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Abstract We discuss the consequences of the Poincaré duality, versus
AS-Gorenstein property, for Koszul algebras (homogeneous and non homogeneous).
For homogeneous Koszul algebras, the Poincaré duality property implies the exis-
tence of twisted potentials which characterize the corresponding algebras while in
the case of quadratic linear Koszul algebras, the Poincaré duality is needed to get
a good generalization of universal enveloping algebras of Lie algebras. In the latter
case we describe and discuss the corresponding generalization of Lie algebras. We
also give a short review of the notion of Koszulity and of the Koszul duality for
N -homogeneous algebras and for the corresponding nonhomogeneous versions.

1 Introduction

Our aim in these notes is to review some important consequences of the Poincaré
duality versus AS-Gorenstein property for the Koszul algebras.

We shall first describe the AS-Gorenstein property [1] for graded algebras of finite
global dimensions and explain in what sense we consider it as a form of Poincaré
duality as well as its connection with the Frobenius property, [10, 28, 34].

We then review the Koszul duality [8] and the notion of Koszulity [3] for homo-
geneous algebras. We explain that for a homogeneous Koszul algebra the Gorenstein
property implies the existence of a homogeneous twisted potential which character-
izes algebra completely [18–20].

Lots of examples together with the corresponding twisted potentials (i.e. prereg-
ular multilinear forms) are given in [19] and [20]. Here, in these notes, we do not
describe them in order to save space and we refer to the above quoted papers.
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We pass then to the description of the nonhomogeneous case and to the
Poincaré-Birkhoff-Witt (PBW) property and explain why for the quadratic-linear
algebras, the Poincaré duality is needed to obtain a good generalization of the uni-
versal enveloping algebras of Lie algebras, namely the enveloping algebras of Lie
prealgebras [21].

Throughout this paper K denotes a (commutative) field and all vector spaces,
algebras, etc. are over K. By an algebra without other specification we mean a unital
associative algebra with unit denoted by 1 whenever no confusion arises. By a graded
algebra we mean a N-graded algebraA = ⊕n≥0An . We use everywhere the Einstein
summation convention over the repeated up-down indices.

2 The AS-Gorenstein Property

In this section we describe our general framework and the AS-Gorenstein property
which is our version of the Poincaré duality.

2.1 Graded Algebras

We shall be concerned here with graded algebras A = ⊕n∈NAn of the form A =
T (E)/I where E is a finite-dimensional vector space and where I is a finitely gen-
erated graded ideal of the tensor algebra T (E) such that I = ⊕n≥2 In ⊂ ⊕n≥2 E⊗n

.
This class of graded algebras and the homomorphisms of degree 0 of graded algebras
define a category which will be denoted by GrAlg.

For such an algebra A = T (E)/I ∈ GrAlg choosing a basis (xλ)λ∈{1,...,d} of
E and a system of homogeneous independent generators ( fα)α∈{1,...,r} of I with

( fα) ∈ E⊗Nα and Nα ≥ 2 for α ∈ {1, . . . , r}, one can also write

A = K〈x1, . . . , xd〉/( f1, . . . , fr )

where ( f1, . . . , fr ) is the ideal I generated by the fα . Define Mαλ ∈ E⊗Nα−1
by

setting fα = Mαλ ⊗ xλ ∈ E⊗Nα . Then the presentation of A by generators and
relations is equivalent to the exactness of the sequence of left A -modules

A r M→ A d x→ A
ε→ K → 0 (1)

where M means right multiplication by the matrix (Mαλ), x means right multipli-
cation by the column (xλ) and where ε is the projection onto A0 = K, [1]. In more
intrinsic notations the exact sequence (1) reads

A ⊗ R → A ⊗ E
m→ A

ε→ K → 0 (2)
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where R is the graded subspace of T (E) spanned by the fα (α ∈ {1, . . . , r}), m is
the product in A (remind that E = A1) and where the first arrow is as in (1).

When R is homogeneous of degree N (N ≥ 2), i.e. R ⊂ E⊗N
, then A is said

to be a N -homogeneous algebra: for N = 2 one speaks of a quadratic algebra, for
N = 3 one speaks of a cubic algebra, etc. The N -homogeneous algebras form a full
subcategory HNAlg of GrAlg.

2.2 Global Dimension

The exact sequence (2) of presentation of A can be extended as a minimal projective
resolution of the trivial left module K, i.e. as an exact sequence of left modules

· · · → Mn → · · · → M2 → M1 → M0 → K → 0

where the Mn are projective i.e. in this graded case free left-modules [13], which is
minimal ; one has M0 = A , M1 = A ⊗ E , M2 = A ⊗ R and more generally here
Mn = A ⊗ En where the En are finite-dimensional vector spaces. If such a minimal
resolution has finite length D < ∞, i.e. reads

0 → A ⊗ ED → · · · → A ⊗ E → A → K → 0 (3)

with ED �= 0, then D is an invariant called the left projective dimension of K and it
turns out that D which coincide with the right projective dimension of K is also the
sup of the lengths of the minimal projective resolutions of the left and of the right
A -modules [13] which is called the global dimension of A . Furthermore it was
recently shown [5] that this global dimension D also coincides with the Hochschild
dimension in homology as well as in cohomology. Thus for an algebra A ∈ GrAlg,
there is a unique notion of dimension from a homological point of view which is its
global dimension g� dim(A ) = D whenever it is finite.

2.3 Poincaré Duality Versus AS-Gorenstein Property

Let A ∈ GrAlg be of finite global dimension D. Then one has a minimal free
resolution

0 → MD → · · · → M0 → K → 0

with Mn = A ⊗ En , dim(En) < ∞ and E2 � R, E1 � E and E0 � K. By applying
the functor HomA (•,A ) to the chain complex of free left A -module

0 → MD → · · · → M0 → 0 (4)
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one obtains the cochain complex

0 → M ′
0 → · · · → M ′

D → 0 (5)

of free right A -modules with M ′
n � E∗

n ⊗ A where for any vector space F , one
denotes by F∗ its dual vector space.

The algebra A ∈ GrAlg is said to be AS-Gorenstein whenever one has

{
Hn(M ′) = 0, for n �= D
H D(M ′) = K

which reads ExtnA (K,A ) = δnD
K by definition (δnD = 0 for n �= D and δDD = 1).

