Poincaré Duality for Koszul Algebras

Michel Dubois-Violette

Abstract We discuss the consequences of the Poincaré duality, versus
AS-Gorenstein property, for Koszul algebras (homogeneous and non homogeneous).
For homogeneous Koszul algebras, the Poincaré duality property implies the exis-
tence of twisted potentials which characterize the corresponding algebras while in
the case of quadratic linear Koszul algebras, the Poincaré duality is needed to get
a good generalization of universal enveloping algebras of Lie algebras. In the latter
case we describe and discuss the corresponding generalization of Lie algebras. We
also give a short review of the notion of Koszulity and of the Koszul duality for
N-homogeneous algebras and for the corresponding nonhomogeneous versions.

1 Introduction

Our aim in these notes is to review some important consequences of the Poincaré
duality versus AS-Gorenstein property for the Koszul algebras.

We shall first describe the AS-Gorenstein property [1] for graded algebras of finite
global dimensions and explain in what sense we consider it as a form of Poincaré
duality as well as its connection with the Frobenius property, [10, 28, 34].

We then review the Koszul duality [8] and the notion of Koszulity [3] for homo-
geneous algebras. We explain that for a homogeneous Koszul algebra the Gorenstein
property implies the existence of a homogeneous twisted potential which character-
izes algebra completely [18-20].

Lots of examples together with the corresponding twisted potentials (i.e. prereg-
ular multilinear forms) are given in [19] and [20]. Here, in these notes, we do not
describe them in order to save space and we refer to the above quoted papers.
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We pass then to the description of the nonhomogeneous case and to the
Poincaré-Birkhoff-Witt (PBW) property and explain why for the quadratic-linear
algebras, the Poincaré duality is needed to obtain a good generalization of the uni-
versal enveloping algebras of Lie algebras, namely the enveloping algebras of Lie
prealgebras [21].

Throughout this paper K denotes a (commutative) field and all vector spaces,
algebras, etc. are over K. By an algebra without other specification we mean a unital
associative algebra with unit denoted by 1 whenever no confusion arises. By a graded
algebra we mean a N-graded algebra .o/ = @,>0.%%,. We use everywhere the Einstein
summation convention over the repeated up-down indices.

2 The AS-Gorenstein Property

In this section we describe our general framework and the AS-Gorenstein property
which is our version of the Poincaré duality.

2.1 Graded Algebras

We shall be concerned here with graded algebras &/ = ®,ene, of the form o =
T (E)/I where E is a finite-dimensional vector space and where [ is a finitely gen-
erated graded ideal of the tensor algebra T'(E) such that I = @,>21, C By>2F ®"
This class of graded algebras and the homomorphisms of degree 0 of graded algebras
define a category which will be denoted by GrAlg.

For such an algebra &/ = T(E)/I € GrAlg choosing a basis (xk)ke{l,,.,,d} of
E and a system of homogeneous independent generators ( fy)qeil,...,r} of I with

(fa) € E®" and Ny >2fora € {1, ..., r}, one can also write

.....

o =K. xD /AL )
where (fi, ..., f;) is the ideal I generated by the f,. Define My; € E®™! by

. N .
setting f, = My; ® x* € E® . Then the presentation of <7 by generators and
relations is equivalent to the exactness of the sequence of left .o7-modules

Bl 7 S K0 (1)
where M means right multiplication by the matrix (Mg, ), x means right multipli-
cation by the column (x%) and where ¢ is the projection onto % = K, [1]. In more

intrinsic notations the exact sequence (1) reads

dIR—> AQE S o7 S K—0 )
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where R is the graded subspace of T (E) spanned by the f, (o € {1,...,r}), mis
the product in .7 (remind that E = «#]) and where the first arrow is as in (1).

When R is homogeneous of degree N (N > 2),i.e. R C E®N, then & is said
to be a N-homogeneous algebra: for N = 2 one speaks of a quadratic algebra, for
N = 3 one speaks of a cubic algebra, etc. The N-homogeneous algebras form a full
subcategory HNAlg of GrAlg.

2.2 Global Dimension

The exact sequence (2) of presentation of <7 can be extended as a minimal projective
resolution of the trivial left module K, i.e. as an exact sequence of left modules

> My —> - —> My > My —> Mg —>K— 0

where the M,, are projective i.e. in this graded case free left-modules [13], which is
minimal ; one has My = &/, M| = &/ @ E, M> = o/ ® R and more generally here
M, = o/ ® E, where the E,, are finite-dimensional vector spaces. If such a minimal
resolution has finite length D < oo, i.e. reads

0> dQFEp—> > A QFE > o >K—0 3)

with Ep # 0, then D is an invariant called the left projective dimension of K and it
turns out that D which coincide with the right projective dimension of K is also the
sup of the lengths of the minimal projective resolutions of the left and of the right
«/-modules [13] which is called the global dimension of 7. Furthermore it was
recently shown [5] that this global dimension D also coincides with the Hochschild
dimension in homology as well as in cohomology. Thus for an algebra /' € GrAlg,
there is a unique notion of dimension from a homological point of view which is its
global dimension gf dim(«7) = D whenever it is finite.

