Chapter 2
Deployment and Management of Cooperating
Objects

2.1 Overview

Despite the vast amount of past and on-going research in network embedded systems
and pervasive computing, real-world deployments of systems of Cooperating Objects
are largely still limited to research prototypes. Managing, controlling, and verifying
the cooperation and coordination among heterogeneous objects indeed represents a
major challenge when the system is deployed in the field. In this respect, Cooperating
Objects unfortunately inherit issues germane to some of their constituent technolo-
gies, e.g., the lack of visibility into the operation of sensor network systems. This is
caused by some of their distinctive characteristics:

e Cooperating Objects are deeply embedded within the real world to perceive and
control the environment through sensors and actuators. The dynamics of real-
world environments negatively affect the system operation, e.g., because of the
unpredictable behaviour of the wireless medium when radio communication is
used;

e Cooperating Objects are required to go far beyond the simple interactions found in
early deployments of the technologies they build upon. For instance, unlike most
sensor network deployments that essentially revolve around pure data collection,
cooperating objects are required to form highly dynamic distributed systems with
complex interactions;

e Cooperating Objects are often subject to severe resource constraints, €.g., in terms
of computation, communication, and available energy. Constrained resources com-
plicate the programming activity, leading to error-prone software, and make it
difficult to identify and remedy the causes of such failures.
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The characteristics and issues above entail that the development of systems of
Cooperating Objects, their deployment in real-world settings, as well as their man-
agement during the system lifetime represent challenging tasks. First steps have been
undertaken to address some of these challenges [1], yet these are typically isolated
ad-hoc approaches that target only one specific facet of Cooperating Objects. As the
current practice is not sustainable in the long-term and already often proved to be
insufficient even for small-scale deployments, a widespread adoption of cooperating
objects requires a more systematic approach to their deployment and management.
Most importantly, not just one specific technology needs to be taken into account,
but the focus needs to progressively shift towards the cooperation of heterogeneous
platforms.

In this chapter, we discuss how the above issues are being tackled in the deploy-
ment and management of real-world systems of Cooperating Objects. We do so by
touching upon diverse application scenarios and requirements, cast in a number of
real settings:

e Section2.2 illustrates efforts in employing Cooperating Objects for monitoring
railway bridges, pointing out the challenges in data fidelity and distributed process-
ing that need to be overcome for these systems to be practically effective;

e The application of Cooperating Objects in industry automation systems is the
subject of Sect.2.3, where the use of service-oriented architectures is suggested
as a way to overcome real-world integration issues;

e Deployment of Cooperating Objects in harsh settings is discussed in Sect. 2.4 for
a case of light-weight bird tracking, where weight of the hardware platform and
connectivity issues represent the major obstacles to overcome;

e Section 2.5 reports on the use of Cooperating Objects in public safety scenarios,
involving diverse computing platforms with distinctly different capabilities and
the additional complexity due to mobile settings;

e Finally, Sect.2.6 illustrates deployments of Cooperating Objects in operational
road tunnels, highlighting the challenges stemming from their integration in control
systems and with industry strength equipment.

Overall, the rest of the chapter exemplifies the issues at stake in deploying and
managing systems of Cooperating Objects. Remarkably, practical and effective solu-
tions in these areas are key requirements for eventual market adoption.

2.2 Monitoring Railway Bridges

2.2.1 Overview

An area where Cooperating Object technology holds great potential is the monitoring
of civil structures. A challenging scenario in this domain is given by existing bridges.
Particularly, we investigated the application of Cooperating Object technology for
monitoring railway bridges in Stockholm, Sweden.



2.2 Monitoring Railway Bridges 15
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The gradual deterioration and failure of existing structures indeed requires the
need for Structural Health Monitoring (SHM) systems to develop a means to monitor
the health of structures. Dozens of sensing, processing and monitoring mechanisms
have been implemented and widely deployed with wired sensors. On the other hand,
the complexity and high installation costs of traditional wired SHM systems have
posed the need for replacement with more flexible technology, such as Cooperating
Objects.

To counteract memory and energy limitations, thus prolonging the lifetime of
battery-operated systems, we designed low-power and memory efficient data process-
ing algorithms. We used in-place radix-2 integer Fast Fourier Transform (FFT). Our
implementation increases the memory efficiency by more than 40 % and saves proces-
sor power consumption over the traditional floating-point implementations.

A standard-deviation-based peak picking algorithm is next applied to measure
the natural frequency of the structure. The algorithms together with Contiki, a light-
weight open source operating system for networked embedded systems, are loaded
on Z1 Zolertia sensor nodes, shown in Fig.2.1. Analogue Device’s ADXL345 digi-
tal accelerometers are used to collect vibration data, to validate the algorithms using
supported beam structures.

2.2.2 Application Description/Usage Scenarios

The process of implementing a damage characterization and detection method for
engineering structures is referred to as SHM. Although it had been quite a while since
the science of SHM was introduced, its use was confined to mechanical structures
like airplanes, ships, and machinery. It had never been applied to civil engineering
structures until its significance was noticed in the frequent deterioration and collapse
of large and prestigious structures. These issues emerge in particular for bridges,
whose possible failure may have significant costs, both in economical and social
terms.
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Fig. 2.2 The catastrophic failure of I-35W Bridge in Minneapolis, Minnesota after collapse on
August 1, 2007 (left); the Point Pleasant Bridge collapse (right)

For example, the catastrophic failure of the I-35W Bridge in Minneapolis,
Minnesota (Fig. 2.2 left) and of the Point Pleasant Bridge (Fig. 2.2 right) were among
the episodes that alerted the need to devise some means to tell the status of struc-
tures before anything could happen. Consequently, a continuous health monitoring
of structures is important and a mechanism should be developed by which efficient
and accurate information could be obtained.