This implies that for 0 ≤ n ≤ D one has

E∗
D−n � En (6)

which is a version of the Poincaré duality interesting by itself as shown e.g. by
Proposition 1.4 of [6]. However as pointed out in [6] (see the counterexample there),
this version of the Poincaré duality is not equivalent to the AS-Gorenstein property
(which is the version adopted in these notes for the Poincaré duality property).

Notice that one has
ExtnA (K, K) � E∗

n

which follows easily from the definitions. The direct sum E(A ) = ⊕nExtnA (K, K)

is a graded algebra, the Yoneda algebra of A . One has the following result.

Theorem 2.1 Assume that A ∈ GrAlg has finite global dimension. Then A is
AS-Gorenstein if and only if E(A ) is a Frobenius algebra.

This result which is a weak version of a result of [28] is a generalization of a result
of [10] which is itself a generalization of a result of [34].

The Yoneda algebra E(A ) is the cohomology of a graded differential algebra, so
in view of the homotopy transfer theorem [26] (see also in [27]), it has besides its ordi-
nary product m = m2, a sequence of higher order product mn : E(A )⊗n → E(A )

for n ≥ 3 which satisfy together with m2 the axioms of A∞-algebras (introduced in
[36]) with m1 = 0 .

It is only when it is endowed with its A∞-structure that one can recover the original
algebra A from E(A ). In some cases one has mn = 0 for n ≥ 3; this is in particular
the case when A is a quadratic Koszul algebra but then the Yoneda algebra E(A )

identifies with the Koszul dual A ! of A (see below).

3 Homogeneous Algebras

We review here some definitions and basic properties of homogeneous algebras,
[3, 8]. Throughout the following N denotes an integer with N ≥ 2.
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3.1 Koszul Duality

LetA ∈ HNAlg be a N -homogeneous algebra, that is as explained above, an algebra
of the form

A = A(E, R) = T (E)/(R)

where E is a finite-dimensional vector space, where R is a linear subspace of E⊗N

and where (R) denotes the two-sided ideal of the tensor algebra T (E) = ⊕n∈NE⊗n

of E generated by R. The algebra A = A(E, R) is a graded connected algebra
A = ⊕n∈NAn generated in degree 1 by E = A1.

To A = A(E, R) one associates another N -homogeneous algebra, its Koszul
dual N -homogeneous algebra A ! defined by [8]

A ! = A(E∗, R⊥)

where E∗ is the dual vector space of E and where R⊥ ⊂ (E∗)⊗N
denotes the

orthogonal of R

R⊥ = {ω ∈ (E∗)⊗N |ω(r) = 0, ∀r ∈ R}

with the identification (E∗)⊗N = (E⊗N
)∗ which is allowed in view of the finite-

dimensionality of E .
One has

(A !)! = A

so this is a duality in HNAlg which is above the usual duality of the finite-dimensional
vector spaces. It is straightforward that this duality defines a contravariant involutive
endofunctor of HNAlg. This is the direct generalization of the usual Koszul duality
of quadratic algebras (case N = 2) [29, 30].

3.2 The Koszul N-complex K (A )

Let A = A(E, R) be a N -homogeneous algebra with Koszul dual A ! = ⊕nA !
n .

Then the dual vector space A !∗
n of A !

n is given by

A !∗
n = E⊗n

for n < N and by
A !∗

n = ∩r+s=n−N E⊗r ⊗ R ⊗ E⊗s
(7)

for n ≥ N . Consider the sequence of homomorphisms of (free) left A -modules

· · · d→ A ⊗ A !∗
n+1

d→ A ⊗ A !∗
n

d→ · · · d→ A → 0 (8)
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where the homomorphism d : A ⊗A !∗
n+1 → A ⊗A !∗

n is induced by the homomor-

phism d : A ⊗ E⊗n+1 → A ⊗ E⊗n
defined by

d(a ⊗ (e0 ⊗ e1 ⊗ · · · ⊗ en)) = ae0 ⊗ (e1 ⊗ · · · ⊗ en) (9)

for a ∈ A , e0 ⊗ · · · ⊗ en ∈ E⊗n+1
and where ae0 is the product in A of a and e0.

In view of (7), one has A !∗
n ⊂ R ⊗ E⊗n−N

for n ≥ N which implies

d N = 0 (10)

so the sequence (8) is a chain N -complex of left A -modules which is referred to as
the Koszul N -complex of A and is denoted by K (A ).

By applying the functor HomA (•,A ) to (8) one obtains a cochain N -complex
of right A -module

0 → A
d∗→ E∗ ⊗ A

d∗→ · · · d∗→ A !
n ⊗ A

d∗→ A !
n+1 ⊗ A

d∗→ · · · (11)

where d∗ is the right multiplication by θλ ⊗ xλ where (xλ) is a basis of E with dual
basis (θλ). This N -complex of right A -module is denoted by L(A ).

3.3 The Koszul Complexes K (A ,K) and K (A ,A )

From a N -complex like K (A ) one obtains ordinary complexes called contractions
by starting at some place and applying alternatively arrows dk and d N−k (1 ≤ k <

N ). Remembering that, see (2), the presentation of the N -homogeneous algebra
A = A(E, R) by generators and relation is equivalent to the exactness of

A ⊗ R
d N−1→ A ⊗ E

d→ A
ε→ K → 0 (12)

it is natural to consider the particular contraction extending

· · · d N−1→ A ⊗ A !∗
N+1

d→ A ⊗ A !∗
N

d N−1→ A ⊗ E
d→ A → 0

this is a chain complex of free left A -modules which will be denoted by K (A , K)

and called the left A -module Koszul complex of A or simply the Koszul complex
of A . One has {

K2m(A , K) = A ⊗ A !∗
Nm

K2m+1(A , K) = A ⊗ A !∗
Nm+1

(13)
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the differential δ of K (A , K) is given by

{
δ = d : K2m+1(A , K) → K2m(A , K)

δ = d N−1 : K2(m+1)(A , K) → K2m+1(A , K)
(14)

and it turns out that this complex identifies canonically with the Koszul complex
introduced originally in [3]. Moreover this complex is the only contraction of the
Koszul N -complex K (A ) whose acyclicity in positive degrees does not lead to a
trivial algebra A as shown in [8].

In the case N = 2, i.e. when A is quadratic, one has of course K (A , K) =
K (A ).

