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Abstract. We derive a new parallel communication-avoiding matrix
powers algorithm for matrices of the form A = D + USV H , where D is
sparse and USV H has low rank and is possibly dense. We demonstrate
that, with respect to the cost of computing k sparse matrix-vector multi-
plications, our algorithm asymptotically reduces the parallel latency by
a factor of O(k) for small additional bandwidth and computation costs.
Using problems from real-world applications, our performance model
predicts up to 13× speedups on petascale machines.
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1 Introduction

The runtime of an algorithm can be modeled as a function of computation cost,
proportional to the number of arithmetic operations, and communication cost,
proportional to the amount of data movement. On modern computers, the time
to move one word of data is much greater than the time to complete one arith-
metic operation. Technology trends indicate that the performance gap between
communication and computation will only widen in future computers, resulting
in a paradigm shift in the design of high-performance algorithms: to achieve
efficiency, one must focus on communication-avoiding approaches.

We consider a simplified machine model, where a parallel machine consists of
p processors, each able to perform arithmetic operations on their M words of local
memory. Processors communicate point-to-point messages of n ≤ M contiguous
words, taking α+βn seconds on both sender and receiver, over a completely con-
nected network (no contention), and each processor can send or receive at most
one message at a time. For simplicity, we do not model overlapping communi-
cation and computation. Given an algorithm’s latency cost, number of messages
sent, bandwidth cost, number of words moved, and arithmetic (flop) cost, the
number of arithmetic operations performed, we estimate the runtime T (along
the critical path) on a parallel machine with latency α, reciprocal bandwidth β,
and arithmetic (flop) rate γ as

T = (#messages · α) + (#words moved · β) + (#flops · γ). (1)
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Computing k repeated sparse matrix-vector multiplications (SpMVs), or, a
matrix powers computation, with A ∈ C

n×n and x ∈ C
n×q, where typically

q � n, can be written as

Kk+1(A, x, {pj}k
j=0) := [x(0), . . . , x(k)] := [p0(A)x, p1(A)x, . . . , pk(A)x], (2)

where pj is a degree-j polynomial. Due to a small ratio of arithmetic operations to
data movement, the performance of this computation is bound by communication
on modern computers. Matrix powers computations constitute a core kernel
in a variety of applications, including steepest descent algorithms and Krylov
subspace methods for linear systems and eigenvalue problems, including the
power method to compute PageRank.

Previous efforts have produced parallel communication-avoiding matrix pow-
ers algorithms to compute (2) that achieve an O(k) reduction in parallel latency
cost versus computing k repeated SpMVs for a set number of iterations [4,
11]. This improvement is only possible if A is well partitioned (to be defined
in Sect. 1.1). Although such advances show promising speedups for many prob-
lems, the requirement that A is well partitioned often excludes matrices with
dense components, even if those components have low rank (data sparsity). In
this work, we derive a new parallel communication-avoiding matrix powers algo-
rithm for matrices of the form A = D +USV H , where D is well partitioned and
USV H may not be well partitioned but has low rank. (Recall xH = xT denotes
the Hermitian transpose of x.) There are many practical situations where such
structures arise, including power-law graph analysis and circuit simulation. Hier-
archical (H-) matrices (e.g., [1]), common preconditioners for Krylov subspace
methods, also have this form. Our primary motivation is enabling preconditioned
communication-avoiding Krylov subspace methods, where the preconditioned
system has hierarchical semiseparable (HSS) structure. There is a wealth of lit-
erature related to communication-avoiding Krylov subspace methods; we direct
the reader to the thesis of Hoemmen for an overview [5, Sects. 1.5 and 1.6].

With respect to the cost of computing k SpMVs, our algorithm asymptot-
ically reduces parallel latency by a factor of O(k) with only small additional
bandwidth and computational costs. Using a detailed complexity analysis for an
example HSS matrix, our model predicts up to 13× speedups over the standard
algorithm on petascale machines. Our approach is based on the application of
a blocking covers technique [9] to communication-avoiding matrix powers algo-
rithms [4,10]. We briefly review these works below.