Researchers, hence, gave special attention to this discipline and proposed their
own customized solutions in the last couple of decades, which eventually gave birth to
the science of SHM. SHM is thus one of the multidisciplinary fields that integrates the
contribution of researchers from mechanical, electrical, civil and architecture engi-
neering. Due to the easy access, the wide availability and reliability of wired systems,
many solutions have been implemented using wired sensor networks. However, high
installation cost, the need for specially trained professionals for set up and mainte-
nance, and their bulky nature made the research community to divert its attention
towards more flexible technologies, of which Cooperating Objects are an example.

Nevertheless, systems of Cooperating Objects deployed for SHM also present
significant technical challenges. For example, it is essential to improve the energy
efficiency as the energy budget is usually extremely limited, and yet sensed data in
SHM applications comes in high volumes that are expensive to transmit wirelessly.
On the other hand, memory and computing limitations also reduce the nature and
amount of local processing that can be possibly performed aboard the devices to save
on wireless transmissions.

Based on the above considerations, we aimed at understanding to what extent
existing data processing algorithm can run on Cooperating Object devices in the face
of computing and memory limitations, studying the trade-off in terms of quality of the
output versus resource consumption. We then designed and implemented customized
algorithms to better fit the characteristic constraints of Cooperating Object devices.
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Fig. 2.3 Main section of the test beam, with wired monitoring system attached

Fig. 2.4 Wooden support of
the test beam. A Zolertia Z1
node is also visible, attached
at the end of the beam

2.2.3 Key Results and Lessons Learned

Our customized FFT and peak-picking algorithm implementations serve as a foun-
dation to get the study of more complex algorithms started on a sound basis. To that
end, we validated the performance of our implementations against a wired vibration
monitoring system deployed in a university engineering lab.

We used a simple steel beam, shown in Fig. 2.3, supported by wooden blocks at
the two ends. The length of the beam was 3.5 m and the wooden supports, shown in
Fig.2.4 at the end points add a total of 18 cm. The whole span was further divided into
five sub-parts of each 66.4cm long. By placing our sensor nodes on these sub-parts,
we collected measurements for real-time and offline analysis.

For the wired system, HBM MGC Plus data acquisition system (DAQ) was used.
The system includes a Si-FlexTM MEMS sensor to be firmly attached to the beam
with a heavy electromagnet attachment, a multichannel ADC and a Catman DAQ
software installed on a laptop computer.
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Fig. 2.6 Time domain data from wired and wireless sensors

After collecting time domain data with the wireless sensors, we apply our FFT
implementation and compare the result with the floating-point FFT implementation
in Matlab. Figure 2.5 shows the two next to each other. Our implementation gives
a good approximation of the floating-point FFT on top of saving memory space
and reducing energy consumption. Given the low resolution data from the ADXL35
accelerometer, the most important thing is noting the existence of the resonant peak
frequencies. These points are what domain experts need to know to extract the impor-
tant information to feature the behaviour of a bridge.

On the other hand, a time domain plot of the data from the wired and wireless
systems is given in Fig.2.6. As seen from the figure, the time domain data plot from
the wired system is relatively of better quality than the one from the wireless system,
although the data obtained from the wired and wireless look similar to some extent,
which indicates that both are measuring same vibration data from the bridge.

A closer look into the measurements exposes some of the flaws in the wireless
sensing system. At low amplitudes, the wireless system introduces noise due to the
low resolution (10 bits per sample) of the ADC used in contrast with the 24-bits high
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resolution one used in the wired system. Here, the 14-bits difference in the fidelity of
both data is considered as one of the trade-offs in using wireless sensor system. More
specifically, the difference for the signal quality can be attributed to two factors:

e Noise level: the Si-Flex accelerometer has lower noise level (300 ngrms/Hz) than
that of the ADX1L.345 accelerometer (<1.5LSB rms); hence less amount of noise
is introduced into the measurements of the wired system.

e ADC resolution: the MGC plus DAQ system has a 24-bit ADC which is of much
higher resolution than the ADC found in the ADXL345 accelerometer (10 bits of
resolution for a g-range of 2 g); the more the bit resolution of the ADC, the more
the quantization level of the converter and eventually, this yields digital samples
of higher fidelity.

In summary, we argue that while the software side may already be ready for
real-world deployments, on the hardware side we still require better fidelity sensing
devices able to get closer to the quality of mainstream wired systems. The provision of
such hardware may open market opportunities for this domain, which would instead
remain untapped in the current situation.

2.3 Cooperative Industrial Automation Systems

2.3.1 Overview

The future factory is a complex system of systems, where sophisticated and dynamic
systems interact with each other in order to achieve the goals at system-wide but
also at local level. To realize this, timely monitoring and control as well as open
communication and collaboration in a cross-layer fashion are key issues. Modern
approaches such as the service-oriented architecture (SOA) paradigm when applied
holistically can lead to the desired result [2].

Promising futuristic approaches followed within the EU research projects
SOCRADES (http://www.socrades.eu) and IMC-AESOP (http://www.imc-aesop.
eu) adopt the “collaborative automation” paradigm where the aim is to develop tools
and methods to achieve flexible, reconfigurable, scalable, interoperable network-
enabled collaboration between decentralised and distributed embedded systems
(Cooperating Objects). In particular, the SOCRADES technical approach [3—6] real-
ized a service-oriented ecosystem, where networked systems are composed by smart
embedded devices interacting with both physical and organizational environment,
pursuing well-defined system goals. IMC-AESOP empowered by the advanced of
cutting edge technologies and concepts [7], pushes the interaction and collaboration
capabilities of Cooperating Objects even further by providing an insight how the
future industrial automation systems [8] would interact and how their applications
would benefit.


http://www.socrades.eu
http://www.imc-aesop.eu
http://www.imc-aesop.eu
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In a service-oriented industrial enterprise, the communication and coordination
of activities is done by the engineering associated to the service requesting and offer.
Cooperating Objects that are integrated in this environment can make usage of the
service-oriented mechanism as a mean for cooperation between different autonomous
parts of the system. The current application illustrates the deployment and manage-
ment of service-enabled Cooperating Objects of a pallet-based assembly system
(horizontal cooperation), as well as their integration into the production and enter-
prise resource levels (vertical cooperation). A major benefit of this approach is the
modular system deployment and the usage of service-orientation to establish coop-
erative acts, as well as the integration of heterogeneous resources and information
coming from different layers of the enterprise.

