
Chapter 2
Blind Source Separation Based on Dictionary
Learning: A Singularity-Aware Approach

Xiaochen Zhao, Guangyu Zhou, Wei Dai and Wenwu Wang

Abstract This chapter surveys recent works in applying sparse signal processing
techniques, in particular, dictionary learning algorithms to solve the blind source
separation problem. For the proof of concepts, the focus is on the scenario where
the number of mixtures is not less than that of the sources. Based on the assumption
that the sources are sparsely represented by some dictionaries, we present a joint
source separation and dictionary learning algorithm (SparseBSS) to separate the
noise corrupted mixed sources with very little extra information. We also discuss the
singularity issue in the dictionary learning process, which is one major reason for
algorithm failure. Finally, two approaches are presented to address the singularity
issue.

2.1 Introduction

Blind source separation (BSS) has been investigated during the last two decades;
many algorithms have been developed and applied in a wide range of applications
includingbiomedical engineering,medical imaging, speechprocessing, astronomical
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imaging, and communication systems. Typically, a linear mixture model is assumed
where the mixtures Z ∈ R

r×N are described as Z = AS + V . Each row of S ∈
R

s×N is a source and A ∈ R
r×s models the linear combinations of the sources. The

matrixV ∈ R
r×N represents additive noise or interference introduced duringmixture

acquisition and transmission.
Usually in the BSS problem, the only known information is the mixtures Z and

the number of sources. One needs to determine both the mixing matrix A and the
sources S, i.e., mathematically, one needs to solve

min
A,S

‖Z − AS‖2F .

It is clear that such a problem has an infinite number of solutions, i.e., the problem
is ill-posed. In order to find the true sources and the mixing matrix (subject to scale
and permutation ambiguities), it is often required to add extra constraints to the prob-
lem formulation. For example, a well-known method called independent component
analysis (ICA) [1] assumes that the original sources are statistically independent. This
has led to some widely used approaches such as Infomax [2], maximum likelihood
estimation [3], the maximum a posterior (MAP) [4], and FastICA [1].

Sparsity prior is another property that can be used forBSS.Most natural signals are
sparse under some dictionaries. The mixtures, viewed as a superposition of sources,
are in general less sparse compared to the original sources. Based on this fact, the
sparse prior has been used in solving the BSS problem from various perspectives
since 2001, e.g., sparse ICA (SPICA) [5] and sparse component analysis (SCA) [6].
In this approach, there is typically no requirement that the original sources have to be
independent. As a result, these algorithms are capable of dealing with highly corre-
lated sources, for example, in separating two superposed identical speeches, with one
being a few samples delayed version of the other. Jourjine et al. proposed an SCA-
based algorithm in [7] aiming at solving the anechoic problem. SCA algorithms look
for a sparse representation under predefined bases such as discrete cosine transform
(DCT), wavelet, curvelet, etc. Morphological component analysis (MCA) [8] and its
extended algorithms for multichannel cases, Multichannel MCA (MMCA) [9], and
Generalized MCA (GMCA) [10], are also based on the assumption that the original
sources are sparse in different bases instead of explicitly constructed dictionaries.
However, these algorithms do not exhibit an outstanding performance since in most
cases the predefined dictionaries are too general to offer sufficient details of sources
when used in sparse representation.

A method to address this problem is to learn data-specific dictionaries. In [11],
the authors advised to train a dictionary from the mixtures/corrupted-images and
then decompose it into a few dictionaries according to the prior knowledge of the
main components in different sources. This algorithm is used for separating images
with different main frequency components (e.g., Cartoon and Texture images) and
obtained satisfactory results in image denoising. Starck et al. proposed in [12] to learn
dictionary from a set of exemplar images for each source. Xu et al. [13] proposed
an algorithm, which allows the dictionaries to be learned from the sources or the
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mixtures. In most BSS problems, however, dictionaries learned from the mixtures
or from similar exemplar images rarely well represent the original sources.

To get more accurate separation results, the dictionaries should be adapted to the
unknown sources. The motivation is clear from the assumption that the sources are
sparsely represented by some dictionaries. The initial idea of learning dictionaries
while separating the sources was suggested by Abolghasemi et al. [14]. They pro-
posed a two-stage iterative process. In this process each source is equipped with a
dictionary, which is learned in each iteration, right after the previousmixture learning
stage. Considering the size of dictionaries being much larger than the mixing matrix,
themain computational cost is on the dictionary learning stage. This two-stage proce-
durewas further developed in Zhao et al. [15]. Themethodwas termed as SparseBSS,
which employs a joint optimization framework based on the idea of SimCO dictio-
nary update algorithm [16]. By studying the optimization problem encountered in
dictionary learning, the phenomenon of singularity in dictionary update was for the
first time discovered. Furthermore, from the viewpoint of the dictionary redundancy,
SparseBSS uses only one dictionary to represent all the sources, and is therefore com-
putationallymuchmore efficient than usingmultiple dictionaries as in [14]. This joint
dictionary learning and source separation framework is the focus of this chapter. This
framework can be extended potentially to a convolutive or underdetermined model,
e.g., apply clustering method to solve the the ill-posed inverse problem in underde-
termined model [13]; however, discussion on such an extension is beyond the scope
of this chapter. In this chapter, we focus on overdetermined/even determined model.