1.1 The Blocking Covers Technique

Hong and Kung [6] prove a lower bound on data movement for a sequential
matrix powers computation on a regular mesh. Given directed graph G = (V,E)
representing nonzeros of A, vertex v ∈ V , and constant τ ≥ 0, let the τ -
neighborhood of v, N (τ)(v), be the set of vertices in V such that u ∈ N (τ)(v)
implies there is a path of length at most τ from u to v; a τ -neighborhood-cover
of G is a sequence of subgraphs, G = {Gi = (Vi, Ei)}k

i=1, such that ∀v ∈ V ,
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∃Gi ∈ G for which N (τ)(v) ⊆ Vi [9]. If G has a τ -neighborhood cover with
O(|E|/M) subgraphs, each with O(M) edges where M is the size of the primary
memory, Hong and Kung’s method reduces data movement by a factor of τ over
computing (2) column-wise. A matrix that meets these constraints is also fre-
quently called well partitioned [4] (we use this terminology for the parallel case
as well).

Certain graphs with low diameter (e.g., multigrid graphs) may not have
τ -neighborhood covers that satisfy these memory constraints. Leiserson et al.
overcome this restriction by “removing” a set B ⊆ V of blocker vertices, cho-
sen such that the remaining graph V − B is well partitioned [9]. Let the τ -
neighborhood with respect to B be defined as N

(τ)
B (v) = {u ∈ V : ∃ path

u → u1 → · · · → ut → v, where ui ∈ V − B for i ∈ {1, . . . , t < τ}}.
Then a (τ, r,M)-blocking cover of G is a pair (G,B), where B = {Bi}k

i=1 is
a sequence of subsets of V such that: (1) ∀i ∈ {1, . . . , k},M/2 ≤ |Ei| ≤ M , (2)
∀i ∈ {1, . . . , k}, |Bi| ≤ r, (3)

∑k
i=1 |Ei| = O(|E|), and (4) ∀v ∈ V,∃Gi ∈ G such

that N
(τ)
Bi

(v) ⊆ Vi [9]. Leiserson et al. present a 4 phase sequential matrix powers
algorithm that reduces the data movement by a factor of τ over the standard
method if the graph of A has a (τ, r,M)-blocking cover that meets certain crite-
ria. Our parallel algorithm is based on a similar approach. Our work generalizes
the blocking covers approach [9], both to the parallel case and to a larger class
of data-sparse matrix representations.

1.2 Parallel Matrix Powers Algorithms

Parallel variants of matrix powers, for both structured and general sparse
matrices, are presented in the thesis of Mohiyuddin [10], which summarizes and
elaborates upon previous work and implementations [4,11]. We review two of
these parallel matrix powers algorithms, referred to as PA0, the näıve algorithm
for computing (2) via k SpMV operations, and PA1, a communication-avoiding
variant. We assume the polynomials {pl}k

l=0 in (2) satisfy a recurrence,

p0(z) := 1, pj+1(z) =
(

zpj(z) −
∑j

i=0
hi,jpi(z)

)

/hj+1,j , (3)

whose coefficients we store in an upper Hessenberg matrix

Hk :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

h0,0 h0,1 · · · h0,k−1

h1,0 h1,1 · · · h1,k−1

0 h2,1
. . . h2,k−1

...
. . .

. . .
...

0 0 · · · hk,k−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

Let nz(A) = {(i, j) : Aij treated as nonzero} represent the edges in the
directed graph of A, and let AI indicate the submatrix of A consisting of rows i ∈
I. For simplicity, we ignore cancellation, i.e., we assume nz(pj(A)) ⊆ nz(pj+1(A))
and every entry of x(j) is treated as nonzero for all j ≥ 0.
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We construct a directed graph G = (V, E) representing the dependencies in
computing x(j) := pj(A)x for every 0 ≤ j ≤ k. First, denoting row i of x(j) by
x

(j)
i , we define the n(k + 1) vertices V := {x

(j)
i : 1 ≤ i ≤ n, 0 ≤ j ≤ k}. The

edge set E consists of k copies of nz(A), between each adjacent pair of the k + 1
levels V(j) := {x

(j)
i : 1 ≤ i ≤ n}, unioned with the edges due to the polynomial

recurrence, i.e.,

E :=
{(

x
(j+1)
i1

, x
(j)
i2

)
: 0≤j<k,

(i1,i2)∈nz(A)

