
Chapter 2
Co-modelling and Co-simulation in Embedded
Systems Design

John Fitzgerald and Kenneth Pierce

2.1 Introduction

This chapter introduces the first basic concepts of co-modelling and co-simulation,
including notions of system, model and co-model, simulation and co-simulation,
etc. It also describes the ways in which co-modelling and co-simulation can be
integrated with established development processes such as IEEE 15288 (Systems
and Software Engineering—System Life Cycle Processes, [45]) and IEEE 12207
(Systems and Software Engineering—Software Life Cycle Processes, [44]).

The collaborative development of an embedded system requires productive
interaction between engineers from very different backgrounds. Control engineering
and software engineering have matured over many decades, each with its own
philosophy, methods and terminology, and so it is necessary to clarify the common
ideas that underpin co-modelling and co-simulation. This chapter introduces
these concepts, including the ideas of system (Sect. 2.2), model (Sect. 2.3), co-
model (Sect. 2.4), co-simulation (Sect. 2.5) and design space exploration (DSE)
(Sect. 2.6). Realising collaborative modelling and co-simulation within established
development processes is considered in Sect. 2.7. Finally, Sect. 2.8 provides a
summary of the chapter.

2.2 Systems and System Boundaries

We build models in order to assist in the design of systems. We regard a system as
an entity that interacts with other entities, including hardware, software, humans
and the physical world [6]. The system may itself be a group of interacting or

J. Fitzgerald (�) • K. Pierce
Newcastle University, Newcastle upon Tyne, UK
e-mail: john.fitzgerald@newcastle.ac.uk; kenneth.pierce@newcastle.ac.uk

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems,
DOI 10.1007/978-3-642-54118-6__2,
© Springer-Verlag Berlin Heidelberg 2014

15

mailto:john.fitzgerald@newcastle.ac.uk
mailto:kenneth.pierce@newcastle.ac.uk


16 J. Fitzgerald and K. Pierce

interdependent items forming a coherent whole [4]. The system boundary defines a
frontier between the system and the entities that form its environment. The developer
can exercise some choice over the design of entities within the boundary of a
system of interest. By contrast, the laws governing the behaviour exhibited by the
environment are beyond the developer’s direct control.

In an embedded system, the entities within the system boundary may be digital
computing elements or physical elements such as machines. The environment
provides stimuli to the system, and the resulting behaviour of the system, visible at
its boundary, is termed its response. Embedded control systems are typically thought
of as being composed of a controller and plant (“that part of the system which is to
be controlled” [43]). The controller contains the control laws and decision logic that
affect the plant directly by means of actuators and receive feedback via sensors.

Experience suggests that, while control engineers and software engineers might
broadly agree on these definitions, they will have a natural bias towards some
aspects of a system. For example, software engineers may see the environment as
everything outside of the computing part of the system, including the plant, whereas
control engineers may focus mainly on the plant as the system. Communication is
therefore required in a co-modelling project to ensure common understanding of
where the boundaries of influence and responsibility lie in the design process.

2.3 Models

In this book, we focus on the use of models to describe designs during product
development. The act of creating models is called modelling. A model is an abstract
description of the reality of a putative system [4]. The model is abstract in the
sense that it omits details that are not relevant to the purpose for which the model
is constructed. For example, a model of an aircraft flight control system intended
to ensure smooth response to pilot commands may omit details of the cockpit
layout, but would instead focus on the commands that can be generated to the
control surfaces. Models that are expressed with sufficient clarity and precision
may be analysed to confirm or refute the presence of desirable characteristics or
the absence of undesirable properties. This helps developers to control risk by
providing assurance of design characteristics before expensive commitments are
made to implementation in target software and hardware.

A model may contain representations of the system, environment and stimuli.
We regard a model as being competent for a given analysis if it contains sufficient
detail to permit that analysis. Models may be analysed by inspection or by formal
mathematical analysis. Many models are also executable in that they may be
performed as a sequence of instructions on a computer; such an execution is termed
a simulation because the behaviour exhibited is intended to simulate that of the
system of interest.



