Chapter 2
Basic Field-Solver Techniques for RC Extraction

Because 3-D numerical methods accurately model the realistic geometry, they
possess the highest precision. The field solver based on 3-D numerical methods
is not only used as a library-building tool in industrial RC extraction but also of
increasing importance for the modeling and analysis of critical nets or key signal
integrity issues. The major challenge for applying field solver is due to its low
computational speed. Therefore, a lot of research has been devoted to improve
the computational efficiency of 3-D capacitance extraction methods. With these
works and the widely spreading parallel computing techniques, it is now possible to
directly use the field solver in chip-scale extraction tasks. This is strongly demanded
because of the increased accuracy requirement of parasitic extraction under the
nanometer process technologies.

In this chapter, the principle and basic methods of 3-D field solver are to be
introduced, with the emphasis on capacitance extraction. They are the basis of
other RC extraction problems and more cutting-edge techniques for capacitance
extraction. Those problems and techniques will be presented in detail, with the
following chapters of this book.

2.1 Problem Formulation

As it is well known, the capacitor is a kind of circuit elements commonly used in
electric or electronic equipments. It is usually composed of two conductors insulated
from each other. When charged, the two surfaces of the conductors facing each other
carry equal and opposite charges: Q and —Q, respectively (see Fig. 2.1). The electric
potential difference between the two conductors ¢; — ¢, is called the voltage of
the capacitor and is always denoted by V. Experiments, and theoretical analyses
show that, for a capacitor, Q is always proportional to V and thus the ratio Q/V
is a constant determined by the structure of the capacitor. This ratio is called the
capacitance of the capacitor and denoted by C: C = Q/V.
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The SI unit of capacitance is faraday (F). It is the capacitance of a capacitor that
has one coulomb on one of its conductor polar when the potential difference is 1 V.
Other commonly used units of capacitance are pF (107 F), pF (1072 F), and fF
(1075 F).

The capacitance of some simple capacitor can be calculated easily. For example,
for the parallel plate capacitor shown in Fig. 2.1, we have
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where g is the dielectric constant of free space (supposing that the plate’s dimension
is much larger than d). The dielectric constant takes the value
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&, is the relative permittivity of the insulating material, S is the area of the facing
plate, and d the distance between two parallel plates.

Actually, the capacitor has more generalized forms than that described above,
which consists of two insulated conductors. The capacitance of a single conductor
(conductor 1) is defined as if another conductor (conductor 2) was located at an
infinite distance away to form a joint capacitor (conductors 1 + 2). For example, the
capacitance of an isolated conductor sphere with radius of R can be calculated as
C=4megyR.

There are many conductor interconnect wires in an integrated circuit (IC). The
wires are insulated by some dielectric such as oxide SiO,. The capacitance between
any two wires reflects the electrostatic coupling between them. Calculating these
capacitances with high accuracy is very important for the analysis of the circuit’s
performance.

For an N-conductor system, such as the interconnect wires in an IC, an N x N
capacitance matrix [Cijlyxy is defined by

N
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Fig. 2.2 A structure involving 2 X 2 crossover interconnect wires (Reprinted with permission from
Yu and Wang [180] © 2005 John Wiley & Sons)

where C;; (i #j) is the coupling capacitance between conductor i and j and C;; is
called the self-capacitance or total capacitance of conductor i. Q; is the induced
charge on conductor i; ¢; is the electric potential of conductor j (usually the known
bias voltage). Figure 2.2 shows typical crossover wires in VLSI circuit, where the
coupling capacitance between any two conductors needs to be calculated.

Accurate modeling of the wire capacitances in a state-of-the-art IC is not a trivial
task. The capacitance of a interconnect wire is a function of its shape, environment,
distance from the substrate, and distance to surrounding wires. This usually calls
for solving the electrostatic field in a region involving multiple dielectrics. Take
the structure with three dielectric layers in Fig. 2.2 as an example. With one
conductor (called master conductor) setting 1 V and others (called environment
conductors) 0V, the electric potential ¢ is governed by the Laplace equation for
each homogenous dielectric region [70]:

2 2 2

V2¢=a—¢ ¢ a_¢=0 (2.4)

ax2 ~ dyr 0922
Taking into account the boundary conditions of the whole simulated region and
those at the dielectric interfaces, the electrostatic field (potential and field intensity)
can be solved. After that, we can obtain the charges of conductors. Note that the
charge of an environment conductor equals to the capacitance between it and the
master conductor, due to (2.3).