The remainder of this chapter is organized as follows. Section 2.2 describes the
framework of the BSS problem based on dictionary learning. The recently proposed
algorithm SparseBSS is introduced and compared in detail with the related bench-
mark algorithmBMMCA. In Sect. 2.3, we briefly introduce the background of dictio-
nary learning algorithms and then discuss the important observation of the singularity
issue, which is a major reason for the failure of dictionary learning algorithms and
hence dictionary learning-based BSS algorithms. Later, two available approaches are
presented to address this problem. In Sect. 2.5, we conclude our work and discuss
some possible extensions.

2.2 Framework of Dictionary Learning-Based BSS Problem

We consider the following linear and instantaneous mixing model. Suppose there are
s source signals of the same length, denoted by s1, s2, . . . , ss, respectively, where
si ∈ R

1×N is a row vector to denote the ith source. Assume that these sources are
linearly mixed into r observation signals denoted by z1, z2, . . . , zr respectively,

where zj ∈ R
1×N . In the matrix format, denote S = [

sT
1 , sT

2 , . . . , sT
s

]T ∈ R
s×N and

Z = [
zT
1 , zT

2 , . . . , zT
r

]T ∈ R
r×N . Then the mixing model is given by

Z = AS + V, (2.1)
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whereA ∈ R
r×s is themixingmatrix andV ∈ R

r×N is denoted as zeromean additive
Gaussian noise. We also assume that r ≥ s, i.e., the underdetermined case will not
be discussed here.

2.2.1 Separation with Dictionaries Known in Advance

For some BSS algorithms, such as MMCA [9], orthogonal dictionaries Di’s are
required to be known a priori. Each source si is assumed to be sparsely represented
by a different Di. Hence, we have si = Dixi with xi’s being sparse. Given the
observation Z and the dictionaries Di’s, MMCA [9] aims to estimate the mixing
matrix and sources, based on the following form:

min
A,S

‖Z − AS‖2F +
n∑

i=1

λi

∥
∥∥siD

†
i

∥
∥∥
1
. (2.2)

Here λi > 0 is the weighting parameter determined by the noise deviation σ, ‖·‖F

represents the Frobenius norm, ‖·‖1 is the �1 norm and D†
i denotes the pseudo-

inverse of Di. Predefined dictionaries generated from typical mathematical trans-
forms, e.g., DCT, wavelets and curvelets, do not target particular sources, and thus
do not always provide sufficiently accurate reconstruction and separation results.
Elad et al. [11] designed a method to first train a redundant dictionary by K-SVD
algorithm in advance, and then decompose it into a few dictionaries, one for each
source. This method works well when the original sources have components that are
largely different from each other under some unknown mathematical transforma-
tions (e.g. Cartoon and Texture images under the DCT transformation). Otherwise,
the dictionaries found may not be appropriate in the sense that they may fit better the
mixtures rather than the sources.

2.2.2 Separation with Unknown Dictionaries

2.2.2.1 SparseBSS Algorithm Framework

According to the authors’ knowledge, BMMCA and SparseBSS are the two most
recent BSS algorithms, which implement the idea of performing source separa-
tion and dictionary learning simultaneously. Due to space constraints, we focus on
Sparse BSS in this chapter. In SparseBSS, one assumes that all the sources can be
sparsely represented under the same dictionary. In order to obtain enough train-
ing samples for dictionary learning, multiple overlapped segments (patches) of the
sources are taken. To extract small overlapped patches from the source image si,
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a binary matrix Pk ∈ R
n×N is defined as a patching operator1 [15]. The product

Pk · sT
i ∈ R

n×1 is needed to obtain and vectorize the kth patch of size
√

n × √
n

taken from image S i. Denote P = [P1, . . . , PK ] ∈ R
n×KN , where K is the number of

patches taken from each image. Then the extraction of multiple sources S is defined
as PS = ([P1, . . . , PK ]) · ([sT

1 , sT
2 , . . . , sT

s

] ⊗ IK ) = P · (ST ⊗ IK ) ∈ R
n×Ks, where

symbol ⊗ denotes the Kronecker product and IK indicates the identity matrix. The
computational cost associated with converting from images to patches is low. Each
column of PS represents one vectorized patch. We sparsely represent PS by using
only one dictionary D ∈ R

n×d and a sparse coefficient matrix X ∈ R
d×Ks, which

suggestsPS ≈ DX. This is different from BMMCA, where multiple dictionaries are
used for multiple sources.

With these notations, the BSS problem is formulated as the following joint opti-
mization problem:

min
A,S,D,X

λ ‖Z − AS‖2F +
∥∥∥P† (DX) − S

∥∥∥
2

F
. (2.3)

The parameter λ is introduced to balance the measurement error and the sparse
approximation error, and X is assumed to be sparse.

