
Chapter 3

Other RDF-Related Technologies:

Microformats, RDFa and GRDDL

3.1 Introduction: Why Do We Need These?

So far at this point, we have learned the concept of the Semantic Web, and we have

learned RDF. Let us think about these two for a moment.

Recall the vision of the Semantic Web is to add meaning into the current Web so

machines can understand its contents. Based on what we have learned about RDF,

we understand that RDF can be used to express the meaning of aWeb document in a

machine-processable way. More specifically, for a given Web document, we can

create a set of RDF triples to describe its meaning, and somehow indicate to the

machine that these RDF statements are created for the machine to understand this

document.

Although we are not quite there yet, it is not hard for us to understand the

feasibility of this idea. In fact, it is called semantic markup, as we will see in later

chapters.

However, there is one obvious flaw with this approach: it is simply too complex

for most of us. More specifically, to finish this markup process, we have to first

create a collection of RDF statements to describe the meaning of a Web document,

then put them into a separate file, and finally, we have to somehow link the original

Web document to this RDF file. Is there a simpler way of doing all these?

The answer is yes, and that is to use microformats or RDFa. They are simpler

since microformats or RDFa constructs can be directly embedded into XHTML to

convey the meaning of the document itself, instead of collecting them into separate

documents.

This in fact plays an important role in the grand plan for the Semantic Web, since

a single given Web page is now readable not only by human eyes, but also by

machines. A given application that understands microformats or RDFa can perform

tasks that are much more complex than those performed by the applications that are

built solely based on screen scraping. In fact, in Chap. 10, we will see Google’s

Rich Snippets, a direct result of microformats or RDFa.

© Springer-Verlag Berlin Heidelberg 2014

L. Yu, A Developer’s Guide to the Semantic Web,
DOI 10.1007/978-3-662-43796-4_3

97

http://dx.doi.org/10.1007/978-3-662-43796-4_10

To understand how GRDDL (pronounced “griddle”) fits into the picture, think

about the semantic information an XHTML page contains when it is embedded with

microformats or RDFa constructs. It will be quite useful if we can obtain RDF

statements from this XHTML page automatically. GRDDL is a tool that can help us

to accomplish this. Once we can do this, the RDF statements harvested from these

XHTML pages can be aggregated together to create evenmore powerful applications.

And these are the reasons why we need microformats, RDFa and GRDDL. If you

skip this chapter for now, you can still continue learning the core technology

components of the Semantic Web. However, you need to understand this chapter

in order to fully understand Chap. 10.

3.2 Microformats

3.2.1 Microformats: The Big Picture

To put it simply, microformats are a way to embed specific semantic data into the

HTML content that we have today, so when a given application accesses this

content, it will be able to tell what this content is about.

We are all familiar with HTML pages that represent people, so let us start from

here. Let us say we would like to use microformats to add some semantic data about

people. To do so, we need the so-called hCardmicroformat, which offers a group of

constructs you can use to markup the content:

• a root class called vcard;

• a collection of properties, such as fn (formatted name) and n (name), and quite a

few others.

We will see more details about hCard microformat in the next section. For now,

understand that hCardmicroformat can be used to markup the page content where a

person is described. In fact, hCard microformat is not only used for people, it can

also be used to markup content about companies, organizations and places, as we

will see in the next section.

Now, what if we would like to markup some other content? For example, some

event described in a Web document? In this case, we will need to use the

hCalendar microformat, which also provides a group of constructs we can use to

markup the related content:

• a root class called vcalendar;

• a collection of properties, such as dtstart, summary, location, and quite a

few others.

By the same token, if we would like to markup a page content that contains a

person’s resume, we then need to use the hResume microformat. What about

98 3 Other RDF-Related Technologies: Microformats, RDFa and GRDDL

http://dx.doi.org/10.1007/978-3-662-43796-4_10

hRecipe microformat? Obviously, it is use for adding markups to a page content

where a cooking recipe is described.

By now, the big picture about microformats is clear, and we can define

microformats as follows:

Microformats are a collection of individual microformats, with each one of

them representing a specific domain (such as person, event, location, etc.) that

can be described by a Web content page. Each one of these microformats

provides a way of adding semantic markup to these Web pages, so that the

added information can be extracted and processed by software applications.

With this definition in mind, it is understandable that the microformats collection

is always growing: there are existing microformats that cover a number of domains,

and for the domains that have not been covered yet, new microformats are created

to cover them.

For example, hCard microformat and hCalendar microformat are stable

microformats, while hResume microformat and hRecipe microformat are still in

draft state. In fact, there is a microformats community that is actively working on

new microformats. You can always find the latest news from their official Web

site,1 including a list of stable microformats and a list of draft ones that are under

discussion.

Finally, notice that microformats are not a W3C standard or recommendation.

They are offered by an open community, and are open standards originally licensed

under Creative Commons Attribution. They have been placed into the public

domain since December 29, 2007.

3.2.2 Microformats: Syntax and Examples

In this section, we take a closer look at how to use microformats to markup a given

Web document. As we discussed earlier, microformats are a collection of individual

microformats, and to present each one of them in this chapter is not only impossible

but also unnecessary. In fact, understanding one such microformat will be enough;

the rest of them are quite similar when it comes to actually using them to markup

a page.

