
Recent Results in the Approximation
of Nonlinear Optimal Control Problems

Maurizio Falcone(B)

Dipartimento di Matematica, SAPIENZA - Università di Roma,
P.za Aldo Moro, 2, 00185 Roma, Italy

falcone@mat.uniroma1.it

Abstract. This survey paper presents recent advances for the numer-
ical solution of Hamilton-Jacobi-Bellman equations related to optimal
control problems. The Dynamic Programming approach suffers for the
“curse of dimensionality” and the solution of the nonlinear partial dif-
ferential equations characterizing the value function of optimal control
problems in high dimension is out of reach. However, a combination of
various techniques can circumvent this difficulty and find the solution
of optimal control problems up to dimension 10, a range of dimensions
which could be enough for many applications. We illustrate here some of
these techniques: patchy domain decomposition, fast marching and fast
sweeping and an acceleration method based on the coupling between
value and policy iteration. Numerical examples will illustrate the main
features of those methods.

1 Introduction

The numerical solution of partial differential equations obtained by applying the
Dynamic Programming Principle (DPP) to nonlinear optimal control problems
is a challenging topic that can have a great impact in many areas, e.g. robot-
ics, aeronautics, electrical and aerospace engineering. Indeed, by means of the
DPP one can characterize the value function of a fully nonlinear control prob-
lem (including also state/control constraints) as the unique viscosity solution
of a nonlinear Hamilton-Jacobi equation, and, even more important, from the
solution of this equation one can derive the approximation of a feedback control.
This result is the main motivation for the PDE approach to control problems
and represents the main advantage over other methods, such as those based on
the Pontryagin minimum principle. It is worth to mention that the characteriza-
tion via the Pontryagin principle gives only necessary conditions for the optimal
trajectory and optimal open-loop control. Although from the numerical point
of view the control system can be solved via shooting methods for the associ-
ated two point boundary value problem, in real applications a good initial guess

The author wish to acknowledge the support obtained by the following grants:
AFOSR Grant no. FA9550-10-1-0029, ITN - Marie Curie Grant no. 264735-SADCO.

I. Lirkov et al. (Eds.): LSSC 2013, LNCS 8353, pp. 15–32, 2014.
DOI: 10.1007/978-3-662-43880-0 2, c© Springer-Verlag Berlin Heidelberg 2014

16 M. Falcone

for the co-state is particularly difficult and often requires a long and tedious
trial-error procedure to be found.

In this paper we focus our attention on efficient methods to implement the
DP approach for nonlinear control problems governed by ordinary differential
equations. In particular, our presentation will be centered on the minimum time
problem, which is associated to the following Hamilton-Jacobi-Bellman equation{

max
a∈A

{−f(x, a) · ∇u(x)} − 1 = 0 , x ∈ R
d\T

u(x) = 0 , x ∈ T
(1)

where d is the dimension of the state, A ⊂ R
m is a compact set defining the

admissible controls, T is the target set to be reached in minimal time and f :
R

d × A → R
d is the dynamics of the system. For this classical problem the

value function T : R
d → R at the point x is the minimal time to reach the

target starting from x (note that T (x) = +∞ if the target is not reachable).
For numerical purposes, the equation is solved in a bounded domain Ω ⊃ T , so
that also boundary conditions on ∂Ω are needed. A rather standard choice when
one does not have additional informations on the solution and deals with target
problems is to impose state constraints boundary conditions.

The techniques used to obtain a numerical approximation of the viscosity
solution of Eq. (1) have been mainly based on Finite Differences [12,22] and
Semi-Lagrangian schemes [15,17]. It is rather important to note that traditional
approximation schemes presented for example in [12] and [15] are based on a
fixed point iteration scheme, which computes the solution at each node of the
grid at every iteration. Denoting by M the number of nodes in each dimension
and considering that the number of iterations needed for convergence is of order
O(M), the total cost of this full-grid scheme is O(Md+1). We easily conclude
that this algorithm is very expensive when the state dimension is d ≥ 3, although
it is rather efficient for low dimensional control problems as shown in [15] (see
also the book [17]).

The “curse of dimensionality” is a typical drawback of Dynamic Program-
ming and can not be eliminated. However, several techniques have been intro-
duced in order to solve the DP equations in a rather high dimension (see [10] for
a first tentative in this direction). Typically 1 ≤ d ≤ 10 is an interesting range
which can allow to solve many problems coming from applications, moreover a
model reduction technique can be applied to the original dynamics in order to
get a new dynamical system of lower dimension still catching the behavior of the
dynamics. This remark is the main motivation which has driven the search for
new computational techniques aimed to accelerate convergence and/or to reduce
the memory allocation requirements.

Let us give some examples. One possible strategy is based on the decom-
position of the domain Ω. The problem is actually solved in subdomains Ωj ,
j = 1, . . . , R, whose size is chosen in order to reduce the number of grid nodes to
a manageable size. Therefore, rather than solving a unique huge problem, one can
solve R smaller subproblems working simultaneously on several processors. This
produces a simple parallel algorithm. Depending on the choice of the subdomains

Approximation of Nonlinear Optimal Control Problems 17

Ωj we can have some overlapping regions or a number of interfaces between the
subdomains. The presence of interfaces and/or overlapping regions is a delicate
point, since at each iteration of the algorithm it will be necessary to exchange
information between processors to properly define the values at the interfaces.
Without this communication the result will not be correct. The interested reader
can find in the book [26] a comprehensive introduction to domain decomposition
techniques, whereas for an application to Hamilton-Jacobi equations we refer to
[8,18]. In this approach the choice of the division into subdomains is aimed
to choose rather simple boundaries and geometries (typically an hypercube is
divided into small hypercubes). A recent improvement has been made in [9] try-
ing to adapt the geometry to the optimal dynamics of the system in order to
obtain a subdivision made by “almost” invariant subdomains (the patches), this
allows to eliminate the transmission load due to the exchange of informations
between different processors. Previous patchy decompositions based on different
ideas have been proposed first by Navasca and Krener in [20].