To find the solution of the above problem, we propose a joint optimization algo-
rithm to iteratively update the following two pairs of variables {D, X} and {A, S} over
two stages until a (local) minimizer is found. Note that in each stage there is only
one pair of variables to be updated simultaneously by keeping the other pair fixed.

• Dictionary learning stage
min
D,X

‖DX − PS‖2F , (2.4)

• Mixture learning stage

min
A,S

λ ‖Z − AS‖2F + ‖DX − PS‖2F . (2.5)

Without being explicit in (2.3), a sparse coding process is involved where greedy
algorithms, such as orthogonal matching pursuit (OMP) [17] and subspace pursuit
(SP), [18] are used to solve

min
X

‖X‖0 , s.t. ‖DX − P (S)‖2F ≤ ε,

where ‖X‖0 counts the number of nonzero elements inX, the dictionaryD is assumed
fixed, and ε > 0 is an upper bound on the sparse approximation error.

During the optimization, further constraints are made on the matrices A and
D. Consider the dictionary learning stage. Since the performance is invariant to
scaling and permutations of the dictionary codewords (columns of D), we follow the

1 Note that in this chapter Pk is defined as a patching operator for image sources. The patching
operator for audio sources can be similarly defined as well.
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convention in the literature, e.g., [16], and enforce the dictionary to be updated on
the set

D =
{

D ∈ R
n×d : ∥∥D:,i

∥∥
2 = 1, 1 ≤ i ≤ d

}
, (2.6)

where D:,i stands for the ith column of D. A detailed description of the advantage by
adding this constraint can be found in [16]. Sparse coding, once performed, provides
information about which elements of X are zeros and which are nonzeros. Define
the sparsity pattern by Ω = {

(i, j) : Xi,j 	= 0
}
, which is the index set of the nonzero

elements of X. Define XΩ as the set of all matrices conforming to the sparsity pat-
tern Ω . This is the feasible set of the matrix X. The optimization problem for the
dictionary learning stage can be written as

min
D∈D

fμ (D) = min
D∈D

min
X∈XΩ

‖DX − P (S)‖2F + μ ‖X‖2F ,

= min
D∈D

min
X∈XΩ

∥
∥∥∥

[P (S)

0

]
−

[
D√
μI

]
X

∥
∥∥∥

2

F
. (2.7)

The term μ ‖X‖2F introduces a penalty to alleviate the singularity issue. See more
details in Sect. 2.3.3.

In themixture learning stage, similar to the dictionary learning stage, we constrain
the mixing matrix A in the set

A = {
A ∈ R

r×s : ∥
∥A:,i

∥
∥
2 = 1, 1 ≤ i ≤ s

}
. (2.8)

This constraint is necessary. Otherwise, if the mixing matrix A is scaled by a con-
stant c and the source S is inversely scaled by c−1, then for any {A, S} we can
always find a solution {cA, c−1S|c > 1}, which further decreases the objective func-
tion (2.3) from λ ‖Z − AS‖2F +‖DX − PS‖2F to λ ‖Z − AS‖2F + c−2 ‖DX − PS‖2F .
Now if we view the sources S ∈ R

s×n as a “sparse” matrix with the sparsity pat-
tern Ω ′ = {(i, j) : 1 ≤ i ≤ s, 1 ≤ j ≤ N}. Then, the optimization problem for the
mixture learning stage is exactly the same as that for the dictionary learning stage:

min
A∈A

fλ (A) = min
A∈A

min
S∈Rs×n

λ ‖Z − AS‖2F +
∥∥∥P† (DX) − S

∥∥∥
2

F

= min
A∈A

min
S∈XΩ′

∥∥∥∥

[ √
λZ

P† (DX)

]
−

[√
λA
I

]
S

∥∥∥∥

2

F

, (2.9)

where the fact that R
s×n = XΩ ′ has been used. As a result, the SimCO mechanism

can be directly applied. Here, we do not require the prior knowledge of the scaling
matrix in front of the true mixing matrix [10], as otherwise required in MMCA and
GMCA algorithms.

To conclude this section, we emphasize the following treatment of the optimiza-
tion problems (2.7) and (2.9). Both involve a joint optimization over two variables,
i.e., D and X for (2.7) and A and S for (2.9). Note that if D and A are fixed, then
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the optimal X and S can be easily computed by solving the corresponding least
squares problems. Motivated by this fact, we write (2.7) and (2.9) as min

D∈D
fμ (D) and

min
A∈A

fλ (A), respectively, when fμ (D) and fλ (A) are properly defined in (2.7) and

(2.9). In this way, the optimization problems, at least from the surface, only involve
one variable. This helps the discovery of the singularity issue and the developments
of handling singularity. See Sect. 2.3 for details.