}
∪

{(
x

(j+d′)
i , x

(j)
i

)
:

1≤d′≤d,
0≤j≤k−d′,

1≤i≤n

}

(5)

where Hk has d nonzero superdiagonals (including main diagonal).
Now we partition V ‘rowwise,’ that is, each x

(j)
i is assigned a processor affinity

m ∈ {0, . . . , p − 1}, for 0 ≤ j ≤ k. Let Vm and V(j)
m restrict V and V(j) to their

elements with affinity m. Let R(S) denote the reachability set of S ⊆ V, i.e., the
set S and vertices reachable from S via paths in G; then, as with V, we define
the subsets R(j), Rm, and R(j)

m of R.
At the end of the computation, processor m has computed/stored the entries

Vm. Thus, for PA0, processor m must own A{i:x
(j)
i ∈Vm} and V(0)

m , and for PA1,

processor m must own A{i:x
(1)
i ∈R(Vm)} and R(0)(Vm). We assume that the rows

of A are distributed to processors offline, while the source vector x(0) must be
distributed at runtime (online).

With this notation, we present the parallel matrix powers algorithms PA0
(Algorithm 1) and PA1 (Algorithm2), as pseudocode for processor m. The advan-
tage of PA1 over PA0 is that it may send fewer messages between processors:
whereas PA0 requires k rounds of messages, PA1 requires only one. If the num-
ber of other processors with whom processor m must communicate is within a
constant factor for both algorithms, PA1 obtains a Θ(k)-fold latency savings. In
general, however, PA1 incurs greater bandwidth, arithmetic, and storage costs,
as processors may perform redundant computations to avoid communication.
Furthermore, in practice, PA1 requires additional data structures to encode the
reachability sets; we assume these data structures are populated offline in a
preprocessing phase.

We refer the reader to the complexity analysis in Tables 2.3 and 2.4, perfor-
mance modeling in Sect. 2.6, and performance results in Sects. 2.10.3 and 2.11.3
of Mohiyuddin’s thesis [10], which demonstrate that this optimization can lead
to speedups in practice. For example, for a 9-point stencil on a n1/2-by-n1/2 mesh
with p processors, assuming k � (n/p)1/2 and the monomial basis (pj(z) = zj),
the number of arithmetic operations grows by a factor 1 + 2k(p/n)1/2, the num-
ber of messages decreases by a factor of k, and the number of words moved
grows by a factor of 1 + k(p/n)1/2 [10]. Therefore, since the additional costs are
lower order terms, we expect PA1 to give Θ(k) speedup when performance is
latency-bound. Our performance modeling has confirmed this results [7].
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Algorithm 1. PA0. Code for proc. m.

1: for j = 1, . . . , k do

2: for all procs. � �= m do

3: Send x
(j−1)
i ∈ R(j−1)

m (V(j)
�

) to proc. �.

4: Recv. x
(j−1)
i ∈ R(j−1)

�
(V(j)

m ) from proc. �.

5: end for

6: Compute x
(j)
i ∈ V(j)

m via (3).

7: end for

Algorithm 2. PA1. Code for proc. m.

1: for all procs. � �= m do

2: Send x
(0)
i ∈ R(0)

m (V(k)
�

) to proc. �.

3: Recv. x
(0)
i ∈ R(0)

�
(V(k)

m ) from proc. �.

4: end for

5: for j = 1, . . . , k do

6: Compute x
(j)
i ∈ R(j)(Vm) via (3).

7: end for

2 Derivation of Parallel Blocking Covers

Recall that, given matrices A ∈ C
n×n and x ∈ C

n×q, and k ∈ N, our task is
to compute (2). If A is not well partitioned, PA0 must communicate at every
step, but now the cost of PA1 may be much worse: when k > 1, every processor
needs all rows of A and x(0); there is no parallelism in computing all but the last
SpMV. (Note when k = 1, PA1 degenerates to PA0.)

If, however, A can be split in the form D+USV H , where D is well partitioned
and USV H has low rank, we can use a generalization of the blocking covers
approach [9] to recover parallelism. In this case, D has a good cover and US can
be applied locally, but the application of V H incurs global communication. Thus,
the application of V H will correspond to the blocker vertices in our algorithm,
PA1-BC, which we now derive.