2 Co-modelling and Co-simulation in Embedded Systems Design 17

A design parameter is a property of a model that can be used to affect the model’s
behaviour, but which remains constant during a given simulation. A variable is part
of a model that may change during a given simulation. We consider code generation
to be the process of implementing a controller by automatically translating a model
into some programming language, which can then be executed on the real computer
hardware of the system.

Embedded systems contain both computing and physical elements, and so we
expect that the models describing these may be quite different in nature. In this
book, we focus on two types of models: discrete-event and continuous-time. In
a Discrete-Event (DE) model, “only the points in time at which the state of the
system changes are represented” [83, p. 15]. Discrete-event modelling is typically
used for digital hardware [5, 68, 93], communication systems [11] and embedded
software [22]. In a continuous-time simulation, “the state of the system changes
continuously through time” and the simulator “approximates continuous change by
taking small discrete-time steps.” [83, p. 15]. By contrast, Continuous-Time (CT)
modelling uses differential equations and iterative numerical integration methods
to describe dynamic behaviour. Continuous-time modelling is typically used for
analogue circuits and physical processes [68].

In this book, we set out to answer the question of whether DE and CT models
can be brought together in a sound but practically useful way to enable the early-
stage collaborative design of embedded systems. The principles and experience
that we present can be applied to a wide range of notations and tools for CT
and DE modelling. However, we have realised the approach using two particular
formalisms: bond graphs [16] for CT models and Vienna Development Method
(VDM) [37, 50] for DE models. VDM models can be constructed, animated and
analysed using the tool Overture [56], which provides natural features for describing
software structures and behaviour. In the same way, bond graphs can be supported
by the tool 20-sim [53] which allows the plant to be modelled in several ways,
including the powerful bond graph [52] notation which permits domain-independent
description of the dynamic behaviour of physical systems. Overture and 20-sim
are linked by a new tool Crescendo, which allows models expressed in the two
formalisms to be developed and analysed together. 20-sim and VDM are introduced
in depth in Chaps. 3 and 4.

2.4 Co-models

Our approach focuses on system models that are composed of a DE model of
a controller and a CT model of a plant (called “co-models”). The DE and CT
models are referred to as constituent models. Interaction between the DE and CT
models is achieved by executing them simultaneously and allowing information to
be shared between them. This is termed a co-simulation. In a co-simulation, a shared
variable is a variable that appears in and can be accessed from both the DE and CT



18 J. Fitzgerald and K. Pierce

Fig. 2.1 A co-model
contains a DE model, contract
and CT model, where a
contract may define shared
design parameters, events and
shared variables

models. Design parameters that are common to both models are called shared design
parameters.

An event is an action that is initiated in one model and leads to an action in
another model. Events can be scheduled to occur at a specific time (time events)
or can occur in response to a change in a model (state events). State events are
described with predicates (Boolean expressions), where the changing of the local
value of the predicate during a co-simulation triggers the event. In our approach,
events are referred to by name and can be propagated from the CT model to the DE
model within a co-model during co-simulation.

Shared variables, shared design parameters and events define the nature of
the communication between constituent models. These elements are recorded in
a contract. For each shared variable, only one constituent model (either the DE
model or the CT model) can be assigned write access to it. In the control-system
paradigm, shared variables written to by the DE constituent model are called
controlled variables and those written to by the CT constituent model are called
monitored variables. A co-model is a model comprising a DE model, a CT model
and a contract. Note that a co-model is itself a model and that a co-simulation can
therefore be described succinctly as the simulation of a co-model. Figure 2.1 shows
a hierarchy of the concepts relating to a co-model.

For a co-model to produce simulation results that can be trusted, the DE and
CT models must be consistent with each other. Consistency can be broken down
into two parts. If the models agree on the identities and data types of the variables,
parameters and events they share, then they can be said to be syntactically consistent
with each other. Achieving syntactic consistency alone does not guarantee that the
simulation will produce trustworthy results. For that, the models must also agree on
the semantics of the variables, parameters and events they share. If this agreement is
reached, then the models can be said to be semantically consistent. Only when the
DE and CT models are both syntactically and semantically consistent can we say
that the co-model is consistent and only then can we place trust in its results.