2.2.2.2 Implementation Details in SparseBSS

Most optimizationmethods are based on line search strategies. The dictionaries at the
beginning and the end of the kth iteration, denoted by D(k) and D(k+1), respectively,
can be related by D(k+1) = D(k) + α(k)η(k) where α(k) is an appropriately chosen
step size and η(k) is the search direction. The step size α(k) can be determined by
Armijo condition orGolden selection presented in [19]. The search direction η(k) can
be determined by a variety of gradient methods [19, 20]. The decision of η(k) plays
the key role, which directly affects the convergence rate of the whole algorithm.
Generally speaking, a Newton direction is a preferred choice (compared with the
gradient descent direction) [19]. In many cases, direct computation of the Newton
direction is computationally prohibitive. Iterative methods can be used to search the
Newton direction. Take the Newton Conjugate Gradient (Newton CG) method as
an example. It starts with the gradient descent direction η0 and iteratively refines
it toward the Newton direction. Denote the gradient of fμ (D) as ∇fμ (D). Denote
∇η

(∇fμ (D)
)
as the directional derivative of ∇fμ (D) along η [21]. In each line

search step of the Newton CGmethod, instead of computing the Hessian∇2fμ (D) ∈
R

md×md explicitly, one only needs to compute ∇η

(∇fμ (D)
) ∈ R

m×d . The required
computational and storage resources are therefore much reduced.

When applying the Newton CG to minimize fμ (D) in (2.7), the key computations

are summarized below. Denote D̃ = [
DT μI

]T
and let Ω (:, j) be the index set of

nonzero elements inX:,j .We consider D̃i = D̃:,Ω(:,i) ∈ R
(m+r)×r withm > r. Matrix

D̃i is a full column rank tall matrix. We denote

fi(D̃i) = min
xi

‖yi − D̃xi‖22

and the optimal
x∗

i = argmin
xi

‖yi − D̃xi‖22.

Denote D̃
†
i as the pseudo-inverse of D̃i. Then we have

∂f
∂xi

|x∗
i
= 0, where x∗

i = D̃
†
i yi,

and ∇fi(D̃i) can be written as

∇fi(D̃i) = ∂f

∂D̃i
+ ∂f

∂xi

∂xi

∂D̃i
= −2(yi − D̃ix∗

i )x
∗T
i + 0 (2.10)
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To compute ∇η

(
∇fi(D̃i)

)
, we have

∇η

(
∇fi(D̃i)

)
= 2∇η

(
D̃ix∗

i − yi

)
x∗T

i + 2
(

D̃ix∗
i − yi

)
∇ηx∗T

i

= 2∇ηD̃ix∗
i x∗T

i + 2D̃i∇ηx∗
i x∗T

i + 2
(

D̃ix∗
i − yi

)
∇ηx∗T

i

= 2ηx∗
i x∗T

i + 2D̃i∇ηx∗
i x∗T

i + 2
(

D̃ix∗
i − yi

)
∇ηx∗T

i , (2.11)

where ∇ηx∗ is relatively easy to obtain,

∇ηx∗ = −
(

D̃
T

D̃
)−1 ((

D̃
T
η + ηT D̃

)
D̃
† − ηT

)
y. (2.12)

From the definition of D̃i,Di is a submatrix of D̃i, therefore∇fi(Di) and∇η (∇fi(Di))

are also, respectively, submatrices of ∇fi(D̃i) and ∇η

(
∇fi(D̃i)

)
, i.e., ∇fi(Di) =

(
∇fi

(
D̃i

))

1:m,: and ∇η (∇fi(Di)) =
(
∇η

(
∇fi(D̃i)

))

1:m,:.
In addition, it is also worth noting that the SparseBSSmodel, using one dictionary

to sparsely represent all the sources will get almost the same performance as using
multiple but same-sized dictionaries when the dictionary redundancy d/n is large
enough. As a result, it is reasonable to train only one dictionary for all the sources.
An obvious advantage of using one dictionary is that the computational cost does
not increase when the number of sources increases.

2.2.3 Blind MMCA and Its Comparison to SparseBSS

BMMCA [14] is another recently proposed BSS algorithm based on adaptive dic-
tionary learning. Without knowing dictionaries in advance, the BMMCA algorithm
also trains dictionaries from the observed mixture Z. Inspired by the hierarchical
scheme used in MMCA and the update method in K-SVD, the separation model in
BMMCA is made up of a few rank-1 approximation problems, where each problem
targets on the estimation of one particular source

min
A:,i,si,Di,Xi

λ
∥∥Ei − A:,isi

∥∥2
F + ‖DiXi − Rsi‖22 + μ ‖Xi‖0 . (2.13)

Different from the operator P defined earlier in SparseBSS algorithm, the oper-
ator R in BMMCA is used to take patches from only one estimated image si. Di is
the trained dictionaries for representing source si. Ei is the residual which can be
written as

Ei = Z −
∑

j 	=i

A:,jsj. (2.14)
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Despite being similar in problem formulation, BMMCA and SparseBSS differ
in terms of whether the sources share a single dictionary in dictionary learning.
In the SparseBSS algorithm, only one dictionary is used to provide sparse rep-
resentations for all sources. BMMCA requires multiple dictionaries, one for each
source. In the mixing matrix update, BMMCA imitates the K-SVD algorithm by
splitting the steps of update and normalization. Such two-step based approach does
not bring the expected optimality of A ∈ A, thereby giving inaccurate estimation,
while SparseBSS keeps A ∈ A during the optimization process. In BMMCA, the
authors claim that the ratio between the parameter λ and the noise standard deviation
σ is fixed to 30, which will not guarantee good estimation results at various noise
levels.

