Chapter 2
Surface-Layer Properties
and Parameterizations

Footprint models are generally based both on parameterizations and simplified
assumptions typically for the lower atmospheric boundary layer. For the experi-
mentalist in need of footprint models, it is important to know the spatial extent and
the range of atmospheric conditions of each footprint model so that the most
appropriate one can be selected for the purpose at hand. This chapter therefore
introduces the reader to the concept of atmospheric boundary layer and parame-
terizations, linking those to footprint models where these parameterizations are used.
More details can be found in textbooks and in relevant papers (Stull 1988; Garratt
1992; Kaimal and Finnigan 1994; Arya 1999, 2001; Hatfield and Baker 2005; Foken
2008; Monteith and Unsworth 2008; Wyngaard 2010; Moene and van Dam 2014).

2.1 Atmospheric Boundary Layer and Scales

The atmospheric boundary layer is the lowest layer of the troposphere near the
ground where the friction decreases with height. In that layer, the wind velocity
decreases significantly from the geostrophic wind above the boundary layer to the
wind near the surface and the wind direction changes counter-clockwise on the
Northern hemisphere by up to 30°-45°. The upper boundary is a mostly static
stable layer (inversion) characterized by intermittent turbulence. The exchange
processes between the atmospheric boundary layer and the free troposphere take
place in the entrainment zone (Fig. 2.1). The thickness of this layer is approxi-
mately 10 % of the atmospheric boundary layer, which has a thickness of about
1-2 km over land and 0.5 km over the oceans. In strong stable stratification, its
thickness can be as little as 10 m.

In addition, the diurnal cycles of solar radiation, temperature, humidity, and
wind are also highly variable (Stull 1988), see Fig. 2.2. After sunrise, the atmo-
sphere is warmed up by the heat transported from the surface upward and the
inversion layer created during the night breaks up. The new layer is very turbulent,
well mixed (mixed layer) and topped by the entrainment zone. Shortly before
sunset, the stable (nightly) boundary layer develops near the ground. It has the
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Fig. 2.1 The troposphere and its two parts: the atmospheric boundary layer and the free
atmosphere (Stull 2000)
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Fig. 2.2 Daily cycle of the structure of the atmospheric boundary layer (Stull 2000), EZ
Entrainment zone

characteristics of a surface inversion and spans only approximately 100 m in
depth. Above this layer, the mixed layer of the day is not very turbulent and is
called the residual layer. The latter is capped by a free (capping) inversion—the
upper border of the boundary layer (Seibert et al. 2000). At sunrise, the growing
mixed layer rapidly erodes both the stable boundary layer and the residual layer.
On overcast days, the life time of the residual layer is longer and the boundary
layer is more layered than during sunny convective days.

On days with high solar irradiation, the layer structure is destroyed by con-
vective cells. These occupy relatively small updrafts areas and develop typically
over larger areas with uniform surface heating in relation to the surrounding areas
like land-lake or dry-wet areas. This is according to modeled studies over areas
larger than 200-500 m (Shen and Leclerc 1995).

In the upper boundary layer (upper layer, Ekman layer) the change of wind
direction takes place in the lowest 10 %. That region is called the surface or the
Prandtl layer (Fig. 2.3). Its height is approximately 20-50 m in the case of
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Fig. 2.3 Structure of the atmospheric boundary layer (Foken 2008)
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Fig. 2.4 Highly variable structure of the atmospheric boundary layer and of the boundary layer
height measured with a Lidar (Behrendt et al. 2009, Published with kind permission of
© International Society for Optics and Photonics, 2009. All Rights Reserved)

unstable conditions and a few meters in stable stratification. It is also called the
constant flux layer because of the assumption of nearly constant fluxes with height.
In this layer, the vertical wind profile is logarithmic (inertial sublayer). This
assumption forms the basis of similarity theory, first attributed to Monin and
Obukhov (1954). Because of this height invariance in energy and mass fluxes,
these fluxes can be measured anywhere within the surface layer. The very thin
viscous and laminar (term used for the flow field) or molecular layer (term used
for scalars, is not very relevant for measurements but nevertheless used in several
models (Fig. 2.3). According to the similarity theory by Monin and Obukhov
(1954), a layer with a thickness of approximately 1 m (dynamical sublayer) is not
influenced by atmospheric stability—this layer is nearly always neutral. In the real
atmosphere the atmospheric boundary layer is highly variable (Fig. 2.4), which
can partly described in footprint models (Kljun et al. 2002; Steinfeld et al. 2008).

Atmospheric processes are characterized by time scales extending from seconds
(e.g. turbulent exchange) to several days (e.g. Rossby waves, horizontal
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Fig. 2.5 Temporal and spatial scales of atmospheric (turbulent), plant (physiological), and soil
processes. Atmospheric processes (Orlanski 1975) are given in light blue squares of one order of
magnitude (from micro y to meso o). Forest canopy related transport processes comprise turbulent
transport in canopy (white star), vertical advection in canopy (white circle), transport above
canopy (white diamond), coherent structures (blue double arrow), footprint averaged turbulent
flux (white square), and horizontal advection at canopy top (white triangle). The scales of plant
processes, relevant for energy and matter exchange with the atmosphere (Schoonmaker 1998), is
the spotted area, those of soil processes (Bloschl and Sivapalan 1995; Vogel and Roth 2003) are
shown by the brown framed (Foken et al. 2012, designed by E. Falge, modified, Published with
kind permission of © Copernicus Publications, distributed under the Creative Commons
Attribution 3.0 License, 2012. All Rights Reserved)

advection), and from millimetres (e.g. smallest eddies) to the size of high and low
pressure areas (up to 10 x 10 km*). For atmospheric processes, scales (defined
e.g. by Orlanski 1975) range between 10°—107 m and 10°~10° s, respectively (see
Fig. 2.5, diagonal orientated boxes). Atmospheric scales of exchange processes of
energy and mass related to the issue of this book comprise both turbulent transport
and coherent structures inside and above canopies, footprint-related turbulent
fluxes, and horizontal advection in and at the canopy top in a range between
10°~10* m and 10°-10* s, respectively.
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In contrast, soil and plant processes cover similar time scales but smaller length
scales. While flux measuring methods (like the eddy-covariance technique) are
working in the typical atmospheric scale mainly the micro-a, 3, ¥ scales dependent
on the measuring height, the footprint method is a tool to average the smaller soil
and plant scales with the atmospheric scales typically on the micro-o, B scale. This
is in a simplified format shown in Fig. 2.5. Because most footprint models assume
a homogeneous surface, special area-averaging techniques must be used, which is
a topic of Sect. 2.5.

2.2 Turbulence Parameterization

Footprint models rest on the assumptions of vertical profiles of wind, temperature
and scalar as well as profiles of turbulence parameters. These depend on fluxes of
momentum, sensible and latent heat or on the concentration of trace gases. Since
turbulence variables are often limited, they must be parameterized using other
meteorological data. The basis for this lies in the typical similarity or simplifi-
cations of the latter. The most important is the flux-profile similarity and the flux-
variance similarity. The first is identical with the Monin-Obukhov similarity
theory (Monin and Obukhov 1954; Foken 2006), which expresses the relationship
between the turbulent flux and the vertical gradient of its state parameter and the
gradient of the wind velocity under the assumption of a stratified surface layer. A
more simple relation is the well-known logarithmic profile according to Prandtl
(1925) in neutral conditions. Both can be simplified using the Bowen-ratio simi-
larity (Bowen 1926), i.e. the ratio of two fluxes is proportional to the difference of
its state parameters between two levels mathematically. The flux-variance simi-
larity describes the relation between the turbulent flux and the variance of the state
parameter (Obukhov 1960) which is often also a function of stability in the surface
layer. Both similarity relations will be described below in addition to often used
empirical functions. The similarity theory based on the assumption of horizontal
homogeneity, low vegetation, and steady state conditions. These assumptions are
often not fulfilled and limit the application of footprint models, as turbulence
properties and variables are typically inhomogeneous in the nature.

2.2.1 Flux-Gradient Similarity

According to Prandtl (1925) and its mixing length theory for neutral conditions,
the turbulent fluxes follow the flux-gradient similarity or the so-called K-approach.
In general terms, K represents the sum of the molecular diffusion and the turbulent
diffusion coefficient. Because the turbulent coefficient is up to five orders of
magnitude larger than the molecular coefficient, only the latter is used. This
however does not apply to the viscous sublayer. The turbulent fluxes are
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proportional to the gradient of the state variable with the turbulent diffusion
coefficient K. Therefore, the momentum flux 7, the sensible heat flux Qg and the
mass flux Q, (for water vapour the latent heat flux Q) are

- ou
T =pul = —pu'w = me—u (2.1)
0z
oT
On =c,pW'T' = —cppKHa— (2.2)
Z
— oc
Q= pwi' = —pK; 7, (2.3)

where K,,, Ky and K, are the turbulent diffusion coefficients for momentum,
sensible heat and trace gases, p is the air density, ¢, is the specific heat for constant
pressure, u is the horizontal wind velocity, T is the temperature, c is the trace gas
concentration and w’, /', T' and ¢’ are the turbulent fluctuations of the vertical and
horizontal wind components, the temperature and the trace gas concentration. The
equation for the friction velocity u- is only valid, if u is aligned in the direction of
the mean wind velocity. This can be expressed in Cartesian coordinate as

w. = [@w) +(7w)’] (2.4)

where are ¥'w’ and Vv'w' are the two components of the momentum tensor in
the direction of the horizontal wind components u and v and w/T’ and w'c’ are the
temperature and concentration flux with the vertical wind component w, the tem-
perature T and the concentration of a trace gas (e.g. water vapour) c. The averaging
operator obeys the Reynolds averaging of the total flux

W =XW+ x'w, (2.5)

where x can be replaced by the variable of the mean quantity of interest and x’ the
instantaneous component. Because of the assumption that w = 0, the total flux can
be replaced by the turbulent flux, which can be measured as a covariance x'w’
(with the eddy-covariance method). This assumption is far from trivial, since it is
seldom fulfilled for several reasons in the surface layer including surface hetero-
geneity, vegetation, topography, or instrumental reasons (Aubinet et al. 2012). To
realize this, the coordinate system must be rotated into the streamlines (Kaimal and
Finnigan 1994; Wilczak et al. 2001; Finnigan et al. 2003). Furthermore, there are
instances in the stable boundary layer where Eq. 2.5 must see the addition of a
wave component (Foken and Wichura 1996; Durden et al. 2013). The wave
component is embedded in the signal and is superimposed to the turbulent flux.