2.3 Poincaré Duality Versus AS-Gorenstein Property

Let o7 € GrAlg be of finite global dimension D. Then one has a minimal free
resolution
O—-Mp—---—> My—K—0

with M,, = &/ ® E,;,dim(E,) < ocoand E; >~ R, E; ~ E and E( >~ K. By applying
the functor Hom (e, <7) to the chain complex of free left <7-module

00— Mp—---—> My—0 (@)
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one obtains the cochain complex
0—>M6—>---—>Mb—>0 4)

of free right «7-modules with M, ~ E} ® </ where for any vector space F, one
denotes by F* its dual vector space.
The algebra o7 € GrAlg is said to be AS-Gorenstein whenever one has

H"(M')=0, for n# D
HP(M) =K

which reads Ext”, (K, &) = §"PK by definition (8"? = 0 forn # D and §?? = 1).
This implies that for 0 < n < D one has

E,_, ~E, (6)

which is a version of the Poincaré duality interesting by itself as shown e.g. by
Proposition 1.4 of [6]. However as pointed out in [6] (see the counterexample there),
this version of the Poincaré duality is not equivalent to the AS-Gorenstein property
(which is the version adopted in these notes for the Poincaré duality property).
Notice that one has
Ext’, (K, K) ~ E,

which follows easily from the definitions. The direct sum E (<) = @nEXtZ/ (K, K)
is a graded algebra, the Yoneda algebra of 7. One has the following result.

Theorem 2.1 Assume that of € GrAlg has finite global dimension. Then o is
AS-Gorenstein if and only if E(</) is a Frobenius algebra.

This result which is a weak version of a result of [28] is a generalization of a result
of [10] which is itself a generalization of a result of [34].

The Yoneda algebra E (<) is the cohomology of a graded differential algebra, so
in view of the homotopy transfer theorem [26] (see also in [27]), it has besides its ordi-
nary product m = my, a sequence of higher order product m,, : E(«)®" — E ()
for n > 3 which satisfy together with m; the axioms of A,,-algebras (introduced in
[36]) withm| =0.

Itis only when it is endowed with its A o -structure that one can recover the original
algebra o7 from E (/). In some cases one has m,, = 0 for n > 3; this is in particular
the case when .27 is a quadratic Koszul algebra but then the Yoneda algebra E (/)
identifies with the Koszul dual 7' of &7 (see below).

3 Homogeneous Algebras

We review here some definitions and basic properties of homogeneous algebras,
[3, 8]. Throughout the following N denotes an integer with N > 2.
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3.1 Koszul Duality

Let &7 € HNAlg be a N-homogeneous algebra, that is as explained above, an algebra
of the form
o/ = A(E,R)=T(E)/(R)

where E is a finite-dimensional vector space, where R is a linear subspace of E h
and where (R) denotes the two-sided ideal of the tensor algebra T (E) = ®,cnE®”
of E generated by R. The algebra o = A(E, R) is a graded connected algebra
A = BN, generated in degree 1 by E = o).

To o/ = A(E, R) one associates another N-homogeneous algebra, its Koszul
dual N-homogeneous algebra .«7* defined by [8]

o' = A(E*, RY)

where E* is the dual vector space of E and where Rt c (E *)®N denotes the
orthogonal of R

R = (we (EH® o) =0, Vr € R}

with the identification (E*)®" = (E®")* which is allowed in view of the finite-
dimensionality of E.
One has
(') = of
so this is a duality in HyAlg which is above the usual duality of the finite-dimensional
vector spaces. It is straightforward that this duality defines a contravariant involutive

endofunctor of HyAlg. This is the direct generalization of the usual Koszul duality
of quadratic algebras (case N = 2) [29, 30].

3.2 The Koszul N-complex K (<)

Let &/ = A(E, R) be a N-homogeneous algebra with Koszul dual &' = @,.47,.
Then the dual vector space 427,1'* of ,Qin' is given by

15 _ ®n
JZ{n =F

forn < N and by _
A = pyen-NE® ® R® E® (7)

for n > N. Consider the sequence of homomorphisms of (free) left .o7-modules

A gedt S aea* S L g0 (8)

n+
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where the homomorphism d : &7 ® <7, b > I® /* is induced by the homomor-
phismd : o/ @ E®""' — o/ @ E®" defined by

da® Qe ®---Qey)) =aegQ (1 ®---Qey) 9

forae &,eg Q- QRe, € E®""" and where aey is the product in <7 of a and eg.
In view of (7), one has /* C R® E & for n > N which implies

da¥ =0 (10)

so the sequence (8) is a chain N-complex of left .<7-modules which is referred to as
the Koszul N-complex of </ and is denoted by K (<7).

By applying the functor Hom (e, .) to (8) one obtains a cochain N-complex
of right .7 -module

oS peas LadeadgSag eas. . an

where d* is the right multiplication by 6, ® x* where (x*) is a basis of E with dual
basis (6,). This N-complex of right .27-module is denoted by L ().

3.3 The Koszul Complexes % (<7,K) and % (< ,<7)

From a N-complex like K (/) one obtains ordinary complexes called contractions
by starting at some place and applying alternatively arrows d* and dV % (1 < k <
N). Remembering that, see (2), the presentation of the N-homogeneous algebra
o/ = A(E, R) by generators and relation is equivalent to the exactness of

a1 d e
QR —> A QRQFE >4 >K—0 (12)
it is natural to consider the particular contraction extending

N-1
BLAN %@ﬂ’*lﬁﬂ(@ﬂ'* i s ARES o >0

this is a chain complex of free left .o7-modules which will be denoted by % (<7, K)

and called the left <7 -module Koszul complex of </ or simply the Koszul complex
of &7. One has

[%m(%,K) =42%®42%* (13)

Hom1 (A, K) = 'dj\'/*m+l
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the differential § of J# (<7, K) is given by
I8=diﬁifzm+1(%,K)—>Jifzm(%,K) (14)
8 =d" "1 Homi1)(, K) > Homi1 (o, K)

and it turns out that this complex identifies canonically with the Koszul complex
introduced originally in [3]. Moreover this complex is the only contraction of the
Koszul N-complex K (/) whose acyclicity in positive degrees does not lead to a
trivial algebra .7 as shown in [8].

