
2 Background
In this chapter, we will introduce the background needed throughout this
thesis. First, we will discuss some basic definitions in section 2.1. In
section 2.2, we will introduce our generic notion of an Access Control (ac)
model, some basic concepts, and some ac models that will be used in order
to evaluate the generalizability of our approach. You may also have a look
at Appendix A, presenting the terminology used in this thesis.

2.1 Information Security
This section summarizes some common security foundations and is based on
Bishop “Computer Security – Art and Science” [25]. We will only sketch the
most important concepts required later in this thesis, for a more complete
discussion please refer to Bishop [25]. Please note that, for a consistent
terminology, we will use terms as defined in Appendix A also for citations.
There are three principles which are considered to be the foundations

for information security: confidentiality, integrity, and availability. We will
follow Bishop [25] in the definition of those three concepts:

Definition 1. Let S be a set of subjects and let R be some resource. Then
R has the property of confidentiality with respect to S if no member of S
can obtain information about R [25, p. 96].

Informally, subjects being part of S are not allowed to see R, e. g., defining
the set S as all entities not required to know R for their work. Thus,
confidentiality is a principle “that information is not made available or
disclosed to unauthorized individuals, entities, or processes” [1], where even
knowledge over the existence of R is information about R.

Definition 2. Let S be a set of subjects and let R be some information or
a resource. Then R has the property of integrity with respect to S if all
members of S trust R [25, p. 96].

Informally, integrity is a principle “of safeguarding the accuracy and
completeness of assets” [1]. It describes the trustworthiness subjects can

H. Petritsch, Break-Glass, DOI 10.1007/978-3-658-07365-7_2,
© Springer Fachmedien Wiesbaden 2014



16 2 Background

have on resources or information. It can be applied in different ways,
for example, as data integrity for information not changed on storage or
not modified during transmission, or origin integrity, e. g., authenticity.
Mechanisms to assure integrity fall into two classes: prevention mechanisms
detect unauthorized changes at-access and can forestall unauthorized changes
in the first place, i. e., prevent that the system moves to a state where integrity
is hurt; detection mechanisms may detect unauthorized changes only post-
access, i. e., that a system moves to a state where integrity is hurt can be
detected but not prevented.

Definition 3. Let S be a set of subjects and let R be a resource. Then R
has the property of availability with respect to S if all members of S can
access R [25, p. 96].

Thus, availability describes the ability of subjects to consume resources as
planned, i. e., is the principle “of being accessible and usable upon demand
by an authorized entity” [1]. Unavailability may lead to unplanned and
unintended behavior. Attempts to block availability, called Denial of Service
(dos) attacks, are not only hard to prevent, but it may also be hard to
detect it, e. g., to differentiate between high load and an attack.

Definition 4. A secure system is a system that starts in an authorized state
and cannot enter an unauthorized state [25, p. 95].

The abstract goal is to be able to make a system secure. Security policies
define what is considered to be secure.

Definition 5. A security policy is a statement that partitions the states of
the system into a set of authorized, or secure, states and a set of unautho-
rized, or non-secure, states [25, p. 95].

Business systems manage and use confidential data and hence, have to
implement confidentiality, integrity, and availability. Thus, the overall goal
is to make those systems secure, requiring security policies and according
mechanisms to enforce those policies, i. e., to forestall that a system can
reach an unauthorized state.
The most basic questions which have to be solved are who is authorized

to observe (read) what to ensure confidentiality, and who is authorized to
alter (write) what to ensure integrity.

Definition 6. Authentication is the binding of an identity to a subject [25,
p. 309].



2.1 Information Security 17

Authentication is a technique to ensure origin integrity, i. e., assure that the
accessing subject can be identified unambiguously. The kind of authentication
being sufficient has to be defined by the security policy, e. g., requiring
username and password or an authentication with cryptographic means.

Definition 7. Authorization or Access Control (ac) is a technique to ensure
confidentiality and a prevention mechanisms for unauthorized changes, which
is a subset of data integrity.

ac contributes to two basic security concepts: confidentiality and integrity.
ac does not necessarily cover full integrity, i. e., an access may be authorized
but still violate data integrity. This is why ac models are sometimes
divided into confidentiality, integrity, and hybrid models. Also, ac relies on
authentication as the authorization is dependent on the accessing subject.
We will discuss ac in more detail in section 2.2.

Definition 8. Accountability or non-repudiation is a property which ensures
that a subject cannot dispute to have executed some action.

This general property can be ensured on different levels and by different
means, e. g., using cryptography to create signatures, or logging actions
without letting subjects alter those logs.
The implicit goal of ac is to fulfill the least privilege principle, i. e.,

defining security policies which implement least privilege. If additional rights
for specific tasks are required, those should be relinquished immediately on
completion [25].

