Chapter 2
Current methods for lung registration

The determination of correspondences between two or more images is required in almost
every field of medical image processing. Consequently, a vast diversity of registration
algorithms has been developed in the past, which is documented by several review
articles [Brown 1992; Maintz and Viergever 1998; Hill et al. 2001; Zitova and Flusser
2003; Oliveira and Tavares 2012; Sotiras et al. 2012] and books [Hajnal et al. 2001;
Modersitzki 2004; Goshtasby 2012a] published on this topic.

As initially detailed, an important field of application of registration techniques is the
correspondence analysis in lung CT images. Focussing on this field, the domain of
algorithms can be restricted to monomodal 3D-3D registration methods, but it still offers
a variety of different approaches. To assess and compare their accuracy, the demand
for common evaluation platforms has emerged in recent years. As a consequence, two
international evaluation studies have been conducted in 2009 and 2010.

On the one hand, several academic and commercial institutions were invited to partici-
pate at the Multi-Institution Deformable Registration Accuracy Study (MIDRAS), with
the purpose “to assess the accuracy, reproducibility, and computational performance of
deformable image registration algorithms under development at multiple institutions on
common datasets.” [Brock et al. 2010]. Altogether, twenty-one groups submitted their
results. In addition to thoracic 4D CT scans, CT and MR images of liver and prostate
were considered in this study.

On the other hand, the Fvaluation of Methods for Pulmonary Image REgistration 2010
(EMPIRE10) challenge is an ongoing study and was initiated in conjunction with the
MICCAI 2010 conference at Beijing, China [Murphy et al. 2011b]. Focussing on lung
registration, it is aimed at registering 30 thoracic CT scan pairs covering different fields
of intra-patient registration. Results are then evaluated with a common set of criteria.
Here, initially twenty-three groups submitted thirty-four algorithms to compete in the
challenge.

Moreover, with the publically available POPI model [Vandemeulebroucke et al. 2007]
and the DIR-lab data [Castillo et al. 2009], several 4D CT scans have been provided
together with manually determined corresponding points to enable the quantitative
evaluation of registration algorithms for motion estimation. These images are referred to
in many recent publications dealing with lung registration to provide a more meaningful
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comparison. For more details on POPI; DIR-lab and the EMPIRE challenge, the reader
is referred to Sections 7.1.2 and 7.2.3.

In this chapter, an overview on current methods for the registration of thoracic CT
images is given. Since collating a comprehensive survey on lung registration techniques
would surpass the scope of this work, the focus is on methods participating in one of
the aforementioned challenges as well as very recent developments in this field. These
algorithms are listed in Table 2.1. In Section 2.1, the approaches are categorized and
different possibilities for the definition of their fundamental components highlighted.!
Available open-source implementations are introduced in Section 2.2 and the implications
on this thesis derived in Section 2.3.

2.1 Intensity-based registration techniques

Let T and R denote two images (for example, two time points of a 4D sequence),
called template and reference image. The goal of image registration is finding a
transformation ¢ that warps a template image to match a reference image, such that
T oy~ R. A commonly persuaded approach to find ¢ is by minimization of an energy
functional

Jlgl :==D[T o, R],

where D is a distance measure that quantifies the dissimilarity between reference and
transformed template image. In this formulation, two components have to be determined:
the distance measure to precisely define the sense of similarity and the transformation
model. However, depending on the degrees of freedom of the transformation, an
additional condition is often required to restrain it to be physiologically plausible. Since
the lung can be described as an elastic body [Tustison et al. 2011], a certain smoothness
of the transformation is expected and can be achieved by adding a regularization
condition S to the energy functional:

Jle) = DT oo, Rl + Sle]. (2.1)

In the following Sections 2.1.1 to 2.1.3, an overview on different transformation models,
regularizers and distance measures that are currently used in the literature is given.
From a computational point of view, the optimization strategy for finding the minimum
of the functional is also of eminent importance. Different approaches for this purpose
are described in Section 2.1.4.