2.3 Dictionary Learning and the Singularity Issue

As is clear from previous discussions, dictionary learning plays an essential role in
solving the BSS problem when the sparse prior is used, and hence is the focus of this
section.Wefirst briefly introduce the relevant background, then discuss an interesting
phenomenon, the singularity issue in the dictionary update stage, and finally present
two approaches to handle the singularity issue. For readers who are more interested
in the SparseBSS algorithm themselves may consider this section as optional and
skip to Sect. 2.4.

2.3.1 Brief Introduction to Dictionary Learning Algorithms

One of the earliest dictionary learning algorithms is the method of optimal directions
(MOD) [22] proposed by Engan et al. The main idea is as follows: in each iteration,
one first fixes the dictionary and uses OMP [17] or FOCUSS [23] to update the
sparse coefficients, then fixes the obtained sparse coefficients and updates the dictio-
nary in the next stage. MOD was later modified to iterative least squares algorithm
(ILS-DLA) [24] and recursive least squares algorithm (RLS-DLA) [25]. Aharon et
al. developed the K-SVD algorithm [26], which can be viewed as a generalization of
the K-means algorithm. In each iteration, the first step is to update the sparse coef-
ficients in the same way as in MOD. Then in the second step, one fixes the sparse
pattern, and updates the dictionary and the nonzero coefficients simultaneously. In
particular, the codewords in the dictionary are sequentially selected: the selected
codeword and the corresponding row of the sparse coefficients are updated simulta-
neously by using singular value decomposition (SVD). More recently, Dai et al. [16]
considered the dictionary learning problem from a new perspective. They formulated
dictionary learning as an optimization problem on manifolds and developed simul-
taneous codeword optimization (SimCO) algorithm. In each iteration SimCO allows
multiple codewords of the dictionary to be updated with corresponding rows of the
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sparse coefficients jointly. This new algorithm can be viewed as a generalization of
both MOD and K-SVD. Some other dictionary learning algorithms are also devel-
oped in the past decade targeting on various circumstances. For example, based on
stochastic approximations, Mairal et al. [27] proposed an online algorithm to address
the problem with large data sets.

Theoretical or in-depth analysis about the dictionary learning problem was mean
time in progress as well. Gribonval et al. [28], Geng et al. [29], and Jenatton
et al. [30] studied the stability and robustness of the objective function under different
probabilistic modeling assumptions, respectively. In addition, Dai et al. observed in
[16] that the dictionary update procedure may fail to converge to a minimizer. This is
a common phenomenon happening in MOD, K-SVD, and SimCO. Dai et al. further
observed that ill-conditioned dictionaries, rather than stationary dictionaries, are the
major reason that has led to the failure of the convergence. To alleviate this problem,
Regularized SimCOwas proposed in [16]. Empirical performance improvement was
observed. The same approach was also considered in [31], however, without detailed
discussion on the singularity issue. More recently, the fundamental drawback of reg-
ularized SimCOwas demonstrated using an artificial example [32]. To further handle
the singularity issue, a Smoothed SimCO [33] was proposed by addingmultiplicative
terms rather than additive regularization terms to the objective function.

2.3.2 Singularity Issue and Its Impacts

In dictionary update stage of existing mainstream algorithms, singularity is observed
as the major reason leading to failures [16, 33]. Simulations in [16] suggests that the
mainstreamalgorithms failmainly because of singular points in the objective function
rather than non-optimal stationary points. As dictionary learning is an essential part
of the aforementioned SparseBSS, the singularity issue also has negative impact on
the overall performance of BSS. To explain the singularity issue in dictionary update,
we first formally define the singular dictionaries.

Definition 1 A dictionary D ∈ R
m×d is singular under a given sparsity pattern Ω

if there exists an i ∈ [n] such that the corresponding sub-dictionary Di � D:,Ω(:,i) is
column rank deficient. Or equivalently, the minimum singular value of Di, denoted
as λmin (Di), is zero.

A dictionary D ∈ R
m×d is said to be ill-conditioned under a given sparsity pattern

Ω if there exists an i ∈ [n] such that the condition number of the sub-dictionary Di

is large, or equivalently λmin (Di) is close to zero.

Definition 2 [16] Define the condition number of a dictionary D as:

κ (D) = max
i∈[n]

λmax (Di)

λmin (Di)
,
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where λmax (Di) and λmin (Di) represent the maximum and the minimum singular
value of the sub-dictionary Di respectively.

The word “singular” comes from the fact that f (D) = min
X∈XΩ

‖Y − DX‖2F is not

continuous at a singular dictionary2 and the corresponding

X (D) � arg min
X∈XΩ

‖Y − DX‖2F

is not unique. The singularity of f (D) leads to convergence problems. Benchmark
dictionary update procedures may fail to find a globally optimal solution. Instead
they converge to a singular point of f (D), i.e., a singular dictionary.