The relation between the turbulent diffusion coefficient for momentum K,,, and
heat Ky is given by the turbulent Prandtl number
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Km = Pr, . KH (26)

which is Pr, ~ 0.8. The relation between the turbulent diffusion coefficients of
momentum and water vapour is called the turbulent Schmidt number Sc,. In the
case of neutral stratification, K,, can be written according to the concept of the flow
near the wall with the von-Karman constant x (Prandtl 1925):

K,=kK- -7 u,. (2.7)

Combining these relations expressing the turbulent diffusion coefficients with
Egs. (2.1)—~(2.3), the equations for the friction velocity, the sensible and the latent
heat flux can be expressed in kinematic units, where g is the specific humidity:

E— Ou Ou
— W — k. — .
U, = Ww =Kz =K (2.8)
— 1 oT
T = — — ke 2.
W Pr, oo Olnz (29)
1 Oq
T KUy —— 2.10
v Yo oo Olnz ( )

The turbulent fluxes of sensible heat can be transferred into energetic units by
multiplication with the air density for dry air (pressure p in hPa and temperature in K)

p - 100 3
=——— 1k . 2.11

P = 38705867 K™ (211)
For wet air, the air temperature must be replaced by the virtual temperature

T,=T(140.61-gq), (2.12)

which includes the influence of moisture on air density. The heat capacity for
constant pressure is

cp = 1004.832 [JK 'kg']. (2.13)

The latent heat flux in energetic units follows the multiplication of Eq. (2.10)
with air density and the specific heat of evaporation

J = 2500827 — 2360(T — 273.15)[Jkg']. (2.14)

If the latent heat flux in kinematic units were not determined with the specific
humidity but instead with water vapour pressure, an additional multiplication with
the factor ‘)]Ei where p is in hPa, is necessary.
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Table 2.1 Roughness length in m from different sources (Reithmaier et al. 2006, updated)

surface ESDU Troen and ~ Wieringa Fiedler according to  Davenport

(1972) Peterson (1992) Hasager and Jensen et al.
(1989) (1999) (2000)

Ice 107

Water 107*-107?

Snow 0.002

Bare soil 0.03 0.004 0.03 0.005

Grassland 0.005-0.02 0.03 0.06 0.08 0.03

Winter crops 0.1 0.09 0.12 0.1

(winter)

Winter crops 0.05 0.1 0.18 0.09 0.25

Summer crops 0.05 0.1 0.18 0.09 0.25

Clearings 0.1 0.35 0.004 0.2

Shrubs 0.2 04 0.45 0.3 0.5

Conifer forest 1-2 0.4 1.6 0.9 1.0

Deciduous forest 1-2 0.4 1.7 1.2 2.0

Settlement 0.5-2 0.4 0.7 0.5 2.0

Furthermore, for heights above approximately 10 m, the temperature must be
replaced in all equations given above by the potential temperature

Ry/c

1000\ /5P

0= T() . (2.15)
p

The integration of Eq. (2.8) is given by

u(z) —u(zo) = u(z) = % lni, (2.16)

where z, is an integration constant. Because this parameter is dependent on the
characteristics of the underlying surface, it is called the roughness parameter or the
roughness length. It varies from 107> to 107> m for water and ice, 107> m for
grassland up to 0.2 m for small trees. More data are given in Table 2.1. Additional
details about the application of the different schema are given in Sect. 6.2.1.

The integration of the equations for the sensible (2.9) and the latent heat (2.10)
flux is formally identical to those of the momentum flux. The integration constants
are so-called roughness temperature zor and roughness humidity zy,. Both are
approximately 10 % of the roughness length. In this region, the temperature and
the humidity have approximately the value of those near the surface. These
roughness lengths are usually parameterized in models.
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Pr, T, Z

T(z) = T(zor) = —— In_— (2.17)
Scy - gy Z

q(z) — q(z00) = — tK lng (2.18)
q

with the dynamical temperature or temperature scale

W7
R (2.19)
Uy
and the dynamical moisture scale
! Al
g =22 (2.20)
Uy

The extension of the profile equation for non-neutral conditions is given by
Monin-Obukhov’s similarity theory (Monin and Obukhov 1954). This theory
defines a dimensionless Obukhov parameter

c=%r (2.21)

which describes the effects of friction, sensible heat flux and buoyancy. The
parameter L is called Obukhov length (Obukhov 1946, 1971; Businger and Ya-
glom 1971; Foken 2006).

L=- o (2.22)
pCp

This definition is valid near the surface and provides low moisture content. In
the case that air density is influenced by moisture, the use of the virtual temper-
ature is more exact, Eq. (2.12). In addition, the temperature should be replaced by
virtual temperature in the air density Eq. (2.12). The more exact definition of the
Obukhov length is with the virtual potential temperature:

3
Ly=-—2—. (2.23)
P

<

<

b
DBl

In this equation, Qp, is is called the buoyancy flux because it includes also the
motion due to the moisture effect on air density. The buoyancy flux can be
determined with Eq. (2.9) by replacing the temperature by the virtual temperature,
which is nearly equal to the sonic temperature (Kaimal and Gaynor 1991) mea-
sured with sonic anemometers (Sect 7.2).
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Table 2.2 Determination of the stability the surface layer dependent on the dimensionless
parameter G and the universal function ¢(c) adopted from Foken (2008)

Stability Remark c »(c)

Unstable Free convection, —1>c¢ No definition
independent from u
Dependent from us, T+ —-1<¢<0 o) <1

Neutral Dependent from u c~0 o) =1

Stable Dependent from usx, T« 0<¢<05...2 1<) <3...5
Independent from z 05...1<¢ @(g) ~ const ~ 3...5

From the application of Monin-Obukhov similarity theory on profiles,
Egs. (2.8)—(2.10), follows a dependency on the dimensionless parameter (
(Table 2.2), which is the basis of the universal functions ¢,,(¢), @x(¢) and @g(¢)
for the momentum, sensible and latent heat exchange:

o= g = 2 ek Ou (2.24)

9n(e) 32 ¢,(c) dlnz

A L or 595
Pr,-@y(c) Olng (2:25)

Uy d
e L . (2.26)

Se, - og(c) Olnz

The present recommendation for the use of universal functions (Fig. 2.6) is the
universal functions by Businger et al. (1971) in the re-evaluated form by Hogstrom
(1988). Given that several footprint models use other functions, a selection is given
in Table 2.3 for momentum flux and Table 2.4 for the sensible and latent heat
fluxes. There is a paucity of universal functions for the stable stratification because
of the complexity of the nocturnal stable boundary layer (Andreas 2002). The
universal functions can be assumed to be constant for { > 0,8 (see e.g. Handorf
et al. 1999).

The accuracy of the profile method depends on those of the turbulent Prandtl or
Schmidt numbers, the von-Karman constant and the universal functions. For the
turbulent Prandt number, an overview of data several authors is given in Table 2.5.
The von-Kdrmén constant is presently accepted as x = 0.40 + 0,01 (Hogstrom
1996). For the universal function, the following accuracies are given by Hogstrom
(1996):

lz/L| <0.5: [0y <10%
|z/L| <0.5: [6¢,,| <20 % (2.27)
z/L>0.5: @y Oy = const?
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Table 2.3 Universal function for the momentum exchange including the re-evaluated form by
Hogstrom (1988) with a von-Karmén constant of 0.40 and marked with *, adapted from Foken
(2008)

References K Universal function for momentum
exchange, @,,(c)

Webb (1970) - 14459 Yp< —0.03

Businger et al. (1971) 0.35 (1— ISZ/L)_1/4 —2<%,<0
1+47% 0<7<1

Businger et al. (1971), Hogstrom (1988) 0.40* (1-19.3 z/L)_1/4 —2<41<0
1463 0<i<1

Dyer (1974) 0.41 (1—167)" " -1<9.<0
1457, 0<L

Dyer (1974), Hogstrom (1988) 0.40* (1— 15.2%)*1/4 —1<31<0
1+4.87 0<yL

Table 2.4 Universal function for the exchange of sensible and latent heat including the re-
evaluated form by Hogstrom (1988) with a von-Kdrmén constant of 0.40 and marked with *,
adapted from Foken (2008)

References K Universal function for the exchange of
sensible and latent heat

Webb (1970) - 14457, < —0.03

Businger et al. (1971) 0.35 0.74 (1 — 9Z/L)71/2 —2<31<0
0.74 + 4.7, 0<zp<1

Businger et al. (1971), Hogstrom (1988) 0.40* 0.95 (1-— 11.6%)71/2 —2<4,<0
0.95+7.8 Z/L 0<Z/L< 1

Dyer (1974) 0.41 (1—-16 Z/L)*l/l —1<3,<0
1459 0<L

Dyer (1974), Hogstrom (1988) 0.40* 0.95(1 — 15.2%)*1/2 —1<3,<0
0.95+4.57 0<#

For the re-evaluation by Hogstrom (1988) use ¢y(c) ~ @g(¢), Pr, = Sc; = 1 because both
numbers are already included into the universal function

It must be assumed that surface-layer parameterizations are influenced by
boundary-layer conditions, specially by those of the mixed-layer height (Johansson
et al. 2001). It should be pointed out however that the influence of the latter is still
second to the influence of atmospheric stratification.