With this said, we focus on the hCard microformat in this section since at the

time of this writing, the hCard microformat is one of the most popular and well-

established microformats. We will begin with an overview of hCard microformat,

followed by some necessary HTML knowledge, and as usual, we will learn hCard

by examples.

1 http://microformats.org

3.2 Microformats 99

http://microformats.org/

3.2.2.1 From vCard to hCard Microformat

hCard microformat has its root in vCard, and can be viewed as a vCard represen-

tation in HTML, hence the letter h in hCard (HTML vCard). It is therefore helpful

to have a basic understanding about vCard.

vCard is a file format standard that specifies how basic information about a

person or an organization should be presented, including name, address, phone

numbers, e-mail addresses, URLs, etc. This standard was originally proposed in

1995 by the Versit Consortium, which included Apple, AT&T Technologies, IBM

and Siemens as its members. In late 1996, this standard was passed on to the

Internet Mail Consortium, and since then it has been used widely in address book

applications to facilitate the exchange and backup of contact information.

To date, this standard has been given quite a few extensions, but its basic idea

remains the same: vCard has defined a collection of properties to represent a person

or an organization. Table 3.1 shows some of these properties.

Since this standard was formed before the advent of XML, the syntax is just

simple text that contains property–value pairs. For example, my own vCard object

can be expressed as shown in List 3.1.

List 3.1 My vCard object

BEGIN:VCARD
FN:Liyang Yu
N:Yu;Liyang;;;
URL:http://www.liyangyu.com
END:VCARD

First, notice this vCard object has a BEGIN:VCARD element and an END:VCARD

element, which mark the scope of the object. Inside the object, the FN property

has a value of Liyang Yu, which is used as the display name. The N property

represents the structured name, in the order of first, last, middle names, pre-

fixes and suffixes, separated by semicolons. This can be parsed by a given

Table 3.1 Example properties contained in vCard standard

Property

name

Property

description Semantic

N Name The name of the person, place or thing associated with the

vCard object.

FN Formatted name The formatted name string associated with the vCard object.

TEL Telephone Phone number string for the associated vCard object.

EMAIL E-mail E-mail address associated with the vCard object.

URL URL A URL that can be used to get online information about the

vCard object.

100 3 Other RDF-Related Technologies: Microformats, RDFa and GRDDL

application in order to understand each component in the person’s name. Finally,

URL is the URL of the Web site that provides more information about the vCard

object.

With understanding of the vCard standard, it is much easier to understand the

hCard microformat, since it is built directly on the vCard standard. More specif-

ically, the properties supported by the vCard standard are mapped directly to the

properties and subproperties contained in the hCard microformat, as shown in

Table 3.2.

Notice Table 3.2 does not include all the property mappings, which you can find

on the microformats’ official Web site (see Sect. 3.2.1). As a high-level summary,

hCard properties can be grouped into six categories:

• personal information properties: this includes properties such as fn, n, nick-

name, etc.;

• address properties: this includes properties such as adr, with subproperties such

as street-address, region and postal-code, etc.;

• telecommunication properties: this includes properties such as email, tel and

url, etc.;

• geographical properties: this includes properties such as geo, with subproperties

such as latitude and longitude;

• organization properties: this includes properties such as logo, org, with

subproperties such as organization-name and organization-unit;

• annotation properties: this include properties such as title, note and role, etc.

With the above mapping in place, the next issue is to represent a vCard object

(contained within BEGIN:VCARD and END:VCARD) in hCard microformat. To do so,

hCard microformat uses a root class called vcard, and in HTML content, an

element with a class name of vcard is itself called an hCard.

Now, we are ready to take a look at some examples to understand how exactly

we can use the hCard microformat to markup some page content.

3.2.2.2 Using hCard Microformat to Markup Page Content

Let us start with a very simple example. Suppose that in one Web page, we have

some HTML code as shown in List 3.2:

Table 3.2 Examples of vCard properties mapped to hCard properties

vCard
property hCard properties and subproperties

FN fn

N n with subproperties: family-name, given-name, additional-name,
honorific-prefix, honorific-suffix

EMAIL email with subproperties: type, value

URL url

3.2 Microformats 101

List 3.2 Example HTML code without hCard microformat markup

... <!-- other HTML code -->
<div>

Liyang Yu
</div>
... <!-- other HTML code -->

Obviously, for our human eyes, we understand that the above link is pointing to a

Web site that describes a person named Liyang Yu. However, any application that

sees this code does not really understand that, except for showing a link on the

screen as follows:

Liyang Yu

Now let us use the hCard microformat to add some semantic information to this

link. The basic rules when doing markup can be summarized as follows:

• Use vcard as the class name for the element that needs to be marked up, and this

element now becomes an hCard object.

• The properties of an hCard object are represented by elements inside the hCard

object. An element with class name taken from a property name represents the

value of that property. If a given property has subproperties, the values of these

subproperties are represented by elements inside the element for that given

property.

Based on these rules, List 3.3 shows one possible markup implemented by using

hCard microformat.

List 3.3 hCard microformat markup added to List 3.2

... <!-- other HTML code -->
<div class="vcard">

<div class="fn">Liyang Yu</div>
<div class="n">

<div class="given-name">Liyang</div>
<div class="family-name">Yu</div>

</div>
<div class="url">http://www.liyangyu.com</div>

</div>
... <!-- other HTML code -->

This markup is not hard to follow. For example, the root class has a name given

by vcard, and the property names are used as class names inside it. And certainly,

102 3 Other RDF-Related Technologies: Microformats, RDFa and GRDDL

http://www.liyangyu.com/

this simple markup is able to make a lot of difference to an application: any

application that understands the hCard microformat will be able to understand

the fact that this is a description of a person, with the last name, first name and URL

given.