First, we recursively partition Hk :=
[

Hk−1 h(k−1)

01,k−1 hk,k−1

]

with H1 := [h0,0, h1,0]T ,

so h(0), . . . , h(k−1) forms the upper triangle of Hk; substituting z := A =: D +
USV H , the recurrence for x(j) = pj(A)x(0) is

x(j+1) =
(
Dx(j) − [x(0), . . . , x(j)](h(j) ⊗ Iq,q) + USV Hx(j)

)
/hj+1,j . (6)

We exploit the following identity, established by induction [7], to avoid perform-
ing V H · x(j) explicitly.

Lemma 1. Given the additive splitting z = z1 + z2, (3) can be rewritten as

pj(z) = pj(z1) +
∑j

i=1
pj−i+1

i−1 (z1)z2pj−i(z)/hj−i+1,j−i (7)

for j ≥ 0, where pi
j(z) is a degree-j polynomial related to pj(z) by reindexing the

coefficients hl,j := hl+i,j+i in (3).

Now substitute z := A = D + USV H =: z1 + z2 in (7), premultiply by SV H ,
and postmultiply by x(0), to obtain

SV Hx(j) = S

(

V Hpj(D)x(0) +
∑j

i=1
V Hpj−i+1

i−1 (D)U
SV Hx(j−i)

hj−i+1,j−i

)

. (8)
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Let Wi := V Hpi(D)U for 0 ≤ i ≤ k − 2, yi := V Hpi(D)x for 0 ≤ i ≤ k − 1, and
bj := SV Hx(j) for 0 ≤ i ≤ k − 1. We can write pj

i in terms of pi = p0
i via the

following result, established by induction [7].

Lemma 2. There exist coefficient vectors wj
i ∈ C

i+1 satisfying

[W0, . . . , Wi](w
j
i ⊗ Ir,r) = V Hpj

i (D)U (9)

for 0 ≤ i ≤ k − 2, 1 ≤ j ≤ k − i − 1, that can be computed by wj
0 := 1 and

wj
l+1 :=

(
Hl+1w

j
l −

[[
wj

0

0l,1

]

,

[
wj

1

0l−1,1

]

, . . . ,

[
wj

l

0

]]

h
(j)
{j,...,j+l}

)
/hj+l+1,j+l. (10)

Using this result, we write (8) as

bj = S

(

yj + [W0, . . . , Wj−1] ·
∑j

i=1

([
wj−i+1

i−1

0j−i,1

]

⊗ Ir,r

)
bj−i

hj−i+1,j−i

)

; (11)

however, in case Hk is Toeplitz, the summation simplifies to
[ bT

j−1
hj,j−1

, . . . ,
bT
0

h1,0

]T ,

so we need not compute {wj
i }.

Ultimately we must evaluate (6), substituting bj for SV Hx(j). This can be
accomplished by applying PA1 to the following recurrence for pj(z, c), where
c := {c0, . . . , cj−1, . . .} := {Ub0, . . . , Ubj−1, . . .}:

p0(z, c) := 1, pj+1(z, c) :=
(

zpj(z) −
∑j

i=0
hi,jpi(z) + cj

)

/hj+1,j . (12)

Given the notation established, we construct PA1-BC (Algorithm3). In terms
of the graph of D, G = (V, E), processor m must own

D{i:x
(1)
i ∈R(Vm)}, U{i:x

(1)
i ∈R(Vm)}, V{i:x

(j)
i ∈Vm}, and R(0)(Vm), (13)

in order to compute the entries x
(j)
i ∈ Vm. In exact arithmetic, PA1-BC returns

the same output as PA0 and PA1. However, by exploiting the splitting A =
D + USV H , PA1-BC may avoid communication when A is not well partitioned.
Communication occurs in calls to PA1 (Lines 1 and 4), as well as in Allreduce
collectives (Lines 2 and 5). As computations in Lines 1, 2, and 3 do not depend
on the input x(0), they need only be computed once per matrix A = D+USV H ,
thus we assume their cost is incurred offline.