Ill-conditioned dictionaries are in the neighborhood of singular ones. Algorith-
mically when one of the λmin (Di)s is ill-conditioned, the curvature of f (D) is quite
large and the value of the gradient fluctuates dramatically. This seriously affects the
convergence rate of the dictionary update process.

Furthermore, ill-conditioned dictionaries also bring negative effect on the sparse
coding stage. Denote yi and xi as the ith column of Y and X respectively. Consider
a summand of the formulation in sparse coding stage [16, 26], i.e.,

min
xi

‖yi − Dxi‖2F + ‖xi‖0 .

An ill-conditioned D corresponds to a very large condition number, which breaks
the restricted isometry condition (RIP) [34], and results in the unstable solutions:
with small perturbations added on the training sample Y , the solutions of X deviate
significantly.

2.3.3 Regularized SimCO

The main idea of Regularized SimCO lies in the use of an additive penalty term to

avoid singularity. Consider the objective function fμ
(

D̃
)
in (2.7),

fμ
(

D̃
)

= min
X∈XΩ

‖DX − P (S)‖2F + μ ‖X‖2F ,

= min
X∈XΩ

∥∥
∥∥

[P (S)

0

]
−

[
D√
μI

]
X

∥∥
∥∥

2

F
. (2.15)

As long as μ 	= 0 (μ > 0 in our case), the block μI guarantees the full column rank

of D̃ = [
DT μI

]T
. Therefore, with the modified objective function fμ

(
D̃

)
, there is

2 An illustration: take Y, D, X as scalars. If Y 	= 0, there exists a singular point at D = 0 on
f (D) = min

X
‖Y − DX‖2F , where X can be assigned as any real number.
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no singular point so that gradient descent methods will only converge to stationary
points.

This regularization technique is also applicable toMOD [16]. It is verified that this
technique effectively mitigates the occurrence of ill-conditioned dictionary although
at the same time some stationary pointsmight be generated. To alleviate this problem,
one can decrease gradually the regularization parameter μ during the optimization
process [16]. In the end μwill decrease to zero. Nevertheless, it is still not guaranteed
to converge to a global minimum. The explicit example constructed in [32] shows
a failure of the Regularized SimCO. As a result, another method to address the
singularity issue is introduced below.

2.3.4 Smoothed SimCO

Also aiming at handling the singularity issue, Smoothed SimCO [33] is to remove
the singularity effect by adding multiplicative functions. The intuition is explained
as follows. Write f (D) into a summation of atomic functions

f (D) = ‖Y − DX‖2F
=

∑

i

‖Y :,i − DiXΩ(:,i),i‖22 (2.16)

=
∑

i

fi(Di),

where each fi(Di) is termed as an atomic function and Di is defined in Definition
1. Let I be the index set corresponding to the Di’s of full column rank. Define an
indicator function XI s.t. XI (i) = 1 if i ∈ I and XI (i) = 0 if i ∈ Ic. Use XI (i) as
a multiplicative modulation function and apply it to each fi (Di). Then one obtains

f̄ (D) =
∑

i

fi(Di)XI (i) =
∑

i∈I
fi(Di). (2.17)

This new function f̄ is actually the best possible lower semi-continuous approxima-
tion of f and there is no new stationary point created.

Motivated from the above, we define

f̃ (D) =
∑

i

fi(Di)g (λmin (Di)) , (2.18)

where the shape of g is given in Fig. 2.1. The function g has the following properties:
(1) g (λmin) = 0 for all λmin ≤ 0; (2) g (λmin) = 1 for all λmin (Di) > δ > 0, where δ
is a threshold; (3) g is monotonically increasing; (4) g is second order differentiable.
When using λmin (Di) as the input variable for g and the positive threshold δ → 0,



2 Blind Source Separation Based on Dictionary Learning 51

Fig. 2.1 A shape of function
g (·)

λmin (Di) becomes an indicator function indicating whether Di has a full column
rank, i.e., {

g (λmin (Di)) = 1 if Di has full column rank;
g (λmin (Di)) = 0 otherwise.

Themodulated objective function f̃ has several good properties, which do not exhibit
in the regularized objective function (2.15). In particular, we have the following
theorems.

Theorem 1 Consider the smoothed objective function f̃ and the original objective
function f defined in (2.18) and (2.16) ,respectively.

1. When δ > 0, ∀i, f̃ (D) is continuous.
2. Consider the limit case where δ → 0 with δ > 0, ∀i. The following statements

hold:

a. f̃ (D) and f (D) differ only at the singular points.
b. f̃ (D) is the best possible lower semi-continuous approximation of f (D).

Theorem 2 Consider the smoothed objective function f̃ and the original objective
function f defined in (2.18) and (2.16) ,respectively. For any a ∈ R, define the lower
level set Df (a) = {D : f (D) ≤ a}. It is provable that when δ → 0, Df̃ (a) is the
closure of Df (a).