2.3.2 Application Description/Usage Scenarios

The factory of the future will depend on the services for realizing sophisticated
functionalities [2, 5]. Services are basis of a mechanism by which needs and capa-
bilities are brought together, and is a promising way of enabling interoperable interac-
tions among the different cooperating entities. For Cooperating Objects, the principle
of service-orientation can be seen as a mean for realizing cooperation. A Cooperating
Object represents its actions and resources as a set of services that can be used by
other parties e.g., other Cooperating Objects.

As an example, a service-enabled Cooperating Object (as depicted in Figs.2.7
and 2.8) could be a mediator of a conveyor segment; hence it has the ability to
read the sensors and control the actuators of the conveyor, to make it possible to
transport pallets from its input to its output. This forms the internal objective of
the Cooperating Object, but as it operates in a wider context it has also to respect
external/global objectives of the system. The objective and available condition can be
offered as a service to the outside (service: transport pallets), so that possible another
entity (e.g., a pallet) could request it e.g., “Please transport me from point A to point
B”. However to complete the service and also to respect global system objectives,
the conveyor must interact with the availability service from the next transport unit
or workstation connected to its output. This can be seen as the form of collaboration
and automatic rearrangement of services in this system.

The approach for creating complex, flexible and reconfigurable production sys-
tems is that these systems are composed of modular, reusable entities that expose
their production capabilities as a set of services. This composition approach applies
to most levels of the factory floor; simple devices compose complex devices or
machines, which in turn are composed to build cells or lines of a production system
and so on. The same applies to concept of service-oriented production systems and
composing complex services from simpler services.

The application scenario that is realized to demonstrate the integration of service-
enabled Cooperating Objects is based on a customized Prodatec/FlexLink DAS 30—
Dynamic Assembly System. The DAS 30 system is a modular factory
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Fig. 2.8 Service-enabled Cooperating Object for industrial automation

concept platform for light assembly, inspection, test, repairing and packing applica-
tions. Figure 2.7 shows a representation of the modular composition of the system,
using mechanical conveyor modules (C1-C11), lifters (L1 and L.2) and workstations
(W1 and W2).

The service-enabled Cooperating Objects are the host for most of the services
exposed in the system and also responsible for the cooperation and control activities
(Fig.2.8). These devices have two main interfaces: (i) mediating the connection
to the shop-floor industrial equipment via I/O (e.g., lifter) and (ii) managing the
access to the service bus by exposing and requesting services. The web service
infrastructure is based on the SOA4D implementation of DPWS (Device Profile
Web Services) (forge.soa4d.org). The Cooperating Object is configurable with the
dynamic deployment features available via the SOA4D stack. Once on-line, the
Cooperating Object can be discovered (dynamic discovery as defined in the DPWS
protocol) and provided services can be requested; similarly it can also request services
whenever it needs to.
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Fig. 2.9 Configuration and deployment tools for service-enabled Cooperating Objects

For the customization of the Cooperating Object in terms of what it should actually
do, there is the container for the user code and data. These can be any type of
program, for example a reasoning engine with a knowledge base, a script engine that
can interpret uploaded scripts or a model-based orchestration engine for reading a
given work-plan made of services (an orchestration) and execute it. The last option is
used in this work as reference for the system deployment and management. The tool
chain needed for composing systems, creating configuration files and deploying those
files to Cooperating Objects is depicted in Fig.2.9, which illustrates the complete
engineering sequence from the design of the components or the system, passing by
the composition and followed by the deployment to the devices.

As depicted in Fig.2.9, the sequence starts with the design of component work-
flow/model (step 1) once per device type. Composition of the instance models can
be done for one or more system model(s) (step 2) followed by the generation of
configuration files (step 3). This process generates basically two files: (i) a service
class descriptor, containing the referenced port types and a model representation, and
(ii) and a device descriptor, containing the device and hosted service information,
including all discovery hints needed by the execution engine (later on to resolve the
referenced component services). The Cooperating Object must be running and ready
to receive the configuration (step 4). Then the deployment manager id invoked in
order to download the descriptor files for a specific system model to the target device.
This step is repeated until all models are deployed. A new device is generated if there
is server information in the deployment files. The new device can then be used by
any client. Once a target has received the configuration and configured correctly, the
execution start automatically (step 5) by first making announcement and discover
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Fig. 2.10 Manufacturing execution system overview

of needed services (dynamic discovery) and proceeding afterwards to the operation
defined by the orchestration engine.

As can be seen, the current approach is production agnostic, since it does not
contain any information concerning products. This is intended for the separation of
concerns, i.e., production and resource management is handled by other Cooperat-
ing Objects or services in the system. For production management and information
in adjacent to the automation tasks, production orders are integrated via service-
orientation from the enterprise resource planning (ERP) system directly on the shop
floor. The detailed production steps are stored in the Manufacturing Execution Sys-
tem (MES). This MES interacts with the Cooperating Objects via an orchestration
engine and also is in contact with the ERP system as shown in Fig.2.10.