In the case N = 2, i.e. when &/ is quadratic, one has of course ¢ (<7, K) =
K (2).

By reversing the order of tensor product in Sequence (8), one obtains similarly
the N-complex K'(«) of free right .«7-modules

L gred b ated . by so (15)

with an obvious definition of d’.

On the sequence of bimodules (/' ® ,an'* ® /), eN, one has the two commuting
N-differentials d ® I,y and I,y ® d’ which will be simply denoted again by d and d’.
Following [4] one defines the bimodule Koszul complex of <7 denoted by J# (<7, <f)
to be the chain complex of free (<, &7)-bimodules (i.e. of free .« ® o7 °PP-modules)
defined by

Hom (A, ) = @y, ® (16)
Hom1( , ) =e®7®»<27/\!,*m+1 ® o
with differential 8§’ of .7 (<7, <) defined by
8 =d-d s Hom1 (A, A ) — Hom (A, A) a7
§ =200 d @V T A (A ) = Homgr (A, )

the identity 8> = 0 following from 0 = dV — d'N = (d —d') 3N a" @)V "1
Notice that the presentation of ./ by generators and relations is also equivalent
to the exactness of

AORIA DS ARERA S @ ™ o >0 (18)

where the last arrow m is the multiplication in <7

Finally, by applying the functor Hom_, (e, <7) to the chain complex of free left
«/-modules J# (<7, K), one obtains the cochain complex of free right .o/-modules
H (A, K) = L(d,K)

LS oS ot k) S (19)
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which is of course a contraction of the N-complex L (7).

3.4 N-Koszul Algebras

One has the following result [3].

Theorem 3.1 Let &7 be a N-homogeneous algebra. Then the following properties
(i) and (ii) are equivalent:

(1) The complex & (7, K) is acyclic in degrees > 1,
(i1) The complex & (<, &) is acyclic in degrees > 1.

When 7 is such that the above equivalent properties are satisfied, <7 is said to
be a N-Koszul algebra or simply a Koszul algebra.
In view of the exact sequences (12) and (18), if . is Koszul then

(A, K)S>K—0 (20)
is a free resolution of the trivial left .«7-module K while
H(A, A) D o — 0 1)

is a free resolution of the (<7, @7)-bimodule .<7. These resolutions are minimal pro-
jective in the graded category.

This last point is important since if .# is a bimodule on the Koszul algebra .o/
then the chain complex 4 ® o/ g 70w H# (&7, 27) computes the Hochschild homol-
ogy He(<f, #), (i.e. its homology is He(</, .#')), while the cochain complex
Hom g/ g oyorp ( (7, &), M) computes the Hochschild cohomology H® (<7, A),
(i.e. its cohomology is H® (<, .#)), in view of the interpretations of He (<7, .#) as
Tor?®7" (L, o) and of H*(<f , M) as Ext:y@ oorp (@, A). In particular when
</ has finite global dimension D, these complexeé are “small” of lenght D.

Warning. For N = 2, that is for &/ quadratic, it is easy to show that o7 is Koszul

(i.e. 2-Koszul) if and only if its Koszul dual .« ' is Koszul. However for N > 3, the
Koszul dual 7' of a N-Koszul algebra <7 is generally not N-Koszul.

3.5 The A -structure of E (<)

Let <7 be a N-Koszul algebra.

If N = 2, that is if .o/ is quadratic, then E(%) = </ !and there are no non trivial
higher order products in the A -structure of E (7).

Let us assume now that N > 3. In this case, the Yoneda algebra E(<7) can be
extracted from the Koszul dual ' of < in the following manner as show in [10].
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One sets E(&7) = @, N E,(27) with

[ Ex(d) =y, 22)

Eom+1 (o) = f‘Z{]E/,n+1

and the product m» of E (<7 is defined in terms of the product (x, y) — xy of 7' by
ma(x,y) = xy
if x or y is of even degree in E (<) which means of degree multiple of N in <",
and by
ma(x,y) =0

otherwise. Concerning the A..-structure of E (<), the only nontrivial higher order
product is the product m y which is given by

my(Xt,...,XN) = X1...XN
if all the x4 are of odd degrees in E (<) and
my(xi,...,xy) =0

otherwise [25]. As an Ao-algebra, E (/) is generated in degree 1.

4 Twisted Potentials and Algebras

In this section we recall the construction of algebras associated to preregular multi-
linear forms or which is the same to twisted potentials. We consider only the homo-
geneous case here.

4.1 Multilinear Forms and Twisted Potentials

Let V be a vector space and let n > 1 be a positive integer, then a (n + 1)-linear
form w on V is said to be preregular [18, 19] iff it satisfies the following conditions
(1) and (ii).

(1) If X € V is such that w(X, X1, ..., X,) = 0forany X{,..., X, € V, then
X =0.
(ii) There is an element Q,, € GL(V) such that one has

w(X0, .y Xn—1, Xp) = w(QwXy, Xo, ..., Xp—1)
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for any Xg, ..., X, € V.

It follows from (i) that Q,, as in (ii) is unique. Property (i) when combined with
(ii) implies the stronger property (i’).
(") For any 0 < k < n,if X € V is such that

W(Xl’--"Xk’X’Xk+17°"1Xn)=O

for any X1,..., X, € V,then X = 0.

Property (i’) will be referred to as 1-site nondegeneracy while (ii) will be referred
to as twisted cyclicity with twisting element Q,,. Thus a preregular multilinear form
is a multilinear form which is 1-site nondegenerate and twisted cyclic.