According to the boundary assumptions for the whole simulated region, there are
several different models for capacitance extraction:

¢ The first one is called the infinite-domain model, because in it the electrostatic
field spreads to the infinite, resulting in an infinite problem space.
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e The second is called finite-domain model, where the electrostatic field is
restricted within a finite domain, with the Neumann condition on the outer bound-
ary [164]: d¢/0n = 0. This means the electric field is not able to spread out of the
finite simulated region. The Neumann condition is also called reflective boundary
condition and was introduced as the “magnetic wall” in Hong et al. [61].

e The third boundary assumption employed in capacitance extraction problem is
with a Dirichlet condition at the outer boundary [83]: ¢ = 0. This is the default
setting when employing the floating random walk method (see Sect. 2.5).

It should be pointed out that the infinite-domain model is ideal for simulating
isolated structures, but for the IC capacitance extraction, it is not the case due to the
influence of neighboring conductors. On the other hand, the finite-domain model
considers a part cut from actual layout of IC. However, it assumes a condition not
generally existing. Now, the three models of capacitance extraction are all used,
for different extraction scenarios using different numerical methods. Although they
produce different capacitance results for a given conductor system, the difference
would be negligible if suitable size of the outer boundary is set. In the following
discussions, the numerical methods will be introduced along with their suitable
extraction models.

The background and problem formulations for resistance extraction, substrate
parasitic extraction, and variation-aware capacitance extraction will be presented in
Chaps. 5, 6, and 8, respectively.

2.2 Overview of the Numerical Methods

Basically, the methods for 3-D field solver are classified as the domain discretiza-
tion method, the boundary integral equation method, semi-analytical approaches,
and the stochastic method. The domain discretization method includes the finite
difference method (FDM) [129, 144], the finite element method (FEM) [29, 31,
118, 137, 149, 169], and the method of the measured equation of invariance (MEI)
[73, 88, 142]. The boundary integral equation method includes the method of
moment [60, 124], indirect boundary element method (BEM) [13, 14, 27, 28, 54,
717,78, 86,98-100, 105, 106, 111, 132, 133, 136, 146, 164, 170, 171, 193-196], and
direct BEM [4-6, 37, 46, 58, 63, 72, 89, 179, 181]. The semi-analytical approaches
are combination of the analytical formulas and some traditional numerical methods
[21, 61,151, 152, 199, 200]. The stochastic method is based on the theory of random
walk method [22, 83].

FDM and FEM discretize the whole 3-D simulated domain, thus producing
a linear algebra system with large order. Hence, the computational speed of
these methods is largely limited. However, since both methods are relatively well
established, they are still used in the industry as a reference tool with accurate
values calculated under fine grids. For example, the famous software of 2-D/3-D
capacitance extraction “Raphael” utilizes FDM, and the “Q3D” of Ansoft Corp. is
based on FEM.
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Since the 1990s, the boundary integral equation method (i.e., BEM) has begun
to replace the domain discretization method, thanks to its high efficiency. In both
indirect and direct BEMs, only boundary of 3-D domain is discretized, and a
smaller system of linear equations is obtained. Problems encountered with complex
boundary can also be effectively handled with BEM, with accuracy comparable to
FEM. Thus, BEM with rapid computing techniques has become the focus in the
research of 3-D capacitance field solver.

Below, the basic method of indirect BEM is introduced. The principles of direct
BEM and FRW method are discussed in the following two subsections, respectively.
As for other field-solver methods, the reader is referred to the relevant references
or [180].

2.3 Indirect Boundary Element Method

The indirect boundary method can be regarded as a variation of the method of
moment (MoM). Because only domain boundary needs to be discretized, the
indirect BEM involves much fewer unknowns than FDM and FEM. However, it
leads to a dense coefficient matrix, whose formulation and solution introduce many
difficulties. The innovation of the fast multipole method (FMM), the low-rank
matrix compression method, and the hierarchical method had made the indirect
BEM more applicable. Now, indirect BEM with a fast computing technique has
become a major choice for 3-D field solver. Several commercial capacitance solvers
have been developed based on the advanced indirect BEM approaches [78, 147].
The indirect BEM is also called the equivalent charge method, whose boundary
integral equation involves the surface charge density o (+') as an unknown function:

o(r)= /FG (r.r')o(r')dd’, (rel), (2.5)

where G(r,r’) is the Green’s function and ¢(r) stands for the electrostatic potential at
point r. For free space, G(r,#") = 1/|r —F||; T is the boundary surface. After solving
the surface charge density o (r’), the charge on conductor i can be calculated with