As mentioned, the depicted system utilizes collaboration among multiple layers
i.e., from the devices in the shop-floor, to the MES and the ERP. However to make
this possible two issues need to be resolved i.e., (i) dynamic discovery of Cooper-
ating Objects and their services that do not reside on the same physical location or
network segment, and (ii) seamless interaction among these Cooperating Objects.
To resolve this, we have developed a middleware named SIA (SOCRADES Integra-
tion Architecture) [9] developed explicitly with “device-to-business” integration in
mind [5]. The middleware offers auxiliary services in interacting with devices and
systems. As a complementary functionality a network application (named LDU) is
created, that provides discovery of devices and services via DPWS (Device Profile
for Web Services) on the local network and connection to the enterprise system. The
application is cross-platform ready (prototype is implemented in Java) and hence can
be automatically instantiated by a Cooperating Objector even run manually in the
local network by the factory operator (by just clicking on it in his web browser). Dif-
ferent versions of the application can add-up functionalities, e.g., proxy also specific
enterprise services at the local shop-floor, where they can be discovered and used
by the Cooperating Objects as well as other devices and services. The middleware
provide a means for connecting and managing devices from different physical and
network premises.

The system operates autonomously with information shared among the Cooper-
ating Objects which may spawn various levels e.g., local sensors, MES, enterprise
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systems and services. For instance once the workflow is started, the orchestration
engine requires a decision to proceed further. To identify the pallet to be handled,
the engine gets the RFID number of the associated RFID reader using the matching
service. This pallet ID is used to get the next service from the MES. The returned ser-
vice allows the orchestration engine to proceed. In turn, the pallet is moved on to the
determined facility, e.g., workstation 2. Reaching the destination, the accompanied
production unit is called to execute a service for the given pallet ID. It is possible to
let the system produce the units automatically and allow completing an order without
human interaction. This scenario focusing on cooperation happening horizontally at
“device” level as well as vertically i.e., among devices and systems/services is part
of ongoing efforts to show the added-value benefit that can be materialized with new
disruptive technologies and concepts in the domain of industrial automation.

2.3.3 Key Results and Lessons Learned

Taking the granularity of intelligence to the device level allows intelligent system
behaviour to be obtained by automatically composing configurations of devices that
introduce incremental fractions of the required intelligence. This approach favours
adaptability and rapid reconfigurability, as re-programming of large monolithic sys-
tems is replaced by reconfiguring loosely coupled embedded units, that can then
further enhance their functionalities via cooperation with other devices, systems and
services.

The realized service-oriented solution demonstrated the viability to develop com-
plex distributed and Cooperating Object enabled applications, based on service-
orientation mechanisms that allow the horizontal and vertical integration. In fact, the
service-oriented principles allow to overcome interoperability problems that usually
appear in these environments due to the existence of heterogeneous software and
hardware applications. A key result demonstrated is related to the flexibility and
modularity exhibited by the service-oriented based approach to develop Cooperat-
ing Objects solutions. In fact, the on the fly adaptation to unexpected disturbances
or even to process changes (in these cases requiring off-line adaptation) is a crucial
factor for the success of this kind of solutions.

From a functional perspective, the focus is on managing the vastly increased
number of intelligent devices and mastering the associated complexity. From a run-
time infrastructure viewpoint, the focus is on a new breed of very flexible coopera-
tive real-time networked embedded devices (wired/wireless) that are fault-tolerant,
reconfigurable, safe and secure. Especially auto-configuration management is a new
challenge that is addressed through basic plug-and-play and plug-and-run mecha-
nisms.

From technological and infrastructural viewpoints, the use of the Service-Oriented
Architecture (SOA) paradigm implemented through web service technologies enables
the adoption of a unifying technology for all levels of the enterprise, from sensors
and actuators to enterprise business processes. This means that low cost devices may
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communicate directly to higher-level systems and enhance their own functionality,
which may lead to more adaptive and lightweight approaches.

As already probably noticed, only minimal assumptions about the concrete
production line are present in the whole system design. It is important to recall here
that the operational behaviour of the devices is self-controlled and guided by inter-
nal/external events that also may correspond to service calls. Collaboration among
the stakeholders is made possible with dynamic discovery and seamless interaction
among them. Additionally more sophisticated approaches can be realized based on
orchestration of the existing Cooperating Objects in other Cooperating Objects as
well as with the support of the infrastructure [5]. We have also to point out that this
approach is not limited to the specific depicted example case, but other domains and
systems may also benefit from it, leading to a continuously evolvable infrastructure
[2] that may adapt to the business needs and hence provide a competitive advantage.

2.4 Light-Weight Bird Tracking Sensor Nodes

2.4.1 Overview

There are mainly two methods in use for tracking the behaviour of birds. Birds are
either tracked by means of applying a sensing unit or some sort of marker onto indi-
vidual birds or they are manually tracked by people spotting flocks of birds or maybe
individuals of rare species. Unfortunately, both ways are tedious ways for approach-
ing the problem, in particular, due to the manual labour involved for recollecting units
and the uncertainty in observations when it comes to gathering continuous traces.
Also, these methods are not always sufficient from an application point of view. For
instance, it is difficult to track the influence of man-made structures on the behaviour
of birds that way, which is often necessary information for biologists studying bird
species. The UvA Bird Tracking System (BiTS) aims at overcoming such issues. A
reconfigurable bird-tracking platform has been deployed that allows long-term appli-
cation of harvesting-enhanced GPS-enabled sensor nodes with wireless readout. The
possibility to download birds’ data through permanently installed base stations feed-
ing into a database with a ‘virtual lab’ web front-end allows collecting long-term
high quality traces of birds.