Note that then, by applying n times the relations of (ii) one obtains the invariance
of w by Q,, thatis

w(Xo, ..., Xn) =w(QwXo, ..., OwXy)

for any Xg, ..., X, € V.
Let w be an arbitrary Q-invariant m-linear form on V (with Q € GL(V)) then,
assuming m # 0 in K, the m-linear form 7o (w) defined by

1 m
QWX oy X) = — > w(QXp, .., QXp, X1, -, Xko1)
mk:l

for any X1,...,X,, € V is twisted cyclic with twisting element Q, (in short is
Q-cyclic).

Let E be a finite-dimensional vector space, then an element w of £ ®" is the same
thing as a m-linear form on the dual E£* of E. To make contact with the terminology
of [23] we will say that w is a twisted potential of degree m on E if the corresponding
m-linear form on E* is preregular.

4.2 Algebras Associated with Twisted Potentials

Letw € E®" be a twisted potential and let wy, 3, be its components in the basis
(x’\)ke{l ,,,,, dim(g)) of E, i.e. one hasw = W)\l__)hmx)”l ® - @ x*m. Let (6,) be the
dual basis of (x*), the corresponding preregular multilinear form on E* is given
by w(0,, ..., 05,) = wx,.., and we denote by Q,, the twisting element. One has
Oy € GL(E*) and Q!, € GL(E) where Q +> Q' denotes the transposition.
Assume that m is such that m > 2 and let N be an integer such thatm > N > 2.
One defines the N-homogeneous algebra &/ = o/ (w, N) to be the graded algebra

generated in degree 1 by the elements x” with relations

Wit ity X XY =0 (23)
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for Ay € {1,...,dim(E)}, 1 <k <m — N.In other words

o = A(E, Ryn) = T(E)/(RwN)
where R,y is the subspace of E e generated by the elements

W)\lm)\m—Nl’«lm,Uvaﬂl ®--- @ xHN
with A € {1,...,dim(E)}, 1 <k <m — N. The algebra &/ = o/ (w, N) will be
refered to as the N-homogeneous algebra associated with w. The relations of ./’ are
given by “the (m — N)-th derivatives” of w. Notice that the twisted cyclicity of w,

or more precisely its preregularity, implies that the relations (23) of o/ = 7 (w, N)
read equivalently forany 1 < p <m — N as

1231 MUN —
Wi N1y A e dpot X XN =10

for Ay € {1,...,dim(E)}, 1<k <m—N.
Let us define the subspaces %}, C E®" for m >n>0by

_ " _
[%_E forN—-1>n2>0 24)

W =200 KWy ity pin XM @ - @ xHn form > n > N

so one has in particular %, = Kw, #n = R,n, #1 = E and #) = K. The twisted
cyclicity of w and (7) imply the following result.

Theorem 4.1 The sequence

0> AW > AWy > S 50 (25)

is a sub-N-complex W (<) of the Koszul N -complex K (/) of <.
4.3 The Complexes W (<7,K) and W (7,2

In the case N = 2, the sequence (25) is a complex which is a subcomplex of the
Koszul complex and, from the very definition (24), one has the isomorphisms of

vector spaces %, — ¥, defined by
- — )le)“m—nw xl/-l ® xl"vn
é‘ ; Alewhm—n 1 An e

where { = (M- n=16;, @ @0, _, is any element of E*®" " which projects onto
ey,

In the case N > 3, to obtain a similar situation, one has to “jump” over the
appropriate degrees as for the definition of the Koszul complex .# (<7, K) and to
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assume that m = Np + 1 for some integer p > 1. One then define the complex
W (o, K) by setting
W7, K) = @ Wi (26)
Wok1(A, K) = o @ Wii+1
so that one has %}, (<7, K) C J, (<, K).
One verifies that §%;,11 (<, K) C #, (<7, K) and therefore # (<7, K) is a subcom-
plex of the Koszul complex with

W, K) = @ Wy

where vy (2k) = Nk and vy 2k + 1) = Nk + 1.
One observes then that the complex % (<7, K) is of length 2p + 1 and that one
has the canonical isomorphisms of vector spaces

W\:\/(Zp+]fn) = Wiy (27)
similar to the ones of the case N = 2.
Similarily one defines in the same conditions a subcomplex # (<, o7) of the
bimodule Koszul complex .%# (<7, /) by setting

W, ) = @ Wyym) ® &

and verifying that 8’ #;, 1 (o, &7) C Wy (A, ).

Notice that in view of (27) these complexes satisfy a Poincaré duality condition
similar to the one corresponding to (6) for AS-Gorenstein algebras. Furthermore the
complex of free bimodules # (<7, <) is self dual in an obvious sense, see [11] .

Finally by applying Hom (e, 27) to # (7, K), one obtains the cochain complex
of free right .«/-modules #* (<7, K)

§* *
el —> oy (1

§* §*
YO > W g1y @A = -

which is a subcomplex of .Z (7, K).
The self duality of # (<7, o) corresponds precisely to the duality between
W (o, K)and #* (o, K).

4.4 Automorphisms o, of </* and o* of <7, Modular Property of
o, and Pre-Frobenius Structure of </

Let &7 = &/ (w, N) be as in Sect.4.2 and let Q,, € GL(E™) be the corresponding
twisting element of w, (E = .¢#}). Then Q,, induces an automorphism of degree 0 of

T (E*) which preserves RiN c E*®" while Q!, € GL(E)induces an automorphism
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of degree 0 of T'(E) which preserves R,y C E @" 1t follows that Q,, induces an
automorphism o,, of the graded algebra .<7* while Q!, induces an automorphism o
of the graded algebra .o/

One has w € ‘%’1* since W () is a sub-N-complex of K (<7) and one defines a
linear form w,, on the algebra 7' by setting

Wy =W o P (28)

where p,, : &' — szfn'l is the canonical projection onto the degree m component.
One has the following theorem [19].