By reversing the order of tensor product in Sequence (8), one obtains similarly
the N -complex K ′(A ) of free right A -modules

· · · d ′→ A !∗
n+1 ⊗ A

d ′→ A !∗
n ⊗ A

d ′→ · · · d ′→ A → 0 (15)

with an obvious definition of d ′.
On the sequence of bimodules (A ⊗A !∗

n ⊗A )n∈N, one has the two commuting
N -differentials d ⊗ IA and IA ⊗d ′ which will be simply denoted again by d and d ′.
Following [4] one defines the bimodule Koszul complex ofA denoted byK (A ,A )

to be the chain complex of free (A ,A )-bimodules (i.e. of free A ⊗A opp-modules)
defined by {

K2m(A ,A ) = A ⊗ A !∗
Nm ⊗ A

K2m+1(A ,A ) = A ⊗ A !∗
Nm+1 ⊗ A

(16)

with differential δ′ of K (A ,A ) defined by

{
δ′ = d − d ′ : K2m+1(A ,A ) → K2m(A ,A )

δ′ = ∑N−1
r=0 dr (d ′)N−r−1 : K2(m+1)(A ,A ) → K2m+1(A ,A )

(17)

the identity δ′2 = 0 following from 0 = d N − d ′N = (d − d ′)
∑N−1

r=0 dr (d ′)N−r−1.
Notice that the presentation of A by generators and relations is also equivalent

to the exactness of

A ⊗ R ⊗ A
δ′→ A ⊗ E ⊗ A

δ′→ A ⊗ A
m→ A → 0 (18)

where the last arrow m is the multiplication in A .
Finally, by applying the functor HomA (•,A ) to the chain complex of free left

A -modules K (A , K), one obtains the cochain complex of free right A -modules
K ∗(A , K) = L (A , K)

· · · δ∗→ L n(A , K)
δ∗→ L n+1(A , K)

δ∗→ · · · (19)
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which is of course a contraction of the N -complex L(A ).

3.4 N-Koszul Algebras

One has the following result [3].

Theorem 3.1 Let A be a N-homogeneous algebra. Then the following properties
(i) and (i i) are equivalent:

(i) The complex K (A , K) is acyclic in degrees ≥ 1,
(ii) The complex K (A ,A ) is acyclic in degrees ≥ 1.

When A is such that the above equivalent properties are satisfied, A is said to
be a N -Koszul algebra or simply a Koszul algebra.

In view of the exact sequences (12) and (18), if A is Koszul then

K (A , K)
ε→ K → 0 (20)

is a free resolution of the trivial left A -module K while

K (A ,A )
m→ A → 0 (21)

is a free resolution of the (A ,A )-bimodule A . These resolutions are minimal pro-
jective in the graded category.

This last point is important since if M is a bimodule on the Koszul algebra A
then the chain complex M ⊗A ⊗A opp K (A ,A ) computes the Hochschild homol-
ogy H•(A ,M ), (i.e. its homology is H•(A ,M )), while the cochain complex
HomA ⊗A opp (K (A ,A ),M ) computes the Hochschild cohomology H•(A ,M ),
(i.e. its cohomology is H•(A ,M )), in view of the interpretations of H•(A ,M ) as
TorA ⊗A opp

(M ,A ) and of H•(A ,M ) as Ext•A ⊗A opp (A ,M ). In particular when
A has finite global dimension D, these complexes are “small” of lenght D.

Warning. For N = 2, that is for A quadratic, it is easy to show that A is Koszul

(i.e. 2-Koszul) if and only if its Koszul dual A ! is Koszul. However for N ≥ 3, the
Koszul dual A ! of a N -Koszul algebra A is generally not N -Koszul.

3.5 The A∞-structure of E(A )

Let A be a N -Koszul algebra.
If N = 2, that is if A is quadratic, then E(A ) = A ! and there are no non trivial

higher order products in the A∞-structure of E(A ).
Let us assume now that N ≥ 3. In this case, the Yoneda algebra E(A ) can be

extracted from the Koszul dual A ! of A in the following manner as show in [10].
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One sets E(A ) = ⊕n∈NEn(A ) with

{
E2m(A ) = A !

Nm
E2m+1(A ) = A !

Nm+1
(22)

and the product m2 of E(A ) is defined in terms of the product (x, y) �→ xy ofA ! by

m2(x, y) = xy

if x or y is of even degree in E(A ) which means of degree multiple of N in A !,
and by

m2(x, y) = 0

otherwise. Concerning the A∞-structure of E(A ), the only nontrivial higher order
product is the product m N which is given by

m N (x1, . . . , xN ) = x1 . . . xN

if all the xk are of odd degrees in E(A ) and

m N (x1, . . . , xN ) = 0

otherwise [25]. As an A∞-algebra, E(A ) is generated in degree 1.

4 Twisted Potentials and Algebras

In this section we recall the construction of algebras associated to preregular multi-
linear forms or which is the same to twisted potentials. We consider only the homo-
geneous case here.

4.1 Multilinear Forms and Twisted Potentials

Let V be a vector space and let n ≥ 1 be a positive integer, then a (n + 1)-linear
form w on V is said to be preregular [18, 19] iff it satisfies the following conditions
(i) and (ii).

(i) If X ∈ V is such that w(X, X1, . . . , Xn) = 0 for any X1, . . . , Xn ∈ V , then
X = 0.
(ii) There is an element Qw ∈ GL(V ) such that one has

w(X0, . . . , Xn−1, Xn) = w(Qw Xn, X0, . . . , Xn−1)
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for any X0, . . . , Xn ∈ V .
It follows from (i) that Qw as in (ii) is unique. Property (i) when combined with

(ii) implies the stronger property (i’).
(i’) For any 0 ≤ k ≤ n, if X ∈ V is such that

w(X1, . . . , Xk, X, Xk+1, . . . , Xn) = 0

for any X1, . . . , Xn ∈ V , then X = 0.
Property (i’) will be referred to as 1-site nondegeneracy while (ii) will be referred

to as twisted cyclicity with twisting element Qw. Thus a preregular multilinear form
is a multilinear form which is 1-site nondegenerate and twisted cyclic.