1 Since the focus is on the evaluation studies, this overview is restrained to intensity-based approaches.
Shape- and feature-based registration methods — usually used in a pre-processing step to overcome
anatomical differences and divergences in patient positioning, especially in inter-subject registration
— are not further regarded at this point.
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Table 2.1: Current methods for lung CT registration. The ten best-ranked methods of the MIDRAS
[Brock et al. 2010] and EMPIRE10 [Murphy et al. 2011b] studies are compared. Furthermore,
some recent methods are listed that follow noteworthy ideas. Abbreviations: TPS: Thin-
plate-splines; (N)MI: (Normalized) Mutual Information; SAD: Sum of Absolute Difference;
(N)SSD: (Normalized) Sum of Squared Differences; NCC: Normalized Cross Correlation; SSTVD:
Sum of Squared Tissue Volume Differences; SSVMD: Sum of Squared Vesselness Measure
Differences; NGF: Normalized Gradient Field; ELE: Euler-Lagrange Equation; GD: Gradient
Descent; CG: Conjugated Gradients; ASGD: Adaptive Stochastic Gradient Descent; BFGS:
Broyden-Fletcher-Goldfarb-Shanno; MRF: Markov Random Fields; References: M1: Dong,
Zhang [Wang et al. 2005]; M2: Han; M3: Dufort, Stundiza; M4: Xia, Samant; M5: El Naga,
Yang [Yang et al. 2008]; M6: Hawkes, Crum [Crum et al. 2005]; M7: Heath [Heath et al. 2007];
M8: Mageras, Hu [Lu et al. 2004]; M9: Nord; M10: Noe, Tanderup [Noe et al. 2008]; E1: [Han
2010]; E2: [Song et al. 2010]; E3: [Staring et al. 2010]; E4: [Schmidt-Richberg et al. 2010a];
E5: [Modat et al. 2010a]; E6: [Kabus and Lorenz 2010]; E7: [Cao et al. 2010b]; E8: [Muenzing
et al. 2010]; E9: [Song et al. 2010]; E10: [Garcia et al. 2010]; F1: [Heinrich et al. 2012]; F2:
[Rithaak et al. 2013]; F3: [Gorbunova et al. 2012]

Ref. Transform. Regularizer Distance Solver
model measure
MIDRAS sTuDY
M1  Dense field Gaussian NSSD Demons-like
M2  B-splines not specified SSD GD
M3  TPS Bending energy SSD Backward GD
M4  Dense field Diffusion-based SSD GD
M5 Dense field Gaussian MSD Gauss-Seidel
M6  Dense field Viscous-fluid NCC Full Multigrid
M7  Dense field Linear-elastic NCC 3D Simplex
M8  Dense field Diffusion SSD ELE/Gauss-Seidel
M9  Dense field Gaussian NSSD Demons-like
M10 Dense field Viscous-fluid SSD GD
— EMPIRE10 STUDY —
E1l Dense field Gaussian MI/NSSD* pair-and-smooth
E2 Diffeomorphic ~ Gaussian NCC ELE/GD
E3 B-splines not specified NCC ASGD
E4 Diffeomorphic Diffusion NSSD ELE/GD
E5 B-splines Bending energy NMI CG
E6  Dense field Linear-elastic SSD ELE/GD
E7  B-splines Laplacian SSTVD/SSVMD  Quasi-Newton (BFGS)
ES8 Diffeomorphic  Diffusion NSSD Demons-like
E9  Diffeomorphic Gaussian NCC ELE/GD
E10  Diffeomorphic Gaussian NSSD Demons-like
— FURTHER APPROACHES —
F1 Diffeomorphic  Total variation SAD MREF on spanning tree
F2 Dense field Curvature NGF L-BFGS
F3 B-splines not specified Mass-preserving ~ ASGD

* In this approach, additional features are detected and incorporated in the registration.
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2.1.1 Transformation models

Affine transformations Affine or rigid body transformations are frequently used
for the alignment of brain images. Due to the very low number of parameters that have
to be determined, linear registration is usually very performant. However, the complex
deformation of an elastic organ like the lung cannot be described appropriately by such
a simplistic transformation model. Therefore, affine transformations are rarely applied
for lung registration aside from a pre-alignment. The same holds true for piecewise
affine or poly-affine transformations [Arsigny et al. 2006b).