If you open up List 3.3 using a browser, you will see it is a little bit different from

the original look and feel. Instead of a clickable name, it actually shows the full

name, first name, last name and the URL separately. So let us make some changes to

our initial markup, without losing the semantics, of course.

First, a frequently used trick when implementing markup for HTML code comes

from the fact that class (also including rel and rev attributes) attribute in HTML

can actually take a space-separated list of values. Therefore, we can combine fn

and n to reach something as shown in List 3.4:

List 3.4 An improved version of List 3.3

... <!-- other HTML code -->
<div class="vcard">

<div class="n fn">
<div class="given-name">Liyang</div>
<div class="family-name">Yu</div>

</div>
<div class="url">http://www.liyangyu.com</div>

</div>
... <!-- other HTML code -->

This is certainly some improvement; at least we don’t have to encode the name

twice. However, if you open up List 3.4 in a browser, it still does not show the

original look. To go back to its original look, we at least need to make use of

element <a> together with its href attribute.

In fact, microformats do not force the content publishers to use specific ele-

ments; we can choose any element and use it together with the class attribute.

Therefore, List 3.5 is our best choice:

List 3.5 Final hCard microformat markup for List 3.2

... <!-- other HTML code -->
<div class="vcard">

Liyang
Yu

</div>
... <!-- other HTML code -->

3.2 Microformats 103

And this is it: if you open up List 3.5 from a Web browser, you get exactly the

original look and feel. And certainly, any application that understands hCard

microformat will be able to understand what a human eye can see: this is a link to

aWeb page that describes a person, whose last name is Yu, and first name is Liyang.

List 3.6 is another example of using hCard microformat. It is more complex and

certainly more interesting. We present it here so you can get more understanding

about using the hCard microformat to markup content files.

List 3.6 A more complex hCard microformat markup example

<div id="hcard-liyang-yu" class="vcard">

Liyang
Yu

<div class="org">Delta Air Lines</div>
<div class="tel">

work
404.773.8994

</div>
<div class="adr">
<div class="street-address">1030 Delta Blvd.</div>
Atlanta,
GA
30354
<div class="country-name">USA</div>

</div>

liyang.yu@delta.com

</div>

And List 3.7 shows the result rendered by a Web browser.

List 3.7 Rendering result of List 3.6

Liyang Yu

Delta Air Lines

work 404.773.8994

1030 Delta Blvd.

Atlanta, GA 30354

USA

liyang.yu@delta.com

104 3 Other RDF-Related Technologies: Microformats, RDFa and GRDDL

http://www.liyangyu.com/
http://mailto:liyang.yu@delta.com/

3.2.3 Microformats and RDF

At this point, we have learned the hCard microformat. With what you have learned

here, it is not hard for you to explore other microformats on your own.

In this section, we will first summarize the benefits offered by microformats, and

more importantly, we will also take a look of the relationship between microformats

and RDF.

3.2.3.1 What’s So Good About Microformats?

First off, microformats do not require any new standards; instead, they leverage

existing standards. For example, microformats reuse HTML tags as much as

possible, since almost all the HTML tags allow class attributes to be used.

Second, the learning curve is minimal for content publishers, who continue to

mark up their Web documents as they normally would. The only difference is that

they are now invited to make their documents more semantically rich by using

class attributes with standardized properties values, such as those from the hCard

microformat as we have discussed.

Third, the added semantic markup has no impact on the document’s presenta-

tion, if it is done right.

Last, and perhaps most important, is the fact that this small change in the markup

process brings a significant change to the whole Web world. The added semantic

richness can be utilized by different applications, since applications can start to

understand at least part of the document on the Web now. We will see some

exciting applications in Chaps. 10 and 11, and it is also possible that at the time

you are reading this book, more applications built upon microformats have become

available to us.

With this said, how are microformats related to RDF? Do we still need RDF at

all? Let us answer these questions in the next section.

3.2.3.2 Microformats and RDF

Obviously, the primary advantage microformats offer over RDF is that we can

embed metadata directly in the XHTML documents. This not only reduces the

amount of markup we need to write, but also provides one single content page for

both human readers and machines. The other advantage of microformats is that

microformats have a simple and intuitive syntax, therefore they do not need much

of a learning curve compared to RDF.

However, microformats were not designed to cover the same scope as RDF was,

and they simply do not work on the same exact level. To be more specific, the

following are something offered by RDF, but not by microformats (notice at this

3.2 Microformats 105

http://dx.doi.org/10.1007/978-3-662-43796-4_10
http://dx.doi.org/10.1007/978-3-662-43796-4_11

point, you may not be able to fully appreciate all the items in the list, but after you

read more of this book, you will be able to):

• RDF does not depend on predefined “formats”, and it has the ability to utilize,

share and even create any number of vocabularies.

• With the help from these vocabularies, RDF statements can participate in

reasoning processes and new facts can be discovered by machines.

• Resources in RDF statements are represented as URIs, allowing a linked data

Web to be created.

• RDF itself is infinitely extensible and open-ended.