Note that then, by applying n times the relations of (ii) one obtains the invariance
of w by Qw that is

w(X0, . . . , Xn) = w(Qw X0, . . . , Qw Xn)

for any X0, . . . , Xn ∈ V .
Let w be an arbitrary Q-invariant m-linear form on V (with Q ∈ GL(V )) then,

assuming m �= 0 in K, the m-linear form πQ(w) defined by

πQ(w)(X1, . . . , Xm) = 1

m

m∑
k=1

w(Q Xk, . . . , Q Xm, X1, . . . , Xk−1)

for any X1, . . . , Xm ∈ V is twisted cyclic with twisting element Q, (in short is
Q-cyclic).

Let E be a finite-dimensional vector space, then an element w of E⊗m
is the same

thing as a m-linear form on the dual E∗ of E . To make contact with the terminology
of [23] we will say that w is a twisted potential of degree m on E if the corresponding
m-linear form on E∗ is preregular.

4.2 Algebras Associated with Twisted Potentials

Let w ∈ E⊗m
be a twisted potential and let wλ1...,λm be its components in the basis

(xλ)λ∈{1,...,dim(E)} of E , i.e. one has w = wλ1...λm xλ1 ⊗ · · · ⊗ xλm . Let (θλ) be the
dual basis of (xλ), the corresponding preregular multilinear form on E∗ is given
by w(θλ1 , . . . , θλm ) = wλ1...λm and we denote by Qw the twisting element. One has
Qw ∈ GL(E∗) and Qt

w ∈ GL(E) where Q �→ Qt denotes the transposition.
Assume that m is such that m ≥ 2 and let N be an integer such that m ≥ N ≥ 2.

One defines the N -homogeneous algebra A = A (w, N ) to be the graded algebra
generated in degree 1 by the elements xλ with relations

wλ1...λm−N μ1...μN xμ1 . . . xμN = 0 (23)
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for λk ∈ {1, . . . , dim(E)}, 1 ≤ k ≤ m − N . In other words

A = A(E, RwN ) = T (E)/(RwN )

where RwN is the subspace of E⊗N
generated by the elements

wλ1...λm−N μ1...μN xμ1 ⊗ · · · ⊗ xμN

with λk ∈ {1, . . . , dim(E)}, 1 ≤ k ≤ m − N . The algebra A = A (w, N ) will be
refered to as the N -homogeneous algebra associated with w. The relations of A are
given by “the (m − N )-th derivatives” of w. Notice that the twisted cyclicity of w,
or more precisely its preregularity, implies that the relations (23) of A = A (w, N )

read equivalently for any 1 ≤ p ≤ m − N as

wλp ···λm−N μ1...μN λ1...λp−1 xμ1 . . . xμN = 0

for λk ∈ {1, . . . , dim(E)}, 1 ≤ k ≤ m − N .
Let us define the subspaces Wn ⊂ E⊗n

for m ≥ n ≥ 0 by

{
Wn = E⊗n

for N − 1 ≥ n ≥ 0
Wn = ∑

(λ) Kwλ1...λm−nμ1...μn xμ1 ⊗ · · · ⊗ xμn for m ≥ n ≥ N
(24)

so one has in particular Wm = Kw, WN = RwN , W1 = E and W0 = K. The twisted
cyclicity of w and (7) imply the following result.

Theorem 4.1 The sequence

0 → A ⊗ Wm
d→ A ⊗ Wm−1

d→ · · · d→ A → 0 (25)

is a sub-N-complex W (A ) of the Koszul N-complex K (A ) of A .

4.3 The Complexes W (A ,K) and W (A ,A )

In the case N = 2, the sequence (25) is a complex which is a subcomplex of the
Koszul complex and, from the very definition (24), one has the isomorphisms of

vector spaces W ∗
m−n

�→ Wn defined by

ζ̇ �→ ζ λ1...λm−n wλ1...λm−nμ1...μn xμ1 ⊗ . . . xμn

where ζ = ζ λ1...λm−n θλ1 ⊗· · ·⊗θλm−n is any element of E∗⊗m−n
which projects onto

ζ̇ ∈ W ∗
m−n .

In the case N ≥ 3, to obtain a similar situation, one has to “jump” over the
appropriate degrees as for the definition of the Koszul complex K (A , K) and to
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assume that m = N p + 1 for some integer p ≥ 1. One then define the complex
W (A , K) by setting {

W2k(A , K) = A ⊗ WNk

W2k+1(A , K) = A ⊗ WNk+1
(26)

so that one has Wn(A , K) ⊂ Kn(A , K).
One verifies that δWn+1(A , K) ⊂ Wn(A , K) and therefore W (A , K) is a subcom-
plex of the Koszul complex with

Wn(A , K) = A ⊗ WνN (n)

where νN (2k) = Nk and νN (2k + 1) = Nk + 1.
One observes then that the complex W (A , K) is of length 2p + 1 and that one

has the canonical isomorphisms of vector spaces

W ∗
νN (2p+1−n)

�→ WνN (n) (27)

similar to the ones of the case N = 2.
Similarily one defines in the same conditions a subcomplex W (A ,A ) of the

bimodule Koszul complex K (A ,A ) by setting

Wn(A ,A ) = A ⊗ WνN (n) ⊗ A

and verifying that δ′Wn+1(A ,A ) ⊂ Wn(A ,A ).
Notice that in view of (27) these complexes satisfy a Poincaré duality condition

similar to the one corresponding to (6) for AS-Gorenstein algebras. Furthermore the
complex of free bimodules W (A ,A ) is self dual in an obvious sense, see [11] .

Finally by applying HomA (•,A ) toW (A , K), one obtains the cochain complex
of free right A -modules W ∗(A , K)

· · · δ∗→ W ∗
νN (n) ⊗ A

δ∗→ W ∗
νN (n+1) ⊗ A

δ∗→ · · ·

which is a subcomplex of L (A , K).
The self duality of W (A ,A ) corresponds precisely to the duality between

W (A , K) and W ∗(A , K).

4.4 Automorphisms σw of A ! and σw of A , Modular Property of
σw and Pre-Frobenius Structure of A !

Let A = A (w, N ) be as in Sect. 4.2 and let Qw ∈ GL(E∗) be the corresponding
twisting element of w, (E = A1). Then Qw induces an automorphism of degree 0 of
T (E∗)which preserves R⊥

wN ⊂ E∗⊗N
while Qt

w ∈ GL(E) induces an automorphism

http://dx.doi.org/10.1007/978-3-642-55361-5_4
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of degree 0 of T (E) which preserves RwN ⊂ E⊗N
. It follows that Qw induces an

automorphism σw of the graded algebra A ! while Qt
w induces an automorphism σw

of the graded algebra A .
One has w ∈ A !∗

m since W (A ) is a sub-N -complex of K (A ) and one defines a
linear form ωw on the algebra A ! by setting

ωw = w ◦ pm (28)

where pm : A ! → A !
m is the canonical projection onto the degree m component.