We suggest that at a minimum, the following should be recorded about each
contract entry: the SI unit1 or a simple description of the value, the range of
acceptable values, the datum against which a value is measured, and the direction

1The international system of units, abbreviated SI from French: le Système Internationale d‘unité.



2 Co-modelling and Co-simulation in Embedded Systems Design 19

of positive values or frame of reference. For events, the condition under which the
event will be raised should be recorded.

2.5 Co-simulation

Simulation of a co-model is called co-simulation. During a co-simulation, the DE
and CT simulator have responsibility over their own constituent models. Overall
coordination and control of the co-simulation is the responsibility of a co-simulation
engine that is responsible for the progress of time in the co-simulation and the
propagation of information between the two constituent models. Crescendo acts as
such an engine.

Figure 2.2 shows the co-simulation engine interacting with the DE and CT
simulators. The thin arrows indicate inputs and outputs. The DE simulator and CT
simulator take a DE model and a CT model as input, respectively. The contract and
scenario are inputs to the co-simulation engine. The co-simulation engine outputs
a set of results (representing the outcome of the co-simulation). The large arrows
indicate data exchange between the co-simulation engine and the two simulators.
Note that the simulators do not communicate directly.

2.5.1 The Co-simulation Engine

In order to allow coherent co-simulations to be performed, it is important to recon-
cile the semantics of two simulation tools from different domains. This is covered
in detail in Chap. 13. At this stage however, it is useful to understand the basic
operation of a co-simulation and of the co-simulation engine.

Figure 2.3 presents an abstract view of the synchronisation scheme underlying
co-simulation between a DE simulation of a controller (top) and a CT simulation of
the plant (bottom). The DE and CT simulators are coupled through a co-simulation
engine that explicitly synchronises the shared variables, events and simulation time
in both linked simulators (the co-simulation engine is not shown explicitly in
Fig. 2.3).

Each simulator maintains its own local state and internal simulation time. At the
start of a co-simulation step, the two simulators have a common simulation time.
The granularity of the synchronisation time step is always determined by the DE
simulator. The scheme does not require resource-intensive rollback of the simulation
state in either of the simulators, though rollback may occur inside the CT simulator
in order to catch the precise time requested, i.e., when a zero crossing is detected in
an equation.

At the start of a co-simulation step (tn in Fig. 2.3), the DE controller simulation
sets the controlled variables and proposes a duration by which the CT simulation
should, if possible, advance. The co-simulation engine communicates this to the CT



20 J. Fitzgerald and K. Pierce

Fig. 2.2 Tool-oriented perspective of a co-model

Fig. 2.3 Example of the synchronisation scheme for DE-CT co-simulation

simulator. The CT simulator then tries to advance its simulation time. If an event
occurs before the proposed step time is reached, the CT simulator stops early so that
the DE simulator can be notified of the event. Once the CT simulator has paused
(reaching internal time tnC1), the monitored variables and the actual time reached in
the CT simulation are communicated back to the DE simulator. The DE simulation
then advances so that both DE and CT are again synchronised at the same simulation
time.

2.5.2 Scenarios

To predict a system’s behaviour using a co-model, it is often desirable to try out
a number of scenarios, in which certain aspects are varied, including the setup of
the modelled system, simulated user inputs and faulty behaviours. Scenarios are
realised through two features: co-simulation settings and scripts.

The settings configure a co-simulation before it begins. Settings include: selec-
tion of alternative components from within the co-model, setting of design param-



2 Co-modelling and Co-simulation in Embedded Systems Design 21

Fig. 2.4 A co-simulation run
comprises a co-model,
scenario and test results

eters and various tool settings such as co-simulation duration and choice of
integration method. A script may influence a co-simulation during execution by
changing selected values in the co-model. Values can be changed at a given time
or in response to a change in the state of the co-model. Scripts are defined using a
simple, domain-specific language and are contained in a script file. Scripts can be
used for fault activation and for mimicking user inputs.

The output from a co-simulation is a test result that may take a number of forms,
including a log of data collected during execution for post-simulation analysis and
2D and 3D plots to allow the simulation state to be observed more immediately.
The combination of a co-model, a scenario and corresponding test results is called a
co-simulation run. Figure 2.4 shows the elements that make up a co-simulation run.