You can continue to grow this list once you learn more about microformats and

RDF from this book and your real development work. However, understanding

microformats is also a must, and this will at least enable you to pick up the right tool

for the right situation.

3.3 RDFa

3.3.1 RDFa: The Big Picture

With what we have learned so far, the big picture of RDFa is quite simple to

understand: it is just another way to directly add semantic data into XHTML pages.

Unlike microformats, which reuse the existing class attribute on most HTML tags,

RDFa provides a set of new attributes that can be used to carry the added markup

data. Therefore, in order to use RDFa to embed the markup data within the Web

documents, some attribute-level extensions to XHTML have to be made. In fact,

this is also the reason for the name: RDFa means RDF in HTML attributes.
Notice that unlike microformats, RDFa is a W3C standard. More specifically, it

became a W3C standard on October 14, 2008, and you can find the main standard

document on W3C official Web site.2 Based on this document, RDFa is officially

defined as follows:

RDFa is a specification for attributes to express structured data in any markup

language.

Another W3C RDFa document, RDFa for HTML Authors,3 has provided the

following definition of RDFa:

RDFa is a thin layer of markup you can add to your web pages that make them

understandable for machines as well as people. By adding it, browsers, search

engines, and other software can understand more about the pages, and in so

doing offer more services or better results for the user.

2 http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
3 http://www.w3.org/MarkUp/2009/rdfa-for-html-authors

106 3 Other RDF-Related Technologies: Microformats, RDFa and GRDDL

http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
http://www.w3.org/MarkUp/2009/rdfa-for-html-authors

Once you have finished Sect. 3.3, you should be able to understand both these

definitions better.

3.3.2 RDFa Attributes and RDFa Elements

First off, attributes introduced by RDFa have names. For example, property is one

such attribute. Obviously, when we make reference to this attribute, we say attribute

property. In order to avoid repeating the word attribute too often, attribute

property is often written as @property. You will see this a lot if you read about

RDFa. And in what follows, we will write @attributeName to represent one

attribute whose name is given by attributeName.

The following attributes are used by RDFa at the time of this writing:

about

content

datatype

href

property

rel

resource

rev

role

src

typeof

Some of them are used more often than others, as we will discuss in later

sections. Before we get into the detail, let us first understand with what XHTML

elements these attributes can be used.

The rule is very simple: you can use these attributes with just about any element.

For example, you can use them on div element, on the p element, or even on the h2

(or h3, etc.) element. In real practice, there are some elements that are more

frequently used with these attributes.

The first such element is the span element. It is a popular choice for RDFa

simply because you can insert it anywhere in the body of an XHTML document.

link and meta elements are also popular choices, since you can use them to add

RDFa markups to the head element of an HTML document. This is in fact one of

the reasons why RDFa is gaining popularity: these elements have been used to add

metadata to the head element for years; therefore, any RDFa-aware software can

extract useful metadata from them with only minor modifications needed.

The last frequently used element when it comes to adding RDFa markup into the

content is the a linking element. With what you have learned about RDF from

Chap. 2, it is not hard for you to see the reason here: a linking element actually

expresses a relationship between one resource (the one where it is stored) and

3.3 RDFa 107

http://dx.doi.org/10.1007/978-3-662-43796-4_2

another (the resource it links to). In fact, as you will see in the examples, we can

always use @rel on a link element to add more information about the relationship,

and this information serves as the predicate of a triple stored in that a element.

3.3.3 RDFa: Rules and Examples

In this section we explain how to use RDFa to markup a given content page, and we

also summarize the related rules when using the RDFa attributes. We will not cover

all the RDFa attributes as listed in Sect. 3.3.2, but what you will learn here should be

able to get you far in the world of RDFa if you so desire.

3.3.3.1 RDFa Rules

Before we set off to study the usage of each RDFa attribute, let us understand its

basic rules first. Notice that at this point, these rules may seem unclear to you, but

you will start to understand them better when we start to see more examples.

As we learned in Chap. 2, any given RDF statement has three components:

subject, predicate and object. It turns out that RDFa attributes are closely related to

these components:

• attributes rel, rev and property are used to represent predicates;

• for attribute rel, its subject is the value of about attribute, and its object is the

value of href attribute;

• for attribute rev, its subject and object are reversed compared to rel: its subject

is the value of href attribute, and its object is the value of about attribute;

• for attribute property, its subject is the value of about attribute, and its object

is the value of content attribute.

Now recall the fact that we always have to be careful about the object of a given

RDF statement: its object can either take a literal string as its value, or it can use

another resource (identified by a URI) as it value. How is this taking effect when it

comes to RDFa? Table 3.3 summarizes the rules:

Based on Table 3.3, if the object of an RDF statement takes a literal string as its

value, this literal string will be the value of content attribute. Furthermore, the

subject of that statement is identified by the value of about attribute, and the

predicate of that statement is given by the value of property attribute. If the object

of a RDF statement takes a resource (identified by a URI) as its value, the URI will

be the value of href attribute. Furthermore, the subject of that statement is

identified by the value of about attribute, and the predicate of that statement is

given by the value of rel attribute.

Let us see some examples along this line. Assume I have posted an article about

the Semantic Web on my Web site. In that post, I have some simple HTML code as

shown in List 3.8.