One has the following theorem [19].

Theorem 4.2 The linear form ωw and the automorphism σw are connected by

ωw(xy) = ωw(σw(y)x) (29)

for any x, y ∈ A !. The subset of A !

I = {y ∈ A !|ωw(xy) = 0, ∀x ∈ A !}

is a two-sided ideal of A ! and the quotient algebra F (w, N ) = A !/I endowed
with the linear form induced by ωw is a graded Frobenius algebra.

The relation (29) is just a reformulation of the preregularity of w, it reflects the mod-
ular property of σw with respect to ωw. One clearly has F (w, N ) = ⊕m

n=0Fn(w, N )

so F (w, N ) is finite-dimensional and the pairing induced by (x, y) �→ ωw(xy) is
nondegenerate by construction and is a Frobenius pairing on F (w, N ).

Let wA be the (A ,A )-bimodule which coincides with A as right A -module
but whose left A -module structure is given by the left multiplication by (−1)(m−1)n

(σw)−1(a) for a ∈ An . Thus wA is a twisted version of the bimodule A . For N = 2,
one has the following result [19].

Proposition 4.1 For N = 2, that is for A = A (w, 2), the element 1⊗w of A ⊗m+1

is canonically a nontrivial wA -valued Hochschild m-cycle on A .

In this proposition 1 ∈ A is interpreted as an element of wA . This proposition
for N = 2 gives the interpretation of 1 ⊗ w as a twisted volume element since for
Qw = (−1)m−1 it would represent an element of H Hm(A ).

4.5 N-Koszul AS-Gorenstein Algebras

For N -Koszul algebras of finite global dimension which are AS-Gorenstein one has
the following result [18, 19], see also in [12] for the case N = 2.

Theorem 4.3 Let A be a N-Koszul algebra of finite global dimension D which
is AS-Gorenstein. Then A = A (w, N ) for some twisted potential of degree m on
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E = A1. For N = 2 one has m = D while for N ≥ 3 one has m = N p + 1 and
D = 2p + 1 for some integer p ≥ 1.

Under the assumptions of this theorem, the N -complex W (A ) of Sect. 4.2 coin-
cides with the Koszul N -complex K (A ) which implies that the Koszul resolution
of the trivial left A -module K reads

0 → A ⊗ WνN (D)
δ→ · · · δ→ A ⊗ WνN (k)

δ→ · · · δ→ A
ε→ K → 0 (30)

with νN (2n) = Nn and νN (2n + 1) = Nn + 1 for n ∈ N and where δ is as in (14),
that is

W (A , K)
ε→ K → 0

with the notations of Sect. 4.2. One has

dim(WνN (k)) = dim(WνN (D−k)) for 0 ≤ k ≤ D

since as observed in Sect. 4.2, one has the isomorphisms W ∗
νN (D−k) � WνN (k) for

0 ≤ k ≤ D. In particular WνN (D) = Kw so 1 ⊗ w is the generator of the top free
module of the Koszul resolution of K.

Remark Under the assumptions of Theorem 4.3 the Yoneda algebra E(A ) of A is a
Frobenius algebra in view of Theorem 2.1, (endowed with its ordinary product m2).
If N = 2, one has E(A ) = A ! and therefore E(A ) = F (w, 2), however for N ≥ 3
the Frobenius algebras E(A ) and F (w, N ) are completely different, (we use here
the notations of Theorem 4.2). Indeed in the case N ≥ 3, E(A ) is obtained from A !
by dropping terms of degrees ν with N p + 1 < ν < N (p + 1) with p ≥ 1, while
F (w, N ) is a quotient of A ! by a graded ideal (which vanishes in some cases such
as for the Yang-Mills algebra of [15] and some generalizations [16]).

As observed in [11], there is a sort of converse in the sense that the acyclicity in
degrees ≥ 1 ofW (A , K) or ofW (A ,A ) implies thatA is Koszul of global dimen-
sion D and is AS-Gorenstein. Thus Theorem 4.3 admits the following refinement.

Theorem 4.4 Let N , m and D be as in Theorem 4.3 that is either N = 2 with
D = m or N ≥ 3 with m = N p + 1 and D = 2p + 1 for some integer p ≥ 1.
Then the following conditions (i), (ii) and (iii) are equivalent for a N-homogeneous
algebra A :

(i) A is N-Koszul of finite global dimension D and is AS-Gorenstein (or twisted
Calabi-Yau),
(ii)A = A (w, N ) for some twisted potential w of degree m andW (A , K) is acyclic
in degrees ≥ 1,
(iii) A = A (w, N ) for some twisted potential w of degree m and W (A ,A ) is
acyclic in degrees ≥ 1.

Under these equivalent conditions one has W (A , K) = K (A , K) and W (A ,

A ) = K (A ,A ).

http://dx.doi.org/10.1007/978-3-642-55361-5_4
http://dx.doi.org/10.1007/978-3-642-55361-5_4
http://dx.doi.org/10.1007/978-3-642-55361-5_4
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In practice, the acyclicity condition for W (A , K) or W (A ,A ) is hard to verify
and implies very nontrivial nondegeneracy conditions for w. For instance, in the case
m = N +1 the condition W (A , K) = K (A , K) is equivalent to the condition of 3-
regularity as shown in [19] (Proposition 16) which is a subtle 2-sites nondegeneracy
condition.

It is worth noticing here that, as pointed out in [10], forA of global dimension D =
2 or D = 3 the AS-Gorenstein condition implies already that A is N -homogeneous
and N -Koszul with N = 2 for D = 2.

Notice also that “N -Koszul of finite global dimension and AS-Gorenstein” is
equivalent to “N -Koszul of finite global dimension and twisted Calabi-Yau” [11].
This is connected with the equivalence (ii) ⇔ (iii) of Theorem 4.4 together with the
self duality of W (A ,A ).