Theorem 4.2 The linear form w,, and the automorphism o, are connected by
Ow(xY) = 0 (G (y)x) (29)
forany x,y € of". The subset of <"
I ={y € &' lwy(xy) =0, Vx e ')

is a two-sided ideal of </* and the quotient algebra F (w, N) = /.7 endowed
with the linear form induced by w,, is a graded Frobenius algebra.

The relation (29) is just a reformulation of the preregularity of w, it reflects the mod-
ular property of oy, with respect to w,,. One clearly has .% (w, N) = @)"_;.%,(w, N)
s0 .% (w, N) is finite-dimensional and the pairing induced by (x, y) > w,(xy) is
nondegenerate by construction and is a Frobenius pairing on .% (w, N).

Let .o/ be the (7, o/)-bimodule which coincides with &7 as right <7-module
but whose left .o7-module structure is given by the left multiplication by (—1)—D”
(6")~!(a) fora € o7,. Thus "</ is a twisted version of the bimodule .. For N = 2,
one has the following result [19].

Proposition 4.1 For N = 2, that is for «f = </ (w, 2), the element 1 @ w of%®m+]
is canonically a nontrivial *’ o7 -valued Hochschild m-cycle on < .

In this proposition 1 € o7 is interpreted as an element of .o7. This proposition
for N = 2 gives the interpretation of 1 ® w as a twisted volume element since for
w = (=11 it would represent an element of H H,, (/).

4.5 N-Koszul AS-Gorenstein Algebras

For N-Koszul algebras of finite global dimension which are AS-Gorenstein one has
the following result [18, 19], see also in [12] for the case N = 2.

Theorem 4.3 Let o/ be a N-Koszul algebra of finite global dimension D which
is AS-Gorenstein. Then of = o/ (w, N) for some twisted potential of degree m on
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E = o). For N = 2 one has m = D while for N > 3 one hasm = Np + 1 and
D =2p + 1 for some integer p > 1.

Under the assumptions of this theorem, the N-complex W (27) of Sect.4.2 coin-
cides with the Koszul N-complex K (<) which implies that the Koszul resolution
of the trivial left .7-module K reads

0= o @ Wyypy > > A Wiy > 7 SK—>0  (30)

with vy (2n) = Nnand vy (2n + 1) = Nn + 1 for n € N and where § is as in (14),
that is
W (A, K) > K— 0

with the notations of Sect.4.2. One has
dim(#,y «k)) = dim(#,y(p—k)) for0 <k <D

since as observed in Sect.4.2, one has the isomorphisms % , ;) =~ #yy ) for
0 < k < D. In particular #,,,(py = Kw so 1 ® w is the generator of the top free

module of the Koszul resolution of K.

Remark Under the assumptions of Theorem 4.3 the Yoneda algebra E (/) of <7 is a
Frobenius algebra in view of Theorem 2.1, (endowed with its ordinary product m>).
If N = 2, onehas E(«/) = /" and therefore E (<) = .Z (w, 2), however for N > 3
the Frobenius algebras E (/) and .% (w, N) are completely different, (we use here
the notations of Theorem 4.2). Indeed in the case N > 3, E() is obtained from <7
by dropping terms of degrees v with Np +1 < v < N(p + 1) with p > 1, while
Z (w, N) is a quotient of 7' by a graded ideal (which vanishes in some cases such
as for the Yang-Mills algebra of [15] and some generalizations [16]).

As observed in [11], there is a sort of converse in the sense that the acyclicity in
degrees > 1 of # (o7, K) orof # (<7, <) implies that <7 is Koszul of global dimen-
sion D and is AS-Gorenstein. Thus Theorem 4.3 admits the following refinement.

Theorem 4.4 Let N,m and D be as in Theorem 4.3 that is either N = 2 with
D =mor N >3 withm = Np+1and D = 2p + 1 for some integer p > 1.
Then the following conditions (1), (ii) and (iii) are equivalent for a N-homogeneous

algebra o :

(1) o is N-Koszul of finite global dimension D and is AS-Gorenstein (or twisted
Calabi-Yau),
(il) & = o (w, N) for some twisted potential w of degree m and W (< , K) is acyclic
in degrees > 1,
(iii) & = o (w, N) for some twisted potential w of degree m and W (o, ) is
acyclic in degrees > 1.

Under these equivalent conditions one has W (<, K) = # (<, K) and W (<,
A= H (A, ).
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In practice, the acyclicity condition for # (<, K) or # (&, <) is hard to verify
and implies very nontrivial nondegeneracy conditions for w. For instance, in the case
m = N + 1 the condition # (<, K) = J¢ (<7, K) is equivalent to the condition of 3-
regularity as shown in [19] (Proposition 16) which is a subtle 2-sites nondegeneracy
condition.

Itis worth noticing here that, as pointed out in [ 10], for .2 of global dimension D =
2 or D = 3 the AS-Gorenstein condition implies already that .7 is N-homogeneous
and N-Koszul with N = 2 for D = 2.

Notice also that “N-Koszul of finite global dimension and AS-Gorenstein” is
equivalent to “N-Koszul of finite global dimension and twisted Calabi-Yau” [11].
This is connected with the equivalence (ii) < (iii) of Theorem 4.4 together with the
self duality of % (<7, &).

