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Abstract We review several properties of characters of vertex algebra modules in
connection to q-series and modular-like objects. Four representatives of conformal
vertex algebras: regular, C2-cofinite, tamely irrational and wild, are discussed from
various points of view.

1 Introduction

Unlike many algebraic structures, vertex algebras have for long time enjoyed
natural and fruitful connection with modular forms. This connection came first
to light through the monstrous moonshine, a fascinating conjecture connecting
modular forms (or more precisely the Hauptmodulns) and representations of the
Monster, the largest finite sporadic simple group. This mysterious connection was
partially explained first in the work of Frenkel et al. [37] who constructed a vertex
operator algebra V \, called the moonshine module, whose graded dimension is
j.q/ � 744 and whose automorphism group is the Monster. The connection with
McKay-Thompson series was later proved by Borcherds [21] thus proving the full
Conway-Norton conjecture. What is amazing about the vertex algebra V \ is that on
one hand it is arguably one of the most complicated objects constructed in algebra,
yet it has an extremely simple representations theory (that of a field!).

Another important closely related concept in vertex algebra theory (and two-
dimensional conformal field theory) is that of modular invariance of characters.
This property, proposed by physicists as a consequence of the axioms of rational
conformal field theory, was put on firm ground first in the seminal work of Zhu
[62]. Among many applications of Zhu’s result we point out its power to “explain”
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modular invariance of characters of integrable highest weight modules for affine
Kac-Moody Lie algebras, discovered previously by Kac and Peterson [48]. As
rational vertex algebras (with some extra properties) give rise to Modular Tensor
Categories [45], this rich underlying structure can be used for to prove the general
Verlinde formula [45] (see [20] for definition). This formula, discovered first by
Verlinde [61], gives an important connection between the fusion coefficients in the
tenor product coefficients of the S -matrix coming from both categorical and analytic
SL.2;Z/-action on the “space” of modules. In addition, it also gives a fascinating
link between analytic q-dimensions and the coefficients of the S -matrix.

There are other important connections between two subjects such as ADE
classification of modular invariant partition functions, vertex superalgebras and
mock modular forms, orbifold theory, elliptic genus, generalized moonshine, etc.

Everything that we mentioned so far comes from a very special class of vertex
algebras called C2-cofinite rational vertex algebras [62], the moonshine module
being a prominent example. In this note we do not try to say much about rational
vertex algebras (although we do give some definition and list known results) and
almost nothing about the moonshine. Our modest goal is simply to argue that even
non-rational (and sometimes even non C2-cofinite) vertex algebra seem to enjoy
properties analogous to properties of rational VOA, but much more complicated,
yet reach enough that exploring them leads to some interesting mathematics related
to modular forms and other modular-like objects. Another pedagogical aspect of
these notes is to convey some ideas and aspects of the theory rarely considered in
the literature on vertex algebras. We focus on four different types of vertex algebras:

• rational C2-cofinite or regular (the category of modules has modular tensor
category structure, q-dimensions are closely related to categorical dimensions).

• irrational C2-cofinite (tensor product theory and a version modular invariance are
available, a Verlinde-type formula is still to be formulated and proved)

• non C2-cofinite, mildly irrational (there is evidence of braided tensor category
structure on the category of module, or suitable sub-category. A version of
modular invariance holds with continuous part added. Usually involve atypical
and typical modules, the latter parametrized by continuous parameters. q-
dimensions of irreps are finite and nonzero).

• non C2-cofinite, badly irrational (not likely to have good categorical structure.
For example two modules under fusion can give infinitely many modules.
Consequently, q-dimensions may be infinite).

As a working example of rational C2-cofinite vertex algebra we shall use the
lattice vertex algebra VL, where L is an even positive definite lattice. This is, from
many different points of view, the most important source of vertex algebras, and in
particular leads to the moonshine module via the Leech lattice and orbifolding.

When we move beyond rational vertex algebras, many difficulties arise, and this
transition really has to be done in two steps. The nicest examples worth exploring
are of course C2-cofinite vertex algebras. These vertex algebras admit finitely-many
inequivalent irreducible modules. Here the most prominent example is triplet vertex
algebra [4, 33, 39, 50] being a conformal vertex subalgebra of the rank one lattice
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vertex algebra of certain rational central charge. Another prominent example is
the symplectic fermion vertex superalgebra [1, 50, 59]. As we shall see the triplet
vertex algebra enjoys many interesting properties including a version of modular
invariance, even a conjectural version of the Verlinde formula.

If we move one step lower in the hierarchy this leads us to non C2-cofinite vertex
algebras. There are at least several candidates here. One is of course the vertex
algebra associated to free bosons, called the Heisenberg vertex algebra [37, 49, 51].
Because this algebra has a fairly simple representation theory [37] we decided to
consider another family of irrational vertex algebras—certain subalgebras of the
Heisenberg vertex algebra. As we shall see this so-called “singlet” vertex algebras
involve two types of irreducible representations: typical and atypical, something
that persists for many W -algebras. Quite surprisingly, there is a version of modular
invariance for the singlet family, including a Verlinde-type formula inferred from
the characters [24].

Finally, at the bottom of the barrel sort of speaking, we are left with badly
behaved irrational conformal vertex algebra, namely those that are vacuum modules
for the Virasoro algebra (or more general affine W -algebras [18]) or for affine
Lie algebras [49, 51]. One reason for this type of vertex algebra not being very
interesting is due to lack of modular-like properties. Also, their fusion product is
somewhat ill behaved. For example, two irreducible modules can produce infinitely
many non-isomorphic modules under the fusion.

Four examples representing four types entering our discussion are connected with
a chain of VOA embeddings:

At the end of the paper we show that this diagram can be extended to an arbitrary
ADE type simple Lie algebra, the above diagram being the simplest instance coming
from sl2.

2 Vertex Algebras and Their Characters

We begin by recalling the definition of a vertex operator algebra following primarily
[51] (cf. [37, 49]).