In practice, we always choose a δ > 0. The effect of a positive δ, roughly speaking,
is to remove the barriers created by singular points, and replace them with “tunnels”,
whose widths are controlled by δ, to allow the optimization process to pass through.
The smaller the δ is, the better f̃ approximates f , but the narrower the tunnels are,
and the slower the convergence rate will be. As a result, the threshold δ should be
properly chosen. A detailed discussion of choosing δ is presented in [32]. Compared
with the choice of the parameter (μ) in the Regularized SimCO [16], the choice of
the smoothing threshold δ is easier: one can simply choose a small δ > 0 without
decreasing it during the process.

As final remarks, Smoothed SimCO has several theoretical advantages over Reg-
ularized SimCO. However, the computations of (λmin (Di))’s introduce extra cost.
The choice between these two methods will depend on the size of the problem under
consideration.
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Fig. 2.2 Two speech sources and the corresponding noisy mixtures (20 dB Gaussian noise)

2.4 Algorithm Testing on Practical Applications

In this section, we present numerical results of the SparseBSS method compared
with some other mainstream algorithms. We first focus on speech separation where
an equal determined case will be considered. Then, we show an example for blind
image separation, where we will consider an overdetermined case.

In the speech separation case twomixtures are used, which are themixtures of two
audio sources. Twomale utterances in different languages are selected as the sources.
The sources are mixed by a 2× 2 random matrix A (with normalized columns). For
the noisy case, a 20 dB Gaussian noise was added to the mixtures. See Fig. 2.2 for
the sources and mixtures.

We compare SparseBSS with two benchmark algorithms including FastICA
and QJADE [35]. The BSSEVAL toolbox [36] is used for the performance mea-
surement. In particular, an estimated source ŝ is decomposed as ŝ = starget +
einterf + enoise + eartif , where starget is the true source signal, einterf denotes the
interferences from other sources, enoise represents the deformation caused by the
noise, and eartif includes all other artifacts introduced by the separation algorithm.
Based on the decomposition, three performance criteria can be defined: the source-

to-distortion ratio SDR = 10 log10
‖starget‖2

‖einterf+enoise+eartif‖2 , the source-to-artifact ratio
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Table 2.1 Separation performance of the SparseBSS algorithm as compared to FastICA and
QJADE

�SDR �SIR �SAR

(a) The noiseless case
QJADE 60.661 60.661 −1.560
FastICA 57.318 57.318 −0.272
SparseBSS 69.835 69.835 1.379

(b) The noisy case
QJADE 7.453 58.324 −1.245
FastICA 7.138 40.789 −1.552
SparseBSS 9.039 62.450 0.341

The proposed SparseBSS algorithm performs better than the benchmark algorithms. Table 2.1a. For
the same algorithm, the �SDR and �SIR are the same in noiseless case. The �SDRs and �SIRs for
all the tested algorithms are large and similar, suggesting that all the compared algorithms perform
very well. The artifact introduced by SparseBSS is small as its �SAR is positive. Table 2.1b. In the
presence of noise with SNR = 20 dB, SparseBSS excels the other algorithms in �SDR, �SIR, and
�SAR. One interesting phenomenon is that the �SDRs are much smaller than those in the noiseless
case, implying that the distortion introduced by the noise is trivial. However, SparseBSS still has
better performance

SAR = 10 log10
‖starget+einterf+enoise‖2

‖eartif‖2 , and the source-to-interference ratio SIR =
10 log10

‖starget‖2

‖einterf‖2 . Among them, the SDR measures the overall performance (qual-

ity) of the algorithm, and the SIR focuses on the interference rejection.We investigate
the gains of SDRs, SARs, and SIRs from the mixtures to the estimated sources. For
example, �SDR = SDRout − SDRin, where SDRout is calculated from its definition
and SDRin is obtained by letting ŝ = Z with the same equation. The results (in dB)
are summarized in Table 2.1.

The selection ofλ is an important practical issue since it is related to the noise level
and largely affects the algorithm performance. From the optimization formulation
(2.3), it is clear that with a fixed SNR, different choices of λ may give different

separation performance. To show this, we use the estimation error
∥∥∥Atrue − Â

∥∥∥
2

F
of

the mixing matrix to measure the separation performance, where Atrue and Â are the
true and estimatedmixingmatrices, respectively. The simulation results are presented
in Fig. 2.3. Consistentwith the intuition, simulations suggest that the smaller the noise
level, the larger the optimal value of λ. The results in Fig. 2.3 help in setting λ when
the noise level is known a priori.

Next, we show an example for blind image separation, where we consider an
overdetermined case. Themixed images are generated from two source images using
a 4×2 full rank column normalizedmixingmatrixAwith its elements generated ran-
domly according to a Gaussian process. The mean squared errors (MSEs) are used to
compare the reconstruction performance of the candidate algorithms when no noise
is added. MSE is defined as MSE = (1/N) ‖χ − χ̃‖2F , where χ is the source image
and χ̃ is the reconstructed image. The lower the MSE, the better the reconstruction
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Fig. 2.3 Relation of the parameter λ to the estimation error of the mixing matrix under different
noise levels. The signal-to-noise ratio (SNR) is defined as ρ = 10 log10 ‖AS‖2F / ‖V‖2F dB