5 Nonhomogeneous Algebras

All the nonhomogeneous algebras considered in this article will be obtained by
starting with homogeneous relations, say N-homogeneous, and by adding second
members of lower degrees to the homogeneous relations. We always assume that
these algebras are finitely generated with a finite presentation. This means that such
an algebra 2 is of the form

A=T(E)/{r —e@)lr € R} €29

where E is a finite-dimensional vector space, R is a linear subspace of E e (N =2)
andp : R — 69,11\:01 E®" is a linear mapping of R into the space of tensors of degrees

strictly smaller than N.

5.1 The Poincaré-Birkhoff-Witt Property

Let 2 be the nonhomogeneous algebra given by (31). Then 2l is not naturally graded
since its relations are not homogeneous but it inherits a filtration " (2() induced by
the natural filtration F*(T(E)) = @< E & of the tensor algebra associated to its
graduation.

There are two natural graded algebras associated to 2 :

1. the graded algebra
gr@) = @, F"Q)/F"' Q) (32)

refered to as the associated graded algebra to the filtered algebra £,
2. the N-homogeneous algebra
o/ = A(E, R) (33)
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obtained by switching in the relations of 2( the terms of degrees strictly smaller
than N ; o7 is refered to as the N-homogeneous part of 2 or simply as the
homogeneous part of 2.

We use the convention that F'”(2() = 0 whenever p < 0. One has a canonical
surjective homomorphism of graded algebra

can : o — gr(A) (34)
which maps linearly «/; = E onto F L)/ FO) = E.

The nonhomogeneous algebra 2 is said to have the Poincaré-Birkhoff-Witt prop-
erty (PBW property) whenever the canonical homomorphism can is an isomorphism.
If 2 has the PBW property and if its homogeneous part is N-Koszul, then 2/ is said
to be a nonhomogeneous Koszul algebra, [9]. One has the following result [22], see
also in [9] for a more general context.

Theorem 5.1 Let us decompose ¢ as ¢ = lequ_ol @n with ¢, : R — E®" and set
Yn+1 = (R® E) N (E ® R). Assume that U has the PBW property then one has
the following relations

@ (en-1QT —T1®en—1)("N+1) CR,

®) (PnoN-1QT =T @ oN-1) + -1 Q1 — I @ ¢—1)(Vn+1) =0
forl <n <N —1,and

© polon—1 @I — I @ on—_1)(FN+1) =0

where I is the identity mapping of E onto itself.

Conversely, if the homogeneous part </ of A is N -Koszul and if the above relations
are satisfied then 2 has the PBW property.

The assumption that <7 is N-Koszul is natural but not completely optimal for
the converse in the above theorem. In any case, this theorem implies that 2 is a
nonhomogeneous Koszul algebra if and only if its homogeneous part <7 is N-Koszul
and the relations (i), (i), (iii) of the theorem are satisfied.

Notice that one has ¥y 11 = 427,!\,*“ , (see in Sect.3.2).

Instructive examples (with N > 2) of nonhomogeneous Koszul algebras obtained
by application of Theorem 5.1 are given in [9] and in [7].

5.2 Nonhomogeneous Koszul Duality for N = 2

In the following, we shall be concerned only with the case N = 2 and we call
nonhomogeneous quadratic algebra an algebra of the form (31) with R C E® E
and¢ : R — E @ K (here, E®’ is identified with K).

Let 2 be a nonhomogeneous quadratic algebra with quadratic part o = A(E, R),
andlet ¢ : R — E and ¢y : R — K be as in 5.1 the decomposition ¢ = ¢1 + ¢o.
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Consider the transposed ¢} : E* — R* and ¢}, : K — R* of ¢ and ¢ and notice
that one has by definition of .o/ thauz%]’ = E*, 32%2' = R* and;z%; = (RQENE®R)*,
so one can write (the minus sign is put here to match the usual conventions)

— ¢! — o, —gh(1) = F € o) (35)

and one has the following result [32].

Theorem 5.2 Conditions (a), (b) and (c) of Theorem 5.1 are equivalent for N = 2
to the following conditions (a"), (b") and (¢'):

(@") —¢| extends as an antiderivation § of </ :
(t)) 8%(x) = [F,x], Vx € &'
(c) 8(F)=0.

A graded algebra equipped with an antiderivation é of degree 1 and an element
F of degree 2 satisfying the conditions (b’) and (c’) above is refered to as a curved
graded differential algebra [32].

Thus the correspondence 2 +— (&7 LS. F ) define a contravariant functor from
the category of nonhomogeneous quadratic algebras satisfying the conditions (a), (b)
and (c) of Theorem 5.1 (for N = 2) to the category of curved differential quadratic
algebras (with the obvious appropriate notions of morphism). One can summarize
the Koszul duality of [32] for non homogeneous quadratic algebras by the following.

Theorem 5.3 The above correspondence defines an anti-isomorphism between the
category of nonhomogeneous quadratic algebras satisfying Conditions (a), (b) and
(¢c) of Theorem 5.1 (for N = 2) and the category of curved differential quadratic
algebras which induces an anti-isomorphism between the category of nonhomoge-
neous quadratic Koszul algebras and the category of curved differential quadratic
Koszul algebras.

There are two important classes of nonhomogeneous quadratic algebras 2{ sat-
isfying the conditions (a), (b) and (c) of Theorem 5.1. The first one corresponds to
the case ¢9 = 0 which is equivalent to F = 0 while the second one corresponds
to 91 = 0 which is equivalent to § = 0. An algebra 2l of the first class is called
a quadratic-linear algebra [31] and corresponds to a differential quadratic algebra
(7', 8) while an algebra 2l of the second class corresponds to a quadratic algebra
/" equipped with a central element F of degree 2.