Definition 1. A vertex operator algebra is a quadruple .V; Y; 1; !/ where V is a
Z-graded vector space

V D
M

n2Z
V.n/
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together with a linear map Y.�; x/ W V ! .End V /ŒŒx; x�1�� and two distinguished
elements 1 and ! 2 V , such that for u; v 2 V we have

Y.u; x/v 2 V..x//;

Y.1; x/ D 1;

Y.v; x/1 2 V ŒŒx�� and lim
x!0

Y.v; x/1 D v;

ŒL.m/; L.n/� D .m � n/L.m C n/ C m3 � m

12
ımCn;0c

for m; n 2 Z, where

Y.!; x/ D
X

n2Z
L.n/x�n�2;

and c 2 C (the so-called central charge); we also have

L.0/w D nw for n 2 Z and v 2 V.n/;

and the L.�1/-axiom

Y.L.�1/u; x/ D d

dx
Y.u; x/

and the following Jacobi identity

x�1
0 ı

�
x1�x2

x0

�
Y.u; x1/Y.v; x2/ � x�1

0 ı

�
x2�x1�x0

�
Y.v; x2/Y.u; x1/ (1)

D x�1
2 ı

�
x1�x0

x2

�
Y .Y.u; x0/v; x2/ : (2)

If we omit the Virasoro axiom and the grading the structure is called vertex
algebra, but we have to replace L.�1/-axiom with the D-derivative axiom [51].
In some constructions it is useful to have another VOA structure on the same space.
This is important when we pass to a different coordinate system on the torus E�

discussed below. With Y.u; x/ as above and u homogeneous, we let

Y Œu; x� D Y.exdeg.u/u; ex � 1/;

which is well-defined if we expand 1=.ex �1/m, for m � 0, in finitely many negative
powers of x. Then it can be shown [62] that .V; Y Œ�; x�; 1; ! � c

24
1/ is also a vertex

operator algebra isomorphic to the original one. We also define bracket modes of
vertex operator
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Y Œu; x� D
X

n2Z
uŒn�x�n�1I uŒn� 2 End.V /:

Definition 2 (Sketch). We say that a vector space W together with a linear map

YW .�; x/ W V ! .End W /ŒŒx; x�1��

is a weak V -module if YW satisfies the Jacobi identity, and “all other defining
properties of a vertex algebra that make sense hold”. If in addition the space is
graded by L.0/-eigenvalues such that the grading is compatible with that of V , we
say that M is an ordinary module.

Not all vertex algebra modules are of interest to us right now.

Definition 3. An admissible V -module is a weak V -module M which carries a
Z�0-grading

M D
M

n2Z�0

M.n/

satisfying the following condition: if r; m 2 Z; n 2 Z�0 and a 2 Vr then

amM.n/ � M.r C n � m � 1/: (3)

We call an admissible V -module M irreducible in case 0 and M are the only
submodules. An ordinary module is an admissible module where the above grading
is decomposition into finite-dimensional L.0/-eigenspaces.

A vertex algebra V is called rational if every admissible V -module is a direct
sum of simple admissible V -modules. That is, we have complete reducibility of
admissible V -modules. Observe that the definition of rationality does not seem
to involve any internal characterization or property of vertex algebras. The next
definition is analogous to “finite-dimensionality” for associative algebras.

Definition 4 (C2-cofiniteness). A vertex algebra V is said to be C2-cofinite if the
space generated by vectors fa�2b; a; b 2 V g is of finite codimension (in V ).

An important consequence of this definition is that a C2-cofinite vertex algebra
has finitely many irreducible modules up to equivalence, which explains “finite-
dimensionality” hinted earlier. It is a conjecture that every rational vertex algebra is
C2-cofinite, but the converse is known not to be true (see below).

2.1 One-Point Functions on Torus

To an admissible V -module M with finite dimensional graded subspaces we can
associate its modified graded dimension or simply character [62]:

chM .q/ WD trM qL.0/�c=24; � 2 H;
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where c is the central charge. Strictly speaking this function does not necessarily
converge so it should be viewed only formally, but in almost all known examples it
is holomorphic in the whole upper half-plane.

We are also interested in related graded traces that can be computed on M :

trM o.a/qL.0/�c=24;

where o.a/ D a.deg.a/ � 1/ is the zero weight operator and a is homogeneous, in
the sense that it preserved graded components.

As usual we denote by

G2k.�/ D B2k

.2k/Š
C 2

.2k � 1/Š

X

n�1

qnn2k�1

1 � qn

(k � 1) slightly normalized Eisenstein series as in [62] given by their q-expansions.
Denote by Oq.V / the CŒG4; G6�-submodule of V ˝ CŒG4; G6� generate by

aŒ0�b

aŒ�2�b C
1X

kD2

.2k � 1/aŒ2k � 2�b ˝ G2k.�/

Definition 5. Let V be a VOA. A map S.�; �/ W V ŒG2; G4��H ! C satisfying the
following conditions is called a one-point function on the torus E� D C=.Z C �Z/:

(1) For any a 2 V ˝ CŒG4; G6� the functions S.a; �/ is holomorphic in � 2 H.
(2) S.

P
i vi ˝ fi .�/; �/ D P

i fi .�/S.ai ; �/ for all ai 2 V and fi 2 CŒG4; G6�.
(3) S.a; �/ D 0 for all a 2 Oq.V /,
(4) S.LŒ�2�a; �/ D .q d

dq
/S.a; �/ CP1

kD1 G2k.�/S.LŒ2k � 2�a; �/.

We denote the space of one-point functions by C .V /. Then any element of the
form S.1; �/, where S 2 V , is called a (virtual) generalized character. It is possible
to show [62], that graded traces trM o.a/qL.0/�c=24 give a one-point function on
the torus. So in particular an (ordinary) character can be viewed as a generalized
character.

Let us explain results pertaining rational vertex algebras first. We denote by Mi ,
i 2 I irreducible V -modules (so I is finite). Later we shall also assume that i D
0 2 I is reserved for the VOA itself, which is also assumed to be simple. We shall
also use Irrep.V / to denote the set of equivalence classes of irreducible V -module.

Theorem 1 (Zhu). Let V be a rational C2-cofinite vertex algebra. Then for every
homogeneous a 2 V with respect to LŒ0�, the expressions ftrMi o.a/qL.0/�c=24g,
i 2 I defines a vector valued modular form of weight deg.a/. In particular, for
a D 1 this weight is zero. Moreover, the space of one point functions on torus is
jI rrep.V /j-dimensional and a 7! trMi o.a/qL.0/�c=24, i 2 I , is a basis of C .V /.
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Observe that another consequence of this result is that for rational C2-cofinite
vertex algebras every generalized character is an ordinary character.