Table 2.2 Achieved MSEs
of the algorithms in a
noiseless case

FastICA GMCA BMMCA SparseBSS

Lena 8.7489 4.3780 3.2631 3.1346
Boat 18.9269 6.3662 12.5973 6.6555

performance. Table 2.2 illustrates the results of four tested algorithms. For the noisy
case, a Gaussian white noise is added to the four mixtures with σ = 10. We use
the Peak Signal-to-Noise Ratio (PSNR) to measure the reconstruction quality, which
is defined as, PSNR = 20log10(MAX/

√
MSE), where MAX indicates the maxi-

mum possible pixel value of the image, (e.g., MAX = 255 for a uint-8 image).
Higher PSNR indicates better quality. The noisy observations are illustrated in
Fig. 2.4b.3

Finally, we show another example of blind image separation to demonstrate the
importance of the singularity-aware process. In this example, we use two classic
images Lena and Texture as the source images (Fig. 2.6a). Four noiseless mixtures
were generated from the sources. The separation results are shown in Fig. 2.6b and c.
Note that images like Texture contain a lot of frequency components corresponding
to a particular frequency. Hence, an initial dictionary with more codewords corre-
sponding to the particular frequency may perform better for the estimation of these
images.Motivated by this, in Fig. 2.6b the initial dictionary is generated from an over-
complete DCT dictionary, but contains more high frequency codewords. Such choice

3 For the BMMCA test, a better performance was demonstrated in [14]. We point out that here a
different true mixing matrix is used. And furthermore, in our tests the patches are taken with a 50%
overlap (by shifting 4 pixels from the current patch to the next) while in [14] the patches are taken
by shifting only one pixel from the current patch to the next.



2 Blind Source Separation Based on Dictionary Learning 55

Fig. 2.4 Two classic images, Lena and Boat were selected as the source images, which are shown
in (a). The mixtures are shown in (b). The separation results are shown in (c–f). We compared
SparseBSS with other benchmark algorithms: FastICA [37], GMCA [10], and BMMCA [14]. We
set the overlap percentage equal to 50% for both BMMCA and SparseBSS. The recovered source
images by the SparseBSS tend to be less blurred compared to the other three algorithms

can lead to better separation results. At the same time, the very similar dictionary
codewords may introduce the risk of singularity issue (Fig. 2.5).

The major difference between Fig. 2.6b and c is that: in Fig. 2.6b the Regularized
SimCO process (μ = 0.05) is introduced, while in Fig. 2.6c there is no regularization
term in the dictionary learning stage. As one can see from the numerical results,
Fig. 2.6b performs much better than Fig. 2.6c. By checking the condition number



56 X. Zhao et al.

2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Noise level

M
ix

in
g 

m
at

rix
 e

rr
or

FastICA
GMCA
SparseBSS

Fig. 2.5 Compare the performance of estimating the mixing matrix for all the methods in different
noise standard deviation σs. In this experiment, σ varies from 2 to 20. The performance of GMCA is
better than that of FastICA. The curve for BMMCA is not available as the setting for the parameters
is too sophisticated and inconsistent for different σ to obtain a good result. SparseBSS outperforms
the compared algorithms
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Fig. 2.6 The two source images Lena and Texture are shown in (a). The separation results are
shown in (b) and (c). The comparison results demonstrate the importance of the singularity -aware
process
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when the regularized term is not introduced (μ = 0), the value stays at a high level as
expected (larger than 40 in this example). This confirms the necessity of considering
the singularity issue in BSS and the effectiveness of the proposed singularity-aware
approach.

2.5 Conclusions and Prospective Extensions

In conclusion, we briefly introduced a development of the blind source separation
algorithms based on dictionary learning. In particular, we focus on the SparseBSS
algorithm and the optimization procedures. The singularity issue might lead to the
failure of these algorithms. At the same time there are still some open questions to
be addressed.

In dictionary learning, it remains open how to find an optimum choice of the
redundancy factor τ = d/n of the over-complete dictionary. A higher redundancy
factor leads to either more sparse representation or more precise reconstruction.
Moreover, one has to consider the computational capabilities when implementing
the algorithms. From this point of view, it is better to keep the redundancy factor low.
In the simulation, we have used a 64 by 256 dictionary, which gives the redundancy
factor τ = 256/64 = 4. This choice is empirical: the sparse representation results
are good and the computational cost is limited. A rigorous analysis on the selection
of τ is still missing.

The relation between the parameters λ, ε, and noise standard deviation σ is also
worth investigating. As presented in the first experiment on blind audio separation,
the relation between λ and σ is discussed when the error bound ε is fixed in the sparse
coding stage. One can roughly estimate the value of the parameter λ assuming the
noise level is known a priori. Similar investigation is undertaken in [14], where the
authors claim that when λ ≈ σ/30, the algorithm achieved similar reconstruction
performance under various σ’s. From another perspective, the error bound ε is pro-
portional to the noise standard deviation. It turns out that once a well-approximated
relation between ε and σ is obtained, one may get more precise estimation of para-
meter λ, rather than keeping ε fixed. This analysis, therefore, is counted as another
open question.
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