2.6 DSE and Automated Co-model Analysis

As with other model-based techniques, our approach can be used to test a range of
solutions while creating a design. We view the design space as the set of possible
solutions for a given design problem, and DSE is an activity undertaken by one
or more engineers in which they build and evaluate co-models in order to reach a
design from a set of requirements. Where two or more co-models represent different
possible solutions to the same problem, these are called design alternatives. Each
choice involves making a selection from alternatives on the basis of criteria that are
important to the developer (e.g. cost, performance). The alternative selected at each
point constrains the range of designs that may be viable next steps forward from the
current position. Figure 2.5 illustrates the concept of DSE.

Crescendo aids DSE by supporting the selection of a single design from a set of
design alternatives. Ranges of values for co-model settings can be defined before
the tool then runs co-simulations for each combination of these settings. Results
are stored for each simulation and can be analysed. We call this feature Automated
Co-model Analysis (ACA). One way to analyse these results is to define a ranking
function, which assigns a value to each design based upon its ability to meet the
requirements defined by an engineer. After the co-simulation runs are complete, the
ranking function can be applied to the test results, producing analysis results that
contain the rank(s) for each design simulated.



22 J. Fitzgerald and K. Pierce

Fig. 2.5 A cone symbolising exploration of the design space and showing how a choice restricts
further designs, inspired by [25]

2.7 Co-simulation in Practice

The approach proposed in this book may be applied in the concept definition phase
in order to clarify the optimal system-wide requirements for the different parts of
the system. However, if it is not just used at the very early stages, successful use
of our approach may rest on integrating it with existing practices and design flows.
This may involve identifying how our approach fits existing standards. In addition,
decisions about how to bring co-simulation into a design flow where model-based
design is already used will depend on the type of modelling done previously and
the competencies of the team involved. These two aspects also influence the choice
of how to build an initial co-model. We offer some insights into these points in the
following sections.

2.7.1 Where Does Co-simulation Fit with Existing Practice?

To help with getting a feel for how our approach can fit into existing prac-
tices, we describe how our approach can map into the following existing stan-
dards: ISO/IEC and IEEE standards 15288 [45] and 12207 [44]; ECSS-E-40 [31]
(Space Engineering—Software) and ECSS-Q-80 [32] (Space Product Assurance—



2 Co-modelling and Co-simulation in Embedded Systems Design 23

Software Product Assurance); and the Rational Unified Process (RUP) [82]. While
these workflows differ in some ways, they have two key properties in common. First,
none of them mandates a particular life cycle, but they do identify processes that
form part of life cycles that can be implemented in specific projects and development
organisations. Second, it is possible to identify a core progression of processes that
holds across all of these frameworks.

The development process starts with something that needs to be designed. This
is the operational concept in IEEE 12207 or the vision in the RUP. From here, each
of the four workflows defines a set of ordered processes that occur in a development
(described as requirements for engineering in ECSS-E-40, technical processes in
IEEE 15288/12207 or phases in the RUP). All four workflows broadly adhere to the
following pattern:

• Requirements definition
• Requirements analysis
• Architectural design
• Detailed design
• Implementation/integration
• Operations and maintenance

Collaborative modelling and co-simulation can have a role in several of these
processes. In IEEE 12207 terms, Crescendo forms an “enabling system” supporting
parts of the system life cycle, notably the more upstream technical processes.
Relating to ECSS-E-40, Crescendo represents “tools and supporting environment”.
We would expect to see applications of collaborative modelling and co-simulation
as follows:

Requirements definition: During elicitation, requirements can be expressed in
terms of a co-model or less formally. Defining the stakeholder requirements
includes the development of representative activity sequences or use cases
that help to elicit requirements that may not have been explicitly stated. Co-
models and co-simulation can help subsequent analysis and maintenance of
stakeholder requirements to identify areas of ambiguity or incompleteness and
the communication back to the stakeholders of these deficiencies. A collaborative
model allows system elements, continuous and discrete, to be expressed in
the appropriate formalism, and this in turn may make the model easier to
communicate to stakeholders.