For the familiar reader, the sequential blocking covers algorithm [9] is a spe-
cial case of a sequential execution of Algorithm 3, using the monomial basis,
where U = [ei : i ∈ I] and SV H = AI , where ei is the i-th column of the iden-
tity and I ⊆ {1, . . . , n} are the indices of the blocker vertices. In Algorithm3,
Lines {1, 2, 3}, {4, 5}, 6, and 7 correspond to the 4 phases of the sequential
blocking covers algorithm, respectively [9]. In the next section, we demonstrate
the benefit of our approach on a motivating example, matrix powers with HSS
matrix A.
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Algorithm 3. PA1-BC. Code for proc. m.
1: Compute local rows of Kk−1(D, U, Hk−1) with PA1, premultiply by local columns of V H .
2: Compute [W0, . . . , Wk−2] by an Allreduce.

3: Compute wj
i for 0 ≤ i ≤ k − 2 and 1 ≤ j ≤ k − i − 1, via (10).

4: Compute local rows of Kk(D, x(0), Hk) with PA1, premultiply by local columns of V H .
5: Compute [y0, . . . , yk−1] by an Allreduce.
6: Compute [b0, . . . , bk−1] by (11).

7: Compute local rows of [x(0), . . . , x(k)] with PA1, modified for (12).

3 Hierarchical Semiseparable Matrix Example

Hierarchical (H-) matrices are amenable to the splitting A = D + UV H , where
D is block diagonal and UV H represents the off-diagonal blocks. Naturally, U
and V are quite sparse and it is important to exploit this sparsity in practice.
In the special case of HSS matrices, many columns of U and V are linearly
dependent, and we can exploit the matrix S in the splitting USV H to write U
and V as block diagonal matrices. We review the HSS notation and the algorithm
for computing v = Ax given by Chandrasekaran et al. [3, Sects. 2 and 3]. For
any 0 ≤ L ≤ �lg n
, where lg = log2, we can write A hierarchically as a perfect
binary tree of depth L by recursively defining its diagonal blocks as A =: D0;1

and

D�−1;i =:
[
D�;2i−1 U�;2i−1B�;2i−1,2iV

H
�;2i

U�;2iB�;2i,2i−1V
H
�;2i−1 D�;2i

]

(14)

for 1 ≤ � ≤ L, 1 ≤ i ≤ 2�−1, where U0;1, V0;1 := [], and for � ≥ 2,

U�−1;i =:
[
U�;2i−1R�;2i−1

U�;2iR�;2i

]

, V�−1;i =:
[
V�;2i−1W�;2i−1

V�;2iW�;2i

]

; (15)

the subscript expression �; i denotes vertex i of the 2� vertices at level �.
The action of A on a matrix x, i.e., v := Ax, satisfies v0;1 = D0;1x0;1, and for

1 ≤ � ≤ L, 1 ≤ i ≤ 2�, satisfies v�;i = D�;ix�;i + U�;if�;i, with f1;1 = B1;1;2g1;2,
f1;2 = B1;2;1g1;1, and, for 1 ≤ � ≤ L − 1, 1 ≤ i ≤ 2�,

f�+1;2i−1 =
[

RT
�+1;2i−1

BT
�+1;2i−1,2i

]T [
f�;i

g�+1;2i

]

, f�+1;2i =
[

RT
�+1;2i

BT
�+1;2i,2i−1

]T [
f�;i

g�+1;2i−1

]

,

(16)

where, for 1 ≤ � ≤ L − 1, 1 ≤ i ≤ 2�, g�;i =
[
W�+1;2i−1

W�+1;2i

]H [
g�+1;2i−1

g�+1;2i

]

, and

gL;i = V H
L;ixL;i for 1 ≤ i ≤ 2L. For any HSS level �, we assemble the block

diagonal matrices

U� :=
⊕2�

i=1
U�;i, V :=

⊕2�

i=1
V�;i, D� :=

⊕2�

i=1
D�;i, (17)
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denoted here as direct sums of their diagonal blocks. We also define matrices
S�, representing the recurrences for f�;i and g�;i, satisfying v = Ax =: D�x +
U�S�V

H
� x. We now discuss parallelizing the computation v = Ax, to generalize

PA0 and PA1 to HSS matrices.