Q=/ o (r')dd, (2.6)
Sa (i)

where S;(i) is the surface of conductor i. We discretize the surfaces of m conductors
into n constant elements (or panels), where charge density is assumed to be element-
wise constant. Then, the potential at the center of the kth panel r; can be expressed
as a sum of the contributions of all panels:

m—Z/ o) 2.7)

r; |"'—"k||



12 2 Basic Field-Solver Techniques for RC Extraction

where o;(r’) is the surface charge density of panel j (I';). Substituting the known
boundary conditions, we obtain a dense linear equation system:

Pg=b, (2.8)

where the coefficient matrix P is dense and nonsymmetric. The Krylov subspace
iterative method, such as GMRES algorithm [126], is usually used to solve the
equation.

For a problem involving multiple dielectrics, the polarization charge density
on dielectric interface needs to be introduced, which contributes to the potential
distribution together with the free charge density on conductor surfaces. Therefore,
the problem becomes equivalent to that in the free space, and the simple free-space
Green’s function is used to form Eq. (2.8). Except for Eq. (2.5) on each conductor
panel, the normal derivative of the potential satisfies

dp4 (r) 99— (r)
Eq =&p )

on, on,

(2.9)

where r is on the interface of two dielectrics with permittivities ¢, and &,
respectively. Here n, denotes the normal to the dielectric interface at r that points
into dielectric a. ¢4 (r) is the potential at r approached from the side of the interface
€4, and ¢ _(r) is the analogous potential for the b side. With (2.9), a discretized linear
equation with variables of charge densities on conductors and dielectric interfaces
can be formed for each dielectric interface panel. They are combined with (2.8) to
obtain a linear equation system with the same number of equations and unknown
variables.

For the multi-dielectric problem, the so-called total-charge Green’s function
approach presented above involves more unknowns at dielectric interfaces. Another
choice to deal with the problem is to employ the multilayered Green’s function.
Then, only the free charge density on conductor surfaces needs to be considered as
unknown function. However, to evaluate the Green’s function for the multilayered
medium, infinite summations are involved, which are computationally expensive.
Oh et al. [105] derived a closed-form expression of the Green’s function for
the multilayered medium by approximating the Green’s function using a finite
number of images in the spectral domain. This greatly reduces the computational
task. Li et al. [86] presented for the first time general analytical formulas for
the static Green’s functions for shielded and open arbitrarily multilayered media.
Zhao et al. [193] proposed an efficient scheme for the generation of multilayered
Green’s functions using a generalized image method. The multilayered Green’s
function is much more complicated than the free-space Green’s function and only
applicable to the simple stratified structure of multiple dielectrics. While for more
complex structures, such as the conformal dielectric, the deduction of the Green’s
function may be impossible.

More research work has been conducted to accelerate the capacitance extraction
using the total-charge Green’s function approach. In 1991, Nabors et al. successfully
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applied the multipole accelerated method, proposed earlier by Greengard and
Rokhlin [57], to 3-D capacitance extraction with the indirect BEM. In the MPA
method, calculation of the interaction between charges [i.e., the coefficients in (2.8)]
is divided into two parts: the near-field computation and far-field computation. For
the near-field computation, the coefficients are calculated directly; for the far-field
computation, the multipole expansion and local expansion are used to accelerate the
computation. Therefore, the CPU time of forming and solving (2.8) with iterative
equation solver is greatly reduced. In the successive works [98, 100], the adaptive,
preconditioned MPA method was developed. Corresponding software prototype
FastCap is shared on the MIT’s website [97] and has become a popular academic
tool of capacitance extraction. Other works on the capacitance extraction using the
multipole accelerated indirect BEM can be found in Beattie and Pileggi [14] and
Pan et al. [106].

In 1998, a fast hierarchical algorithm for 3-D capacitance extraction was
presented on the Design Automation Conference [132] and was later presented
in a journal article [133]. Similar to the fast multipole algorithm, it is based
on indirect BEM and also originated from the fast computation of the N-body
problem [9]. For the singular integral kernel of 1/||r —r’|, it can achieve high
speedup of computation. And only O(N) operations are needed for each iteration
while solver the linear equation system. For other weaker singular kernel, the
efficiency of this method may be reduced. In 1997, Kapur et al. proposed an
accelerating approach based on the singular-value decomposition (SVD) [77]. It
is independent on the kernel and based on the Galerkin method using the pulse
function as the base function. It needs O(N) times operation to construct the
coefficient matrix and O(NlogN) operations to perform an iteration in the equation
solution. Besides, the precorrected fast Fourier transform (pFFT) algorithm [111]
has the same computational complexity, while it is based on the collocation method
for discretization. Other fast computing approaches for indirect BEM include those
based on wavelet transformation [136], multiscale method [146], and the second
kind of integral equation [110].