Though the system is readily available and working, implications stemming from
the challenging application context make up a number of interesting research ques-
tions that need to be addressed. Designing a structure that is to be deployed on birds
puts severe constraints on weight, size and durability which in turn translates into
limited performance (i.e., limited data that can be collected or that can be down-
loaded by a base station). In a joint effort with UvA, The research aim is targeting
research and evaluation of cooperative networking behaviour among sensor nodes
on different birds.
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Fig. 2.11 UvA BiTS mote with programming interface exposed and a BlueBean development kit
for radio evaluation networking are shown

Intelligent data dissemination needs to be applied in the context of intermittently
connected networks to improve system performance. This translates into the need
for accurately profiling and modelling the system as well as setting up realistic
and highly scalable simulation environments that need to be tested with hands-on
experience from real-world experiments. This way, applicability of novel protocols
can be tested based upon existing traces and simulated behaviour can be checked by
means of comparison of its characteristics with results from real-word experiments.
Figure2.11 shows an actual hardware prototype and part of a development kit for
evaluating networking protocols. Outcomes from using a simulation environment
will be discussed later.

2.4.2 Application Description/Usage Scenarios

As shown in Fig.2.12, the Uva BiTS architecture comprises multiple bird track-
ing applications and combines their information in a database. Readily completed
applications include a case study on Common Buzzard flight activities at an airport,
migration behaviour of seagulls and their interaction with wind farms. Exemplary
results from tracing flight activities at an airport are shown in Fig.2.13.

For bird tracking applications at airports, options like manual bird spotting, using
marking or sensing devices without radio communication are out of the question
due to hard real-time constraints. Designing a bird monitor, tracking e.g., flocks of
geese flying low and close to an airport, requires real-time information for avoiding
potentially dangerous bird strikes. Employing a monitor by means of the UvA BiTS
platform might allow to not necessarily track flocks of birds but also to possibly
recognize encounters with base stations deployed around the airport.

One of the main application symbolized in Fig.2.12 is monitoring foraging and
tracking migration of birds. Several applications have been implemented for forag-
ing (e.g., tracking Oystercatcher in the Dutch Wadden Sea) and for studying cross-
continental migration behaviour. For tracking foraging behaviour, it is particularly
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KMZ Generator

Fig. 2.13 GPS trace of Common Buzzard flying at an airport. Taken from [10]

beneficial to have a base station close to where motes have been deployed. For the
case of tracking migration behaviour it usually gets more complicated. Memory load
gets higher between consecutive readouts and cooperative readout among multiple
base stations can be beneficial.

Last but not least, the interaction of birds with man-made structures is being
monitored. Successful traces of seabird-windfarm interactions have been taken at
Orford Ness close to the east coast of England. 25 Lesser Black-backed Gulls have
been attached nodes of the UvA BiTS platform in 2010 and 2011. Interaction with
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wind farms can be an important issue to be considered when it comes to conservation
of birds’ natural habitats. Plans had been made to set up windfarms at Brenner in
western Austria being one of the main transit routes through the Alps. However,
it also one of the main migration routes for birds crossing central Europe through
the Alps. Information that could be collected with the BiTS could be invaluable for
studying how bird migration routes are impacted from men-made structures, but also
from long-term changes of climate conditions.

2.4.3 Key Results and Lessons Learned

System development is challenging because of issues with long-term application life
cycles compared to short-lived state-of-the-art in the rather new field of harvesting-
enabled sensors with hard-to-predict mobility. Setting up a bird-tracking application
may take years of planning and testing of a deployment, because of yet-to-be val-
idated yearly migration patterns of birds. However, history tells us that hardware
components and protocols can be utilized in ever more efficient ways—a couple
of years ago UVA BiTS might not have been considered feasible—which does not
match the speed of possibly adapting the application at hand. Running the system for
years, the information that is traced by birds becomes more and more valuable (i.e.,
long lasting traces allow for more expressive studies of changing bird behaviour) and
therefore newly deployed platforms/applications must not conflict (i.e., be backwards
compatible) with older applications that are still running. This mismatch between
innovation in technology (of course the costumer wants to work with the highest
possible performance for any new platform) and long application lifecycle demands
for careful consideration at every new design step. Existing compatibility between
applications and versions of platforms must not be violated and future compatibility
must not be hindered either—a major demand in the domain of Cooperating Objects.

As being a key element for any wireless Cooperating Objects, communica-
tion standards and respective hardware components and protocol implementations
deserve special consideration when it comes to compatibility in long-term deploy-
ments. In particular in the case of hard-to predict mobility, collecting and reprogram-
ming sensors is not applicable means of avoiding having outdated instances of the
platform in the field. Due to those issues being described above, SerialNet (provid-
ing versatile reconfiguration features) over ZigBee-compliant (with ZigBee being
the only de-facto small-footprint wireless industry standard widely in use) ZigBit
running on a far-spread AVR-based platform (enforcing long lasting support and
further development of the system).

Currently, wireless communication capabilities are made use of for wireless read-
out functionality and eventual multi-hop communication for the non-intermittently-
connected case. This means that first of all, direct (single hop) readout is performed,
and furthermore, readout via relaying nodes (ZigBee router functionality) is possi-
ble as well as long as the end-to-end channel is connected and does not get blocked
by other communication. This raises the question whether data good put could be
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Fig.2.14 Sample evaluation of three gulls’ traces around a base station in Texel (The Netherlands)

increased by means of data muling or message ferrying as known from other sen-
sor network applications encountering the intermittently connected (delay tolerant)
case. Due to the dependable nature of the BiTS application, it is worth it to first study
birds’ mobility and interaction characteristics before deploying a novel networking
approach that is possibly degrading existing deployments’ performance. Figure 2.14
depicts a snapshot of a possible scenario rerunning traces that have actually been
gathered in the wild and three motes’ connectivity among each other and to a base
station while simulating (using a modified Castalia) a wireless readout protocol sim-
ilar to the one being used in the actual application.