5 Nonhomogeneous Algebras

All the nonhomogeneous algebras considered in this article will be obtained by
starting with homogeneous relations, say N -homogeneous, and by adding second
members of lower degrees to the homogeneous relations. We always assume that
these algebras are finitely generated with a finite presentation. This means that such
an algebra A is of the form

A = T (E)/({r − ϕ(r)|r ∈ R}) (31)

where E is a finite-dimensional vector space, R is a linear subspace of E⊗N
(N ≥ 2)

and ϕ : R → ⊕N−1
n=0 E⊗n

is a linear mapping of R into the space of tensors of degrees
strictly smaller than N .

5.1 The Poincaré-Birkhoff-Witt Property

Let A be the nonhomogeneous algebra given by (31). Then A is not naturally graded
since its relations are not homogeneous but it inherits a filtration Fn(A) induced by
the natural filtration Fn(T (E)) = ⊕k≤n E⊗k

of the tensor algebra associated to its
graduation.

There are two natural graded algebras associated to A :

1. the graded algebra
gr(A) = ⊕n Fn(A)/Fn−1(A) (32)

refered to as the associated graded algebra to the filtered algebra A,
2. the N -homogeneous algebra

A = A(E, R) (33)
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obtained by switching in the relations of A the terms of degrees strictly smaller
than N ; A is refered to as the N -homogeneous part of A or simply as the
homogeneous part of A.

We use the convention that F p(A) = 0 whenever p < 0. One has a canonical
surjective homomorphism of graded algebra

can : A → gr(A) (34)

which maps linearly A1 = E onto F1(A)/F0(A) = E .

The nonhomogeneous algebra A is said to have the Poincaré-Birkhoff-Witt prop-
erty (PBW property) whenever the canonical homomorphism can is an isomorphism.
If A has the PBW property and if its homogeneous part is N -Koszul, then A is said
to be a nonhomogeneous Koszul algebra, [9]. One has the following result [22], see
also in [9] for a more general context.

Theorem 5.1 Let us decompose ϕ as ϕ = ∑N−1
n=0 ϕn with ϕn : R → E⊗n

and set
VN+1 = (R ⊗ E) ∩ (E ⊗ R). Assume that A has the PBW property then one has
the following relations

(a) (ϕN−1 ⊗ I − I ⊗ ϕN−1)(VN+1) ⊂ R,
(b) (ϕn(ϕN−1 ⊗ I − I ⊗ ϕN−1) + ϕn−1 ⊗ I − I ⊗ ϕn−1)(VN+1) = 0

for 1 ≤ n ≤ N − 1, and
(c) ϕ0(ϕN−1 ⊗ I − I ⊗ ϕN−1)(VN+1) = 0

where I is the identity mapping of E onto itself.

Conversely, if the homogeneous partA of A is N-Koszul and if the above relations
are satisfied then A has the PBW property.

The assumption that A is N -Koszul is natural but not completely optimal for
the converse in the above theorem. In any case, this theorem implies that A is a
nonhomogeneous Koszul algebra if and only if its homogeneous part A is N -Koszul
and the relations (i), (ii), (iii) of the theorem are satisfied.

Notice that one has VN+1 = A !∗
N+1, (see in Sect. 3.2).

Instructive examples (with N > 2) of nonhomogeneous Koszul algebras obtained
by application of Theorem 5.1 are given in [9] and in [7].

5.2 Nonhomogeneous Koszul Duality for N = 2

In the following, we shall be concerned only with the case N = 2 and we call
nonhomogeneous quadratic algebra an algebra of the form (31) with R ⊂ E ⊗ E
and ϕ : R → E ⊕ K (here, E⊗0

is identified with K).
LetA be a nonhomogeneous quadratic algebra with quadratic partA = A(E, R),

and let ϕ1 : R → E and ϕ0 : R → K be as in 5.1 the decomposition ϕ = ϕ1 + ϕ0.

http://dx.doi.org/10.1007/978-3-642-55361-5_3
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Consider the transposed ϕt
1 : E∗ → R∗ and ϕt

0 : K → R∗ of ϕ1 and ϕ0 and notice
that one has by definition ofA ! thatA !

1 = E∗,A !
2 = R∗ andA !

3 = (R⊗E∩E⊗R)∗,
so one can write (the minus sign is put here to match the usual conventions)

− ϕt
1 : A !

1 → A !
2 , −ϕt

0(1) = F ∈ A !
2 (35)

and one has the following result [32].

Theorem 5.2 Conditions (a), (b) and (c) of Theorem 5.1 are equivalent for N = 2
to the following conditions (a′), (b′) and (c′):

(a′) −ϕt
1 extends as an antiderivation δ of A !

(b′) δ2(x) = [F, x], ∀x ∈ A !
(c′) δ(F) = 0.

A graded algebra equipped with an antiderivation δ of degree 1 and an element
F of degree 2 satisfying the conditions (b′) and (c′) above is refered to as a curved
graded differential algebra [32].

Thus the correspondence A �→ (A !, δ, F) define a contravariant functor from
the category of nonhomogeneous quadratic algebras satisfying the conditions (a), (b)
and (c) of Theorem 5.1 (for N = 2) to the category of curved differential quadratic
algebras (with the obvious appropriate notions of morphism). One can summarize
the Koszul duality of [32] for non homogeneous quadratic algebras by the following.

Theorem 5.3 The above correspondence defines an anti-isomorphism between the
category of nonhomogeneous quadratic algebras satisfying Conditions (a), (b) and
(c) of Theorem 5.1 (for N = 2) and the category of curved differential quadratic
algebras which induces an anti-isomorphism between the category of nonhomoge-
neous quadratic Koszul algebras and the category of curved differential quadratic
Koszul algebras.

There are two important classes of nonhomogeneous quadratic algebras A sat-
isfying the conditions (a), (b) and (c) of Theorem 5.1. The first one corresponds to
the case ϕ0 = 0 which is equivalent to F = 0 while the second one corresponds
to ϕ1 = 0 which is equivalent to δ = 0. An algebra A of the first class is called
a quadratic-linear algebra [31] and corresponds to a differential quadratic algebra
(A !, δ) while an algebra A of the second class corresponds to a quadratic algebra
A ! equipped with a central element F of degree 2.

