems. Comput Linguist

20(3):331–378
84. Karttunen L, Beesley KR (2001) A short history of two-level morphology. In: Talk given at

the ESSLLI workshop on finite state methods in natural language processing. http://www.
helsinki.fi/esslli/evening/20years/twol-history.html

85. Kataja L, Koskenniemi K (1988) Finite-state description of Semitic morphology: a case study
of ancient Akkadian. In: COLING, Budapest, pp 313–315

86. Kay M (1987) Nonconcatenative finite-state morphology. In: Proceedings of the third confer-
ence of the European chapter of the Association for Computational Linguistics, Copenhagen,
pp 2–10

87. Khoja S (2001) APT: Arabic part-of-speech tagger. In: Proceedings of the student workshop
at the second meeting of the North American chapter of the Association for Computational
Linguistics (NAACL2001), Pittsburgh

88. Kiraz GA (2000) Multitiered nonlinear morphology using multitape finite automata: a case
study on Syriac and Arabic. Comput Linguist 26(1):77–105

89. Koskenniemi K (1983) Two-level morphology: a general computational model for word-form
recognition and production. The Department of General Linguistics, University of Helsinki

90. Lafferty J, McCallum A, Pereira F (2001) Conditional random fields: probabilistic models for
segmenting and labeling sequence data. In: Proceedings of the 18th international conference
on machine learning (ICML-01), Williamstown, pp 282–289

91. Lavie A, Itai A, Ornan U, Rimon M (1988) On the applicability of two-level morphology to
the inflection of Hebrew verbs. In: Proceedings of the international conference of the ALLC,
Jerusalem

92. Lee J, Naradowsky J, Smith DA (2011) A discriminative model for joint morphological
disambiguation and dependency parsing. In: Proceedings of the 49th annual meeting of
the Association for Computational Linguistics: human language technologies, Portland.
Association for Computational Linguistics, pp 885–894. http://www.aclweb.org/anthology/
P11-1089

93. Maamouri M, Bies A, Buckwalter T, Mekki W (2004) The Penn Arabic treebank: building a
large-scale annotated Arabic corpus. In: NEMLAR conference on Arabic language resources
and tools, Cairo, pp 102–109

94. Macks A (2002) Parsing Akkadian verbs with Prolog. In: Proceedings of the ACL-02
workshop on computational approaches to Semitic languages, Philadelphia

95. MacWhinney B (2000) The CHILDES project: tools for analyzing talk, 3rd edn. Lawrence
Erlbaum Associates, Mahwah

96. Magdy W, Darwish K (2006) Arabic OCR error correction using character segment correc-
tion, language modeling, and shallow morphology. In: Proceedings of the 2006 conference
on empirical methods in natural language processing, Sydney. Association for Computational
Linguistics, pp 408–414. http://www.aclweb.org/anthology/W/W06/W06-1648

http://www.aclweb.org/anthology/E09-2008
http://www.aclweb.org/anthology/W09-0803
http://www.aclweb.org/anthology/W09-0803
http://www.helsinki.fi/esslli/evening/20years/twol-history.html
http://www.helsinki.fi/esslli/evening/20years/twol-history.html
http://www.aclweb.org/anthology/P11-1089
http://www.aclweb.org/anthology/P11-1089
http://www.aclweb.org/anthology/W/W06/W06-1648


64 S. Wintner

97. Mohamed E, Kübler S (2009) Diacritization for real-world Arabic texts. In: Proceedings of
the international conference RANLP-2009, pp 251–257. http://www.aclweb.org/anthology/
R09-1047

98. Mohamed E, Kübler S (2010) Arabic part of speech tagging. In: Proceedings of the
seventh conference on international language resources and evaluation (LREC’10), European
Language Resources Association (ELRA), Valletta

99. Mohamed E, Kübler S (2010) Is Arabic part of speech tagging feasible without word
segmentation? In: Human language technologies: the 2010 annual conference of the North
American chapter of the Association for Computational Linguistics, HLT’10, Los Angeles.
Association for Computational Linguistics, Stroudsburg, pp 705–708. http://dl.acm.org/
citation.cfm?id=1857999.1858104

100. Nelken R, Shieber SM (2005) Arabic diacritization using weighted finite-state transducers.
In: Proceedings of the ACL workshop on computational approaches to Semitic languages,
Ann Arbor. Association for Computational Linguistics, pp 79–86. http://www.aclweb.org/
anthology/W/W05/W05-0711

101. Netzer Y, Adler M, Gabay D, Elhadad M (2007) Can you tag the modal? You should. In: Pro-
ceedings of the ACL-2007 workshop on computational approaches to Semitic languages,
Prague

102. Nir B, MacWhinney B, Wintner S (2010) A morphologically-analyzed CHILDES corpus
of Hebrew. In: Proceedings of the seventh conference on international language resources
and evaluation (LREC’10), Valletta. European Language Resources Association (ELRA),
pp 1487–1490

103. Ornan U (1985) Indexes and concordances in a phonemic Hebrew script. In: Proceedings
of the ninth world congress of Jewish studies, World Union of Jewish Studies, Jerusalem,
pp 101–108. (in Hebrew)