Figure 2.14 shows the motes’ distance to their closest base station in the uppermost
plot. Next, other nodes or base stations that could be recognized are being indicated.
Circles at 10/20/30 indicated base station contact, where circles at 10/20/30+i indicate
contact to node ‘i’. The lowermost plot compares the memory load of different motes
given that GPS readings are taken at a constant rate and the mote with the higher
memory load is allowed to offload data if multiple nodes are in base-station range at
the same time. Three key observations can be made from looking at this snapshot of
normalized information.

e There would possibly be ways of improving good put performance if the birds’
movements would have been known in advance. Thus using delay tolerant net-
working approaches might be beneficial for the application. However, irregularity
in the application scenario may drastically change the constraints which need most
attention at a time, as can be seen with the peak load of memory at mote 3—not to
mention the variability of available energy which has been omitted from the plots.

e However, different bird (and even different researcher) behaviour may vary and
lead to different performance among different runs with one and the same protocol.
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Obviously, mote 3 was activated at a way different place than the other motes,
though belonging to the same deployment. Furthermore, mote 2 has hardly any
contact to other birds” motes, though they all have contact to the same base station
on a regular basis.

e The main lesson being learned when inspecting real-world traces is that one is
dealing with a highly dependable system, where it is difficult to tell in advance,
what constraints will be put to their limits to what extent and how often. There-
fore, extensive simulation is necessary before protocol changes or architectural
modifications can be carefully incorporated into the system.

Despite the fact that numerous problems have successfully been overcome as
results of many deployments have shown, there are still a couple of optimizations
that are currently being researched. In particular energy and memory efficiency and
capacity receive attention as does networking and data communication good put.

2.5 Public Safety Scenarios

2.5.1 Overview

Public safety organizations such as first responders, fire fighters, police, and military
units need robust communication networks to cooperate and transmit different kind
of sensor information. These networks have to be reliable even when a pre-deployed
infrastructure has been destroyed. Wireless multi-hop networks (such as Mobile
Ad-Hoc Networks (MANETS), Wireless Sensor Networks (WSNs), and Wireless
Mesh Networks (WMNs)) promise to meet the requirements of (1) spontaneous
deployment, (2) being independent of any kind of existing infrastructure, and (3)
robustness in the sense of self-organization and self-healing by their very definition.
These networks have been a topic in research for more than a decade now. Recently,
real-world tests and deployments provided valuable insights concerning challenges
and future research directions. There are different mesh and WSN testbeds (e.g., [11—
13]) enabling the research community to run tests in static and mobile real-world
networks. However, concerning Cooperating Objects in public safety scenarios, there
are significantly different requirements:

e Spontaneous deployment,
e Mobility typical for public safety scenarios,
e Typical applications and traffic for public safety scenarios.

Due to these characteristics, deploying Cooperating Objects in public safety net-
works is a huge challenge. To overcome this challenge, we have developed Bonn
Sens [14, 15] a prototype based on commercial off-the-shelf (COTS) hardware. The
prototype comprises typical public safety applications and is spontaneously deploy-
able. Furthermore, this prototype enables us to perform evaluations with real public
safety end-users, e.g., by deploying the prototype in manoeuvres.
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Fig. 2.15 BonnSens System

2.5.2 Application Description/Usage Scenarios

In public safety scenarios there are two common requirements for a command and
control system: (1) push-to-talk voice communication and (2) map-based (blue-force)
tracking. To communicate inside a team, squad, group, and platoon as well as in
between, talk-group based voice communication is important. In addition, the central
as well as local command and control points need to know where their units are.

A suitable Cooperating Objects architecture for this scenario consists of a dis-
tributed sensor and collector application for the transmission of sensor data over a
wireless multi-hop network as shown in Fig.2.15. The Cooperating Objects sup-
port the collection of sensor information (e.g., Global Positioning System (GPS),
accelerometers, and magnetometer) via modular extensible plugins. The transmitted
sensor data is stored in a database by the collector on the central side. Depending
on the type of sensor, the data can be visualized using different types of Graphical
User Interface (GUI). Some kind of data, such as positioning data, may be addition-
ally processed by a sensor data fusion algorithm before being visualized on a map.
The voice communication is realized using a peer-to-peer based voice application
including a dynamic group management on the lightweight nodes.

The architecture consists of two components: (i) portable, lightweight sensing
objects and (ii) fully-equipped collector objects. For the sensor objects standard
COTS smartphones are used. Smartphones available on the market today, often come
with integrated sensors like GPS, accelerometer, and compass. These devices are an
ideal basis for the lightweight objects. However, smaller WSN mote like objects can
in principle be used as well.
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We have implemented a client sensing application for Android OS. Figure2.15
shows a screenshot of our sensor data client application BonnSens. For the light-
weight objects, we currently use the HTC Desire smartphone. For the fully-equipped
collector objects, standard COTS laptops can be used. In the last deployments, we
used a Dell Precision M4300 (Intel Core 2 Duo T7700 2,4 GHz and 4 GB RAM)
running Ubuntu 10.04. All objects (lightweight and fully-equipped) can be used as
relays depending on the topology. However, to gain more robust topologies and to
safe energy at the lightweight objects, we add a mesh backbone. For the mesh, we
tested two kinds of COTS mesh routers: (1) ASUS WL-500g Premium V1 (266 MHz
ARM processor, 8 MB Flash memory, 32 MB RAM) and (2) ALIX 3D2 (500 MHz
AMD Geode LX800, 1 GB Compact Flash memory, 256 MB RAM). In both routers
we use WiFi-cards with Atheros chipsets (TP-LINK TL-WN660G). For an easy on-
site deployment an infrastructure-independent power support is a requirement. Thus,
we use motorbike-batteries with 12 V-20 Ah. Using these batteries, we can run the
mesh backbone for more than 12h without any infrastructure.