108 3 Other RDF-Related Technologies: Microformats, RDFa and GRDDL

http://dx.doi.org/10.1007/978-3-662-43796-4_2

List 3.8 Some simple HTML code in my article about the Semantic Web

<div>
<h2>This article is about the Semantic Web and written by

Liyang.</h2>
</div>

This can be easily understood by a human reader of the article. First, it says this

article is about the Semantic Web; second, it says the author of this article is Liyang.

Now I would like to use RDFa to add some semantic markup so machines can see

these two facts. One way to do this is shown in List 3.9.

List 3.9 Use RDFa to markup the content HTML code in List 3.8

<div xmlns:dc="http://purl.org/dc/elements/1.1/">
<p>This article is about <span about="http://www.liyangyu.com

/article/theSemanticWeb.html" rel="dc:subject" href="http://dbpe-
dia.org/resource/Semantic_Web"/>the Semantic Web and written by
<span about="http://www.liyangyu.com/article/theSemanticWeb.html"
property="dc:creator" content="Liyang"/>Liyang.</p>
</div>

Recall dc represents the Dublin Core vocabulary namespace (review Chap. 2 for

more understanding about Dublin Core). We can pick up the RDFa markup

segments from List 3.9, and show them in List 3.10:

List 3.10 RDFa markup text taken from List 3.9

<span about="http://www.liyangyu.com/article/theSemanticWeb.html"
rel="dc:subject"
href="http://dbpedia.org/resource/Semantic_Web"/>

<span about="http://www.liyangyu.com/article/theSemanticWeb.html"
property="dc:creator" content="Liyang"/>

Table 3.3 RDFa attributes as different components of a RDF statement

Object values

Subject

attribute

Predicate

attribute Object

Literal strings about property Value of content
attribute

Resource (identified by

URI)

about rel Value of href attribute

3.3 RDFa 109

http://dx.doi.org/10.1007/978-3-662-43796-4_2

Clearly, in the first span segment, the object is a resource identified by a URI.

Therefore, @rel and @href have to be used as shown in List 3.10. Notice http://

dbpedia.org/resource/Semantic_Web is used as the URI identifying the object

resource. This is an URI created by DBpedia project (discussed in Chap. 8) to

represent the concept of the Semantic Web. Here we are reusing this URI instead of

inventing our own. To see more details about reusing URIs, review Chap. 2.

On the other hand, in the second span segment, the object is represented by a

literal string. Therefore, @property and @content have to be used.

The last rule we need to discuss here is about attribute about. At this point, we

understand attribute about is used to represent the subject of the RDF statement.

But for a given XHTML content marked up by RDFa, how does an RDFa-aware

application exactly identify the subject of the markup? This can be summarized as

follows:

• If attribute about is used explicitly, then the value represented by about is the

subject.

• If a RDFa-aware application does not find about attribute, it will assume the

about attribute on the nearest ancestor element represents the subject.

• If an RDFa-aware application searches through all the ancestors of the element

with RDFa markup information, and does not find an about attribute, then the

subject is an empty string, and effectively indicates the current document.

These rules about subject are in fact quite intuitive, especially the last one, given

that lots of a document’s markup information will be typically about the document

itself.

With all this understanding about RDFa rules, we can now move on to the

example of RDFa markup.

3.3.3.2 RDFa Examples

In this section, we use examples to show how semantic markup information can be

added by using RDFa attributes. Notice we will be able to cover only a subset of

ways to add RDFa metadata in an XHTML document, it is however enough to get

your far if you decide to explore more on yourself.

A common usage of RDFa attributes is to add inline semantic information. This

is in fact the original motivation that led to the creation of RDFa: how to take

human-readable Web page content and make it machine-readable. List 3.9 is a good

example of this inline markup. You can compare List 3.8 with List 3.9; List 3.8 is

the original page content that is written for human-eyes, and List 3.9 is what we

have after inline RDFa markup. Notice the presentation rendered by any Web

browser is not altered at all.

Another example is to markup the HTML code shown in List 3.2. It is a good

exercise for us since we have already marked up List 3.2 using hCard

110 3 Other RDF-Related Technologies: Microformats, RDFa and GRDDL

http://dbpedia.org/resource/Semantic_Web
http://dbpedia.org/resource/Semantic_Web
http://dx.doi.org/10.1007/978-3-662-43796-4_8
http://dx.doi.org/10.1007/978-3-662-43796-4_2

microformats, and using RDFa to markup the same HTML content shows the

difference between the two.

List 3.11 shows the RDFa markup of List 3.2. It accomplishes the same goal as

shown in List 3.5. It tells an RDFa-aware application the following: this is a link to

the homepage of a person whose first name is Liyang, and whose last name is Yu.

List 3.11 RDFa markup for the HTML code shown in List 3.2

... <!-- other HTML code -->
<div xmlns:foaf="http://xmlns.com/foaf/0.1/">

<a about="http://www.liyangyu.com#liyang"
rel="foaf:homepage"
href="http://www.liyangyu.com/">Liyang Yu

</div>
... <!-- other HTML code -->

Again, if you open up the above with a Web browser, you see the same output as

given by List 3.2. With what we have learned so far, understanding List 3.11 should

not be difficult at all.

Notice that FOAF vocabulary is used for RDFa to markup the content; we

covered FOAF briefly in Chap. 2, and you will see a detailed discussion of FOAF

in Chap. 7. For now, just remember that FOAF is a vocabulary, with a collection of

words that one can use to describe people and their basic information.