104. Ornan U (1985) Vocalization by a computer: a linguistic lesson. In: Luria BZ (ed) Avraham
Even-Shoshan book, Kiryat-Sefer, Jerusalem, pp 67–76. (in Hebrew)

105. Ornan U (1986) Phonemic script: a central vehicle for processing natural language – the case
of Hebrew. Technical report 88.181, IBM Research Center, Haifa

106. Ornan U (1987) Computer processing of Hebrew texts based on an unambiguous script.
Mishpatim 17(2):15–24. (in Hebrew)

107. Ornan U, Katz M (1995) A new program for Hebrew index based on the Phonemic Script.
Technical report LCL 94-7, Laboratory for Computational Linguistics, Technion, Haifa

108. Ornan U, Kazatski W (1986) Analysis and synthesis processes in Hebrew morphology.
In: Proceedings of the 21 national data processing conference, Israel. (in Hebrew)

109. Owens J (1997) The Arabic grammatical tradition. In: Hetzron R (ed) The Semitic languages.
Routledge, London/New York, chap 3, pp 46–58

110. Pinkas G (1985) A linguistic system for information retrieval. Maase Hoshev 12:10–16.
(in Hebrew)

111. Ratnaparkhi A (1996) A maximum entropy model for part-of-speech tagging. In: Brill E,
Church K (eds) Proceedings of the conference on empirical methods in natural language
processing, Copenhagen. Association for Computational Linguistics, pp 133–142

112. Roark B, Sproat RW (2007) Computational approaches to morphology and syntax. Oxford
University Press, New York

113. Roche E, Schabes Y (eds) (1997) Finite-state language processing. Language, speech and
communication. MIT, Cambridge

114. Roth D (1998) Learning to resolve natural language ambiguities: a unified approach.
In: Proceedings of AAAI-98 and IAAI-98, Madison, pp 806–813

115. Roth R, Rambow O, Habash N, Diab M, Rudin C (2008) Arabic morphological tagging,
diacritization, and lemmatization using lexeme models and feature ranking. In: Proceedings
of ACL-08: HLT, Short Papers, Columbus. Association for Computational Linguistics,
pp 117–120. http://www.aclweb.org/anthology/P/P08/P08-2030

http://www.aclweb.org/anthology/R09-1047
http://www.aclweb.org/anthology/R09-1047
http://dl.acm.org/citation.cfm?id=1857999.1858104
http://dl.acm.org/citation.cfm?id=1857999.1858104
http://www.aclweb.org/anthology/W/W05/W05-0711
http://www.aclweb.org/anthology/W/W05/W05-0711
http://www.aclweb.org/anthology/P/P08/P08-2030


2 Morphological Processing 65

116. Sadat F, Habash N (2006) Combination of Arabic preprocessing schemes for statistical
machine translation. In: Proceedings of the 21st international conference on computational
linguistics and 44th annual meeting of the Association for Computational Linguistics, Sydney.
Association for Computational Linguistics, pp 1–8. http://www.aclweb.org/anthology/P/P06/
P06-1001

117. Schippers A (1997) The Hebrew grammatical tradition. In: Hetzron R (ed) The Semitic
languages. Routledge, London/New York, chap 4, pp 59–65

118. Shaalan K, Abo Bakr HM, Ziedan I (2009) A hybrid approach for building Arabic diacritizer.
In: Proceedings of the EACL 2009 workshop on computational approaches to Semitic
languages, Semitic’09, Athens. Association for Computational Linguistics, Stroudsburg,
pp 27–35

119. Shacham D, Wintner S (2007) Morphological disambiguation of Hebrew: a case study in
classifier combination. In: Proceedings of EMNLP-CoNLL 2007, the conference on empirical
methods in natural language processing and the conference on computational natural language
learning, Prague. Association for Computational Linguistics

120. Shany-Klein M (1990) Generation and analysis of Segolate noun inflection in Hebrew.
Master’s thesis, Technion, Haifa. (in Hebrew)

121. Shany-Klein M, Ornan U (1992) Analysis and generation of Hebrew Segolate nouns.
In: Ornan U, Arieli G, Doron E (eds) Hebrew computational linguistics. Ministry of Science
and Technology, Jerusalem, chap 4, pp 39–51. (in Hebrew)

122. Shapira M, Choueka Y (1964) Mechanographic analysis of Hebrew morphology: possibilities
and achievements. Leshonenu 28(4):354–372. (in Hebrew)

123. Silberztein M (2004) NooJ: an object-oriented approach. In: Muller C, Royauté J,
Silberztein M (eds) INTEX pour la linguistique et le traitement automatique des Langues,
cahiers de la MSH Ledoux, Presses Universitaires de Franche-Comté, pp 359–369

124. Smith NA, Smith DA, Tromble RW (2005) Context-based morphological disambiguation
with random fields. In: Proceedings of human language technology conference and con-
ference on empirical methods in natural language processing, Vancouver. Association for
Computational Linguistics, Morristown, pp 475–482