The aforementioned works on capacitance extraction with indirect BEM all
handle the infinite-domain model. In 1996, Wang et al. improved the multipole
accelerated indirect BEM to make it suitable to handle the finite-domain problem
[164]. And a parallel multipole accelerated 3-D capacitance simulator based on
nonuniformed cube partition was proposed. In Beattie and Pileggi [13], a window
technique is combined with the indirect BEM to reduce its computational expense,
along with an error bound analysis for the capacitance results.

The SVD-based fast approach [77] employs a low-rank matrix compression
technique. This idea has been further developed [15, 16, 78] and evolved to
several commercial capacitance solvers. The recently developed H-matrix-based
fast approaches [27, 28] can be regarded as another way for matrix compression,
which however enable solving the obtained linear system with direct linear equation
solver. Several enhancements have also been proposed for the fast hierarchical
algorithm [133]. In Yan et al. [170], a sparsification technique was proposed for the
coefficient matrix generated from indirect BEM, which also facilitates an efficient
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preconditioning technique for the iterative solution of the linear equation system.
Then, a matrix reduction technique was proposed in Yan et al. [171] to gain further
computational speedup. In Zhou et al. [196], the total-charge Green’s function
approach was combined with the multilayered Green’s function approach to
efficiently handle the realistic interconnect structure with multilayer and conformal
dielectrics. To extend the application of capacitance field solver, a divide-and-
conquer method was proposed in Shi and Yu [134]. It invokes the fast hierarchical
BEM solver and extends it to the extraction task with a whole critical net.

More recently, the parallel computing techniques have been proposed for the
multipole accelerated fast capacitance solver, on platforms of multi-core CPU [54]
or single-instruction-multiple-data (SIMD) graphic processing units (GPUs) [194].

In Chap. 3, the technical details of fast multipole method and low-rank matrix
compression in the indirect BEM capacitance solvers will be presented.

2.4 Direct Boundary Element Method

The direct BEM is based on the direct boundary integral equation (direct BIE) and
suitable for solving 3-D Laplace equation with various boundary conditions [24].
Specifically, the direct BEM is very efficient for handling the finite-domain model
of capacitance extraction.

Within the finite domain that is involved in capacitance extraction (see Fig. 2.2),
electric potential ¢ fulfills the following Laplace equation with mixed boundary
conditions [181]:

s,-V2¢>=0, iIlQ,‘ (l=1,,M)
¢ = ¢o, on I, (2.10)
q=10¢/0n =0, onTl,,

where the whole domain 2 = AL/;Qi and €2; stands for the space possessed by the

ith dielectric. I";, stands for the Dirichlet boundary (conductor surfaces), where ¢ is
known as the bias voltages; I, represents the Neumann boundary (outer boundary
of the simulated region), where electric flux ¢ is supposed to be zero. Here n denotes
the unit vector outward normal to the boundary. At the dielectric interface, the
compatibility equation (2.9) holds.

With the fundamental solution as the weighting function, the Laplace equations
in (2.4) are transformed into following direct BIEs by the Green’s identity [24]:

csul + /q*u"dr = /u*q"dr, (i=1,....M), (2.11)
9Q; 99

where ! stands for the electric potential at collocation point s (in dielectric region i)
and ¢, is a constant dependent on the boundary geometry near to the point s.
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u* = 1/4mr is the fundamental solution of 3-D Laplace equation, whose derivative
along the outward normal direction n is ¢* = Ju*/dn = — (7), 7) J4mr3. ris

the distance from the collocation point s to the point on I'. 92; is the boundary that
surrounds dielectric region i. Note that the fundamental solution u" is actually the
free-space Green’s function in (2.5).

Employing the collocation method after discretizing the boundary, like that in the
indirect BEM, we get a system of linear equations [181]:

Ax = f. (2.12)

Finally, with the preconditioned Krylov iterative equation solver, the normal electric
field intensity on the conductor surface is obtained [181].