5.3 Examples

1. Universal enveloping algebras of Lie algebras. Let g be a finite-dimensional Lie
algebras then its universal enveloping algebra 2 = U(g) is Koszul quadratic-
linear. Indeed one has &/ = Sg which is a Koszul quadratic algebra of finite
global dimension D = dim(g) while the PBW property is here the classical
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PBW property of U(g). The corresponding differential quadratic algebra (7", §)
is (Ag*, §), i.e. the exterior algebra of the dual vector space g* of g endowed
with the Koszul differential §. Notice that this latter differential algebra is the
basic building block to construct the Chevalley-Eilenberg cochain complexes.
Notice also that .o#' = Sg is not only Koszul of finite global dimension but is also
AS-Gorenstein (Poincaré duality property).

Adjoining a unit element to an associative algebra. Let A be a finite-dimensional
associative algebra and let

A=A=TA)/(x®y—xy,y €A}

be the algebra obtained by adjoining aunit1to A (A = K1®A, etc.). This is again
a Koszul quadratic-linear algebra. Indeed the PBW property is here equivalent
to the associativity of A while the quadratic part is 7 = T (A*)" which is again
K1 & A as vector space but with a vanishing product between the elements of
A and is a Koszul quadratic algebra. The corresponding differential quadratic
algebra (o ' 8) is (T (A*), 8) where 8 is the antiderivation extension of minus
the transposed m’ : A* — A* ® A* of the product m of A. Again (T (A*), §) is
the basic building block to construct the Hochschild cochain complexes. Notice
however that o7 = T (A*)" is not AS-Gorenstein (no Poincaré duality).

A deformed universal enveloping algebra. Let 2 be the algebra generated by the
3 elements Vq, V1, V; with relations

12VaVo — VoVa = V)
wrViVo — VoVi = p2(1 + 1)V (36)
ptVaVi = ViVy = p2(1 + p?)Vs.

This is again a Koszul quadratic-linear algebra with homogeneous part <7 which
is Koszul of global dimension D = 3 [24, 37] and is AS-Gorenstein. The cor-
responding differential quadratic algebra (<7*, 8) is the algebra .«7* generated by
wp, w1, wy with quadratic relations

a)%:O,w%:O,w%:O
wrwo + ,uza)oa)2 =0
wiwo + M4a)oa)1 =0
wrw] + M4a)1w2 =0

(37)

endowed with the differential § given by

Swo + (1 + u?wow; =0
Swi + pwowy =0 (38)
Swy + (1 + p?Hwjwr =0

which corresponds to the left covariant differential calculus on the twisted SU (2)
group of [38].
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4. Canonical commutation relations algebra. Let E = K2" with basis (g*, Du)s
A, €{l,...,n}and letih € K with ih # 0. Consider the nonhomogeneous
quadratic algebra 2 generated by the ¢*, pu. With relations

7"q" — q"¢* =0. pipu— pupr.=0. ¢"pu — pug* =ihs}1
for i, u € {1, ..., n}. The quadratic part of 2( is the symmetric algebra &/ = SE

which is Koszul of global dimension D = 2n. One has ¢; = 0 and ¢y is such
that its transposed ¢, is given by

—gi(1) = F = —(ih)~'q A p*

which is central in &' = A(E*) where (g5, p**) is the dual basis of (g%, Du)-
This implies that 2 has the PBW property and therefore is Koszul.

5. Clifford algebra (C.A.R. algebra). Let E = K" with canonical basis (y,),
A € {1, ..., n} and consider the nonhomogeneous quadratic algebra 2 = C(n)
generated by the elements y;, A € {1, ..., n} with relations

YuWv + YoV = 28,01

foru, v € {1, ..., n}. The quadratic part of 2 is then the exterior algebra.of’ = AE
which is Koszul. One has again ¢; = 0 and ¢]) is given by

1
1 F 2 Ak Ak

which is a central element of 7' = SE* (which is commutative). It again follows
that 2l is Koszul (i.e. PBW + & Koszul).

6. Remarks on the generic case. Let <7 be a (homogeneous) quadratic algebra which

is Koszul. In general (for generic .«7) any nonhomogeneous quadratic algebra 2
which has &7 as quadratic part and has the PBW property is such that one has
both ¢; # 0 and ¢ # 0 or is trivial in the sense that it coincides with <7, i.e.
@1 = 0 and ¢g = 0. This is the case for instance when o7 is the 4-dimensional
Sklyanin algebra [14, 17, 33, 35] for generic values of its parameters [2].
Thus, Examples 1, 2, 3, 4, 5 above are rather particular from this point of view.
However the next section will be devoted to a generalization of Lie algebra which
has been introduced in [21] and which involves quadratic-linear algebras, i.e. for
which g9 = 0.
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6 A Generalization of Lie Algebras

6.1 Prealgebras

By a (finite-dimensional) prealgebra we here mean a triple (E, R, ¢) where E is
a finite-dimensional vector space, R C E ® E is a linear subspace of £ ® E and
¢ : R — E isalinear mapping of R into E. Given a supplementary R'to Rin EQE,
R ® R' = E ® E, the corresponding projector P of E ® E onto R allows to define
a bilinear productp o P : E ® E — E, i.e. a structure of algebra on E. The point
is that there is generally no natural supplementary of R. Exceptionare R = EQ E
of course and R = A2E C E ® E for which there is the canonical G L(E)-invariant
supplementary R’ = S>E C E ® E which leads to an antisymmetric product on E,
(e.g. case of the Lie algebras).
Given a prealgebra (E, R, ¢), there are two natural associated algebras :

1. The nonhomogeneous quadratic algebra
A =T(E)/({r —¢(r) | r € R})

which will be called its enveloping algebra.
2. The quadratic part o7 of Ag

g =T(E)/(R),

where the prealgebra (E, R, ¢) is also simply denoted by E when no confusion
arises.