Because the category of modules of rational vertex algebras has a semisimple
braided tensor category structure [47], we have the fusion product:

Mi � Mj D
X

k2I

N k
ij Mk;

where N k
ij 2 Z�0 are the fusion coefficients and � is Huang, Lepowsky and Zhang’s

tensor product [47]. On the other hand, the previous theorem furnishes us with a
jI rrep.V /j-dimensional representations of SL.2;Z/ acting on the space of ordinary
characters. In particular, we have the special matrix S 2 SL.2;Z/, called the S -
matrix, corresponding to � ! � 1

�
. If in addition, the vertex algebra is C2-cofinite

the category of V -Mod is a modular tensor category (an important result of Huang
[45]), so it also admits a categorical action of SL.2;Z/ on the space generated by the
equivalence classes of irreducible modules Mi , i 2 I . In particular � ! � 1

�
induces

a matrix called the s-matrix. In turns out that S D s [29], after suitable rescaling
of s. One important property of MTCs is the Verlinde formula [20] (first formulated
in [61]) that allows us to express fusion coefficients simply from the coefficients
of the s (and hence S ) matrix. The precise statement is: Denote by N k

ij the fusion
coefficients, then we have

N k
ij D

X

r

SirSjrSk�r

S0r

; (4)

where r 7! r� is the map on indices induced by taking dual of irreducible modules
Mi 7! M �

i .
Another related important notion in two-dimensional conformal field theory is

that of (analytic) q-dimension. For a V -module M we let

qdim.M/ D lim
y!0C

chM .iy/

chV .iy/
(5)

Of course, such a quantity may not need even exist. But again, for V rational and
C2-cofinite, it is known to be closely related to categorical q-dimension dimq.M/,
computed as the trace of the identity endofunctor, which also equals si0

s00
[20]. Under

some favorable conditions on the vertex algebra, this categorical version of the
q-dimension coincide with the analytic (see [29], conditions (V1) and (V2) and
formula (3.1)):

Proposition 1. Let V be a rational C2-cofinite VOA with lowest conformal weights
of irreducible modules positive expect for i D 0, then

dimq.Mi / D Si0

S00

D qdim.Mi /:
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This proposition is known to hold
Categorical q-dimensions are known to have good properties with respect to

tensor products and direct sums:

dimq.M � N / D dimq.M/ � dimq.N /;

dimq.M ˚ N / D dimq.M/ C dimq.N /:

If V is only C2-cofinite, we shall see in the next sections that Zhu’s modular
invariance theorem fails and not every one point function on the torus is an ordinary
trace. This is closely related to non-semisimplicity of Zhu’s algebra A.V / D
V=O.V /, where O.V / is spanned by Resx

.1Cx/deg.a/

x2 Y.a; x/b. Rationality implies
that the space of one-point functions on the torus is isomorphic to the vector space
of symmetric functions on A.V /:

SV D .A.V /=ŒA.V /; A.V /�/�:

But in general this space does not carry a precise description of one-point functions.
Still, there is a satisfactory result essentially due to Miyamoto [56]. Assume for
completeness that the central charge of the vertex algebra is non-zero (so finite-
dimensional V -modules are excluded—these only appear for c D 0). Then there is
a connection between one-point functions and the Zhu algebra (Miyamoto).

Theorem 2. The vector space C .V / admits a finite basis B such that each S 2 B
admits an expansion

S.a; �/ D
dX

j D0

1X

kD0

Sjk.a/qr�cc=24Ck.2�i�/j

for all a 2 V , where r 2 C and S00 2 SV , a symmetric linear functional on
A.V /. Moreover, S 7! S00 is an embedding. In particular, the dimension of C .V /

is bounded by the dimension of SV .

This version of the theorem is proven in [19], but something similar is implicitly
used in [56] (see also [6]). One striking feature of the theorem is the appearance of
� -powers, so no q-expansion of one point functions exists in general. This is closely
tied to existence of L.0/ non-diagonalizable modules, called logarithmic modules
[40,53]. For more about this subject and connection to Logarithmic Conformal Field
Theory we refer the reader to another review paper [13,40,44], as we do not discuss
this subject here. In the aforementioned paper of Miyamoto, he constructs S.a; �/

via certain pseudotraces maps � expressed as tr�;M o.a/qL.0/�c=24 where M is a
particular module “interlocked” with �. We should point out that in many examples
of interest this object is hard to construct explicitly. A slightly more efficient way
of constructing one-point functions was obtained by Arike-Nagatomo’s paper [19],
although it is not clear whether their construction works in general.
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3 Rational VOA: Lattice Vertex Algebras

We review the construction of a vertex operator algebra coming from an even lattice
following [51] (see also [37, 49]). Let L be a rank d 2 N even positive definite
lattice of rank d 2 N with an integer valued nondegenerate symmetric Z-bilinear
form h�; �i W L � L ! Z.

Form the vector space

h D L ˝Z C (6)

so that dim.h/ D d and extend the bilinear form from L to h. Now we shall consider
the affinization of h viewed as an abelian Lie algebra

Oh D
M

n2Z
h ˝ tn ˚ Ck; (7)

with bracket relations

Œ˛ ˝ tm; ˇ ˝ tn� D h˛; ˇimımCn;0k

Œk; Oh� D 0
(8)

for ˛, ˇ 2 h and m, n 2 Z. Consider

OhC D h ˝ tCŒt � and Oh� D h ˝ t�1
CŒt�1�: (9)

We now form a vertex operator algebra associated to Oh with central charge 1, M.1/,
by adding structure to the symmetric algebra of Oh�. As vector spaces we have

M.1/ D U.Oh�/ D S.Oh�/: (10)

If we let fu.1/; : : : ; u.d/g be an orthonormal basis of h we define the conformal vector

! D 1

2

dX

iD1

u.i/.�1/u.i/.�1/1: (11)

So we have the Virasoro algebra operators

L.n/ D ResxxnC1Y.!; x/ D 1

2

dX

iD1

X

m2Z
ı

ı
u.i/.m/u.i/.n � m/ı

ı
: (12)

It is easy to construct irreducible M.1/-modules. Those are simply Fock spaces F�

where � 2 h�. This is again just an induced module such that h 2 h acts on the
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highest weight vector as multiplication by �.h/, so as a vector space F� Š M.1/

and F0 D M.1/. This space will again become relevant in later sections.
The space S.Oh�/ makes up one part of the vertex operator algebra associated

with L. The other portion is related to the group algebra CŒL�. In order to ensure
the Jacobi identity we need to modify the product associated to CŒL� so that

e˛eˇ D .�1/h˛;ˇieˇe˛; (13)

for ˛; ˇ 2 L. To accomplish this we use a central extension, . OL; N/, of L by the
cyclic group h�j�2 D 1i. For ˛; ˇ 2 L define the map

c0 W L � L ! Z=2Z (14)

as follows:

c0.˛; ˛/ D 0 C 2Z;

c0.˛; ˇ/ D h˛; ˇi C 2Z and;

c0.ˇ; ˛/ D �c0.˛; ˇ/:

(15)

This is indeed the commutator map associated to the central extension of the lattice.
It may also be uniquely defined by the condition ab D �c0. Na; Nb/ba for a; b 2 OL.
Define a section of OL, e W L ! OL, so that ˛ 7! e˛ . So e is such that N ı e D idL. Let

�0 W L � L ! Z=2Z (16)

be the corresponding 2-cocyle, defined by

e˛eˇ D ��0.˛;ˇ/e˛Cˇ (17)

Let 	 W h�i ! C
� be defined by 	.�/ D �1. View C as a h�i-module where � acts

as �1 and denoted this module as C	. Define

CfLg D Ind OL
h�iC	 D CŒ OL� ˝CŒh�i� C	 D CŒ OL�=.� � .�1//CŒ OL�: (18)

Let 
 be the inclusion OL ,! CfLg such that 
.a/ D a ˝ 1. Notice our section e

allows us to view CfLg and CŒL� as isomorphic vector spaces with 
.e˛/ 7! e˛ for
˛ 2 L.

Now define maps c; � W L � L ! C
� by c.˛; ˇ/ D .�1/c0.˛;ˇ/ and �.˛; ˇ/ D

.�1/�0.˛;ˇ/. Now we can see the action of OL on CŒL�, for ˛; ˇ 2 L

e˛ � eˇ D �.˛; ˇ/e˛Cˇ

� � eˇ D �eˇ

e˛ � 1 D e˛

(19)
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Now set

VL D M.1/ ˝ CfLg (20)

and

1 D 1 ˝ 
.1/ 2 VL: (21)

We now add more structure to the space VL. First we will view M.1/ as a trivial
OL-module, so that for ˛ 2 L, e˛ acts as 1 ˝ e˛ 2 End.VL/. Also view CfLg as a
trivial Oh�-module and for h 2 h, define

h.0/ W CfLg ! CfLg so that 
.a/ 7! hh; Nai 
.a/ (22)

for a 2 OL. By making the identification M.1/ Š S.Oh/ ˝ e0 we can transport the
structure of a Virasoro algebra module to VL with the grading given by the action of
L.0/

L.0/ � 
.e˛/ D .wt 
.e˛// 
.e˛/ D 1

2
h˛; ˛i 
.e˛/: (23)

We keep the same conformal vector so the central charge of VL is rank.L/.
In order to define the vertex operator Y.
.e˛/; x/ we need the following operator

for h 2 h,

E˙.�h; x/ D exp

 
X

n2˙Z

�h.n/

n
x�n

!
2 .End VL/ŒŒx; x�1��: (24)

and define

Y.
.e˛/; x/ D E�.�˛; x/EC.�˛; x/e˛x˛ 2 .End VL/ŒŒx; x�1��: (25)

where x˛ acts on VL as

x˛.v ˝ 
.a// D xh˛; Nai.v ˝ 
.a//: (26)

This explains how to construct lattice vertex algebra structure on VL. If the lattice
is of rank one, no central extension is needed. Thus CŒL� D CfLg. Also, to simplify
the notation we shall write e˛ instead of 
.e˛/, where no confusion arise. Everything
about representation theory of lattice vertex algebras can be summarized in the
following elegant result by Dong (see [27] and [51] for instance):

Theorem 3. The vertex algebra VL is rational. Moreover, the set

fVLC�I � C L 2 Lı=Lg
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(where L0 is the dual lattice) is a complete set of inequivalent irreducible
VL-modules (strictly speaking, we never defined VLC� but this is easily done by
replacing CŒL� in the definition with CŒL C ��. For a full account on this see [51]).

Characters of VL-modules are easily determined (keep in mind c D rank.L/).
We have

chVLC�
.q/ D

X

˛2LC�

qh˛;˛i=2

�.�/c
:

By using a well-known formula for the modular transformation formula for the
higher rank theta function, we infer

chVLC�
.�1

�
/ D

X

N�2Lı=L

S��chVLC�
.�/;

where S�� denote the S -matrix of the transformation. Observe that S0� D 1p
det.S/

,
where S is the Gram matrix of L. This modular invariance part also follows from
Zhu’s theorem (the vertex algebra VL is C2-cofinite). The fusion product for the
lattice vertex algebras is simply

VLC� � VLC� D VLC�C�:

The q-dimensions are also easy to compute and dimq.VLC�/ D 1 for all �.

4 C2-Cofinite Irrational Case: The Triplet VOA

In this section we examine properties of a specific irrational C2-cofinite vertex
algebra.

4.1 The Triplet

Let VL be as in the previous section, where L is of rank one. First we construct a
subalgebra of VL called the triplet algebra. We should point out that lattice vertex
algebra are rarely mentioned in the physics literature, where triplet is usually treated
as an extended conformal algebra with SO.3/ symmetry [41,42,50] , or as a part of
an extended Felder’s complex in which we extract the kernel instead of cohomology.
Our approach here is slightly different and it follows [4, 33, 39], where the triplet
algebra is constructed as kernel of a screening operator acting (as we shall see)
among two VL-modules.
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Let p 2 Z, p � 2, and

L D Z˛; h˛; ˛i D 2p;

or simply L D p
2pZ, with the usual multiplication. We are interested in the central

charge cp;1 D 1 � 6.p�1/2

p
; so we choose

! D 1

4p
˛.�1/21 C p � 1

2p
˛.�2/1:

We also define conformal weights

hp;q
r;s D .ps � rq/2 � .p � q/2

4pq
:

With this central charge, the generalized vertex algebra VLı [28] admits two
screenings:

QQ D e
�˛=p
0 and Q D e˛

0 :

Then we let

W .p/ D KerVLe
�˛=p
0 � VL; (27)

a subalgebra of VL called the triplet algebra.
The above construction can be recast in terms of automorphisms of infinite

order and generalized twisted modules introduced by Huang [46]. Consider � D
exp.e

�˛=p
0 /. This operator does not preserve VL but it can be viewed as an

automorphism of VLı of infinite order. Then the triplet is V �
Lı \VL, where V �

L denote
the �-fixed vertex subalgebra. In fact, VLı can be also replaced by VL ˚ VL�˛=p

(see [7]).
As shown in [4], W .p/ is strongly generated by the conformal vector ! and three

primary vectors

F D e�˛; H D QF; E D Q2e�˛:

There is another useful description of W .p/ [32, 39]. As a module for the Virasoro
algebra, VL is not completely reducible but it has a semisimple filtration whose
maximal semisimple part is W .p/. More precisely,

W .p/ D socVir.VL/

D
1M

nD0

2nM

j D0

U.Vir/:Qj e�n˛

Š
1M

nD0

.2n C 1/L.cp;1; h
p;1
1;2nC1/; ; (28)
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where L.c; h/ denote the highest weight Virasoro module of central charge c and
lowest conformal weight h. For other examples of irrational C2-cofinite vertex
(super)algebras see [5, 11, 12, 14–16] .