This is in fact an important difference between microformats and RDFa. More

specifically, when using microformats to markup a given document, the possible

values for the properties are predefined. For example, if hCardmicroformat is used,

only hCard properties and subproperties can be used in the markup (see List 3.5 for

example). However, this is not true for RDFa markup: you can in fact use anything

as the values for the attributes. For example, List 3.11 could have been written as

shown in List 3.12.

List 3.12 Another version of List 3.11

... <!-- other HTML code -->
<div xmlns:yu="http://www.liyangyu.com/yu">

<a about="http://www.liyangyu.com#liyang"
rel="yu:myHomepage"

href="http://www.liyangyu.com/">Liyang Yu

</div>
... <!-- other HTML code -->

3.3 RDFa 111

http://dx.doi.org/10.1007/978-3-662-43796-4_2
http://dx.doi.org/10.1007/978-3-662-43796-4_7

However, this is not a desirable solution at all. In order for any RDFa-aware

application to understand the markup in List 3.12, that application has to understand

your vocabulary first. And clearly, if all the Web publishers went ahead and

invented their own keywords, the world of available keywords would have become

quite messy. Therefore, it is always the best choice to use words from a well-

recognized vocabulary when it comes to markup your page. Again, FOAF vocab-

ulary is one such well-accepted vocabulary, and if you use it in your markup

(as shown in List 3.11), chances are any application that understands RDFa will

be able to understand FOAF as well.

In fact, this flexibility of the possible values of RDFa attributes is quite useful for

many markup requirements. For example, assume in my Web site, I have the

following HTML snippet as shown in List 3.13.

List 3.13 HTML code about my friend, Dr. Ding

... <!-- other HTML code -->
<div>
<p>My friend, Dr. Ding, also likes to play tennis.</p>
</div>
... <!-- other HTML code -->

And I would like to markup the code in List 3.13 so that machines will

understand these facts: first, I have a friend whose name is Dr. Ding, second,

Dr. Ding likes to play tennis.

You can certainly try to use microformats to reach the goal; however, RDFa

seems to be quite easy to use, as shown in List 3.14.

List 3.14 RDFa markup of List 3.13

... <!-- other HTML code -->
<div xmlns:foaf="http://xmlns.com/foaf/0.1/">
<p>My friend, <span about="http://www.liyangyu.com#liyang" rel=
"foaf:knows" href="http://www.example.org#ding">Dr.Ding,
also likes to play <span about="http://www.example.org#ding" rel=
"foaf:interest" href="http://dbpedia.org/resource/Tennis">tennis.
</p>
<span about="http://www.example.org#ding" property="foaf:title"
content="Dr."/> <span about="http://www.ex-ample.org#ding"
proerty="foaf:lastName" content="Ding"/>
</div>
... <!-- other HTML code -->

112 3 Other RDF-Related Technologies: Microformats, RDFa and GRDDL

Again, notice http://dbpedia.org/resource/Tennis is used as the URI

identifying tennis as a sport. This is also a URI created by the DBpedia project,

as you will see in later chapters. We are reusing this URI since it is always good to

reuse existing ones. On the other hand, http://www.example.org#ding is a URI

that we invented to represent Dr. Ding, since there is no URI for this person yet.

An application which understands RDFa will generate the RDF statements as

shown in List 3.15 from List 3.14 (expressed in Turtle format).

List 3.15 RDF statements generated from the RDFa markup in 114

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

<http://www.liyangyu.com#liyang>
foaf:knows <http://www.example.org#ding>.
<http://www.example.org#ding>
foaf:interest <http://dbpedia.org/resource/Tennis>.
<http://www.example.org#ding> foaf:title "Dr.".
<http://www.example.org#ding> foaf:lastName "Ding".

So far, all the examples we have seen are about inline markup. Sometimes,

RDFa semantic markup can also be added about the containing document without

explicitly using attribute about. Since this is a quite common use case of RDFa, let

us take a look at one such example.

List 3.16 shows the markup that can be added to the document header:

List 3.16 RDFa markup about the containing document

<html xmlns:dc="http://purl.org/dc/elements/1.1/">
<head>

<meta property="dc:title" content="Liyang Yu's Homepage"/>
<meta property="dc:creator" content="Liyang Yu"/>

</head>
<body>

<!-- body of the page -->

Clearly, there is no about attribute used. Based on the RDFa rules we discussed

earlier, when no subject is specified, an RDFa-aware application assumes an empty

string as the subject, which represents the document itself.

As this point, we have covered the following RDFa attributes: about, content,

href, property and rel. These are all frequently used attributes, and understand-

ing these can get you quite far.

3.3 RDFa 113

http://dbpedia.org/resource/Tennis
http://www.example.org/#ding

The last attribute we would like to discuss here is attribute typeof. It is quite

important and useful since it presents a case where a blank node is created. Let us

take a look at one example.

Assume on my homepage, I have the following HTML code to identify myself as

shown in List 3.17.

List 3.17 HTML code that identifies me

<div>
<p>Liyang Yu</p>
<p>E-mail: liyang@liyangyu.com
</div>

We would now like to use RDFa to markup this part so the machine will

understand that this whole div element is about a person whose name is Liyang

Yu and whose e-mail address is liyang@liyangyu.com.