Requirements analysis: A representation of a technical system (for example, a
co-model) that meets the requirements is built. It involves the definition of
a system boundary and of the services delivered at the boundary. Here, we
expect co-models to be valuable in considering in depth alternative boundaries
and functions. IEEE 15288 states that “System requirements depend heavily
on abstract representations of proposed system characteristics and may employ
multiple modelling techniques and perspectives to give a sufficiently complete
description of the desired system requirements” (IEEE 15288, Clause 6.4.2.3).



24 J. Fitzgerald and K. Pierce

Architectural design: This process involves the allocation of responsibilities to
units in a solution architecture, each unit having defined internal or external
interfaces. From the perspective of co-simulation, the key part of this process
is the evaluation of alternative design solutions. Expressed as co-models, these
alternatives can form the basis of trade-off and risk analyses.

Detailed design: Here, the design of the units in a solution architecture is built. By
this stage, a single design should have been chosen from the set of alternatives.
The constituent models of the co-model can then be used to explore the detailed
design of the chosen solution and co-simulation used to test the evolving
design.

2.7.2 Developer Background and Legacy Models

The choice of how to begin co-modelling can be influenced by the skills of the
development team and whether or not legacy models exist. Legacy models are
models that already exist and that relate to the system under design. These might
include existing models of the system as a whole in a single formalism; models of
a part of the system, such as a CT plant model; models of potential components
of the system; or models of other systems or components that relate to the system
under design. Legacy models, such as existing plant models, might be used directly
or could simply be used as a reference. Another potential source of modelling
information is in the form of prior art, existing implementations or other prototypes;
these can provide valuable measurements or simply inspiration. It is useful to
identify these models and sources before modelling begins.

The skill set of the co-model development team is another factor that can
influence the way in which our approach is adopted. Perhaps, the “ideal” make-
up for a team would be a group of experienced modellers from both the DE and
CT domains who understand enough of the mindset within the other domain to
communicate and collaborate effectively. Naturally, the real-world environment is
unlikely to be so idyllic; therefore, it is a good idea to consider the skills of the team
upfront. Software engineers with experience of object-oriented language should not
find the move to VDM-RT difficult. Similarly, experience of other CT formalisms
such as Matlab should permit a smooth transition to 20-sim for modellers. Note,
however, than a team entirely composed of DE or CT experts should be careful not
to be overly biased by their backgrounds.

2.7.3 Paths to Co-modelling

Building a first co-model is a big step towards adopting our approach. We define
three “standard” paths to reach a first co-model, which are based on the structure of
a co-model. Chapter 8 explores the following paths in much greater detail:



2 Co-modelling and Co-simulation in Embedded Systems Design 25

DE-first: Here, initial models are produced in the discrete-event formalism before
introducing a CT model to form the initial co-model. The focus is on developing
the DE controller first.

CT-first: In this approach, initial models are produced in the CT tool, with a DE
model being introduced later to form a co-model. The focus is on modelling the
dynamics of the plant.

Contract-first: In this third approach, a contract is defined initially. The con-
stituent models are then developed separately but concurrently, following the
respective DE-first and CT-first approaches. The contract acts as a guide and
target for constituent model development. This allows for early testing of
constituent models without reliance on a competent counterpart model. The
constituent models are then integrated into a co-model.

2.8 Conclusion

In order to realise the potential of co-modelling and co-simulation technology, we
need to take account of established modelling techniques and practices, rather than
abandoning trusted approaches. In this chapter, we have outlined the concepts,
semantics and pragmatics of co-modelling and co-simulation in our framework.
After introducing the basic concepts, we briefly discussed the mechanics of co-
simulation between DE and CT simulation engines. We indicated the potential of
this approach as a means of exploring alternative designs and described ways in
which this can be aligned with existing design flows, with reference to standard
development processes including IEEE 15288 and 12207. We have only described
the bare bones of the approach; the remaining chapters flesh it out by describing the
DE and CT formalisms on which it has been realised, the tool support developed
and the practical experience of several substantial industrial applications.



http://www.springer.com/978-3-642-54117-9