The enveloping algebra 2, is a filtered algebras as explained before but it is also
an augmented algebra with augmentation

e A — K

induced by the canonical projection of T'(E) onto T°(E) = K. One has the surjective
homomorphism
can : oI — gr(Ag)

of graded algebras.

In the following we shall be mainly interested on prealgebras such that their
enveloping algebras are quadratic-linear. If (E, R, ¢) is such a prealgebra, to g
corresponds the differential quadratic algebra (Wé, 8) (as in Sect.5) where § is the
antiderivation extension of minus the transposed ¢’ of ¢.

Notice that if 2 g has the PBW property one has

E = F'(Ug) N Ker(e)
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so that the canonical mapping of the prealgebra E into its enveloping algebra 2 is
then an injection.

6.2 Lie Prealgebras

Aprealgebra (E, R, ¢) will be called a Lie prealgebra [21] if the following conditions
(1) and (2) are satisfied :

(1) The quadratic algebra o7 = A(E, R) is Koszul of finite global dimension and
is AS-Gorenstein (Poincaré duality).
(2) The enveloping algebra 2 has the PBW property.

If E = (E, R, ) is a Lie prealgebra then 2 g is a Koszul quadratic linear algebra,
so to (E, R, ¢) one can associate the differential quadratic algebra (%E’, 8) and one
has the following theorem [21]:

Theorem 6.1 The correspondence (E, R, ¢) +— (szé, 8) defines an anti-isomor-
phism between the category of Lie prealgebra and the category of differential
quadratic Koszul Frobenius algebras.

This is a direct consequence of Theorem 5.3 and of the Koszul Gorenstein property
of o7 by using [34].

Let us remind that a Frobenius algebra is a finite-dimensional algebra <7 such
that as left «7-modules <7 and its vector space dual o7* are isomorphic (the left
«7-module structure of .&7* being induced by the right .&/-module structure of .<7).
Concerning the graded connected case one has the following classical useful result.

Proposition 6.1 Let o7 = @,,>0.9, be a finite-dimensional graded connected alge-
bra with </p # 0 and </, = 0 for n > D. Then the following conditions (i) and (ii)
are equivalent:

(i) 7 is Frobenius,
(ii) dim(«7p) = 1 and (x, y) — (xy)p is nondegenerate, where (z)p denotes the
component on 9/p of 7 € .

6.3 Some Representative Cases

1. Liealgebras.Itis clear thataLie algebra g is canonically a Lie prealgebra (g, R, ¢)
with R = A2g C g®g, ¢ = [e, o], Ag = U(g) and &5 = Sg, (see Example 1
in Sect.5.3).

2. Associative algebras are not Lie prealgebras. An associative algebra A is clearly
aprealgebra (A, A ® A, m) with enveloping algebra 24 = A asin Example 2 of
Sect.5.3 but @74 = T(A*)' = K1 A is not AS-Gorenstein although it is Koszul
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aswell as 24 = A, (see the discussion of Example 2 in Sect.5.3). The missing
item is here the Poincaré duality.

A deformed version of Lie algebras. The algebra 2 of Example 3 of Sect.5.3 is
the enveloping algebra of a Lie prealgebra (E, R, ¢) with E=K>,RC EQ E
generated by

rn=uVa®Vo—Vo® Vs

ro=p*Vi®Vo—Vo® V)

Rn=uVva®V -V eV,

and @ given by

o(r1) = uVi, @(ro) = 11+ puHVo, @) = w1+ uHVva

where (Vg, V1, V) is the canonical basis of E.

Differential calculi on quantum groups. More generally most differential calculi
on the quantum groups can be obtained via the duality of Theorem 6 from Lie
prealgebras. In fact the Frobenius property is generally straightforward to verify,
what is less obvious to prove is the Koszul property.

6.4 Generalized Chevalley-Eilenberg Complexes

Throughout this section, E = (E, R, ¢) is a fixed Lie prealgebra, its enveloping
algebra is simply denoted by 2 with quadratic part denoted by .2/ and the associated
differential quadratic Koszul Frobenius algebra is (27", §).

A left representation of the Lie prealgebra E = (E, R, ¢) is a left A-module. Let

V be a left representation of £ = (E, R, @), let (x*) be a basis of E with dual basis
(65) of E* = o7} One has

X' P ® 6,0, + x" P @86, =0

for any @ € V. This implies that one defines a differential of degree 1 on V ® <7
by setting

Sy(PQa)=x"P Qba+ P R da

so (V ® 7', 8y) is a cochain complex. These cochain complexes generalize the
Chevalley-Eilenberg cochain complexes. Given a right representation of E, that is
a right 2-module W, one defines similarily the chain complex (W ® < b Sw),
remembering that 27" is a graded coalgebra.

One has the isomorphisms

H*(V ® &) ~ Exty (K, V)
Hy(W ® /™) ~ Tor (W, K)
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which implies that one has the same relation with the Hochschild cohomology and
the Hochschild homology of 2{ as the relation of the (co-)homology of a Lie algebra
with the Hochschild (co-)homology of its universal enveloping algebra.

7 Conclusion

In these notes, we have only considered algebras which are quotient of tensor algebras
of finite-dimensional vector spaces. One can extend the results described here in
much more general frameworks. For instance in [11] the results of [19] concerning
the homogeneous case have been extended to the quiver case. An even more general
framework has been adopted in [9] for the nonhomogeneous Koszul algebras. Namely
the algebras considered in [9] are quotient of tensor algebras of bimodules over von
Neumann regular rings. This latter context seems quite optimal.
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