List 3.18 shows this markup:

List 3.18 RDFa markup of the HTML code shown in List 3.17

<div typeof="foaf:Person"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<p property="foaf:name">Liyang Yu</p>
<p>E-mail: <a rel="foaf:mbox"

href="mailto:liyang@liyangyu.com">liyang@liyangyu.com
</div>

Notice the usage of attribute typeof. More specifically, this RDFa attribute is

designed to be used when we need to declare a new data item with a certain type. In

this example, this type is the foaf:Person type. For now, just understand foaf:

Person is another keyword from the FOAF vocabulary, and it represents human

being as a class called Person. Again, you will see more about FOAF vocabulary in

a later chapter.

Now, when typeof is used as one attribute on the div element, the whole div

element represents a data item whose type is foaf:Person. Therefore, once

reading this line, any RDFa-aware application will be able to understand this div

element is about a person. In addition, foaf:name and foaf:mbox are used with

@property and @rel respectively to accomplish our goal to make machines

understand this information, as you should be familiar with by now.

Notice we did not specify attribute about like we have done in the earlier examples.

So what would be the subject for these properties then? In fact, attribute typeof on the

114 3 Other RDF-Related Technologies: Microformats, RDFa and GRDDL

enclosing div does the trick: it implicitly sets the subject of the properties marked up

within that div. In other words, the name and e-mail address are associated with a new

node of type foaf:Person. Obviously, this new node does not have a given URI to

represent itself; it is therefore a blank node. Again, this is a trick you will see quite often

if you are working with RDFa markup, so make sure you are comfortable with it.

The last question before we move on: if this new node is a blank node, how do

we use it when it comes to data aggregation? For example, the markup information

here could be quite important: it could be some supplemental information about a

resource we are interested in. However, without a URI identifying it, how do we

relate this information to the correct resource at all?

In this case, the answer is yes, we can indeed relate this markup information to

another resource that exists outside the scope of this document. The secret lies in the

foaf:mbox property. As you will see in Chap. 5, this property is an inverse

functional property, and that is how we know which resource should be the subject

of this markup information, even the subject itself is represented by a blank node.

3.3.4 RDFa and RDF

3.3.4.1 What’s So Good About RDFa?

In Sect. 3.2.3.1, we discussed the benefits offered by microformats. In fact all these

are still true for RDFa, and we can add one more here: RDFa is useful because

microformats only exist as a collection of centralized vocabularies. More specifi-

cally, what if we want to markup a web page about a resource, for which there is no

microformat available to use? In that case, RDFa is always a better choice, since

you can in fact use any vocabulary for your RDFa markup.

In this chapter, we only see the Dublin Core vocabulary and the FOAF vocab-

ulary. However, as you will see after you finish more chapters, there are quite a lot

of vocabularies out there, covering different domains, and all are available to you

when it comes to using RDFa to markup a given page. In fact, you can even invent

your own if it is necessary (again, more on this later).

3.3.4.2 RDFa and RDF

At this point in the book, RDFa and RDF can be understood as the same thing. To put

it simply, RDFa is just a way of expressing RDF triples inside given XHTML pages.

However, RDFa does make it much easier for people to express semantic

information in conjunction with normal web pages. For instance, while there are

many ways to express RDF (such as in serialized XML files that live next to

standard web pages), RDFa helps machines and humans read exactly the same

content. This is one of the major motivations for the creation of RDFa.

3.3 RDFa 115

http://dx.doi.org/10.1007/978-3-662-43796-4_5

It might be a good idea to come back to this topic after you have finish the whole

book. By then, you will have a better understanding of the whole picture. For

example, having an HTML representation and a separate RDF/XML representation

(or N3 and Turtle, etc.) is still a good solution for many cases, where HTTP content

negotiation is often used to decide which format should be returned to the client

(details in Chap. 9).

3.4 GRDDL

3.4.1 GRDDL: The Big Picture

As we discussed in Sect. 3.1, Gleaning Resource Descriptions from Dialects of

Languages (GRDDL) is a way (a markup format, to be more precise) that enables

users to obtain RDF triples out of XML documents (called XML dialects), in
particular XHTML documents. The following GRDDL terminology is important

for us to understand GRDDL:

• GRDDL-aware agent: a software agent that is able to recognize the GRDDL

transformations and run these transformations to extract RDF.

• GRDDL Transformation: an algorithm for getting RDF from a source document.

GRDDL became a W3C recommendation on September 11, 2007.4 In this

standard document, GRDDL is defined as the following:

GRDDL is a mechanism for Gleaning Resource Descriptions from Dialects of

Languages. The GRDDL specification introduces markup based on existing

standards for declaring that an XML document includes data compatible with

RDF and for linking to algorithms (typically represented in XSLT), for

extracting this data from the document.

You can also find more information about GRDDL from the official Web site of

the W3C GRDDL Working Group.5

In this section, we take a quick look at GRDDL, and introduce the markup

formats needed for extracting markup information created by using microformats

and RDFa. What you learn from here will give you enough if you decide to go

further into GRDDL.

The last words before we move on: do not bury your semantic markup data in

(X)HTML pages. Instead, when you publish a document that contains markup data,

4 http://www.w3.org/TR/2007/REC-grddl-20070911/
5 http://www.w3.org/2001/sw/grddl-wg/

116 3 Other RDF-Related Technologies: Microformats, RDFa and GRDDL

http://dx.doi.org/10.1007/978-3-662-43796-4_9
http://www.w3.org/TR/2007/REC-grddl-20070911/
http://www.w3.org/2001/sw/grddl-wg/

do reference GRDDL profiles and/or transformations for their extraction. You will

see how to do this in the next two sections.