Definition 9. The principle of least privilege states that a subject should
be given only those privileges that it needs in order to complete its task [25,
p. 343].

Another well-known (and in most cases implicitly applied) principle is the
default deny principle which states that all accesses not explicitly permitted
are implicitly denied per default. The inverse default permit principle, i. e.,
all accesses not explicitly denied are implicitly permitted per default, is
technically possible but rather exotic.



18 2 Background

2.2 Access Control
2.2.1 Concepts
Discretionary vs. Mandatory Access Control

One very common categorization of ac model properties (or “patterns” [94],
or meta models) is the differentiation between Discretionary Access Control
(dac) and Mandatory Access Control (mac). In dac subjects have control
over resources, i. e., the discretionary to delegate permissions to other subjects.
Thus, a subject “may, at his own discretion, determine who is authorized to
access the objects he creates” [94]. The Trusted Computer System Evaluation
Criteria (tcsec) [81] (also known as Orange Book) define that dac “shall
define and control access between named users [i. e., subjects] and named
objects [i. e., resource] [. . . ]. The enforcement mechanism [. . . ] shall allow
users to specify and control sharing of those objects.” As concrete example
for such a dac enforcement mechanism the concept of groups as used in
file systems is mentioned. In contrast, Mandatory Access Control (mac)
(sometimes called Non-Discretionary Access Control) does not give this
discretionary, but defines controls that are not under the control of subjects.
dac and mac are not ac models itself, but ac models can follow one or
both of them, i. e., the distinction is a conceptual one.
The ac models used by an Operating System (os), e. g., for permissions

on files, are often considered to be dac models: a resource (e. g., a file or
process) created by a subject (e. g., a user or a process) is owned by the
creating subject, which has full control over the resource, e. g., can destroy
it or grant other subjects access to it. Every element can be both resource
and subject, e. g., a user (resource) can be created by a process (subject), or
a process (resource) can be created by a user (subject). A common example
for a mac model are Multi-Level Security (mls) systems, for which the
Bell-La Padula model discussed later is one of the most prominent examples.
dac and mac can be combined: for example, the Bell-La Padula model
explicitly defines both mac and dac controls1. An example for a mac
concept implemented in operating systems is that only root can open sockets
on ports below port 1024.

1The Bell-La Padula model is commonly referred as pure mac model, as the mac part
is precisely modeled and the dac part could be exchanged as long as it meets some
requirements.



2.2 Access Control 19

Delegation

Barka and Sandhu [9] characterizes delegation as a process where “some
active entity in a system delegates authority to another active entity in order
to carry out some functions on behalf of the former.” Zhang et al. [111]
identify three types of delegations: 1. backup of role, i. e., if some job function
needs to be maintained by others, e. g., during absence; 2. decentralization
of authortransferedity, i. e., job functions are assigned from higher to lower
job positions; 3. collaboration of work, i. e., grant each other permissions to
shared resources. Crampton and Khambhammettu [42] distinguish between
grant and transfer delegation. For grant delegation, both the delegator
(i. e., the subject possessing some permission) and the delegatee (i. e., the
subject receiving some permissions) hold the delegated permission. For
transfer (or proxy [53]) delegation, the permission is transferred and not
duplicated, i. e., the delegated permission is no longer available to the
delegator. Furthermore, it has to be noted that between administrative
and user delegation is differentiated, e. g., Firozabadi et al. [53] differentiate
between the delegation of permissions and the delegation of the right to
delegate permissions.
Overall, the concept of delegation allows to modify the rights of indi-

viduals at runtime and hence allows authorized subjects to adapt required
permissions of other subjects according to the current, possibly exceptional,
situation. Overall, delegation is a very powerful and broad concept. For
example, dac models implicitly implement a delegation concept, as the
owner of a resource can define which other users may access this resource,
i. e., he may delegate some permissions to others. Consequently, there are
a wide variety of concepts and models how delegation can be modeled and
implemented, which will not be discussed due to space limitations.

Separation of Duty

The Separation of Duty (sod) principle states that two actions may not
be executed by the same subject. Depending on the context, there may
be a scope defined where this constraint has to be valid. In the context of
process models, where sod constraints are commonly defined, the scope can
be a process instance, and the actions are tasks of the process. A common
example for an sod constraint is an invoice process, where the approval has
to be implemented according to the four eyes principle, stating that two
persons have to work on an invoice to be approved. Here, for the two tasks



20 2 Background

“acquire invoice” and “approve invoice” a sod constraint can be defined,
assuring the compliance with the four eyes principle.