4.2 Irreducible Modules and Characters

The triplet W .p/ is known to be C2-cofinite but irrational [4] (see also [23]). It also
admits precisely 2p inequivalent irreducible modules [4] which are usually denoted
by:


.1/; : : : ; 
.p/; ˘.1/; : : : ; ˘.p/:

These modules were previously studied in [33, 34, 39] was proposed as a complete
list of irreducibles. Since irreps are admissible, for 1 � i � p, the top component
of 
.i/ is one-dimensional and has lowest conformal weight h

p;1
i;1 , and the top

component of ˘.i/ is two-dimensional with conformal weight h
p;1
3p�i;1.

The characters of irreducible W .p/-modules are well-known and computed in
many papers on logarithmic conformal field theories starting with [39]. For 1 � i �
p, the formulas are

ch
.i/.�/ D i�p;p�i .�/ C 2@�p;p�i .�/

p�.�/
;

ch˘.i/.�/ D i�p;i .�/ � 2@�p;i .�/

p�.�/
; (29)

where

�i;p.�/ D
X

n2Z
q.2npCi/2=4p; @�i;p.�/ D

X

n2Z
.n C i

2p
/q.2npCi/2=4p:

From here we infer that the space spanned by characters of irreps is not modular
invariant! To understand this better observe that in addition to �p;i and @�p;i series
we also need �@�p;i series to preserve modularity. This gives indication that one-
point functions on the torus might be bigger than the number of irreps.

The next theorem (essentially taken from [6]) settles the problem of finding the
space of one-point functions on the torus for the triplet algebra.

Theorem 4. The space of one-point functions for the triplet vertex algebra is 3p�1-
dimensional.

The proof breaks down on studying generalized characters. By using general
properties of one-point functions and the triplet vertex algebra we first prove that
every generalized character S.1; �/ satisfies
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D3p�1S.1; �/ C
3p�2X

iD0

Hi .q/Di S.1; �/ D 0; (30)

where

Hi .q/ 2 CŒG4; G6�2h�2i

is a modular form of weight 2h � 2i . and

Dh D .q
d

dq
/ C hG2.q/

where h 2 Z�0 and

Dn WD D2n�2 � � � D2D0:

This fact immediately implies several things. First, because the space of solutions of
the differential equations is modular invariant, the space of generalized characters is
at most 3p�1-dimensional. But at the same time each ordinary trace associated to an
irrep must be a solution to thus equation. So for modular invariance to be preserved
the space is at least 3p�1-dimensional. Therefore there must be contribution coming
from p�1 generalized characters. Once we observe that dim.C .V // � dim.SW .p//,
where the right hand side is known to be 3p � 1-dimensional by [9], we have the
proof and observation that C .V / is as large as it can be. By using a method from
[19] we can construct all the missing one-point functions explicitly.

4.3 Verlinde-Type Formula for W .p/-Mod

As there is no general Verlinde formula for C2-cofinite vertex algebras, in what
follows “Verlinde-type formula” refers to the following concepts extracted from the
(generalized) characters:

1. A way of constructing a genuine finite-dimensional SL.2;Z/ representation on
the space of irreducible and possible larger generalized characters.

2. By using the S -matrix from (1), for a fixed triple i; j; k, the standard Verlinde
sum,that is, the right hand-side of (4), recovers non-negative integers that agree
with the known (or at least conjectural) fusion coefficients N k

ij . Because the
category of representation is semisimple these fusion coefficients should be
understood as multiplicities in the Grothendieck ring.

We do not claim that there is a unique procedure for extracting the S -matrix here,
so there might be more than one Verlinde-type formula giving the same answer.
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Next, we outline a Verlinde-type formula for the triplet algebra obtained in [39],
with some crucial modifications in [43]. We already listed all irreps earlier with their
explicit characters. Form a 2n � 1 character vector

	p.�/ WD .ch
.p/; ch˘.p/; ch
.1/; ch˘.p�1/; � � � ; ch
.p�1/; ch˘.1//
T ;

where .�/T stands for the transpose. Easy computation—by using modular transfor-
mation formulas for �p;i and @�p;i —shows that

	p.�1

�
/ D Sp.�/ � 	p.�/; 	p.� C 1/ D Tp.�/ � 	p.�/;

where the entries of the matrix are computed by using the formula

ch
.s/.�1

�
/ D 1p

2p

�
s

p

�
ch
.p/.�/ C .�1/p�s	˘.p/.�/

C
p�1X

s0D1

2cos.
2.p � s/s0

p
/.ch
.p�s0/.�/ C ch˘.s0/.�//

�

�
p�1X

s0D1

.�1/pCsCs0

2sin.
2ss0

p
/i�.

p � s0

p
ch
.s0/.�/ � s0

p
ch˘.p�s0/.�//

�

and a similar formula for 	˘.s/.� 1
�
/. The matrix Tp.�/ is clearly independent of

� and diagonal (we omit its explicit form here). This way we do not obtain a
2p-dimensional representation of the modular group due to � -dependence. To fix
this problem it is convenient to introduce a suitable automorphy factor j.�; �/,
� 2 SL.2;Z/, satisfying the cocycle condition

j.�� 0; �/ D j.� 0; �/j.�; � 0�/:

In addition, we can define j.�; �/ such that the modified S ,T -matrices

Sp WD j.S; �/Sp.�/; Tp WD j.T; �/Tp.�/;

do not depend on � , so Sp and Tp define a genuine representation of SL.2;Z/. This
was achieved explicitly in [39, Sect. 3]. Again we omit explicit formulas for Sp for
brevity. Equipped with a right candidate for the S -matrix we are ready to compute
the Verlinde sum

N k
ij WD

X

r2f0;:::;2p�1g

Sp.ir/Sp.jr/Sp.k�r/

Sp.0r/
:
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These numbers turn out to be non-negative integers, so we can form a free Z-module
generated by the equivalence classes of irreps, and on it we let

XI � XJ WD
X

K

N K
IJ XK: (31)

Theorem 5. The previous product defines an associative ring structure. Moreover,


.s/ � 
.t/ D
min.sCt�1;2p�s�t�1/X

rDjs�t jC1;by 2


.r/ ˚
p;p�1M

rD2p�s�tC1IstepD2

P C
r


.s/ � ˘.t/ D
min.sCt�1;2p�s�t�1/X

rDjs�t jC1;by 2

˘.r/ ˚
p;p�1M

rD2p�s�tC1IstepD2

P �
r (32)

˘.s/ � ˘.t/ D
min.sCt�1;2p�s�t�1/X

rDjs�t jC1;by 2


.r/ ˚
p;p�1M

rD2p�s�tC1IstepD2

P C
r ;

where Pṙ are given by

P C
r D 2
.r/ C 2˘.p � r/; P �

r D 2˘.r/ C 2
.p � r/ (33)

and where the summation is up to p � 1 or p depending on whether r C s C t is
even or odd, respectively.