Integrating Eqs (2.24) and (2.26) and using the universal functions presented in
Tables 2.3 and 2.4 was first shown by Paulson (1970). The integration from the
roughness length z, to z in the wind profile applies the definition u(zy) = 0
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10,

modified
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Fig. 2.6 Typical universal function for momentum (bold line) and the heat and mass exchange
(thin line). The line ‘modified’ uses a height-independent range (Foken 2008). Well defined is the
function only in the range 1z/LI < 1 (Tables 2.2, 2.3, and 2.4)

Table 2.5 The reciprocal turbulent Prandtl number according to different authors (Foken 2008)

Authors Pr!
Businger et al. (1971) 1.35

— correction according to Wieringa (1980) 1.00

— correction according to Hogstrom (1988)* 1.05

Kader and Yaglom (1972) 1.15-1.39
Foken (1990) 1.25
Hogstrom (1996) 1.09 £+ 0.04

*Hogstrom (1988) uses Pr, = 1 in the profile equation, but has included Pr, = 1.05 in the
universal function (see Tables 2.3 and 2.4)

(@)~ atan) =) = 2~ [ 6,(2/0) e

(2.28)
@ =" nZ /)
K 20 "
with the integrated universal function:
z/L J
S

(@)= [ 1= du0) . (2.9

20/L

The integration of the universal function by Businger et al. (1971) and subse-
quently reformulated by Hogstrom (1988) is for the momentum exchange and the
flux of sensible heat in the unstable case:

1+22\ /1 2
V(<) =In ( Zx> ( ;x> —2tan*1x+g for c<0  (2.30)
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l//H(g)=2ln< > ) Jor ¢<0 (2.31)
with
x=(1-1930)"*" y=0.95(1—11.6¢)"% (2.32)
In the stable case, the integration is very simple:
Y(c) =—6¢ forc=0 (2.33)
Yu(c)=—178¢c forc=0. (2.34)

As far as other universal functions are concerned, according to Tables 2.3 and
2.4, the parameters x and y in Eq. (2.32) must be defined differently.

Besides the stability parameter, ¢ represents also another stability parameter
which can be formulated using the equation of turbulent energy (TKE). The ratio
of the buoyancy production term and the mechanical production term is called the
flux Richardson number (Richardson 1920; Stull 1988)

W
R (2.35)

wh' - (au/az) .

Because fluxes are proportional to gradients, a gradient Richardson number can
also be defined:

Riy =

o

oT
(e:)
Z
A further simplification is the bulk Richardson number
AT - A
Riy=— 5.22°5% (2.37)
T (4du)

used in the meteorology. In analogy to the Obukhov length, the Richardson
number definition can also be given using the potential and virtual temperatures. If
fluxes are available, the Richardson flux number should be used. Otherwise, the
gradient or bulk number will be substituted.

The critical Richardson number, which characterizes the change from turbulent
to laminar or molecular conditions, is Ri,. = 0.2 or Ry = 1.0. The recalculation
from ¢ into Ri, is stability dependent according to the following relations (Bu-
singer et al. 1971; Arya 2001):
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Table 2.6 Overview of different stability parameters (Foken 2008), added by the potential
temperature 6 (z) = T(0 m) + 0.0098 K - z

Stability Temperature Potential Ri L ¢c=2zL
forz <10 m temperature
Unstable T(0) > T(z) 00) > O(z) <0 <0 <0
Neutral T00) ~ T(2) O0) ~ O(z) ~ 0 + oo ~0
Stable T(0) < T(2) 00) < O(2) 0 <Ri, <02 >0 0<g< ~1
0<Ri;<1.0

g:Rig fur Rig<0

~ Rig

S =7 <z
1 — 5Ri,

2.38
for 0<Ri, <0.2 = Ri,. ( )

An overview over different parameters is given in Table 2.6.

2.2.2 Profile Functions Above the Canopy

Over dense vegetation (forests, crops, etc.) due to the logarithmical wind profile
the surface according to Eq. (2.16) is an apparent surface at height d (displacement
height, zero-plane displacement height), for which the wind profile fulfil these
equations. The new height is called the aerodynamic height z'(d) = 0. In contrast,
the geometric height is measured from the ground surface, is z = z” + d. Because
Eq. (2.16) is valid for the aerodynamic heights (Fig. 2.7), the equation with
geometric heights measured from the surface is given as:

u(z) = e d. (2.39)
K 20

Consequently, all profile equations and equations related to integral turbulence
characteristics in the following chapters must be modified for vegetation by
replacing “z” with “z + d” or by assuming that all heights are aerodynamic
heights. Usually, d = 0.67 A, is applied with &, as canopy height. Under these

conditions, the roughness length is simply approximated by
20 = 0.1 he. (2.40)

Foken (2008) recommended to determine the canopy height using the tallest
plants or trees that cover 10 % or more of the vegetation at the site.

More complicated is the determination of the displacement height in an urban
surface. If profile and flux measurements are available, the displacement height
can be calculated using the constant flux layer assumption within the surface layer.
This is referred to as the aerodynamic approach. Thereby, the displacement height
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Fig. 2.7 Aerodynamic and r 5.0
geometric height for dense
vegetat.ion (d=12m) £ 3.0 L 4.0
according to Foken (2008) c S
- £
5 207 L 3.0 E
‘@ o
£ =
o _
- 202
© e
b 1]
> 0.0 /zo £
e F L1.0 9
@ d o
©
T T T T 0.0
0 1 2 3 4 5

wind velocity inm s-1

is the level where fluxes from both profile and flux measurements become iden-
tical. The displacement height can also be determined using two scintillometers
placed at two different levels (Kanda et al. 2002).

The morphometric method (Grimmond and Oke 1999) has been more often
used, in the simplest way

d=faza, 20=JoZu (2.41)

with zZ as averaged building height and using the above given values of f; = 0.67
and fy = 0.1 or f; = 0.8 for densely built-up cities (Roth et al. 2006).

Another method was proposed by MacDonald et al. (1998) who use also the
density of the buildings as well as the mean building height

d=zg[l+a " (p—1)] (2.42)
with empirical coefficient o« = 4.43 and Ap the plain area fraction calculated as the

area fraction occupied by built-up elements.
Another approach was introduced by Raupach (1994), which uses the frontal

areal index Ap
d Lo (2.43)
=71 - ——nr .
VCdlIAF

with the empirical coefficient c¢,; = 7.5.

2.2.3 Profile Functions in the Canopy

Measurements of profile functions in low vegetation are very rare because of
experimental problems. The sensors are often large in relation to the canopy height
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Fig. 2.8 Profile of the mean wind velocity and the momentum flux in the canopy normalized
with the value at the top of the canopy from wind tunnel, corn and forest measurements by
different authors (Kaimal and Finnigan 1994): Wind tunnel (WT) shrips, Raupach et al. (1986);
wind tunnel wheat, Brunet et al. (1994); wind tunnel rods, Seginer et al. (1976); Shaw corn (Shaw
et al. 1974); Wilson corn (Wilson et al. 1982); moga, Raupach et al. (1996); uriarra, Denmead and
Bradley (1987); Bordeaux forest, Brunet personal communication (Published with kind
permission of © Oxford University Press, 1994. All Rights Reserved)

and are partly ventilated. Some examples are given by Geiger et al. (2009). For tall
vegetation and for forests, much more data is available. By normalizing the pro-
files with their respective values at the top of the canopy, the profiles are similar to
those inside a wind tunnel, in low vegetation and even in forest canopies (Fig. 2.8).
Cionco (1978) proposed a profile function which depends on canopy height %,

u(z) = u(he) - 1) (2.44)

and a coefficient o given for different plants in Table 2.7.

A direct calculation of the coefficient « that is vegetation type dependent is
provided to us by Goudriaan (1977). The formulation of the coefficient is a
function of both the mean distance of the leaves (/,,), and the leaf area index (LAI):

o (OZZLA”’> (2.45)
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Table 2.7 Values of the

. Plant canopy Profile References
profile parameter o in a plant parameter
canopy according to -
Eq. (2.45) Wheat 2.45 Cionco (1978)
1.6 Brunet et al. (1994)
Corn 1.97 Cionco (1978)
2.4 Shaw et al. (1974)
4.1 Wilson et al. (1982)
Rice 1.62 Cionco (1978)
Sunflower 1.32 Cionco (1978)
Larch plantation  1.00 Cionco (1978)
Forest, 20 m 1.7 Denmead and Bradley (1987)

2.2.4 Roughness Sublayer

Above the canopy, the profiles of the state parameters are strongly influenced by
the roughness of the surface and the ideal profile (Eqgs. (2.24)—(2.26)) must be
modified. This range is called the roughness sublayer and includes the canopy
height. It is approximately three times the canopy height. The roughness sublayer
was firstly found in laboratory experiments (Raupach et al. 1980) and later in the
natural environment e.g. by Shuttleworth (1989). This variable is of considerable
significance to flux measurements, especially when using profile functions. While
over low vegetation, typical relations of the measuring height to the roughness
length z/zy are 100-1,000. Above a forest canopy with a generally significant
roughness sub-layer, that dimensionless value hovers around 5-10 (Garratt 1980).