Spline-based transformations Spline-based transformation models are inspired by
interpolation theory. The transformation is explicitly given for a set of control points
and interpolated for the rest of the domain. In early approaches, radial basis functions
like thin-plate-splines (TPS) [Bookstein 1989] or physically motivated elastic-body-
splines [Davis et al. 1997] were applied. Free-form deformations (FFD) also gained a
wide acceptance in image registration [Rueckert et al. 1999]. Here, locally controlled
B-splines are used to interpolate between the control points of a rectangular grid,
which entails computational benefits. In gerneral, spline-based transformations unite a
high flexibility with a (compared to dense transformations) relatively low number of
parameters.

Dense displacement fields Since Thirion [1995] presented the demons-based regis-
tration, transformations are often defined by a dense vector field in which the vector
attached to each voxel describes the displacement of the corresponding point. This
approach is followed by 17 of the 23 methods listed in Table 2.1. Dense transformations
entail increased demands on the computational resources but represent the most flexible
deformation model. Due to this, they have to be employed in connection with a suitable
regularizer that ensures physiologically plausible transformations.

Diffeomorphic transformations Following the argumentation of Beg et al. [2005],
constraining the transformation to be a diffeomorphism is a natural choice in medical
image registration as “connected sets remain connected, disjoint sets remain disjoint
[and] the smoothness of anatomical features [...] is preserved.” From a mathematical per-
spective, this can be achieved by imposing additional requirements on the displacement
field. For example, in the Large Deformation Diffeomorphic Metric Mapping (LDDMM)
framework presented by Beg et al. [2005], diffeomorphic transformations are parameter-
ized as the flow over a time-dependent velocity field. Arsigny et al. [2006a] proposed to
use stationary velocity fields instead, which considerably increases computational effi-
ciency at the expense of flexibility. Other approaches exist that guarantee, for example,
diffeomorphic free-form deformations [Rueckert et al. 2006].
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2.1.2 Regularization approaches

The regularization approach is closely related to the transformation model and ap-
plied to restrict the domain of valid deformations. Focussing on the regularization
of dense displacement fields, the most common approaches are summarized in the
following.

Gaussian/Diffusion Thirion [1995] first applied a component-wise Gaussian smooth-
ing of the displacement field. As derived in [Modersitzki 2004], this is closely related to
a diffusion regularization, in which large gradients in the field are penalized for each
component independently. Both approaches can be computed very efficiently and are
therefore frequently used in current registration approaches (see Table 2.1). However,
they lack a physical motivation.

Elastic body In this approach, the image domain is modeled as an elastic body
based on the Navier-Cauchy equation [Broit 1981]. The Lamé parameters p and A
are used to influence the material properties. Various extensions have been proposed
that tackle problems like inverse consistency [Christensen and Johnson 2001], large
deformations [Pennec et al. 2005] and numerical efficiency [Fischer and Modersitzki
1999).

Viscous flow Christensen et al. [1996] first introduced viscous flow transformations
into image registration. Based on the Navier-Stokes equation, the image domain is
modeled as a viscous fluid. Since not the deformation but the underlying velocity
field is regularized, this approach allows large deformations. However, computational
inefficiency is a fundamental drawback of this model and consequently most devel-
opments concentrate on improving the numerical performance, for example based on
scale-space filtering [Bro-Nielsen and Gramkow 1996] or multigrid techniques [Crum
et al. 2005].