Tsuchiya and Wood in [60] (see also [58]) proved that the above product recovers
correct multiplication in the Grothendieck ring of the category W .p/ � Mod (this
one exists thanks to [47]). Moreover, the Pṙ summands in the formulas should be
viewed as projective modules. The approach in [60] is based on the notion of fusion
expressed as a certain space of coinvariants. Some special cases of the fusion rules
are computed in [7] by using intertwining operators.

Observe also that for X D ˘ or 
 and 1 � s � p we have

qdim.X.s// D s;

which can be easily verified by considering asymptotic properties of the given
q-series [22]. It is a priori not clear if this agrees with the categorical q-dimension.

We conclude this section with a comment that we believe this pattern persists for
other C2-cofinite vertex algebras or at least those that are of CFT type and where
the vertex algebra is simple. Moreover, we conjecture that in a favorable situation
when V � Mod is rigid [57] the analytic q-dimension agrees with the categorical
one. Rigidity in general seems to fail for Wp;q triplet vertex algebras studied in
[7, 8, 10, 31, 32].
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5 Beyond C2-Cofinite Vertex Algebras

Very little is known about general categories of representations of irrational non
C2-cofinite vertex algebras (let alone any modularity-type properties!). We only
focus on those vertex algebras with good categorical properties in the sense that
they admit a subcategory where irreducibles and perhaps projective modules can be
classified. An obvious candidate here is the Heisenberg vertex algebra M.1/ already
discussed in the setup of lattice vertex algebras. The category of h-diagonalizable
M.1/-modules is known to be semisimple and the irreps are F�, � 2 h� [37]. In
other words, all irreducible modules are “generic”. In addition, the formal fusion
product is given by F� � F� D F�C� . A better candidate (in terms of richness
of representations) for discuss here is the singlet vertex algebra [2, 3, 50], a proper
subalgebra of the full rank one Fock space M.1/, so all Heisenberg algebra modules
are already included. In addition the singlet is included inside the triplet algebra
W .p/. So in addition to Fock space modules, the singlet admits a special infinite
family of representations that do not look like F� and come from decomposition of
irreducible W .p/-modules.

The setup is as in the previous section. We fix the central charge to be cp;1 and
choose the same conformal vector in M.1/. Following the notation from [2] (see
also [3]), we define

W .2; 2p � 1/ D KerM.1/
QQ:

called the singlet vertex algebra of central charge cp;1. Since QQ commutes with the
action of the Virasoro algebra, we have

L.cp;1; 0/ � W .2; 2p � 1/:

The vertex operator algebra W .2; 2p � 1/ is completely reducible as a Virasoro
algebra module and the following decomposition holds:

W .2; 2p � 1/ D
1M

nD0

U.Vir/: u.n/I u.n/ D Qne�˛n Š
1M

nD0

L.cp;1; n2p C np � n/;

As shown in [2] (see also [3]) all irreducible W .2; 2p � 1/-modules are constructed
as subquotients of the Fock spaces F�. What is peculiar about these irreps is that
they come in two groups with very distinct features:

• (Typical or generic) Those isomorphic to irreducible Virasoro Fock spaces
denoted by F� (it simply means that � does not satisfy a certain integrability
condition).

• (Atypical or generic) A certain family Mr;s of subquotients of Fock spaces
F r�1

2

p
2pC s�1p

2p
, r 2 Z, and 1 � s � p. Each Mr;s is isomorphic to an infinite

direct sum of Virasoro irreps.
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Each irrep Mr;s decomposes as an infinite direct sum of irreducible Virasoro
algebra (for explicit decomposition formulas see [4,24]). This is then used to show:

chŒMr;s�.�/ D Ppr�s;p.0; �/ � PprCs;p.0; �/

�.�/
;

where

Pa;b.u; �/ D
1X

nD0

znC a
2b qb.nC a

2b /2

; z D e.u/: (34)

The last expression is what is usually called partial theta function of and its
properties are well-recorded in the literature [17]. In particular, for M1;1 D
W .2; 2p � 1/, we get

chŒW .2; 2p � 1/�.�/ D
P

n2Z sgn.n/q
p.nC p�1

2p /2

�.�/
;

which is precisely false theta function of Rogers.
If we try to naively compute

Pa;b.
u

�
; �1

�
/

some divergent integrals appear, so instead we introduce a regularization, a method
used in physics to handle divergent quantities.

Now, we define the regularized characters by introducing a parameter � to achieve
better modular properties. We let

chŒF �
� �.�/ D e2��.��˛0=2/ q.��˛0=2/2=2

�.�/

chŒM �
r;s�.uI �/ D 1

�.�/

1X

nD0

chŒF �
˛r�2n�1;p�s

�.�/ � chŒF �
˛r�2n�2;s

�.�/;

(35)

where ˛0 D ˛C C ˛�, ˛C D p
2p and ˛� D �p2=p.

Observe that typical �-regularized characters are simply trF�
e

2��.
˛.0/
p

2p
�˛0=2/

qL.0/�c=24. But atypical regularization is more subtle and it has no obvious
interpretation as graded trace. Let ˇṙ;s D ..r � 1/˛C ˙ s˛�/=2, then the atypical
characters are

chŒM �
r;s�.�/

D chŒF �
˛0=2�ˇ�

r;s
�.�/P˛C�.�˛Cˇ�

r;s� I ˛2C�/

�chŒF �

˛0=2�ˇ
C
r;s

�.�/P˛C�.�˛CˇC
r;s� I ˛2C�/:
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We can easily show that

chŒF �
�C˛0=2�

��1

�

� D
Z

R

S�
�C˛0=2;�C˛0=2chŒF �

�C˛0=2�.�/d�;

with S�
�C˛0=2;�C˛0=2 D e2��.���/e�2�i��.