In the direct BEM, both variables of potential and field intensity are involved. So,
two kinds of integral kernels are dealt with. Though this is more complex than the
indirect BEM, the direct BEM has its own advantages. Firstly, it is suitable for the
capacitance extraction within the finite domain since two variables are included. On
the second, because the variables in each BIE are within a same dielectric region, it
has a so-called localization character. This character leads to a sparse linear system
for problem with multiple dielectrics.

In the direct BEM, a great deal of time and memory are consumed in forming and
solving the system of discretized BEM equations. Fukuda et al. [46] solved the prob-
lem of 2-D capacitance extraction using the direct BEM. In 1997, Bachtold et al.
extended the multipole method to handle the “potential boundary integral” (whose
kernel is 1/7%) in the direct BEM [4]. An adaptive boundary meshing scheme with
an error indictor was also proposed. What they discussed was the model of multiple
dielectrics within infinite domain. Hou et al. proposed an adaptive 3-D BEM solver
for capacitance extraction [62], whose idea is to automatically meet the specified
accuracy requirement by gradually refining the boundary meshes. In 2000, Gu et al.
extended the fast hierarchical method used in the indirect BEM, making it feasible
to the direct BEM-based capacitance extraction [58].

Yu et al. proposed a quasi-multiple medium (QMM) method, based on the
localization character of direct BEM [181]. The QMM method exploits the sparsity
of the resulting coefficient matrix when handling the multi-dielectric problem.
Together with the efficient equation organization and iterative solving technology,
the QMM-accelerated method greatly reduced the computing time and memory
usage. In Yu et al. [181], an efficient analytical/semi-analytical integration scheme
was also proposed to accurately calculate the boundary integrals under the VLSI
planar process technology. The QMM method has been successfully applied
to the actual 3-D multi-dielectric capacitance extraction [179, 181]. For finite-
domain and multi-dielectric problems, the QMM-based method has shown 10x
speedup and memory saving over the multipole accelerated indirect BEM (FastCap
2.0) with comparable accuracy [179]. Based on the direct BEM, techniques
were recently proposed for fast 2-D capacitance extraction of nanometer VLSI
interconnects [188].
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There is another kind of approach for capacitance field solver, called global
approach. It does not solve the resulting linear system in the usual way. The global
approach discretizes the field equation and converts them to a circuit network of
resistors or capacitors. Finally, with circuit reduction or matrix computation, the
whole resistance or capacitance matrix can be obtained directly. In 1997, Dengi et al.
proposed a global approach (called macromodel method) for 2-D interconnect
capacitance extraction based on direct BEM [36, 37]. Lu et al. successfully extended
the idea of boundary element macromodel to the 3-D case and developed a rapid
hierarchical block boundary element method (HBBEM) for interconnect capacitance
extraction [89]. HBBEM is suitable for extracting the whole capacitance matrix of
an N-conductor system, with faster computational speed than the QMM-accelerated
BEM. It have been extended and applied for the capacitance extraction problem
in analog integrated circuits [176]. Besides, based on HBBEM, an IBM in-house
tool (CSurf) has been developed for extracting the capacitances of interconnect and
packaging structures [72].

In Chap. 4, the major techniques of QMM-accelerated BEM for capacitance
extraction will be presented. Moreover, the fast direct BEM techniques have been
developed for the resistance extraction and substrate extraction problems, which will
be presented in Chaps. 5, 6, and 7.

2.5 Floating Random Walk Method

The FRW algorithm for capacitance extraction, presented in a 2-D version, was
firstly proposed in 1992 [83]. Its basic idea is to convert the calculation of conductor
charge to the Monte Carlo (MC) integration performed with floating random walks.
This can be illustrated with the following equation:

o(r)= ¢ P(r.rMe (rM)dr®, (2.13)
s

where ¢(r) is the electric potential at point r and S is a closed surface surrounding
r. P(r, r'V) is called the surface Green’s function. For a fixed r, P(r, ¥") can be
regarded as the probability density function (PDF) for selecting a random point "
on S. In this sense, ¢(r) can be estimated by the mean value of ¢(r"), providing
sufficient large number of sample points ) on § are evaluated. If S is the surface
of a homogeneous 3-D cube centered at r, P(r, V) only depends on the relative
position of ¥V and is not related to the size of cube [69, 83]. More importantly, this
surface Green’s function can be derived analytically [69] and pre-calculated and
stored as the discrete probabilities for jumping to the discretized cells of the cube
surface.