ac models implementing sod, e. g., Role Based Access Control (rbac)
as discussed in subsection 2.2.2, may differentiate between Static Separation
of Duty (ssod) and the more powerful Dynamic Separation of Duty (dsod).
For ssod, it has to be assured that the defined privileges permit subjects
to either execute the one or the other task. Thus, ssod can be guaranteed
through the assignment of permissions, and is static in the sense that it
depends only on the permissions and not on the dynamic context of the
application. While this does not cause overhead at runtime, it has limitations,
as, e. g., there has to be a strict separation between salesmen creating invoices,
and salesmen approving invoices. This is a harder constraint than the four
eyes principle would require. Furthermore, in its strict interpretation the
whole history of permission assignments has to be taken into account. This
can cause problems when changing permissions (i. e., the assumption of static
permissions does not hold), e. g., an employee moving from an executive
to a controlling department. ssod can be defined on top of, e. g., rbac
(discussed in the next subsection 2.2.2) by defining a sod constraint between
two roles. When assigning roles, it has to be assured that existing sod
constraints are not hurt.
In contrast, Dynamic Separation of Duty (dsod) allows for more fine-

grained definition of constraints, as a scope can be defined in which the
constraints have to be enforced. This requires access to the system history,
however, the system history may be implicitly or explicitly part of the system
state (e. g., it is stored who created an invoice). Thus, to enforce dsod at
runtime, some contextual information (system history or system state) is
required. For example, to ensure that the same subject cannot approve and
create an invoice, it may be saved who created an invoice. The concepts of
the Chinese Wall model [26] (separate resources to avoid conflict of interest)
can be interpreted as implementing the sod concept. As sod is not in the
discretion of subjects, sod is a mac pattern [41].
Binding of Duty (bod) is a related concept and in some sense the opposite.

It states that if one task was executed by a subject, another task has to be
executed by the same subject. There is no differentiation between static and
dynamic bod, as static bod does not make sense as it would require that
permissions can only assigned to a single subject.



2.2 Access Control 21

Obligations

We are using obligations are a concept to express conditions which have to
be met but cannot be enforced by the decision making, central authority, and
hence have to be enforced in a distributed way. An important distinction is
the point in time when an obligation is enforced. Pre-obligations [39, 95]
can and have to be enforced before the access. Post-obligations on the
other hand can only be fulfilled after the access. Here, the system needs to
monitor the fulfillment or satisfaction of obligations and take consequences
or compensatory actions if this is not the case [23]. A related concept is the
advice, introduced with xacml 3.0. An advice only defines what could be
done, i. e., advices do not have to be enforced. This allows to model “hints”
for client applications, i. e., the enforcing component may (but is not bound
to) enforce the advice.

2.2.2 Access Control Models
There are a lot of ac models, both in scientific literature and commercial
products. Providing a complete overview and comparison of all existing ac
models would clearly exceed the frame and scope of this work. Thus, we
tried to pick some models to represent some aspects of existing models. We
are aware of the fact that this reflects a personal opinion. However, it is
sometimes argued that all ac models can be reduced to a common basis,
e. g., see [10, 35, 59] for publications dealing with this research question. We
will now define a rather abstract definition of ac models.
In general, ac models describe how to map an ac request Q ∈Q to an

ac response N ∈ N , i. e., Q → N . A request Q typically contains the
triple (S, R, A), with subject S ∈ S , resource R ∈ R, and action A ∈ A .
However, a request may contain fewer or further elements, depending on the
concrete ac model. A response N comprises usually D × 2O , i. e., consists
of a decision D ∈ D and, optionally, a, possibly empty, set of obligations
2O ⊆ O. We require the set D to contain at least the two distinctive elements
permit and deny, i. e., {permit,deny} ⊆ D ∧ permit /= deny.
For the evaluation of a request Q, the
• security state σsec ∈ Σsec captures the security relevant state of the

system (i. e., the ac configuration), where σsec is an instance out of
all possible security states Σsec accepted by the ac model,

• system state σsys ∈ Σsys captures the functional state of the application
or system, e. g., the formalized state of the environment, where σsys is



22 2 Background

a concrete instance out of all possible system states Σsys accepted by
the ac model,

may be required. Hence, one can define the implementation of an ac model
as Access Control Function (acf) taking a request Q, security state σsec and
system state σsys as input, and returning an ac decision D with optionally
a set of obligations 2O , i. e.,

acf ∶Q ×Σsec ×Σsys → D × 2O (2.1)

An ac model may further define a way to define administrative controls.
Such administrative controls (or administrative policies) allow to change the
behavior of the acf by changing the security state σsec.

Definition 10. An administrative control regulates changes to the security
relevant system state, i. e., defines controls for policy administration.

Thus, we define a more general acfa:

acfa ∶Q ×Σsec ×Σsys → D × 2O ×Σsec (2.2)

acfa allows to transform the security state into a new security state. For
ac models which consider administrative controls as outside of the primary
ac model, the acf is sufficient. ac models using administrative controls
are, e. g., models using delegation mechanisms which includes dac models.