The next result taken from [24] gives S -“matrix” expressed as a kernel.

Theorem 6.

chŒM �
r;s�
�

� 1

�

	
D
Z

R

S�
.r;s/;�C˛0=2chŒF �

�C˛0=2�.�/d� C X�
r;s.�/

with

S�
.r;s/;�C˛0=2 D �e�2��..r�1/˛C=2C�/e�i.r�1/˛C�

sin
�
�s˛�.� C i�/

�

sin
�
�˛C.� C i�/

�

and

X�
r;s.�/ D 1

4i�.�/
.sgn.Re.�//C1/

X

n2Z
.�1/rne

�i s
p n

q
1
2 . n2

˛C
��2/�

q�i�n=˛2
C �qi�n=˛2

C

�
:

5.1 Brewing a Verlinde-Type Formula

If we have a continuous type S -matrix as the one above, the right approach for
defining fusion coefficients seems to be [25, 26]

Z

R

S�
a�S�

b�S�N�
��

S�
.1;1/�

d�:

But this integral badly diverges, so we either have to pass to heuristic approach as
in [25] and [26] where the integrals are interpreted as a sum of the Dirac delta
functions, or we can simply change the order of integration so that the fusion
coefficients are genuine distributions. Thus, we redefine the product in the Verlinde
algebra of characters as

chŒXa� � chŒXb� WD
Z

R

 Z

R

S�
a�S�

b�S�N�
��

S�
.1;1/�

chŒF �
��d�

!
d� (36)
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It is worth to point out that the map Xa 7! chŒX�
a � is injective on irreducible

modules, so we don’t loose any information by working with the characters, and
we can even take the approach as in (31) with integrals added.

It can be shown that this product converges for all irreps, and it give rise to a
commutative associative algebra. Finally, we have this remarkable formula [24]

Theorem 7. With Re.�/ < 0, the Verlinde-type algebra of regularized characters
is given by

chŒF �
� � � chŒF �

�� D
p�1X

`D0

chŒF �
�C�C`˛�

�

chŒM �
r;s� � chŒF �

�� D
sX

`D�sC2
`CsD0 mod 2

chŒF �
�C˛r;`

�

chŒM �
r;s� � chŒM �

r 0;s0 � D
minfsCs0�1;pgX

`Djs�s0jC1
`CsCs0D1 mod 2

chŒM �
rCr 0�1;`�

C
sCs0�1X

`DpC1
`CsCs0D1 mod 2

�
chŒM �

rCr 0�2;`�p� C chŒM �
rCr 0�1;2p�`�

C chŒM �
rCr 0;`�p�

	
:

Remark 1. The previous result is expected to give relations in the Grothendieck ring
of a suitable (sub)category of W .2; 2p � 1/-modules. It is not clear to us whether
any of the current results in VOA theory (including [47]) gives braided category
structure on this category. Also, we conjecture equivalence of categories W .2; 2p �
1/ � Mod Š Uq.‹/ � Mod where Uq.‹/ is yet-to-be defined quantum group at
2p-th root of unity.

6 “Bare” Virasoro Vertex Algebra

We are finally left with the lonely Virasoro vertex operator algebra L.cp;1; 0/

sitting inside the singlet W .2; 2p � 1/. In this section we also allow p D 1.
Irreducible admissible L.cp;1; 0/-modules are simple module of the form L.cp;1; h/,
where h 2 C. There is a distinguished family of highest weight modules which
are not Verma modules, that is V.cp;1; 0/ ¤ L.cp;1; 0/. This is if and only if

h D hi;s D .ip�s/2�.p�1/2

4p
, i > 0, 0 < s � p. We call them atypical modules.
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6.1 Modular-Like Transformation Properties?

It is a well-known fact (due to Feigin and Fuchs) that

chL.cp;1;hi;s /.�/ D .1 � qis/q
.ip�s/2

4p

�.�/
:

chL.cp;1;h/.�/ D qhC.p�1/2=4p

�.�/
I h ¤ hi;s

Evaluating � 7! � C 1 transformation on the character is trivial as usual. If
we consider � 7! � 1

�
, as in the singlet case of Fock modules, we obtain one

or two Gauss’ integrals. But this answer will lead to new problems when we
start computing a Verlinde-type formula. It turns out that two irreducible modules
for this vertex algebra can produce infinitely many (more precisely, uncountably
many) irreducible modules after the fusion, so we conclude that there cannot be a
reasonable fusion algebra for L.cp;1; 0/-modules unless of course we allow some
kind of completions that we do not dwell into. Similar problem is already evident at
the level of q-dimensions. Observe that for h ¤ hi;s

qdim.L.cp;1; h// D lim
�!0

qh

1 � q
D 1:

Yet, in sharp contrast, we have

qdim.L.cp;1; hi;s// D lim
�!0

qhi;s .1 � qis/

1 � q
D is;

indicating that these atypical modules ought to behave much better under the fusion.
This is also clear because of the following results (cf. [35, 52–54]):

L.cp;1; hr;s/ � L.cp;1; hr 0;s0/ D
X

r 002A.r;r 0/;s002A.s;s0/

L.cp;1; hr 00;s00/;

where we assume that all indices are positive and Ai;j D fi C j � 1; i C j � 3;

� � � ; ji � j j C 1g. We should say that this formula only indicates triples of atypical
modules whose fusion rules are 1 and not a relation in a hypothetical Grothendieck
ring. We also have

qdim.L.cp;1; hr;s/ � L.cp;1; hr 0;s0// D qdim.L.cp;1; hr;s// � qdimL.cp;1; hr 0;s0//

Because of the infinities involved we do not expect the irreducible modules can be
organized in a way that the Verlinde formula holds. This is why to vertex algebras
with similar properties we refer to as “wild”.
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7 Generalization and Higher Rank False Theta Functions

The story told in the previous sections can be generalized by considering the
sequence of embeddings of vertex algebras:

where Q is a root lattice of ADE type, g is the corresponding simple Lie algebra,
Wp.g/ is the affine W -algebra of central charge cp.g/ associated to g, and where
W 0

Q.p/ and W .p/Q are vertex algebras defined below. In the special case of g D sl2
and p � 2 we recover the embedding of vertex algebras given in the introduction.