3.1 PA0 for HSS Matrices

We first discuss how to modify PA0 for HSS A, exploiting the v = Ax recurrences
for each 1 ≤ j ≤ k; we call the resulting algorithm PA0-HSS. For brevity, we
defer a detailed description [7]. PA0-HSS can be seen as an HSS specialization of
known approaches for distributed-memory H-matrix-vector multiplication [8].

We assume the HSS representation of A has perfect binary tree structure to
some level L > 2, and there are p ≥ 4 processors with p a power of 2. For each
processor m ∈ {0, 1, . . . , p − 1}, let Lm denote the smallest level � ≥ 1 such that
p/2� divides m. We also define the intermediate level 1 < Lp := lg(p) ≤ L of the
HSS tree; each Lm ≥ Lp, and equality is attained when m is odd.

First, on the upsweep, each processor locally computes V H
Lp

x (its subtree,
rooted at level Lp = lg(p)) and then performs Lp steps of parallel reduction,
until there are two processors active, and then a downsweep until level Lp, at
which point each processor is active, owns SLp

V H
Lp

x, and recurses into its local
subtree to finally compute its rows of v = DLx + ULSLVLx. More precisely, we
assign processor m the computations f�;i and g�;i for

{
�, i : L≥�≥Lp

2�m/p+1≤i≤2�(m+1)/p

}
and for

{
�, i : Lp−1≥�≥Lm

i=2�m/p+1

}
(18)

and DL, UL, and VL are distributed contiguously block rowwise, so proces-
sor m stores blocks DLp;m+1, ULp;m+1, and VLp;m+1. The R�;i, W�;i, and B�;i

matrices are distributed so that they are available for the computations in the
upsweep/downsweep; memory requirements are listed in Table 1.

3.2 PA1 for HSS Matrices

The block-diagonal structure of D�, U�, and V� in (17) suggests an efficient
parallel implementation of PA1-BC, which we present as PA1-HSS (Algorithm4).
However, now each processor must perform the entire upsweep/downsweep
between levels 1 and Lp locally. The additional cost shows up in our complexity
analysis (see Table 1) as a factor of p, compared to a factor of lg(p) in PA0-HSS;
we also illustrate this tradeoff in Sect. 4.

We assume the same data layout as PA0-HSS: each processor owns a diagonal
block of DLp

, ULp
, and VLp

, but only stores the smaller blocks of level L. We
assume each processor is able to apply SLp

. We rewrite (6) for the local rows,
and exploit the block diagonal structure of DLp

and ULp
, to write

x
(j+1)
Lp;m+1 =

(
DLp;m+1x

(j)
Lp;m+1 −[x(0)

Lp;m+1, . . . , x
(j)
Lp;m+1](h

(j) ⊗ Iq,q)

+ULp;m+1(bj){mr+1,...,(m+1)r}
)
/hj+1,j .

(19)
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Each processor locally computes all rows of bj = SLp
V H

Lp
x(j) = SLp

· z, where z

is the maximal parenthesized term in (11), using the HSS recurrences:

V H
Lp

x(j) = z =:
[
gT

Lp,1 · · · gT
Lp,p

]T �→ [
fT

Lp,1 · · · fT
Lp,p

]T
:= bj = SLp

V H
Lp

x(j). (20)

The rest of PA1-HSS is similar to PA1-BC, except Allgather operations replace
Allreduce operations in Lines 1 and 5 to exploit block structure of V H .

Algorithm 4. PA1-HSS (Blocking Covers). Code for proc. m.

1: Compute Kk−1(DLp;m+1, ULp;m+1, Hk−1), premultiply by V H
Lp;m+1.

2: Compute [W0, . . . , Wk−2] by an Allgather.

3: Compute wj
i for 0 ≤ i ≤ k − 2, and 1 ≤ j ≤ k − i − 1, via (10).

4: Compute Kk(DLp;m+1, x
(0)
Lp;m+1, Hk), premultiply by V H

Lp;m+1.

5: Compute [y0, . . . , yk−1] by an Allgather.
6: Compute [b0, . . . , bk−1] by (11), where S = SLp is applied by (20).