Therefore, the Monin-Obukhov similarity assumption cannot be applied in the
roughness sublayer of thickness z«(Garratt 1978, 1980; Raupach et al. 1980;
Raupach and Legg 1984), which according to Verhoef et al. (1997) is

2o = he + L (2.46)

where h. is the canopy height, ¢ is 2 for momentum and 3 for heat exchange
(Molder et al. 1999) and L is the characteristic length scale (shear scale) of the
mixing layer (Raupach et al. 1996; Finnigan 2000):

L= k) (2.47)

<au/ 61) =he

In their model, Rannik et al. (2003) assumed the roughness sublayer high as
h. 4 d, where d is the zero plane displacement of d = 2/3 h,. In this layer, weaker
gradients are found but the turbulent transport occurs largely through the action of
coherent structures in the mixing layer (Raupach et al. 1996; Finnigan 2000).
Therefore, an additional function ¢«(z/z+) must be added to the profile equations
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(Egs. (2.24)—(2.26) to represent the effect of the roughness sublayer, since the
latter increases the diffusion coefficient (Garratt 1992):

=V-ouw = : o 2.48
e = U = ) - om(0) Olnz (2.48)

T Prt_1 K Uy oT
wT = .
¢.7(.) - op(c) dlng

(2.49)

v Selkeuw o

" 0.,() op(c) dlnz

(2.50)

where 1/¢,(z/z.) is called the enhancement factor (Raupach and Legg 1984;
Simpson et al. 1998). The universal function for the roughness sublayer for the
wind variables is given by

@.,(z/2) = exp[=0.7 (1 — z/z.)] (2.51)

(Garratt 1992; Graefe 2004). Another definition was given by Cellier and
Brunet (1992)

., = ()" (2.52)
Zx
where n = 0.6, which was also found by Molder et al. (1999). The functions for
scalars are not well defined. Molder et al. (1999) found a linear relation with height
for humidity and temperature i.e.

0., = . (2.53)

Another more sophisticated method to describe this phenomenon which takes
into account the coherent structures is the mixing-layer theory (Raupach et al.
1996; Finnigan 2000). This theory suggests that the reduced gradients above the
top of the canopy can be attributed to the presence of Kelvin-Helmbholtz instability
present in strong shear flows and by the generation of disturbances and coherent
structures. This approach has not yet been used in footprint analysis. A combi-
nation of both was given by Harman and Finnigan (2007, 2008), who defined the
roughness sublayer for momentum and scalar fluxes dependent on the mixing layer
length scale L, Eq. (2.47). According to this theory, both the displacement height
and roughness length vary with stability.
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2.2.5 Power Laws

For many applied purposes, power laws are used to determine the wind profile in
the surface layer and the lower boundary layer (Doran and Verholek 1978;
Sedefian 1980; Joffre 1984; Wieringa 1989; Hsu et al. 1994):

p
o (Z—1> . (2.54)
up 22
In wind power applications, an exponent p = l/7 is often used (Peterson and

Hennessey Jr 1978).
Differentiating Eq. (2.54), we obtain the expression by Huang (1979):

p=-—. (2.55)

This method offers a more complicated approach including also a dependency
on the roughness of the surface and the stability using universal functions of the
Monin-Obukhov similarity theory (see Sect. 2.2.1). Irvin (1978) proposed the
following simple equation:

Uy

p= (<) (2.56)

u-K

The factor u - « - ux ' can be expressed by the integrated form of the universal
function given in Sedefian (1980):
)
(IDITL L

(2.57)

Huang (1979) used also this form but used the concrete universal functions by
Webb (1970) and Dyer (1974) allowing for large roughness elements in contrast
with the earlier integration provided by Paulson (1970). For the unstable case, it
follows

—14
- (1-162)
In %Z:;EZSE; +2tan~!'y — 2tan~! (2.58)

z 14 20 14
- 1—16—) :(1—16—)
n ( L Mo I

and for the stable case:
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1+5%

A (2.59)

p:

This approach is used in the footprint model by Kormann and Meixner (2001).
According to Hogstrom (1988), the coefficients 16 and 5 should be replaced by
19.3 and 6.0.

The use of this method is fraught with difficulties. In the hours before noon,
when in the presence of a developing convective boundary layer, the method works
well. Later in the afternoon, due to the cooling by longwave upwelling radiation,
the layer close to the surface becomes stable while the layers above are still unstable
(see Sect. 2.3.2.). Therefore, the stability measured near the surface cannot be
applied using the power law. This is because atmospheric stratification sets in first
near the surface due to radiative cooling early in the late afternoon and evening
while aloft, the upper layers of the atmosphere are still unstable (Foken 2008).

2.2.6 Dispersion Profiles

Standard deviations of the three wind components are necessary input parameters
of analytical footprint models which are based on a Gaussian dispersion approach.
Lagrangian footprint models also need parameterizations of the profiles of stan-
dard deviations in the canopy (in the case of tall vegetation) and above.

The similarity between fluxes and variances based on the equation of the tur-
bulent kinetic energy or on analogue equations for sensible heat and other scalars
(flux-variance similarity, see Foken 2008). In these equations, the standard devi-
ations of the vertical wind component and the temperature or another scalar are
included (Wyngaard and Coté 1971; Foken et al. 1991):

oy = \/W and o7 =/ 772, (2.60)

The normalized standard deviations are also called integral turbulence char-
acteristics (Tillman 1972), because they characterize the atmospheric turbulence
over the entire range of turbulence spectra. In the surface layer and in steady-state
conditions, these characteristics of the three wind components in the neutral case
(Lumley and Panofsky 1964; Panofsky 1984) can be expressed as:

Owfy, = 1.25
Oufy,, = 2.45 (2.61)
Oy, = 1.9.

1%

In the atmospheric surface layer, the turbulence is anisotropic. Therefore the
standard deviations of the wind components are different, o, < g, < g,. For
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Table 2.8 Integral turbulence characteristics for stable and unstable conditions (Foken 2008)

Parameter z/L Cy CH
Ow/us 0> z/L > —0.032 1.3 0
—0.032 > z/L 2.0 1/8
o /ux 0> z/L > —0.032 2.7 0
—0.032 > z/L 4.15 1/8
o/Tx 002<zL<1 1.4 —1/4
0.02 > z/L > —0.062 0.5 —1/2
—0.062 > z/L > —1 1.0 —1/4
—1>z/L 1.0 —1/3

non-neutral conditions, a large number of parameterizations is given in the liter-
ature (Foken 2008). For the wind components, these follow the form

O-u,vA,w/u* =cCp- (Z/L)CZ (262)

and for the temperature or other scalars (with a different normalization instead of
T-)

o1, =i+ (Y1) (2.63)

An example of the integral characteristics for unstable (not free convection) and
neutral conditions is given in Table 2.8. In the stable case, there are only a few
parameterizations available. One can use the above given parameterizations only
for the wind components of the unstable case also for the stable case as a first
approach.

For the vertical wind component, most studies agree with one another with the
parameterization given by Panofsky et al. (1977) is mainly used for a wide range
of stratification, —1 < z/L < O:

Oufy = 1.3 (1 —2%)1/5. (2.64)

The integral turbulence characteristics for temperature and other scalars are in
the neutral case due to T+ — 0 not well defined. In the unstable range, these
turbulence properties are closely coupled to atmospheric stability.

Several authors also found a dependency on the mixed layer height (Panofsky
et al. 1977, Peltier et al. 1996; Johansson et al. 2001; Thomas and Foken 2002).
This dependency arises mostly in very unstable conditions. Other authors (Yaglom
1979; Tennekes 1982; Hogstrom 1990; Smedman 1991) assumed a dependency on
the Coriolis parameter, probably only for neutral conditions to be statistically
significant. This was first found by Hogstrom et al. (2002).

For free convective conditions (z/L < —1), the scaling parameter is the con-
vective velocity (Deardorff-velocity)
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Fig. 2.9 Profiles of the standard deviation of the horizontal and vertical wind component for
wind tunnel, corn and forest measurements by different authors (Kaimal and Finnigan 1994), for
legend see Fig. 2.8. (Published with kind permission of © Oxford University Press, 1994. All
Rights Reserved)

RN
w, = (g - '~0/vw’> (2.65)

and partly the mixed layer height z; (Garratt 1992). Such parameterizations must
take into account the decrease of the characteristics with increasing height and an
increase in the entrainment layer. One possible parameterization is given by
Sorbjan (1989):

o, 108 (35)" (1~ %) 266

T/, =2 (Z/Zi)% .(1 _ Z/zi)4/3 +0.94 (Z/z,)% .(1 _ Z/zi) o (2.67)

The profiles of the integral turbulence characteristics within the canopy are also
of special interest in footprint modeling. These profiles are very similar for dif-
ferent types of canopies when normalized with their value in the height of the top
of the canopy. This is illustrated in Fig. 2.9.