5.3 Examples

1. Universal enveloping algebras of Lie algebras. Let g be a finite-dimensional Lie
algebras then its universal enveloping algebra A = U (g) is Koszul quadratic-
linear. Indeed one has A = Sg which is a Koszul quadratic algebra of finite
global dimension D = dim(g) while the PBW property is here the classical
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PBW property of U (g). The corresponding differential quadratic algebra (A !, δ)
is (∧g∗, δ), i.e. the exterior algebra of the dual vector space g∗ of g endowed
with the Koszul differential δ. Notice that this latter differential algebra is the
basic building block to construct the Chevalley-Eilenberg cochain complexes.
Notice also that A = Sg is not only Koszul of finite global dimension but is also
AS-Gorenstein (Poincaré duality property).

2. Adjoining a unit element to an associative algebra. Let A be a finite-dimensional
associative algebra and let

A = Ã = T (A)/ ({x ⊗ y − xy, y ∈ A})

be the algebra obtained by adjoining a unit 1 to A ( Ã = K1⊕ A, etc.). This is again
a Koszul quadratic-linear algebra. Indeed the PBW property is here equivalent
to the associativity of A while the quadratic part is A = T (A∗)! which is again
K1 ⊕ A as vector space but with a vanishing product between the elements of
A and is a Koszul quadratic algebra. The corresponding differential quadratic
algebra (A !, δ) is (T (A∗), δ) where δ is the antiderivation extension of minus
the transposed mt : A∗ → A∗ ⊗ A∗ of the product m of A. Again (T+(A∗), δ) is
the basic building block to construct the Hochschild cochain complexes. Notice
however that A = T (A∗)! is not AS-Gorenstein (no Poincaré duality).

3. A deformed universal enveloping algebra. Let A be the algebra generated by the
3 elements ∇0,∇1,∇2 with relations

⎧⎨
⎩

μ2∇2∇0 − ∇0∇2 = μ∇1

μ4∇1∇0 − ∇0∇1 = μ2(1 + μ2)∇0

μ4∇2∇1 − ∇1∇2 = μ2(1 + μ2)∇2.

(36)

This is again a Koszul quadratic-linear algebra with homogeneous part A which
is Koszul of global dimension D = 3 [24, 37] and is AS-Gorenstein. The cor-
responding differential quadratic algebra (A !, δ) is the algebra A ! generated by
ω0, ω1, ω2 with quadratic relations

⎧⎪⎪⎨
⎪⎪⎩

ω2
0 = 0, ω2

1 = 0, ω2
2 = 0

ω2ω0 + μ2ω0ω2 = 0
ω1ω0 + μ4ω0ω1 = 0
ω2ω1 + μ4ω1ω2 = 0

(37)

endowed with the differential δ given by

⎧⎨
⎩

δω0 + μ2(1 + μ2)ω0ω1 = 0
δω1 + μω0ω2 = 0
δω2 + μ2(1 + μ2)ω1ω2 = 0

(38)

which corresponds to the left covariant differential calculus on the twisted SU (2)

group of [38].
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4. Canonical commutation relations algebra. Let E = K
2n with basis (qλ, pμ),

λ,μ ∈ {1, . . . , n} and let i� ∈ K with ih �= 0. Consider the nonhomogeneous
quadratic algebra A generated by the qλ, pμ with relations

qλqμ − qμqλ = 0, pλ pμ − pμ pλ = 0, qλ pμ − pμqλ = i�δλ
μ1

for λ,μ ∈ {1, . . . , n}. The quadratic part of A is the symmetric algebra A = SE
which is Koszul of global dimension D = 2n. One has ϕ1 = 0 and ϕ0 is such
that its transposed ϕt

0 is given by

−ϕt
0(1) = F = −(i�)−1q∗

λ ∧ pλ∗

which is central in A ! = ∧(E∗) where (q∗
λ, pμ∗) is the dual basis of (qλ, pμ).

This implies that A has the PBW property and therefore is Koszul.
5. Clifford algebra (C.A.R. algebra). Let E = K

n with canonical basis (γλ),
λ ∈ {1, . . . , n} and consider the nonhomogeneous quadratic algebra A = C(n)

generated by the elements γλ, λ ∈ {1, . . . , n} with relations

γμγν + γνγμ = 2δμν1

forμ, ν ∈ {1, . . . , n}. The quadratic part ofA is then the exterior algebraA = ∧E
which is Koszul. One has again ϕ1 = 0 and ϕt

0 is given by

−ϕt
0(1) = F = −1

2

∑
γ λ∗ ∨ γ λ∗

which is a central element of A ! = SE∗ (which is commutative). It again follows
that A is Koszul (i.e. PBW + A Koszul).

6. Remarks on the generic case. LetA be a (homogeneous) quadratic algebra which
is Koszul. In general (for generic A ) any nonhomogeneous quadratic algebra A
which has A as quadratic part and has the PBW property is such that one has
both ϕ1 �= 0 and ϕ0 �= 0 or is trivial in the sense that it coincides with A , i.e.
ϕ1 = 0 and ϕ0 = 0. This is the case for instance when A is the 4-dimensional
Sklyanin algebra [14, 17, 33, 35] for generic values of its parameters [2].
Thus, Examples 1, 2, 3, 4, 5 above are rather particular from this point of view.
However the next section will be devoted to a generalization of Lie algebra which
has been introduced in [21] and which involves quadratic-linear algebras, i.e. for
which ϕ0 = 0.
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6 A Generalization of Lie Algebras

6.1 Prealgebras

By a (finite-dimensional) prealgebra we here mean a triple (E, R, ϕ) where E is
a finite-dimensional vector space, R ⊂ E ⊗ E is a linear subspace of E ⊗ E and
ϕ : R → E is a linear mapping of R into E . Given a supplementary R′ to R in E ⊗ E ,
R ⊕ R′ = E ⊗ E , the corresponding projector P of E ⊗ E onto R allows to define
a bilinear product ϕ ◦ P : E ⊗ E → E , i.e. a structure of algebra on E . The point
is that there is generally no natural supplementary of R. Exception are R = E ⊗ E
of course and R = ∧2 E ⊂ E ⊗ E for which there is the canonical GL(E)-invariant
supplementary R′ = S2 E ⊂ E ⊗ E which leads to an antisymmetric product on E ,
(e.g. case of the Lie algebras).

Given a prealgebra (E, R, ϕ), there are two natural associated algebras :

1. The nonhomogeneous quadratic algebra

AE = T (E)/({r − ϕ(r) | r ∈ R})

which will be called its enveloping algebra.
2. The quadratic part AE of AE

AE = T (E)/(R),

where the prealgebra (E, R, ϕ) is also simply denoted by E when no confusion
arises.