7: Compute local rows of [x(0), . . . , x(k)] according to (19).

3.3 Complexity Analysis

We gave a detailed complexity analysis of PA0-HSS and PA1-HSS in [7]; we sum-
marize the asymptotics (i.e., ignoring constant factors) in Table 1. We assume
A is given in HSS form, as described above, where all block matrices are dense.
For simplicity, we assume n and HSS-rank r are powers of 2 and leaf level
L = lg(n/r). Note that one could use faster Allgather algorithms (e.g., [2]) for
PA1-HSS to eliminate the factor of lg p in the number of words moved.

4 Performance Model

We model speedups of PA1-HSS over PA0-HSS on two machine models used
by Mohiyuddin [10] – ‘Peta,’ an 8100 processor petascale machine, and ‘Grid,’
125 terascale machines connected via the Internet. Peta has a flop rate γ =
2 ·10−11 s/flop, latency α = 10−5 s/message, and bandwidth β = 2 ·10−9 s/word,
and Grid has flop rate γ = 10−12 s/flop, latency α = 10−1 s/message, and
bandwidth β = 25 · 10−9 s/word. Complexity counts used can be found in [7].

Speedups of PA1-HSS over k invocations of PA0-HSS, for both Peta and
Grid, are shown in Fig. 1. We used parameters from the parallel HSS perfor-
mance tests of Wang et al. [13], where p = (4, 16, 64, 256, 1024, 4096), n =
(2.5, 5, 10, 20, 40, 80) · 103, r = (5, 5, 5, 5, 6, 7). Note that for Grid we only use
the first 3 triples (pi, ni, ri) since pmax = 125. We assume a three-term recur-
rence (Hk is tridiagonal), as these suffice in practice to obtain well-conditioned
polynomial bases, even for large k [12].

On Peta, we see O(k) speedups for smaller p and k, but as these quantities
increase, the expected speedup drops. This is due to the extra multiplicative
factor of p in the bandwidth cost and the extra additive factor of k3qp in the
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Table 1. Asymptotic complexity of PA0-HSS and PA1-HSS, ignoring constant factors.
‘Offline’ refers to Lines 1–3 and ‘Online’ refers to Lines 4–7 of PA1-HSS.

Algorithm Flops Words moved Messages Memory

PA0-HSS kqrn/p + kqr2 lg p kqr lg p k lg p (kq + r)n/p + r2 lg p

PA1-HSS
(offline) kr2n/p + k3 kr2p lg p lg p

(kq + r)n/p + k(q + r)rp
(online) kqrn/p + k(k + r)2qp kqrp lg p lg p

13.4
13.6
13.7
13.5
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12.4
11.3
9.7
7.4
4.3
1.0

12.1
12.8
13.4
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Fig. 1. Predicted PA1-HSS speedups on Peta (left) and Grid (right). Note that p and
n increase with problem number on x-axis.

flop cost of PA1-HSS. Since the relative latency cost is lower on Peta, the effect
of the extra terms becomes apparent for large k and p. On Grid, PA0-HSS is
extremely latency bound, so a Θ(k)-fold reduction in latency results in a Θ(k)×
faster algorithm. This is the best we can expect. Note that many details are
abstracted in these models, which are meant to give a rough idea of asymptotic
behavior. Realizing such speedups in practice remains future work.

5 Future Work and Conclusions

In this work, we derive a new parallel communication-avoiding matrix powers
algorithm for A = D + USV H , where D is well partitioned and USV H has low
rank but A may not be well partitioned. This allows speedups for a larger class
of problems than previous algorithms [4,10], which require well-partitioned A.
Our approach exploits low-rank properties of dense blocks, asymptotically reduc-
ing parallel latency cost. We demonstrate the generality of our parallel blocking
covers technique by applying it to matrices with hierarchical structure. Perfor-
mance models predict up to 13× speedups on petascale machines and up to 3k
speedups on extremely latency-bound machines, despite tradeoffs in arithmetic
and bandwidth cost. Future work includes a high-performance parallel imple-
mentation of our algorithm to verify predicted speedups, as well as integration
into preconditioned communication-avoiding Krylov solvers.
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