Inside the canopy, the profiles are strongly dependent on the leaf area index
(Shaw et al. 1988). Furthermore, the profiles are also stability dependent (Shaw
et al. 1988; Leclerc et al. 1990, 1991) and change with the coupling stage between
the atmosphere and the canopy (Gockede et al. 2007). Also, the application of an
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Table 2.9 Coefficients in Egs. (2.68) and (2.69) for two forested sites

References i a; % Bi Vi
Rannik et al. (2003), u 2.30 1.0 1.0 -03
neutral, for Hyytidla site v 1.75 1.0 0.85 -0.2
(FI-Hyy) w 1.25 0.9 1.2 —0.63
Foken et al. (2012), u 2.01 8.97 1.37 0.29
for Waldstein-Weidenbrunnen v 1.60 5.18 1.11 0.34
site (DE-Bay) w 1.13 0.9 1.2 —0.63

analytical second-order closure model used a plant area profile (Massman and
Weil 1999) to represent profiles of integral turbulence characteristics comparable
with measured data (Gockede et al. 2007).

At a single site, the functional form of these relationships above the canopy is
similar to that of measurements above low vegetation. Due to the lack of coupling
between the canopy layer flow and the flow above forest canopies, a universal
formulation of turbulence profiles is still conspicuously absent. Nevertheless, a
site-specific parameterization is required to accurately model the footprint.

For measurements inside the canopy (z < h.), a parameterization was proposed
by Rannik et al. (2003)

Z_i—ai{exp l—cx;(l —hi)ﬂl (1 =) +%} (2.68)

i=u,v,w; z<h,

and above the canopy constant values were assumed

g
=g

U (2.69)
i=u,v,w; z> he.

The values are given in Table 2.9.

2.2.7 Relevance of Profile Parameterizations in Footprint
Models

Many footprint models use profile functions for the parameterization of surface
layer properties and, if the models are not limited to low vegetation, both the
roughness sublayer and profile within the canopy must be parameterized. The
discussion below deals with the specific parameterizations and differences between
models based on their relevance (Chap. 3). Most footprint models use
Monin-Obukhov similarity theory only with minor differences (Table 2.10)


http://dx.doi.org/10.1007/978-3-642-54545-0_3
http://dx.doi.org/10.1007/978-3-642-54545-0_3

44 2 Surface-Layer Properties and Parameterizations

Table 2.10 The use of surface layer parameterization for the stability influence in the widely
distributed footprint models, “italic” not according the recently accepted modifications of the
universal functions according to Hogstrom (1988)

Footprint model Use of Remarks

Gash (1986)

Schuepp et al. (1990), Horst
and Weil (1992, 1994),
Hsieh et al. (2000), Hsieh
and Katul (2009)

Leclerc and Thurtell (1990)

Neutral

Universal function by Dyer
(1974), but k = 0.4

Monin-Obukhov similarity
theory

Monin-Obukhov similarity
theory

Universal function by Dyer
(1974) for unstable and by
Businger et al. (1971)for
stable stratification, but
K =04

Schmid (1994, 1997) Probably like Horst and Weil
(1992; 1994)

Monin-Obukhov similarity

Leclerc et al. (1997) Universal function by Businger

theory et al. (1971), but k = 0.4
Kaharabata et al. (1997) Monin-Obukhov similarity Universal function by Businger
theory et al. (1971), but k = 0.4

Haenel and Griinhage (1999)

Rannik et al. (2000, 2003)

Kormann and Meixner (2001)

Kljun et al. (2002)

Monin-Obukhov similarity
theory

Monin-Obukhov similarity
theory, roughness sublayer

Combination of power law and
Monin-Obukhov similarity
theory according to Huang
(1979)

Monin-Obukhov similarity
theory and convective
boundary layer

Universal function by Dyer
(1974)

Universal function by Businger
et al. (1971) in the re-
evaluated form by
Hogstrom (1988)

Universal function by Webb
(1970) and Dyer (1974)

See Rotach et al. (1996):
universal function by
Businger et al. (1971) in the
re-evaluated form by
Hogstrom (1988)

between each other. Furthermore, most footprint models require a parameteriza-
tion of the standard deviations of the wind components. In Lagrangian models, this
parameterization is mainly those of vertical wind components, while, in the
two-dimensional analytical case, the parameterization must include those of the
lateral wind component (Table 2.11).

2.3 Internal Boundary Layers

The above given parameterizations of the atmospheric turbulence are based on the
assumption of horizontal homogeneity. Landscapes are composed of a mosaic of
typically heterogeneous surfaces with a change in surface characteristics within the



2.3 Internal Boundary Layers 45

Table 2.11 The use of surface layer parameterization of the standard deviation of the wind
components in the widely distributed footprint models

Footprint model Use of Remarks
Leclerc and Thurtell Similar to Lumley and Panofsky (1964) Vertical wind
(1990) in the neutral and stable case component

and Panofsky et al. (1977) and
Hicks (1981) in the unstable case

Horst and Weil (1992, 1994) Panofsky et al. (1977) Vertical wind
component

Hsieh et al. (2000) and See Leclerc and Thurtell (1990) Vertical wind
Hsieh and Katul (2009) component

Rannik et al. (2000, 2003)  Similar to Panofsky et al. (1977)

820x)
] 4(x) T |iBL
u1(z) UZ(Z} NEL
Uxq T Ux2

change of roughness

Fig. 2.10 Schematic structure of the internal boundary layer at a sudden change of the surface
roughness according with the new equilibrium layer (NEL), the internal boundary layer (IBL), the
fetch x, and the discontinuity layer between both according to the findings by Rao et al. (1974)
from Foken (2008)

first 100 m. The wind profile develops depending on surface roughness, temper-
ature profile-dependent on the surface temperature, etc. on the downwind site of
such changes in the surface characteristics. Due to the horizontal wind field, the
different profiles are shifted downwind. Therefore, internal boundary layers are
significantly developed close to the surface. These arise in the presence of hori-
zontal advection over discontinuities of surface properties (roughness, thermal
properties, etc.). Overviews are given by Stull (1988), Garratt (1990, 1992) and
Savelyev and Taylor (2001, 2005).

The internal boundary layer is a disturbed layer, which can be divided into
different layers (Fig. 2.10). The layer below the discontinuity layer is called new
equilibrium layer (NEL). Their properties come from the new surface. Above that
layer (internal boundary layer, IBL), the layer is influenced by the surface on the
upwind site. Above the new equilibrium layer, the discontinuity layer is not a sharp
line but rather covers a range. For large fetches, the differences between both sides
of an internal boundary layer decrease.

The concept of the internal boundary layer was used by Schmid and Oke (1990)
to define the outer dimensions of the source area within the new equilibrium layer.
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Typical fetch requirements for measurement levels located within the presence of
internal boundary layers scale with the scale of footprint areas (Horst 2000).
Nevertheless, the footprint concept provides an essential contribution to mea-
surement sites, since most footprint models are not able to determine the effect of
roughness changes. Some progress was made by Luhar and Rao (1994) and further
on by Klaassen and Sogatchev (2006) for footprints at a forest edge and by
Markkanen et al. (2010) for thermal heterogeneous surfaces. The practical appli-
cation of the internal boundary-layer concept is discussed in Sect. 8.1.

2.3.1 Mechanical Internal Boundary Layer

The development of a mechanical internal boundary layer is caused by mechanical
inhomogeneities both upwind and downwind (roughness length). In the simplest
case, the height of an internal boundary layer can be determined by extrapolating
the wind profiles above and within the internal boundary layer (Elliott 1958; Raabe
1983):

This method has the disadvantage that the point of intersection may be above
the internal boundary layer or within the new equilibrium layer. More successful is
the assumption that the undisturbed wind profile can be well fixed below and
above the internal boundary layer and the height is between the upper and lower
point of disturbance:

5:5‘;52. (2.71)

For practical reasons, it can be useful to use the lower level of the layer of
disturbances as the height of the internal boundary layer, 6 = J,, because the new
equilibrium layer can assumed to be as undisturbed above the new surface (Rao
et al. 1974) enabling the experimentalist to make measurements within that layer
that reflect the properties of the surface beneath.

The mechanical internal boundary layer occurs for the flow from rough to
smooth as well as from smooth to rough. Since different wind gradients differ
between above smooth and rough surfaces, there is a characteristic development of
internal boundary layers (Fig. 2.11).

The dependency of the height of an internal boundary layer on the fetch x was
found in hydrodynamical investigations and is given by a 4/5-exponential law
(Shir 1972; Garratt 1990; Savelyev and Taylor 2001):
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Fig. 2.11 The schematic wind profile at an internal boundary layer for neutral stratification:
a typical profile for rough and smooth surfaces, b Change of the surface roughness from rough to
smooth, ¢ Change of the surface roughness from smooth to rough (Foken 2008)

Table 2.12 Experimental results for the coefficients in Eq. (2.73) to depend the height of the
internal boundary layer (new equilibrium layer according to Rao et al. 1974), for more data see
Savelyev and Taylor (2005)

Author a b Conditions
Bradley (1968), Shir (1972) 0.11 0.8 Zo01l70> = 125 and 0.08
artificial roughness
Antonia and Luxton (1971, 0.28 0.79 x < 10 m, rough—-smooth
1972) 0.04 0.43 x < 10 m, smooth-rough
wind tunnel
Raabe (1983) 0.30 £ 0.05 0.50 £+ 0.05 Beach, on- and off-shore

winds, 5 m < x < 1,000 m

d=fi (ZOI/ZOZ) x5+ (201/%02) (2.72)

A lot of experiments were done to verify this equation. Because of the large
scatter in experimental results, most of the authors assume a simplified
dependency

d=a-x (2.73)

for which some data are given in Table 2.12.