For the relaying we implemented a multicast routing approach, as both core appli-
cations, voice communication and blue-force tracking, imply multicast. The voice
application is group-based. Thus, it can be efficiently realized by multicast-groups.
In some public safety scenarios, there may be several fully-equipped objects with
a demand for a visualization. As multicast routing protocol we chose the reactive
On-Demand Multicast Routing Protocol (ODMRP) [16]. ODMRP is a mesh-based
approach based on scoped flooding. A selected subset of nodes forwards the packets.
We chose ODMRP as it showed promising results in public safety specific simula-
tive performance evaluations [17]. Furthermore, it showed to behave quite reliable
even under attacks like sinkholes, as the mesh structure provides robustness against
the attraction of routes. We implemented ODMRP using the Click modular routing
framework [18]. The Click user-space mode enables us to run ODMRP on the mesh
routers as well as on Android phones.

To provide functionalities for sensors such as registering at a receiver, timestamp-
ing of sensor data, synchronization of all nodes, as well as providing sensor manage-
ment functions, we specified and implemented the Sensor Data Transmission and
Management Protocol (STMP) [19]. In order to realize a consistent implementa-
tion of STMP for lightweight as well as for fully-equipped objects, we modularized
STMP by implementing it as a commonly usable library in C named libSTMP.
Client applications may thus be programmed either using the device specific API
(e.g., Android API for the deployment on smartphones) or using native C code (e.g.,
for the deployment on a laptop) both accessing the same STMP library.

To support tracking of a sufficient accuracy even in complex scenarios such as
urban canyons, appropriate sensor data fusion algorithms have been integrated. As
shown in [20] a standard Kalman filter [21] may suffer significantly from Out-of-
Sequence (OoS) measurements. An Accumulated State Density (ASD) methodology
[22] which allows to calculate the impact on all states within a given time window
proved to be a valuable alternative.
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2.5.3 Key Results and Lessons Learned

We present the lessons learned during our deployments. To get feedback on our
approaches as early as possible, we started to deploy early versions of our architecture
in manoeuvres. We deployed mesh backbones as well as portable, lightweight sensing
nodes. The latter ones are smartphones carried by the units. To date, we have done
spontaneous deployments in four manoeuvres in cooperation with the Johanniter
Academy in Miinster (Germany) on the manoeuvre ground of the institute of fire-
fighting. During these manoeuvres, we had to learn several lessons that we will
discuss now. By doing so, we will also describe challenges typical for public safety
networks and systems.

As portable, lightweight sensing objects, smartphones are used in our system.
Many smartphones on the market today have integrated sensors like GPS. Thus, these
devices seem to be an ideal basis for the map based tracking part of our command
and control system. However, just visualizing raw GPS positions of all lightweight
objects is not sufficient for the requirements in public safety scenarios. An accuracy
of 1m is typically requested. Such an accuracy is challenging on typical manoeuvre
sites due to obstacles, etc. that may temporarily prevent the proper reception of a
GPS signal. Thus, the raw positions have to be filtered and fused. Using standard
filters such as a Kalman filter in the system yields to new challenges such as OoS
measurements (cf. [20]). The filters need to be optimized for the usage in typical
multi-hop networks.

For the measurements as well as for the units that want to use the command and
control system, it is important that all objects do not run out of battery. If necessary,
single batteries have to be exchanged. For doing so, it is important to know the
objects that have battery problems. Thus, we learned that the most important sensor
data to be aware of during a deployment is the battery power of the devices deployed.
Furthermore, energy awareness in general is very important.

Some voice messages and sensor information transmitted may have higher impor-
tance than others. This becomes relevant especially when the data rate is limited due
to sub-optimal signal propagation characteristics or resource constrained nodes. Fur-
thermore, when messages are transmitted as broadcasts on the link layer, the basic
rate is used. This may lead to additional rate limitation. Thus, data prioritization or,
more general, communication and sensor management needs to be implemented. In
our system, we implemented the Sensor Data Transmission and Management Proto-
col (STMP) [19] to take care of prioritization as well as communication and sensor
management.

Especially in early deployments, it is important to save all data locally as
well—just in case there is a problem with the network (e.g., limited data rates).
This also allows for an easier debugging. However, when relying on local logs, non-
synchronized clocks may be a challenge. Furthermore, approaches well-described
in the literature and evaluated in simulations or labs, may not run very well in real
deployments. For example, links may be extremely variable which yields suboptimal
performance of some approaches.
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2.6 Road Tunnel Monitoring and Control

2.6.1 Overview

State-of-the-art solutions for road tunnel lighting either use pre-set light levels based
on date and time, or adjust the lights based on an open-loop regulator relying on
an external sensor. Both solutions disregard the actual lighting conditions inside
the tunnel, and may endanger drivers or consume more power than needed. The
solution developed within the TRITon (7 rentino Research and Innovation for Tunnel
Monitoring, triton.disi.unitn.it) project deployed a WSN along the tunnel walls to
measure the light intensity and report it to a controller, which closes the loop by
setting the lamps to match the lighting levels mandated by law. Unlike conventional
solutions, our system adapts to fine-grained light variations, both in space and time,
and dynamically and optimally maintains the legislated light levels. This enables
energy savings at the tunnel extremities, where sunlight enters, but it is also useful
inside the tunnel to ensure the target light levels even when lamps burn out or are
obscured by dirt. The overall architecture for adaptive lighting, of which the WSN
is an integral element, was awarded a European patent in March 2012.

The system was developed with the goal of reducing the management costs of
road tunnels and improving their safety. Our WSN-based control system has been
installed since August 2010 in an operational tunnel on a high-traffic freeway, where
it has been running without intervention. Our contributions range from hardware to
software, with the former built on top of our TeenyLIME middleware. Based on
measurements and calculations, the energy consumption in our tunnel is up to 50 %
less than a solution with standard technologies.