Curvature Curvature regularization was introduced by Fischer and Modersitzki [2004]
and defined to penalize the Laplacian of the displacement field, which is an approximation
of its curvature. The major advantage of this approach is that affine transformations
are not penalized. Therefore, misalignments can be accounted for without an additional
pre-registration step. In [Beuthien et al. 2010], curvature regularization is efficiently
solved by recursive filtering based on the Green’s function.

Total variation Regularization based on the total variation or the L; norm of the
displacement field was employed for image registration in [Frohn-Schauf et al. 2007].
Since it is more robust to outliers than the diffusion approach, it is mainly used to
model discontinuous motion in computer vision. However, total variation has also been
applied to lung CT registration [Heinrich et al. 2012].
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2.1.3 Distance measures

A comprehensive overview on distance and similarity metrics if given in [Goshtasby
2012b] and - focussing on multimodal registration — in [Hermosillo et al. 2002]. Here, only
approaches frequently applied to lung registration are outlined.

Sum of Squared Differences Most intuitively, image similarity is measured by
regarding the intensity differences in each voxel, which leads to the definition of the
Sum of Absolute or Squared Differences (SAD and SSD) as distance measures. SSD
can be shown to be the optimal measure when two images only differ by Gaussian noise
[Hill et al. 2001], which leads to a frequent utilization for monomodal CT registration
(see Table 2.1). Moreover, the demons-based forces introduced by Thirion [1995]
are closely related to SSD [Pennec et al. 1999] and often called Normalized SSD
(NSSD).

Cross Correlation If a linear relationship exist between the intensity values of
reference and template image, Normalized Cross Correlation (NCC) is to be preferred as
similarity measure [Hill et al. 2001]. Tt is therefore often used for multimodal registration
but also to overcome intensity changes caused by tissue compression in lung registration
[Avants et al. 2008].

Mutual Information Mutual Information (MI) as a similarity measure is adapted
from information theory and was proposed for image registration by Viola and Wells
[1995]. It is aimed at minimizing the joint entropy of the greyvalues of both images (inter-
preted as random variables) and thereby maximizing the dependency between the images.
To obtain overlap invariance, an extension to Normalized MI (NMI) was proposed by
Studholme et al. [1999]. Even though primarily applied to multimodal registration, it
can also be used for lung alignment [Modat et al. 2010a).

Normalized Gradient Field Mutual information is highly non-convex and often
has numerous local minima [Modersitzki 2004]. To overcome this drawback, Haber
and Modersitzki [2006] proposed to align images based on their gradients rather than
intensities. The according distance measure is called Normalized Gradient Field (NGF)
and applied to lung registration in [Rithaak et al. 2013].

Task-specific constraints In several approaches, specific properties of lung anatomy
are modeled as an (additional) distance metric. Cao et al. [2010a] formulate the Sum of
Squared Vesselness Measure Differences (SSVMD) to explicitly align the low-contrasted
vasculature of the lung. Additionally, the Sum of Squared Tissue Volume Differences
(SSTVD) is used to account for the intensity variations in lung CT images during
respiration. With the same purpose, a mass-preserving registration is presented in [Yin
et al. 2009] and [Gorbunova et al. 2012].
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2.1.4 Algorithmic solutions

For minimizing the functional (2.1), different strategies are followed in the literature,
which are briefly summarized in the following. For a mathematically profound overview,
the reader is referred to [Clarenz et al. 2006].

Algorithm-driven approaches In several approaches — most prominently the de-
mons registration proposed by [Thirion 1995] — the algorithm is driven by the aim of
matching images rather then explicitly solving (2.1) or a similar functional.? Here,
registration is usually performed using an iterative two-step approach: First the trans-
formation is varied a bit in a certain direction, for example inspired by the computation
of the optical flow [Horn and Schunck 1981]. Second, the optimized transformation is
smoothed, most commonly using a Gaussian filtering. In [Han 2010] and [Heinrich et al.
2012], similar pair-and-smooth procedures consisting of an iterative feature or template
matching and smoothing are applied.