The height of the internal boundary layer normalized by the upwind roughness
length was found to be higher for smooth to rough transition than for rough to
smooth transition according to model calculations (Garratt 1990; Savelyev and
Taylor 2001) and also the internal boundary layer is higher in the unstable case
than in the stable case (Savelyev and Taylor 2005). But in the case of experimental
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data, no significant differences in the height of the internal boundary layer could be
found due to the large scatter in the experimental data (Jegede and Foken 1999).
Therefore, simple parameterizations of the internal boundary layer or equilibrium
layer height according to Eq. (2.73) with the coefficients by Raabe (1983) are a
good approach.

Large fetch requirements of internal boundary layers have constituted the basis
of micrometeorological measurements for decades. Micrometeorological mea-
surements were typically done at height/fetch ratios of 1/100 of undisturbed fetch.
This requirement for the measuring height z,, = 100x gives similar results as
Eq. (2.73). Leclerc and Thurtell (1990) found that the 1:100 ratio used by
micrometeorologists agrees with footprint calculations for short crop canopies in
unstable conditions.

2.3.2 Thermal Internal Boundary Layer

In analogy to the mechanical internal boundary layer formed by a sudden change
in surface roughness, a thermal internal boundary layer develops as a result of a
change in surface temperature due to different land-use characteristics. Further-
more, other surface characteristics like different surface moisture or gas exchange
conditions can lead to a scalar internal boundary layer. Few if any experimental
results are available on the subject since this layer is typically combined with the
mechanical internal boundary layer.

The height of the thermal internal boundary layer is given by Raynor et al.
(1975):

12

o =c (“;) % . (2.74)

The temperature gradient is measured on the upwind side or above the internal
boundary layer, all other parameters in the reference level. The coefficient c
depends on the reference level and is in the order of 1 (Arya 2001). Obviously,
such parameterizations are similarly robust as in Eq. (2.73) for the mechanical
internal boundary layer.

A special case is the thermal internal boundary layer during the afternoon
mainly due to the “oasis effect” (Stull 1988). Shortly after noon above an evap-
orating surface, the temperature near the surface decreases and the stratification
becomes stable. The height of the deflection point between stable stratification
near the surface and the unstable conditions in the higher layers grows over time.
This inversion layer close to the surface is also called a thermal internal boundary
layer. Below the inversion, the sensible heat flux is downward and above upward.
The height increases up to 50—100 m after sunset and is then identical with the
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stable boundary layer (see Sect. 3.1). According to this finding, the thermal
internal boundary layer exists over a period of several hours at typical microme-
teorological levels. Also in the early morning, this effect can be found, but with a
much shorter duration, i.e. of the order of minutes. The problem is of particular
relevance when the stability near the surface is used e.g. to determine the power
law in the lower atmospheric boundary layer. The consequence on footprint
models in the afternoon has not yet been investigated.

2.3.3 Blending Height Concept

According to the structure of internal boundary layers, it can be assumed that the
internal boundary layers can only develop up to a certain level. The layers merge
with one another far away from the change in surface roughness. Above this
height, an area-averaged flux can be assumed. That means the properties near the
surface fade (Taylor 1987). This idea is the basis of the so-called blending height
concept according to Mason (1988) and its updated formulations by Claussen
(1991) and Claussen and Walmsley (1994). The blending height is assumed to be
at heights ranging between approximately 30—-100 m with a close dependence on
the magnitude of the underlying surface roughness and atmospheric conditions.
The concept considers especially larger scale changes in surface roughness with
characteristically horizontal distances of L, > 1 km. The blending height /, can be
estimated as (Mahrt 1996)

I =2 (”—)2 Lo~2 (ﬂ)z L, (2.75)
u u
or as a simple approximation [, = L, /200.

The blending height concept has a large practical evidence for area averaging in
numerical models (see Sect. 2.4), because it can be assumed for the model level in
the height of approximately the blending height the fluxes above an heterogeneous
surface are area averaged (Claussen 1995).

From the experimental standpoint, this concept is controversial. In an atmo-
spheric boundary layer, conditions of free convection exist for z/L < —1, and for
example for zZL = —0.1 at 2 m height, free convection starts already above 20 m
(Eigenmann et al. 2009). According to Andreas and Cash (1999), the conditions
for free convection are given for § /L < -1 in a growing internal boundary layer.
This is a level where internal boundaries can be easily detected. The conditions of
single surfaces can be also detected by aircraft measurements in the whole
boundary layer if the single areas are large enough that convection can be
developed. This is the case for horizontal extensions larger 200 m (Shen and
Leclerc 1994). The convection areas can be typically found several hundreds of
meters on the downwind side of the roughness change due to the development of
internal boundary layers.
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2.4 Modeling Concepts

In the following chapter, modeling concepts used to describe the family of foot-
print models will be presented. The specific application of these model types is
presented in Chap. 3.

2.4.1 Diffusion Model

The diffusion model based on Pasquill (1972) was the most widely used type of
models used for footprint modelling as most analytical models applied this
method. The simplest models often used inair pollution applications are Gaussian
plume models (Pasquill 1972; Pasquill and Smith 1983; Blackadar 1997; Arya
1999). The dispersion of air pollution in a three-dimensional volume can be
described with probability density functions for the distribution of pollutants or
particles in the three directions F(x), G(y), and H(z). The three-dimensional dis-
tribution becomes, according to the continuity principle

oo o0 X

/ / / F(x)G(y) H(z) dx dy dz = 1. (2.76)

For a point source with constant emission rate Qd¢ and constant horizontal wind
velocity, the distribution density function is:

- 1
T ude

F(x) (2.77)
For the transverse horizontal and vertical distributions, the Gaussian distribu-

tion functions are used:

G(y) = \/% — (— zy;) (2.78)

H(z) = z > (2.79)

1
V2n 6, p( 20,

where ¢, and o,, are the standard deviations of the lateral and vertical wind
component.
The concentration distribution can be also calculated using Fick’s diffusion law:
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Oy _90y O oy 0 Oy 0 oy
£ L =—|K 2= — | K, £ — K, = ]. 2.80
o ' ox 6x< 6x>+ay<y6y T\ (2.80)

The parameterization of the diffusion coefficients is made with error functions:

a2=2K.t o>=2K,t o’ =2K,t (2.81)

The concentration distribution for a constant source strength Q and the mean
horizontal wind speed % in the x-direction is given by

Q y2 Z2
y = — —— . 2.82
1(%,,2) 2nuo, o, exp( 20, 20y, ( )

In the absence of meteorological data, the standard deviations of the wind
components can be parameterized using the micrometeorological approach
described in Sect. 2.2.6. Gryning et al. (1987) use a plume crosswind dispersion
based on Draxler (1976), which includes the Lagrangian time scale (see below) for
crosswind dispersion.

The most widely applied footprint models are based on the analytical solution
of the vertical diffusion by van Ulden (1978) and Gryning et al. (1983, 1987)
determined solutions for Eq. (2.82) for individual atmospheric scenarios. For the
vertical diffusion, it follows

Llnd) e [— (%) ] (283)

and for crosswind diffusion

xy(gy) _ z(ﬁﬁ e [_ (?H (2.84)

where A = r - T(2/P/T?(1/r) and B = T'(2/r)/T(1/r) are functions of the shape
parameter r and I is the gamma function and 7 is the mean height of the plume. In
some cases, a Gaussian distribution is commonly used to include the diffusion in

the lateral direction:
2
2y (%, Y) 1 1 (y >
= exp|——=|=— 2.85
0 V2n - o, P172 ay ( )

where A and B are functions of the exponent (shape parameter) r. Gryning et al.
(1983) provided an approximate formula for r in terms of the mass-weighted mean
plume height, zZ(x) and stability. # is the mass-weighted mean plume velocity.
Although van Ulden’s solution is analytical, it is implicitly in x by
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Table 2.13 The use of diffusion model parameterizations in the widely distributed footprint
models

Footprint model Use of
Gash (1986) Pasquill (1961)
Schuepp et al. (1990), Gash (1986)
Horst and Weil (1992, 1994) van Ulden (1978), Horst (1979)
Schmid (1994, 1997) van Ulden (1978), Gryning et al. (1987)
Haenel and Griinhage (1999) van Ulden (1978), Horst (1999)
Kormann and Meixner (2001) van Ulden (1978), Horst and Weil (1992)
oo
[ 21y (x,y)dz
)= —. (2.86)
Of %y (X, y)dz

Using K-theory, van Ulden (1978) expressed the evolution of the centroid of the
plume

dz  K(pz)

dx  u(pz)pz

(2.87)

where K is the eddy diffusivity, and p is a weak function of r. The wind profile
above the canopy is given by the logarithmic wind profile in Eq. (2.39), while the
mean wind profile inside a canopy is given in Eq. (2.44).

An overview of the different uses of diffusion model parameterizations in
analytical footprint models is given in Table 2.13.

2.4.2 Lagrangian Model

The spectrum of atmospheric turbulence scales (Frisch 1995) for state parameters
and fluxes in the range of micrometeorological processes (periods lower than
approx. 30 minutes depending on the site properties, altitude, etc.) is divided into
three regions. The range of energy transfer from the mean motion into turbulent
flow is characterized by the integral turbulent length scale A, which is approx.
10'-5-10* m (Kaimal and Finnigan 1994). The typical range of frequencies is
f ~ 107* Hz. High frequencies follow the inertial sub range with isotropic tur-
bulence. This range follows Kolmogrorov’s law (Kolmogorov 1941a, b) with a
defined decrease in energy density with increasing frequency in a manner pro-
portional to 7. At higher frequencies (f ~ 10-30 Hz), eddies disappear through
viscous dissipation . The scale is the Kolmogorov’s micro-scale of about 10~ m:
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The three ranges in the turbulence spectra in micrometeorology are illustrated
in Fig. 2.12 as a function of wave length. The spectral peak corresponds to an
integral turbulent length scale (exact: xk = m/A, A: Eulerian length scale). This
length scale can be determined for wind components and scalars. According to
Taylor’s hypothesis on frozen turbulence (Taylor 1923, 1938), for which the
relation

K=2n-f/u (2.89)

is valid, this length scale can be combined with the integral turbulent time scale
using the mean wind velocity.