Access Control Matrix

The “simplest framework for describing a protection system” [25] is the
access control matrix model, first introduced by Lampson [69] and refined
by Graham and Denning [58], which we will describe here. In this model,
permissions P ⊆ P for every subject S ∈ S on every resource R ∈ R are
stored in a two-dimensional matrix M . Rows are labeled by subject names,
and columns by resource names, i. e., M[S, R] specifies the permissions of
subject S upon resource R. Subjects are also treated as resources. The set
of available permissions P which can be assigned depends on the applied
context, common examples are read, write, append, execute, owner and
control. One subject may get assigned several permissions P ∈ P for one
resource, thus, the fields of the matrix contains a subset P ⊆ P, e. g.,
{read, write}, or an empty set if the subject does not have any permissions
on the corresponding resource.



2.2 Access Control 23

Figure 2.1: The Core rbac model [2].

For administering the entries in M , the access control matrix follows the
dac pattern. Permissions P ∈P can be marked with the copy-flag. The two
permissions {owner, control} ∈ P have a special meaning. The copy-flag,
denoted as asterisk ∗, allows a subject to copy (i. e., delegate) permissions to
another subject. The permission owner for a resource R allows the holder of
this permission to delegate and retract any permission to and from all other
subject for this resource R. The permission control can be assigned only to
fields in M[S, R] where R is a subject, and allows to retract any permission
from the controlled subject. The term Access Control List (acl) refers to
an approach to store the column of the matrix with the resource it protects,
the term Identity Based Access Control (ibac) can be used to characterize
models managing privileges on an individual (subject) basis [63].

Role Based Access Control

Role Based Access Control (rbac) is a well-known and established access
control model, both in research and commercial systems [55]. While the
concept of rbac was already existing (e. g., Ferraiolo and Kuhn [49]), the
most citet publication regarding rbac is Sandhu et al. defining rbac
defined in [96] (rbac96), which can be seen as the basis for the American
National Standards Institute (ansi) rbac standard [2]. The general idea
of rbac is to group permissions (i. e., the right to execute a specific action
on a specific resource) in roles, so that the (technical) rbac roles reflect
the (organizational) roles people can take in an organization. [2] defines four
model components:
Core rbac (see Figure 2.1) defines the fundamental data elements: sub-

jects (USERS) are assigned to roles (ROLES), defining the user assign-
ment (UA). Permissions (PRMS) are the approval to perform actions
(operations/OPS) on resources (objects/OB), and are assigned to roles,



24 2 Background

defining the permission assignment (PA). Sessions (SESSIONS) define
an activated subset of roles for a user.

Hierarchical rbac extends Core rbac with a notion of a role hierarchies
(RH) defining inheritance relations upon roles. If role r1 inherits
from r2, the permissions of r1 are a superset of the permissions of
r2, i. e., r1 ⪰ r2. If r1 (r2) is the immediate descendant (ascendant)
of r2 (r1), one can write r1 ≻≻ r2. By convention, a diagram would
show the more powerful (senior) role r1 towards the top, and the less
powerful (junior) role r2 towards the bottom [96]. The General Role
Hierarchy allows to define an arbitrary partial order (i. e., allowing for
multi inheritance), whereas the Limited Role Hierarchy allows only a
single immediate descendant and is therefore not supporting multiple
inheritance2.

Static Separation of Duty (ssod) rbac defines constraints on the user as-
signment (UA), i. e., ssod prevents the assignment of roles to users
which would hurt a sod constraint. Thus, ssod can be enforced at
configuration time by administrative controls.

Dynamic Separation of Duty (dsod) rbac defines constraints on the acti-
vation of roles and therefore the assignment to SESSIONS, i. e., dsod
prevents the activation of a role which would hurt a sod constraint.
ssod rbac and dsod rbac can be subsumed under the term
Constrained rbac. For both ssod and dsod, the constraints allow
to define a role set rs and a number n, n ≥ 2, and no user may possess
n roles out of rs at the same time. For example, rs could be defined
as r1, r2, and n = 2. For ssod, no user may have assigned both r1 and
r2 in UA. In case of dsod he may not activate both r1 and r2 for a
session.

There are a number of further models which extend rbac with further
concepts, e. g., obligations [112], or allow to define different types of con-
straints, e. g., [3, 20, 21, 105]. Fuchs et al. [55] provide a survey about vast
amount of rbac-based models. For this thesis, we will limit ourself to [2]
due to space reasons.

Multi-Level Security

Multi-Level Security (mls) models follow the mac pattern, its most promi-
nent example is the Bell-La Padula model (although it is not a pure mls
model and therefore not a pure mac system). The original conceptual

2There are some errors in the formal definition of [2] reported by, e. g., Li et al. [70]. We
cited the corrected definitions.



http://www.springer.com/978-3-658-07364-0


	2 Background
	2.1 Information Security
	2.2 Access Control
	2.2.1 Concepts
	2.2.2 Access Control Models