The enveloping algebra AE is a filtered algebras as explained before but it is also
an augmented algebra with augmentation

ε : AE → K

induced by the canonical projection of T (E) onto T 0(E) = K. One has the surjective
homomorphism

can : AE → gr(AE )

of graded algebras.
In the following we shall be mainly interested on prealgebras such that their

enveloping algebras are quadratic-linear. If (E, R, ϕ) is such a prealgebra, to AE

corresponds the differential quadratic algebra (A !
E , δ) (as in Sect. 5) where δ is the

antiderivation extension of minus the transposed ϕt of ϕ.
Notice that if AE has the PBW property one has

E = F1(AE ) ∩ Ker(ε)
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so that the canonical mapping of the prealgebra E into its enveloping algebra AE is
then an injection.

6.2 Lie Prealgebras

A prealgebra (E, R, ϕ) will be called a Lie prealgebra [21] if the following conditions
(1) and (2) are satisfied :

(1) The quadratic algebra AE = A(E, R) is Koszul of finite global dimension and
is AS-Gorenstein (Poincaré duality).

(2) The enveloping algebra AE has the PBW property.

If E = (E, R, ϕ) is a Lie prealgebra then AE is a Koszul quadratic linear algebra,
so to (E, R, ϕ) one can associate the differential quadratic algebra (A !

E , δ) and one
has the following theorem [21]:

Theorem 6.1 The correspondence (E, R, ϕ) �→ (A !
E , δ) defines an anti-isomor-

phism between the category of Lie prealgebra and the category of differential
quadratic Koszul Frobenius algebras.

This is a direct consequence of Theorem 5.3 and of the Koszul Gorenstein property
of AE by using [34].

Let us remind that a Frobenius algebra is a finite-dimensional algebra A such
that as left A -modules A and its vector space dual A ∗ are isomorphic (the left
A -module structure of A ∗ being induced by the right A -module structure of A ).
Concerning the graded connected case one has the following classical useful result.

Proposition 6.1 LetA = ⊕m≥0Am be a finite-dimensional graded connected alge-
bra with AD �= 0 and An = 0 for n > D. Then the following conditions (i) and (ii)
are equivalent:

(i) A is Frobenius,
(ii) dim(AD) = 1 and (x, y) �→ (xy)D is nondegenerate, where (z)D denotes the
component on AD of z ∈ A .

6.3 Some Representative Cases

1. Lie algebras. It is clear that a Lie algebrag is canonically a Lie prealgebra (g, R, ϕ)

with R = ∧2g ⊂ g ⊗ g, ϕ = [•, •], Ag = U (g) and Ag = Sg, (see Example 1
in Sect. 5.3).

2. Associative algebras are not Lie prealgebras. An associative algebra A is clearly
a prealgebra (A, A ⊗ A, m) with enveloping algebra AA = Ã as in Example 2 of
Sect. 5.3 but AA = T (A∗)! = K1⊕ A is not AS-Gorenstein although it is Koszul

http://dx.doi.org/10.1007/978-3-642-55361-5_5
http://dx.doi.org/10.1007/978-3-642-55361-5_5
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as well as AA = Ã, (see the discussion of Example 2 in Sect. 5.3). The missing
item is here the Poincaré duality.

3. A deformed version of Lie algebras. The algebra A of Example 3 of Sect. 5.3 is
the enveloping algebra of a Lie prealgebra (E, R, ϕ) with E = K

3, R ⊂ E ⊗ E
generated by
r1 = μ2∇2 ⊗ ∇0 − ∇0 ⊗ ∇2
r0 = μ4∇1 ⊗ ∇0 − ∇0 ⊗ ∇1
r2 = μ4∇2 ⊗ ∇1 − ∇1 ⊗ ∇2
and ϕ given by

ϕ(r1) = μ∇1, ϕ(r0) = μ2(1 + μ2)∇0, ϕ(r2) = μ2(1 + μ2)∇2

where (∇0,∇1,∇2) is the canonical basis of E .
4. Differential calculi on quantum groups. More generally most differential calculi

on the quantum groups can be obtained via the duality of Theorem 6 from Lie
prealgebras. In fact the Frobenius property is generally straightforward to verify,
what is less obvious to prove is the Koszul property.

6.4 Generalized Chevalley-Eilenberg Complexes

Throughout this section, E = (E, R, ϕ) is a fixed Lie prealgebra, its enveloping
algebra is simply denoted by A with quadratic part denoted by A and the associated
differential quadratic Koszul Frobenius algebra is (A !, δ).

A left representation of the Lie prealgebra E = (E, R, ϕ) is a left A-module. Let
V be a left representation of E = (E, R, ϕ), let (xλ) be a basis of E with dual basis
(θλ) of E∗ = A !

1 . One has

xμxνΦ ⊗ θμθν + xλΦ ⊗ δθλ = 0

for any Φ ∈ V . This implies that one defines a differential of degree 1 on V ⊗ A !
by setting

δV (Φ ⊗ α) = xλΦ ⊗ θλα + Φ ⊗ δα

so (V ⊗ A !, δV ) is a cochain complex. These cochain complexes generalize the
Chevalley-Eilenberg cochain complexes. Given a right representation of E , that is
a right A-module W , one defines similarily the chain complex (W ⊗ A !∗, δW ),
remembering that A !∗ is a graded coalgebra.

One has the isomorphisms

{
H•(V ⊗ A !) � Ext•A(K, V )

H•(W ⊗ A !∗) � TorA• (W, K)

http://dx.doi.org/10.1007/978-3-642-55361-5_5
http://dx.doi.org/10.1007/978-3-642-55361-5_5
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which implies that one has the same relation with the Hochschild cohomology and
the Hochschild homology of A as the relation of the (co-)homology of a Lie algebra
with the Hochschild (co-)homology of its universal enveloping algebra.

7 Conclusion

In these notes, we have only considered algebras which are quotient of tensor algebras
of finite-dimensional vector spaces. One can extend the results described here in
much more general frameworks. For instance in [11] the results of [19] concerning
the homogeneous case have been extended to the quiver case. An even more general
framework has been adopted in [9] for the nonhomogeneous Koszul algebras. Namely
the algebras considered in [9] are quotient of tensor algebras of bimodules over von
Neumann regular rings. This latter context seems quite optimal.

Acknowledgments It is a pleasure to thank Roland Berger for his kind advices.
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