125. Smrž O (2007) ElixirFM: implementation of functional Arabic morphology. In: Proceedings
of the 2007 workshop on computational approaches to Semitic languages: common issues
and resources, Prague. Association for Computational Linguistics, Stroudsburg, pp 1–8

126. Smrž O (2007) Functional Arabic morphology. Prague Bull Math Linguist 88:5–30
127. Soudi A, van den Bosch A, Neumann G (2007) Arabic computational morphology:

knowledge-based and empirical methods. Springer, Dordrecht
128. Sproat RW (1992) Morphology and computation. MIT, Cambridge
129. Tachbelie MY, Abate ST, Besacier L (2011) Part-of-speech tagging for under-resourced and

morphologically rich languages – the case of Amharic, Bibliotheca Alexandrina, Alexandria,
pp 50–55. http://aflat.org/files/HLTD201109.pdf

130. Toutanova K, Manning CD (2000) Enriching the knowledge sources used in a maximum
entropy part-of-speech tagger. In: Proceedings of the 2000 joint SIGDAT conference on
empirical methods in natural language processing and very large corpora, Morristown.
Association for Computational Linguistics, pp 63–70. doi:http://dx.doi.org/10.3115/1117794.
1117802

131. Toutanova K, Klein D, Manning CD, Singer Y (2003) Feature-rich part-of-speech tagging
with a cyclic dependency network. In: NAACL ’03: Proceedings of the 2003 conference of the
North American chapter of the Association for Computational Linguistics on human language
technology, Edmonton. Association for Computational Linguistics, Morristown, pp 173–180.
doi:http://dx.doi.org/10.3115/1073445.1073478

132. Tsarfaty R (2006) Integrated morphological and syntactic disambiguation for Modern
Hebrew. In: Proceedings of the COLING/ACL 2006 student research workshop, Sydney.
Association for Computational Linguistics, pp 49–54. http://www.aclweb.org/anthology/P/
P06/P06-3009

http://www.aclweb.org/anthology/P/P06/P06-1001
http://www.aclweb.org/anthology/P/P06/P06-1001
http://aflat.org/files/HLTD201109.pdf
http://dx.doi.org/10.3115/1117794.1117802
http://dx.doi.org/10.3115/1117794.1117802
http://dx.doi.org/10.3115/1073445.1073478
http://www.aclweb.org/anthology/P/P06/P06-3009
http://www.aclweb.org/anthology/P/P06/P06-3009


66 S. Wintner

133. Tsuruoka Y, Tsujii J (2005) Bidirectional inference with the easiest-first strategy for tagging
sequence data. In: Proceedings of the conference on human language technology and
empirical methods in natural language processing, HLT’05, Vancouver. Association for
Computational Linguistics, Stroudsburg, pp 467–474. doi:http://dx.doi.org/10.3115/1220575.
1220634, http://dx.doi.org/10.3115/1220575.1220634

134. Tsuruoka Y, Tateishi Y, Kim JD, Ohta T, McNaught J, Ananiadou S, Tsujii J (2005)
Developing a robust part-of-speech tagger for biomedical text. In: Bozanis P, Houstis EN (eds)
Advances in informatics. LNCS, vol 3746. Springer, Berlin/Heidelberg, chap 36, pp 382–392.
doi:10.1007/11573036_36, http://dx.doi.org/10.1007/11573036_36

135. Wintner S (2004) Hebrew computational linguistics: past and future. Artif Intell Rev
21(2):113–138. doi:http://dx.doi.org/10.1023/B:AIRE.0000020865.73561.bc

136. Wintner S (2008) Strengths and weaknesses of finite-state technology: a case study in
morphological grammar development. Nat Lang Eng 14(4):457–469. doi:http://dx.doi.org/
10.1017/S1351324907004676

137. Wintner S (2009) Language resources for Semitic languages: challenges and solutions.
In: Nirenburg S (ed) Language engineering for lesser-studied languages. IOS, Amsterdam,
pp 277–290

138. Yona S, Wintner S (2008) A finite-state morphological grammar of Hebrew. Nat Lang Eng
14(2):173–190

139. Zitouni I, Sorensen JS, Sarikaya R (2006) Maximum entropy based restoration of Arabic
diacritics. In: Proceedings of the 21st international conference on computational linguistics
and 44th annual meeting of the Association for Computational Linguistics, Sydney. Asso-
ciation for Computational Linguistics, pp 577–584. http://www.aclweb.org/anthology/P/P06/
P06-1073

140. Zwicky AM, Pullum GK (1983) Cliticization vs. inflection: English n’t. Language 59(3):
502–513

http://dx.doi.org/10.3115/1220575.1220634
http://dx.doi.org/10.3115/1220575.1220634
http://dx.doi.org/10.3115/1220575.1220634
http://dx.doi.org/10.1007/11573036_36
http://dx.doi.org/10.1023/B:AIRE.0000020865.73561.bc
http://dx.doi.org/10.1017/S1351324907004676
http://dx.doi.org/10.1017/S1351324907004676
http://www.aclweb.org/anthology/P/P06/P06-1073
http://www.aclweb.org/anthology/P/P06/P06-1073


http://www.springer.com/978-3-642-45357-1