2.6.2 Application Description/Usage Scenarios

The system as shown in Fig.2.16 contains many components working in concert
to monitor and control the loop. The principal element collecting the light values
inside the tunnel is a WSN composed of approximately 90 nodes divided between
the two carriageways of the tunnel. The sensed values are collected by four gateways,
combined with the value of an external luminance sensor and sent to an industrial
PLC. The PLC implements a centralized control logic to determine the lamp levels
required to meet the legislated levels and sends commands to the individual lights to
establish these levels. In addition, a SCADA subsystem is connected to the PLC and
provides an interface to the human operator for visualization and manual control.
The WSN nodes are functionally equivalent to TelosB motes, equipped with an
MSP430 microcontroller, a Chipcon 2420 radio chip, and an on-board inverted-F
microstrip antenna. A custom sensor board is attached and contains 4 ISL.29004
digital light (illuminance) sensors, and 1 TC1047A temperature sensor. Each node
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is powered by 4 Duracell Procell D-size batteries and placed inside an IP65 (water
and fireproof) polycarbonate box with a transparent cover.

We also placed four Verdex-Pro embedded computers by Gumstix to serve as
the gateway nodes collecting light samples. These are powered and connected via
Ethernet to the PLC and SCADA.

The software installed on the motes runs on top of TinyOS [23]. However, unlike
the vast majority of other deployments where application and system software sit
directly on the operating system, we built on top of the TeenyLIME [24] middleware
(teenylime.sourceforge.net).

This choice was motivated by the fact that TeenyLIME was used successfully by
our group in another long-term, real-world deployment for structural health monitor-
ing [25], where its higher-level abstractions were shown to reduce the overall code
footprint, allowing one to pack more functionality on memory-restricted nodes.

The main software components are for sensing, data collection and data dissemi-
nation. Sensed light values are reported by each node every 30 s, however the reported
value is computed over multiple samples from each of the four sensors, eliminating
outliers and averaging the remaining samples. To collect the data over multiple hops,
we implemented our own tree-based collection protocol that uses LQI to measure
link quality. This is motivated by the experimental observation that the resulting trees
are similar to those obtained with ETX-based protocols, but with much less overhead
[26]. Our protocol also supports multiple sinks, with the best sink being identified
implicitly by choosing as parent the neighbour with the smallest node-to-sink routing
cost. By periodically refreshing the tree, the routing paths adjust to changes in the
topology and all nodes will automatically recover in case a sink fails. Finally, we use
a hop-by-hop recovery mechanism to ensure data reliability. The last component,
data dissemination, is used to dynamically reconfigure system parameters such as
the sampling frequency.
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2.6.3 Key Results and Lessons Learned

Our experiences from more than two years of working in actual tunnels are reported
next.

Our final deployment is on a high-traffic road, therefore carrying out experiments
on this site would have been impractical due to the need to partially or totally block
the road. Therefore, we obtained access to a shorter, lower-traffic tunnel that served as
a testbed we could more easily access to run experiments. These tests were critical to
test the stability of the system, evaluate the energy consumption, and establish critical
application-level parameters. In this test scenario we were able to identify critical
problems in both the hardware and software which could not have been detected in
a testbed environment. For example, the mounting mechanism attaching the original
sensor board to the mote was affected by vibrations caused by traffic in the tunnel.
The sensor boards installed in the final system have a different mounting mechanism
that does not suffer from this problem. While the tests were invaluable, there were
still differences between the test tunnel and the final tunnel. Specifically, in the test
tunnel, 44 nodes were spread along 132 m instead of the target 630 m. While we
performed a few tests with the target node density to understand the behaviour of
the routing protocol, we could not anticipate all issues that arose in the final test
tunnel. For example, while our estimates for node lifetime were accurate, we saw an
unexpected pattern of node death in the final tunnel.

We designed our system to support the needs of the adaptive lighting application.
However, in the course of the project, we used the same system to test an innovative
system for fire detection as well as to monitor carbon monoxide levels inside the
tunnel. The former was done with minor modifications to the original system, e.g.,
increasing the sampling frequency and separating out the infrared component from
the light sensors. By doing so, we were able to accurately track the location of a
propane flame on the back of a firetruck as it moved through the tunnel. For CO
detection, we designed a new sensor board with a CO sensor, then used the backbone
of light sensors to transmit the CO data to the gateways.

As this system is installed in a real road tunnel, controlling lights that funda-
mentally affect the safety of the drivers, it is important that the system function at
all times. While it is possible to signal the failure of a single node, indicating that
it should be repaired, the system must continue to function. In case of significant
failures, the system can fallback to using whole-tunnel pre-set light levels, but single
node failures must be compensated. Therefore, the node density must be sufficient
that a single node failure does not disconnect the tree. Further, we introduced multiple
gateways in each tunnel in order to survive single gateway failures.

As designed, our system has node lifetimes above one year. However, additional
studies done by our group have shown that we can increase lifetime by applying
model-driven data acquisition, a technique that aims to reduce the amount of data
reported by each node. At each node, a model predicts the sampled data; when the
latter deviate from the current model, a new model is generated and sent to the data
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sink. With a simple derivative-based prediction model that is easy to implement on
the limited capacity WSN nodes, our experiments suggest that the system lifetime
can be tripled [27].

2.7 Conclusions

As a result of the efforts described above and of the general state of the art, many
of the research questions related to deployment and management of Cooperating
Objects are now well understood, while the corresponding solutions are still slowly
making it into mainstream practice.

The missing tile to the puzzle, which is going to boost the acceptance of Coop-
erating Objects technology and correspondingly open new market avenues, lies in
the standardization and integration of the methodologies at stake, which still partly
represent ad-hoc or isolated efforts. Establishing a sound basis in the deployment and
management of Cooperating Objects will indeed lessen the burden to create products
out of research prototypes.
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