Variational approaches Most commonly, the energy functional (2.1) is minimized
using the calculus of variations. More precisely, the Euler-Lagrange equation (ELE) of
the energy, which constitutes a necessary condition for a (local) minimum, is analytically
derived. Then, an optimization method like the gradient descent (GD) is employed to
iteratively find a transformation for which the condition is fulfilled. Finally, the derived
scheme is discretized. This approach is therefore also called an optimize-then-discretize
strategy.

Discrete optimization approaches The discretize-then-optimize strategy can be
seen as the more intuitive one, as the images at hand are always discrete. Here,
the energy functional is discretized in a first step to obtain a finite optimization
problem. As a consequence, well-known numerical optimization techniques like the
Gauss-Newton or Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods can be applied
to solve the registration problem [Nocedal and Wright 2006]. This approach is pursued
for example in [Olesch et al. 2009; Rithaak et al. 2011]. Other discrete optimization
techniques include Markov Random Fields (MRF), which are employed in [Heinrich
et al. 2012].

2.2 Open-source implementations

The registration community is blessed with a huge number of open-source implementa-
tions, which can be utilized to solve various problems. In the following section, a brief
overview is given.

2 In case of demons registration, however, the ad-hoc algorithm can be reduced to minimizing (2.1),
as derived in [Modersitzki 2004].
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ITK The Insight Segmentation and Registration Toolkit (ITK) is a powerful C++ frame-
work for various tasks of image processing, such as registration, segmentation and image
enhancement. It provides a flexible implementation of linear registration algorithms,
however, the possibilities for non-linear registration are limited. This is in the focus of
current developments [Avants et al. 2012]. Major parts of the algorithms developed in
this thesis are implemented as modules for the ITK framework.

ANTS The Advanced Normalization Tools (ANTS) are developed at the Penn Image
Computing and Science Lab of the University of Pennsylvania, Philadelphia, US and can
be accessed under http://www.picsl.upenn.edu/ANTS/. The framework provides flex-
ible tools for elastic and B-spline registration with a variety of distance measures (NCC,
MI, SSD, etc.). Moreover, transformations can be restricted to diffeomorphisms based
on static and time-dependent velocity fields [Avants et al. 2008].

Nifty Reg The Nifty Reg package is provided by the University College London,
London, UK (see http://sourceforge.net/projects/niftyreg/). It implements
affine and FFD-based algorithms using NMI as metric. The focus is on a performant
implementation using hardware acceleration [Modat et al. 2010b].

elastix The elastix framework (see http://elastix.isi.uu.nl/) provides multiple
registration algorithms based on affine and B-spline transformations and various metrics
(SSD, CC, MI, NMI, etc.) [Klein et al. 2010].

FAIR The Flexible Algorithms for Image Registration (FAIR) toolbox is a package
written in MATLAB primarily thought for academic purposes [Modersitzki 2009).
Discrete optimization techniques are followed in this implementation. It can be assessed
via http://www.siam.org/books/fa06/.

2.3 Discussion

The presented overview illustrates the widely spread possibilities to approach the task
of image registration. Even though evaluation studies have been conducted to assess
accuracy of different methods, it is difficult to determine superior methods because
only complete algorithms are compared. Therefore, it is not possible to deduce a
meaningful ranking of the single components. For example, NSSD, NCC as well as
NMI have all been used in top-ranked approaches. Moreover, minor differences in the
implementation, pre-processing steps and the pre-registration have a major impact on
the results.

To deal with this problem, a flexible framework for image registration is employed
in this work. Its modular design allows a direct comparison of the components like
transformation, distance measure and regularization. The algorithm found to be optimal
then serves as basis for subsequent examinations.
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