The Lagrangian integral time scale T can be determined from the autocorrela-
tion function p (Monin and Yaglom 1973, 1975; Schlichting and Gersten 2003;
Wyngaard 2010). Because the autocorrelation function is usually an exponential
function, the integral time scale of £ is p(¢) = 1/e ~ 0.37. This is illustrated in
Fig. 2.13. For the horizontal length scale follows with the horizontal wind
velocity:

2
Ou

e OIS
A== [ p,(0) 0/ e (290)

The transport of a conserved passive scalar be it of carbon dioxide, water vapor
or the likes is predicated on the state of the atmosphere. The atmosphere near the
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Fig. 2.13 Autocorrelation
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ground is characterized by vertical inhomogeneity in the flow, i.e. T = 1(2), the
Lagrangian time scale of the turbulence, is thought to be a function of height.
Earlier, seminal studies of Wilson et al. (1981) have found this value to 7 ~ 0.5z in
the neutral atmospheric surface layer above a smooth surface. The Lagrangian
timescale plays an important role in Lagrangian modeling (Koeltzsch 1999).

The atmospheric surface layer is also generally the layer of air where anisotropy
(o0, >0, > 0,)is significant, o,, = 0,,(z), where o,is the turbulence velocity
scale in dimensions i.e. the streamwise, crosswind, and vertical directions
increases with distance from the surface in the surface layer (see Sect. 2.2.6). It is
customarily assumed that the Eulerian and the Lagrangian turbulent velocity scales
of the turbulence are equivalent, thus greatly simplifying our prescription of input
variables. In the neutral case, Wilson et al. (1982) found for the vertical and
horizontal wind velocity, the time scales can be defined as

0.1z _ 05z
Ty = , =1L =
ow(2)

: (2.91)

which were used by Leclerc and Thurtell (1990) in the original Lagrangian
footprint model. In the neutral atmospheric surface layer, o,,(z) in the Lagrangian
timescale can also be replaced by 1.25u, according to Eq. (2.61).

The integral time scale used in Lagrangian footprint models is given in
Table 2.14.

The trajectory of the fluid element is given as

du; = u; dt (292)

where u; is the instantaneous Lagrangian velocity in the x; direction and where dt is
the instantaneous time increment, typically taken to be generally 0.1 t:
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Table 2.14 The use of surface layer parameterization for the Lagrangian integral time scale in
the widely distributed footprint models, “italic” not according the present state

Footprint model Use of Remarks
Leclerc and Thurtell (1990) 7(z) = g‘() Wilson et al. (1982)
Baldocchi (1997) = 0‘3’“ No height dependence
Rannik et al. (2000, 2003) = 207, Cp = 4 (Kolmogorov constant)
Coe
u; = a,-(x,-,t)dt—l—b,-(x,»,t)r. (293)

With the first term representing the ‘memory’ term and the second term the
‘random’ term. Both a; and b; are a function of position, time and velocity while
r is a random process with Gaussian statistics, exhibiting a mean of zero and a
variance of 1. It is the respective magnitude of each of the coefficients that dictate
the relative weight of the ‘memory’ term and that of the ‘random’ term. In
inhomogeneous turbulence as are the cases treated here, an additional term must be
added. The characteristics of the latter but a drift term is generally sufficient to
treat the diffusion near a simple surface in the atmospheric surface layer. That
original method has often yielded to the generalized method used by Thomson
(1987) to deal with inhomogeneous turbulence.

An asset of Lagrangian stochastic models over analytical solutions lies in their
applicability to model the dispersion from a very close range (near field), a subject
of particular importance inside vegetation i.e. the region of sources and sinks.
Lagrangian simulations intrinsically account for the characteristics of diffusion
both in the near-field and in the far field as particles travel away from their source;
this key feature allows for a proper description of the physics within vegetation
(Denmead and Bradley 1985; Thurtell 1988).

2.4.3 Higher-Order Closure Model

Over the last decade, also classical numerical models based on the Navier-Stokes
equations have also been used in modeling atmospheric footprints. The transfor-
mation of streamwise flow components into the equations of motion to the
equation for turbulent flow is necessary. This leads to a system of differential
equations with more unknown parameters than equations. To solve the system of
equations, assumptions have to be made to calculate the unknown parameters. This
is often referred to as closure techniques.

The order of the closure refers to the highest order of the parameters that must
be calculated with the prognostic equations. Therefore, the moments of the next
higher order must be determined (Stull 1988). A first-order closure generally use
either the K-closure approach or stability functions linked to Monin-Obukhov
similarity theory. To calculate state variables like the wind velocity or
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temperature, the K-approach must be applied to determine fluxes according to
Egs. (2.24)—(2.26). With a second-order closure, turbulent fluxes can be deter-
mined using the prognostic equation, but a parameterization for the triple corre-
lation is necessary. A 1.5 order closure uses the equation of the turbulent kinetic
energy (Stull 1988) to determine variance terms, see Sect. 2.2.6.

The benefit of closure techniques larger than the first-order closure allows the
modeling of counter gradients, a frequent occurrence inside canopies (Denmead
and Bradley 1985). In the case of counter gradient diffusion, the direction of the
flux does not follow the direction of the gradient due to possible exchange by
coherent structures, while the proportionality between flux and gradient is given
for the K-approach (1st order closure). The models by Sogachev et al. (2002,
2008), Sogachev and Panferov (2006), and Sogachev and Leclerc (2011) are of 1.5
order closure and by Hsieh and Katul (2009), Hsieh et al. (2000), and Luhar and
Rao (1994) of 2nd order closure.

2.4.4 Large-Eddy Simulation Model

This Large-Eddy Simulation (LES) method, applied for the first time to the
atmosphere by Deardorff (1972) and Moeng and Wyngaard (1988), is considered
the ne plus ultra approach for complex flows not otherwise within the realm of
most models; LES can also incorporate pressure gradients and other challenging
flow/surface scenarios conferring it a definite advantage.

The LES approach is based on the fact that most of the flux is contained in the
large eddies, which are directly resolved. Therefore, a parameterization is neces-
sary to account for the contribution of smaller eddies to fluxes. This method
provides a high level of realism of the flow despite complex boundary conditions.
This powerful type of simulations has been used extensively in atmospheric flow
modeling and in particular in convective boundary layers (Mason 1989).

The LES computes the three-dimensional, time-dependent turbulence motions,
and only parameterizes the subgrid-scale motions (SGS). Using the Navier-Stokes
equations, LES resolves the large eddies with scales equal to or greater than twice
the grid size, while parameterizing SGS processes.

The LES approach is free of the drawback of prescribing a turbulence field,
hence the importance of initial and boundary conditions. Typically, LES deter-
mines the three-dimensional velocity field, pressure, and turbulent kinetic energy.
The LES can also contain a set of cloud microphysical and thermodynamic
equations and can predict the temperature and mixing ratios. It can also simulate
the turbulent transport of moisture, carbon dioxide, and pollutants.

The first seminal study using the LES to model the turbulence inside a forest
canopy was performed by Shaw and Schumann (1992). That study revealed the
feasibility of using the LES to model correctly the three-dimensional structure of the
turbulence in the canopy layer. In the absence of experimental data, LES is often a
substitute, providing a realistic turbulence structure. Canopy LES simulations were
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made for homogeneous canopy flows (Patton et al. 2001; Shaw and Patton 2003;
Yue et al. 2007; Mao et al. 2008; Shen and Leclerc 1997; Su et al. 1998) and recently
to the canopy layer near the edge (Dupont and Brunet 2009).

There are several parameterizations available in treating the sub-grid scales.
One of the most widely used simulations is that originally developed by Moeng
(1984) and Moeng and Wyngaard (1988) and later adapted for flux footprints
applications by Leclerc et al. (1997) and Mao et al. (2008). Often, the in canopy
SGS are parameterized using the 1.5 order of closure scheme. Sullivan et al.
(2003) have discussed and proposed realistic closure schemes.

Some LES also include a terrain-following coordinate system. A spatial cross-
average and temporal average is most often applied to the simulated ‘data’ once
the simulation has reached quasi steady-state equilibrium. Typical boundary
conditions are periodic with a rigid lid applied to the top of the domain so that
waves are absorbed and reflection from the upper portion of the domain is
decreased. The LES is computationally very expensive and limited by the number
of grid points in flow simulations. As computers’ performance and speed keep
going up, this becomes less and less of an issue though still of significance when
footprint modeling in moderately stable conditions is required.

Despite the many advantages of the present method, moderately stable
boundary layers remain the Achilles’ heel of the LES, with errors due to an
imperfect SGS becoming more pronounced in these stable conditions since the
characteristic eddy size is notably smaller.

The LES technique is generally prized amongst other numerical modeling
approaches in part because, as is the case for a canopy layer, they have reproduced
key features of the canopy turbulence structure such as vertically distributed shear
levels, high turbulence intensities changing rapidly with depth inside the canopy
layer, scalar microfronts and inflection point near treetop in the velocity profile (Su
and Leclerc 1998; Su et al. 1998; Fitzmaurice et al. 2004; Watanabe 2004; Yue
et al. 2007; Mao et al. 2008).