In the situation that ¢ (V) is unknown, we apply (2.13) recursively to obtain the
following nested integral formula:
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—d PO <1)$£ PO (1 @),
b =G PO ()P PO (0.

(2.14)
pk+D) (r(k)’ r(k+l))¢ (r &) dr 4D . dr @ dr O,

Sk+1)

where SO, (i=1, ...,k + 1) is the surface of the ith cube centered at ¥~ . POGE=D,
r?), (i=1,...,k+ 1), are the surface Green’s functions relating the potentials at
r~D to r®. This can be interpreted as a floating random walk procedure: for
the ith hop of a walk, the maximum conductor-free cube centered at r@! is
constructed, and then a point 7? is randomly selected on the cube surface according
to the discrete probabilities obtained with PO, r?) Note that, to obtain the
probabilities, we only need to consider the normalized unit-size cube for the ith
cube and the corresponding positions of ¥~ and r”) in the unit-size cube. The walk
terminates after k hops if the potential at point #*' is known, e.g., it is on a conductor
surface in the problem of capacitance extraction. With the surface Green’s function
and derived sampling probabilities for a unit-size cube calculated in advance [69],
the major cost of random walk is for geometric operations. After performing many
walks, the mean value of these estimates approximates ¢(r) very well.

For extracting the capacitance, each walk starts from a point on a Gaussian
surface enclosing the master conductor and terminates on a conductor surface after
some successive hops. For each hop of a walk, a conductor-free cube centered at
current location is constructed, and the hop reaches a random point on the cube’s
boundary. The FRW algorithm does not rely on assembling any linear equation
system and has several computational advantages over the deterministic methods:
lower memory usage, more scalability for large structures, tunable accuracy, and
better parallelism.

The 3-D FRW algorithm for capacitance extraction has been developed and
applied to the design and analysis of VLSI circuits [69, 75, 82]. In 2005, Batterywala
et al. proposed several techniques to reduce the variance of MC procedure in the
FRW-based capacitance extraction [12] and further reduce the total computing time.
The FRW algorithm was also extended to handle the floating dummy-fills [11].
In 2008, a technique based on the FRW algorithm was proposed to enable fast
incremental variational capacitance extraction [43]. A general FRW algorithm was
also proposed in El-Moselhy et al. [43] for arbitrary dielectric configuration, where
the whole problem domain was covered by a set of cubic transition subdomains
for which the transition probability is numerically calculated online, rather than
offline. This technique largely reduces the number of hops for a FRW walk, with the
overhead of calculating and storing the transition probabilities for a lot of transition
domains. The general FRW algorithm can be very time-consuming for a large-
scale 3-D problem. A hierarchical FRW (HFRW) algorithm was later proposed
for a fabric-aware extraction problem [44, 45], where the topological variation
rather than the common non-topological variation was considered. Note that the
HFRW is not suitable for the general problem of capacitance extraction, because
an arbitrary structure cannot be regarded as the composition of predefined “motif”
structures. Different from most of FRW-based capacitance solvers which employ
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the cubic transition domain to suit the Manhattan geometry of VLSI interconnects,
the technique using spherical transition domains was investigated in Brambilla et al.
[22, 23].

Compared with the BEM-based techniques, there are much fewer literatures
devoted to the 3-D FRW algorithms for multi-dielectric capacitance extraction. To
fill in the gap between the theory and application of the FRW-based capacitance
solver, a program set called RWCap [125, 187] has been developed since 2012. An
approach to precisely handle the multilayered dielectrics, a novel variance reduction
scheme for acceleration, and a parallel implementation on the multi-core/multi-
CPU platform were presented in Yu et al. [187]. Efficient techniques were also
proposed to parallelize the FRW-based capacitance extraction on GPUs [189]. The
RWCap was further enhanced with a comprehensive space management technique,
which facilitates efficient capacitance extraction of chip-scale large interconnect
structures [190].

The advanced FRW techniques in RWCap will be introduced in the last two
chapters of this book.

2.6 Summary

In this chapter, the problem formulation for the 3-D capacitance field solver is firstly
described. Then, we present a survey on the numerical methods for capacitance
extraction. The principles of indirect BEM and direct BEM are introduced, which
form the basis for the techniques presented in Chaps. 3 and 4. They also provide
a necessary background for the materials in Chaps. 5, 6, 7, 8, and 9. Finally, the
FRW method and its state of the art are briefly introduced. Detailed treatment of
this method will be given in the last two chapters of this book.
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