3.4.2 Using GRDDL with Microformats

There are a number of ways to reference GRDDL in a document where

microformats markup data is added. Referencing GRDDL transformations directly

in the head of the HTML document is probably the easiest implementation: only

two markup lines are needed.

More specifically, the first thing is to add a profile attribute to the head element

to indicate the fact that this document contains GRDDL metadata. List 3.19 shows

how to do this.

List 3.19 Adding a profile attribute for GRDDL transformation

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head profile="http://www.w3.org/2003/g/data-view">

<title>Liyang Yu’s Homepage</title>
</head>
<body>
<!-- body of the page -->

In HTML, profile attribute in head element is used to link a given document to

a description of the metadata schema that document uses. The URI for GRDDL is

given by the following,

http://www.w3.org/2003/g/data-view

And by including this URI as shown in List 3.19, we declare that the metadata in

the markup can be interpreted using GRDDL.

The second step is to add a link element containing the reference to the

appropriate transformation. More specifically, recall that microformats are a col-

lection of individual microformats such as the hCard microformat and the

hCalendar microformat. Therefore, when working with markup data added by

using microformats, it is always necessary to name the specific GRDDL

transformation.

Let us assume the document in List 3.19 contains hCard microformat markups.

Therefore, the link element has to contain the reference to the specific transfor-

mation for converting HTML containing hCard patterns into RDF. This is shown in

List 3.20.

3.4 GRDDL 117

http://www.w3.org/2003/g/data-view

List 3.20 Adding link element for GRDDL transformation (hCard microformat)

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head profile="http://www.w3.org/2003/g/data-view">

<title>Liyang Yu’s Homepage</title>
<link rel="transformation"

href="http://www.w3.org/2006/vcard/hcard2rdf.xsl"/>

</head>
<body>
<!-- body of the page -->

These two steps are all there is to it: the profile URI tells a GRDDL-aware

application to look for a link element whose rel attribute contains the token

transformation. Once the agent finds this element, the agent should use the value

of href attribute on that element to decide how to extract the hCard microformat

markup data as RDF triples from the enclosing document.

What if hCalendar microformat markup has been used in the document? If that

is the case, we should use the following transformation as the value of href

attribute:

http://www.w3.org/2002/12/cal/glean-hcal.xsl

3.4.3 Using GRDDL with RDFa

With what we learned from Sect. 3.4.2, it is now quite easy to use GRDDL with

RDFa. The first step is still the same, i.e., we need to add a profile attribute to the

head element, as shown in List 3.19. For the second step, as you have guessed, we

will have to switch the transformation itself (List 3.21).

List 3.21 Adding link element for GRDDL transformation (RDFa)

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head profile="http://www.w3.org/2003/g/data-view">

<title>Liyang Yu’s Homepage</title>
<link rel="transformation"
href="http://www.w3.org/2001/sw/grddl-wg/td/RDFa2RDFXML.xsl"/>

</head>
<body>
<!-- body of the page -->

118 3 Other RDF-Related Technologies: Microformats, RDFa and GRDDL

http://www.w3.org/2002/12/cal/glean-hcal.xsl

3.5 Summary

This chapter covers the technical details of both microformats and RDFa. GRDDL,

a popular markup format which automatically converts microformats and RDFa

markup information into RDF triples, is also included.

From this chapter, you should have learned the following main points:

• the concepts of microformats and RDFa, and how they fit into the whole idea of

the Semantic Web;

• the language constructs of both microformats and RDFa, and how to markup a

given (X)HTML page by using these constructs;

• the advantages and limitations of both microformats and RDFa, and their

relationships to RDF;

• the concept of GRDDL, how it fits into the idea of the Semantic Web, and how to

use GRDDL to automatically extract markup data from (X)HTML pages.

With all this said, the final goal is for you to understand these technical

components, and also to be able to pick the right one for a given development

assignment.

3.5 Summary 119

http://www.springer.com/978-3-662-43795-7

	Chapter 3: Other RDF-Related Technologies: Microformats, RDFa and GRDDL
	3.1 Introduction: Why Do We Need These?
	3.2 Microformats
	3.2.1 Microformats: The Big Picture
	3.2.2 Microformats: Syntax and Examples
	3.2.2.1 From vCard to hCard Microformat
	3.2.2.2 Using hCard Microformat to Markup Page Content

	3.2.3 Microformats and RDF
	3.2.3.1 What´s So Good About Microformats?
	3.2.3.2 Microformats and RDF

	3.3 RDFa
	3.3.1 RDFa: The Big Picture
	3.3.2 RDFa Attributes and RDFa Elements
	3.3.3 RDFa: Rules and Examples
	3.3.3.1 RDFa Rules
	3.3.3.2 RDFa Examples

	3.3.4 RDFa and RDF
	3.3.4.1 What´s So Good About RDFa?
	3.3.4.2 RDFa and RDF

	3.4 GRDDL
	3.4.1 GRDDL: The Big Picture
	3.4.2 Using GRDDL with Microformats
	3.4.3 Using GRDDL with RDFa

	3.5 Summary

		2014-11-26T14:03:42+0530
	Certified PDF 2 Signature