The LES technique is applied for footprint modeling either in the way that the
LES model produces the necessary input parameters e.g. for a Lagrangian footprint
model (Leclerc et al. 1997) or by embedding an Lagrangian footprint model
directly into the LES model (Steinfeld et al. 2008). The footprint application of
LES models is still an ongoing issue.

2.5 Averaging Surface Characteristics

Most footprint models are based on atmospheric transport patterns over regions
with spatially uniform flux sources and surface characteristics (e.g. roughness
length, leaf area index, or surface moisture). Lagrangian backward models (Kljun
et al. 2002), Large-Eddy Simulation (e.g. Steinfeld et al. 2008) and higher-order
closure models (e.g. Sogachev and Lloyd 2004) provide complex footprint
descriptions over heterogeneous surfaces. Simpler footprint models needs the
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averaging of the surface characteristics of a heterogeneous surface to determine
averaged input parameters.

The net impact of spatially heterogeneous surface characteristics on atmo-
spheric transport, and therefore on footprint computations is governed by highly
non-linear processes. Despite the above, many approaches that sacrifice complex
physics are available for the sake of mathematical simplicity. The simplest
approach available, called the parameter aggregation, linearly averages parameters
such as the aerodynamic roughness length over an area characterized by surface
parcels of distinct properties

_ 1
7= ﬁ;zm. (2.94)

Parameter aggregation is easy to apply and commonly used in footprint studies.
This is however achieved at the expense of a significant over simplification of the
underlying physics. The error of such averaging can be considerable (Stull and
Santoso 2000). For example, in the case of a heterogeneous landscape composed
of equal parts of water (zp = 0.001 m) and of forest (zp = 1.0 m), the linearly
averaged roughness length would suggest shrub land (zo = 0.5 m); however, the
flow characteristics over shrubs differ significantly from those over a forested area
with lakes.

The reason for the failure of the parameter aggregation is the fact that the
interaction of the atmosphere with the underlying surface takes parties intertwined
with fluxes such as the momentum flux

N 2
p
- S . 2.95
T=pu=y (lnz—lnz0,> (2.95)

i=

The relationship between surface characteristics (e.g. roughness length) and
resulting fluxes (e.g. momentum flux) is non-linear. Therefore, averaged surface
parameters lead to a construction of a regional flux that differs from that created
using a superposition of fluxes from the individual patches. Accordingly, these
fluxes must be averaged (flux aggregation) to yield more realistic results. Besides
the momentum flux, also the stability (momentum and sensible heat flux) and the
evaporation (latent heat flux) must be averaged for special applications (Chap. 6).
Due to the involvement of additional flux equations and their interdependencies, it
is evident that the flux aggregation is complex than parameter aggregation.

2.5.1 Averaging Using Effective Parameters

A common approach to arrive at spatially averaged parameter sets that produce
representative area-averaged fluxes without the use of complex algorithms consists
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in selecting effective parameters. A well-known example is that of the ‘effective
roughness lengths’ presented by Fiedler and Panofsky (1972). These effective
roughness lengths are not describing the roughness of a particular underlying
surface per se, but instead focus on the effect on momentum fluxes on the land-
scape scale (flat terrain: 0.42 m; low hills: 0.99 m; high mountains: 1.42 m).
Generally speaking, the determination of the effective roughness length needs the
normalization with the friction velocity inherent to a particular area (Taylor 1987;
Schmid and Biinzli 1995a, b; Mahrt 1996; Hasager and Jensen 1999) in the fol-
lowing form:

« - In
20eff = = . (2.96)

Uy

Such a simple averaging method is helpful for countless practical applications,
such as the micrometeorological characterization of the boundary layer above
settlement areas (Grimmond et al. 1998).

A more empirical form for the determination of an effective roughness length
was presented in the European Wind Atlas (Troen and Peterson 1989). The authors
classified only four types (0-3) of the surface roughness (water, flat meadows,
landscape with bushes, forest), each of which are assigned a basic roughness
length. To include subgrid-scale heterogeneities, the model area is divided up into
quarters, each of which are assigned individualist own land-cover class. In
Table 2.15 the different portions of the roughness classes (water, flat meadows,
landscape with bushes, forest) to the entire area are given. Unfortunately no
algorithm is available or published. The effective roughness length is an
“empirical” function of the contribution of each surface area to the whole area.
Gockede et al. (2004) used this concept to determine an effective roughness length
for each grid cell in a heterogeneous landscape. The authors assumed that a simple
parameter averaging of these effective values was sufficient to subsequently
average the roughness length of all grid cells within the footprint area.

2.5.2 Flux-Averaging Models in Inhomogeneous Terrain

The simplest form of a flux aggregation approach is the tile approach, where land
cover characteristics within a grid cell accumulate (Fig. 2.14a) according to the
proportional use of each land-use type. To arrive at representative averaged
parameters, fluxes must be determined for each land use type, and averaged
afterwards (Beyrich et al. 2006). However, this method neglects the interaction
between the different grid cells, e.g. flow transitions from smooth to rough surfaces
or vice versa, local circulation or large water bodies, which can influence the flux
systematically. Both experimental (Panin et al. 1996; Klaassen et al. 2002;
Klaassen and Sogatchev 2006) and numerical studies (Schmid and Biinzli 1995a;
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Table 2.15 Averaging schema of the roughness length in the European Wind Atlas (Troen and
Peterson 1989) used to generate a “flux-averaged” effective roughness length

Type Water (%) Flat Landscape Forest (%) Effective
meadow (%) with bushes (%) roughness
length (m)
Zo (m) 0.0002 0.03 0.1 0.4

75 25 0.001
75 25 0.002
75 25 0.003
50 50 0.004
50 25 25 0.006
50 25 25 0.010
50 50 0.009
50 25 25 0.015
50 50 0.025
25 75 0.011
25 50 25 0.017
25 50 25 0.027
25 25 50 0.024
25 25 25 25 0.038
25 25 50 0.059
25 75 0.033
25 50 25 0.052
25 25 50 0.079
25 75 0.117
75 25 0.042
75 25 0.064
50 50 0.056
50 25 25 0.086
50 50 0.127
25 75 0.077
25 50 25 0.113
25 25 50 0.163
25 75 0.232
75 25 0.146
50 50 0.209
25 75 0.292

Friedrich et al. 2000; Sogachev et al. 2008) found that in a heterogeneous land-
scape, significantly higher fluxes are found close to such roughness changes.
This problem can be circumvented using the sub-grid scale approach (Molders
et al. 1996; Wang et al. 2006), should be used: For each surface element, a separate
multilayer model (often of the Surface-Vegetation-Atmosphere-Transfer type:
SVAT) interacting with the neighbourhood grid cell by horizontal fluxes and
advection can then be calculated (Fig. 2.14b). The structure of the surface will be
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(a) (b)

Fig. 2.14 a Schematic figure of the tile approach. The initial distribution of the surface
structures will be combined according their contributions for further calculation. b Schematic
view of the sub-grid scale (Foken 2008)

not changed and for each surface type a multilayer model will be used which
interacts each other by horizontal flow.

A more sophisticated approach to aggregate roughness lengths under consid-
eration of local advection effects was developed by Hasager and Jensen (1999).
This microscale aggregation model accounts for the adjustment of the flow to
roughness change in arbitrary surface conditions. The physics consists of a line-
arized version of the atmospheric momentum equation in which only the advective
term and the vertical flux divergence are assumed to be of importance, while all
other terms such as the Coriolis term are neglected (Hasager et al. 2003). The
algorithms are solved by Fast Fourier Transform to allow the time-efficient
computation of the effective roughness parameter in accordance with average
stress for a given background flow. Terrain information is provided using high-
resolution two-dimensional land-use maps, with a fixed roughness length assigned
to each land-use class. The application of this method for footprint modeling was
demonstrated by Gockede et al. (2006).

Since area averaging of representative surface parameters is usually a pre-
processing step to the actual footprint computation, the problem of finding a
suitable averaging scheme is more a responsibility of the model user than of the
model developer. Accordingly, the use of different aggregation approaches has
been published mostly in application papers (Chap. 8). The experimentalist using
footprint models must keep in mind that most footprint models are only valid for
homogeneous surfaces, and any application in heterogeneous terrain may com-
promise the model output. The use of averaging techniques to produce aggregated,
homogeneous surface fluxes opens footprint models to larger areas of application,
but the neglect of high variability of turbulent fluxes at subgrid-scale in the
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Table 2.16 Flux-averaging approaches used in footprint models

Averaging technique Used in

Homogeneous surface Schuepp et al. (1990), Leclerc and Thurtell
(1990), Horst and Weil (1992, 1994),
Schmid (1994, 1997), Flesch (1996),
Leclerc et al. (1997), Haenel and Griinhage
(1999), Rannik et al. (2000, 2003),
Kormann and Meixner (2001) and others

Effective roughness length Applicable to most models

Effective roughness length according to a Gockede et al. (2006) using the model by
momentum flux averaging (Hasager and Rannik et al. (2000, 2003)
Jensen 1999)

Heterogeneous surface Kljun et al. (2002), Steinfeld et al. (2008),

Sogachev and Lloyd (2004)

heterogeneous terrain may significantly bias the computations. Table 2.16 sepa-
rates the footprint model regarding use for homogeneous or heterogeneous sur-
faces and summarizes flux aggregation approaches used for footprint models.
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