The affine W -algebra associated to Og at level k ¤ �h_, denoted by Wk.g/ is
usually defined as the cohomology group obtained via a quantized BRST complex
for the Drinfeld-Sokolov hamiltonian reduction [38]. As shown by Feigin and
Frenkel (cf. [38] and [36] and citations therein) this cohomology is nontrivial only in
the degree zero. Moreover, it is known that Wk.g/ is a quantum W -(vertex) algebra,
in the sense that is freely generated by rank.g/ primary fields, not counting the
conformal vector.

We will be following the notation from Sect. 3. As before denote by Lı the dual
lattice of L. Now, we specialize L D p

pQ, where p � 2 and Q is root lattice
of ADE type. We equip VL with a vertex algebra structure as earlier in Sect. 3 (by
choosing an appropriate 2-cocycle). Let ˛i denote the simple roots of Q. For the
conformal vector we conveniently choose

! D !st C p � 1

2
p

p

X

˛2�C

˛.�2/1;

where !st is the standard (quadratic) Virasoro generator [37, 51] . Then VL is a
conformal vertex algebra of central charge1

rank.L/ C 12.�; �/.2 � p � 1

p
/;

where � is the half-sum of positive roots. Consider the operators

e
p

p˛i

0 ; e
�˛j =

p
p

0 ; 1 � i; j � rank.L/ (37)

acting between VL and VL-modules. These are the so-called screening operators.
More precisely [55]

Lemma 1. For every i and j the operators e
p

p˛i

0 and e
�˛j =

p
p

0 commute with each
other, and they both commute with the Virasoro algebra.

1Without the linear term the central charge is rank.L/.



24 A. Milas

We shall refer to e
p

p˛i

0 and e
�˛j =

p
p

0 , as the long and short screening, respectively.
It is well-known that the intersection of the kernels of residues of vertex operators
is a vertex subalgebra (cf. [36]), so the next construction seems very natural.

An important theorem of Feigin and Frenkel [36] says that for k generic and g
is simply-laced, there is an alternative description of Wk.g/ in terms of free fields.
For this purpose, we let � D k C h_, where k is generic. Then there are (as above)
appropriately defined screenings2

e
�˛i =

p
�

0 W M.1/ �! M.1; �˛i =
p

�/;

such that

W�.g/ D
l\

iD1

KerM.1/.e
�˛i =

p
�

0 /;

where l D rank.L/. If we assume in addition that g is simply laced (ADE type) we
also have the following important duality [36]

W�.g/ D
l\

iD1

KerM.1/.e
p

�˛i

0 /:

Generic values of � do not have integrality property so in particular the screening

operators e
�˛i =

p
�

0 cannot be extended to a lattice vertex algebra. Still this idea can
be used to define much larger vertex algebras which we now describe.

Theorem 8. Let g be simply laced. Then p D k C h_ 2 N�2 is non-generic. More
precisely,

W 0.p/Q WD
l\

iD1

KerM.1/e
�˛i =

p
p

0

is a vertex algebra containing Wp.g/ as a proper subalgebra. In particular, for
Q D A1 this algebra is simply the singlet W .2; 2p � 1/ discussed earlier.

The previous algebra can be maximally extended leading to

W .p/Q WD
l\

iD1

KerVLe
�˛j =

p
p

0 : (38)

Again, if we let Q D A1 this is just the triplet vertex algebra W .p/.

2These screenings to do not extend to a lattice vertex algebra in general.
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The following conjecture was mentioned in [13].

Conjecture 1. The vertex algebra W .p/Q is C2-cofinite.

Although there are not many rigorous results on the representation theory of
W 0.p/Q and of W .p/Q, we again expect that irreps of W .p/Q can be understood
as subquotients of VL-modules, while all atypical irreps of W 0.p/Q all appear in
the decomposition of irreducible W .p/Q-modules and typical representations. As
the structure of Fock spaces in the higher rank is not well-understood well, one
can take a different geometric approach to guess the characters of relevant modules
(see [30]).

7.1 Characters of W .p/Q-Modules

Let � denote the half-sum of positive roots, by W we denote the Weyl group and by
.�; �/ the usual inner product in L ˝Z Q normalized such that .˛; ˛/ D 2 for each
root ˛. We also let .ˇ; ˇ/ D jjˇjj2. Let

Y

˛2��

.1 � z˛/

denote the Weyl denominator (here �� is the set of negative roots) and

z˛ D z.˛1;˛/ � � � z.˛n;˛/:

There are two expression that we are concerned about here. The first does not give
a proper character but only auxiliary expression to compute the proper (conjectural)
characters. Assume � 2 Lı and let [30]

chW .p;�/Q .�; z/ D �.�/�rank.Q/

e�
Q

˛2��
.1 � z˛/

X

w2W

X

ˇ2Q

.�1/l.w/q
jjpˇC�C.p�1/.�/jj2

2p zw.ˇCO�C�/:

This expression cannot be evaluated at zi D 1, but the limit

chW .p;�/Q .�/ D lim
z!1

chWQ.p;�/.�/

is conjecturally expected to give the character of W .p; �/Q, an irreducible W .p/Q-
module. It is not hard to see by using L’hopital rule that the resulting expression
is a linear combination of quasi-modular forms of different weight generalizing
the formula in (29). A much harder question to ask is to determine its modular
closure [30].
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7.2 Characters of W 0.p/Q-Modules

The previous computation can be motivated to compute (conjectural) expressions
for the characters of atypical irreducible W 0.p/Q-modules. Of course, for typical
modules we have chF�

.�/ is just a pure power of q divided with the rank.Q/-th
power of the Dedekind �-function. Characters of atypical W 0.p/Q-modules should
be parameterized by � 2 L0 (cf. with the singlet algebra)

chW 0.p;�/Q
.�/

D CTz

8
<

:
�.�/�rank.Q/

e�
Q

˛2��
.1 � z˛/

X

w2W

X

ˇ2Q

.�1/l.w/q
jjpˇC�C.p�1/.�/jj2

2p zw.ˇCO�C�/:

9
=

; ;

where CTz denote the constant term w.r.t. z. Observe that this is precisely in
the analogy with the singlet modules. The previous definition motivates our
proposal of higher rank false theta functions, generalizing the sl2 case, of “weight”
j�Cj � rank.L/

2
:

Fp;�.�/ D CTz

8
<̂

:̂

P
w2W

P
ˇ2Q.�1/l.w/q

jjpˇC�C.p�1/.�/jj2

2p zw.ˇCO�C�/:

e�
Q

˛2��
.1 � z˛/

9
>=

>;
;

Remark 2. We expect many properties of generalized false theta functions to follow
the pattern observed in the rank one case, including modularity-like properties of
regularized false thetas, etc. This will be the subject of our forthcoming joint work
with Bringmann [22].
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