Another proposal to reduce the computational effort is the so-called Fast
Marching method introduced in [25,27]. While the full-size grid is always allo-
cated, the computation is restricted to a small portion of the grid, thus saving
CPU time. The cost of this method is of order O(Md log Md). In the original
version, the Fast Marching method was derived for the Eikonal equation, corre-
sponding (under a suitable change of variable) to Eq. (1) with f(x, a) = a and
A = Bd(0, 1), the unit ball in R

d centred in 0 (see [14] for details). Despite
the efficiency of the Fast Marching method, at present its application to more
general equations of the form H(x, u(x),∇u(x)) = 0 is not an easy task and
it is still under investigation (see [7,11,13,23]) because the causality principle
which is behind the ordering of the grid nodes is not easy to detect for gen-
eral control problems. Other methods have been proposed exploiting the idea
that one can accelerate convergence by alternating the order in which the grid
nodes are visited giving rise to the so-called “sweeping methods”. These meth-
ods do not require a special ordering of the grid nodes and are somehow blind,
so it could be difficult to prove that they converge after a finite number of
sweeps. However, they are easy to implement and they have been shown to
be efficient for the Eikonal equation [28] and, more recently, for rather general
Hamiltonians [24].

The third method is based on a coupling between two classical methods:
value and policy iteration. It is well known that the value iteration is globally
convergent but the rate of convergence is rather slow, whereas the policy itera-
tion is locally convergent with a super-linear (or quadratic) rate of convergence.
Then, a natural idea is to combine these methods in order to obtain a glob-
ally convergent method which starts using the value iteration to switch into the
policy iteration when it reaches a “small” neighborhood of the solution.

The survey is organized as follows. Section 2 is devoted to the general presen-
tation of two computational methods: the value iteration and the policy iteration.
The semi-Lagrangian scheme associated to these methods will be the first build-
ing block for the following improvements. Section 3 is devoted to the patchy

18 M. Falcone

domain decomposition method. Section 4 will briefly sketch Fast Marching and
Fast sweeping methods. Finally, Sect. 5 is devoted to an acceleration method
based on the coupling between value iteration and policy iteration.

2 Two Classical Algorithms for Dynamic Programming

In this section we will summarize the basic results for the two methods as they
will constitute the starting point for our new algorithms. The essential features
will be briefly sketched, more details can be found in the original papers and in
some monographs, e.g. in the classical books by Bellman [6], Howard [19] and
for a more recent setting in the framework of viscosity solutions in [3,15]. Let us
present the method for the minimum time problem where the dynamics is{

ẏ(t) = f(y(t), α(t))
y(0) = x

(2)

where y ∈ R
d, α ∈ R

m and α ∈ A ≡ {a : R+ → A, measurable}. If f is Lipschitz
continuous with respect to the state variable and continuous with respect to
(x, α), the classical assumptions for the existence and uniqueness result for the
Cauchy problem (2) are satisfied. To be more precise, the Carathéodory theorem
implies that for any given control α(·) ∈ A there exists a unique trajectory y(·;α)
satisfying (2) almost everywhere. Changing the control policy the trajectory will
change producing a family of infinitely many solutions of the controlled system
(2) parametrized with respect to α.

In the minimum time problem one has to drive the controlled dynamical
system (2) from its initial state to a given target T . Let us assume that the
target is a compact subset of Rd with non empty interior and piecewise smooth
boundary. The major difficulty dealing with this problem is that the time of
arrival to the target starting from the point x and applying the control strategy
α, denoted by t(x, α(·)), can be infinite at some points (if the strategy does not
bring to T), i.e.

t(x, α(·)) :=

{
inf

α∈A
{t ∈ R+ : y(t, α(·)) ∈ T } if y(t, α(t)) ∈ T for some t ,

+∞ otherwise ,
(3)

As a consequence, the minimum time function defined as

T (x) = inf
α∈A

t(x, α(·)) (4)

is not defined everywhere if some controllability assumptions are not satisfied.
In general, this is a free boundary problem where one has to determine at the
same time, the couple (T,Ω), i.e. the minimum time function and its domain.
Nevertheless, by applying the Dynamic Programming Principle and the so-called
Kruzkov transform

v(x) ≡
{

1 − exp(−T (x)) for T (x) < +∞
1 for T (x) = +∞ (5)

Approximation of Nonlinear Optimal Control Problems 19

the minimum time problem is characterized in terms of the unique viscosity
solution of {

v(x) + sup
a∈A

{−f(x, a) · Dv(x)} = 1 in R\T

v(x) = 0 on ∂T ,
(6)

The semi-Lagrangian scheme for the approximation of (6) is obtained coupling a
discretization in time along the trajectories with a local reconstruction in space
via interpolation. Several coupling are possible and the interested reader can
find in [17] all the details. Here we just sketch the one dimensional case where
the integration along the trajectory is obtained using the Euler method. We
introduce a grid G on Ω with nodes xi, i = 1, . . . , N . Without loss of generality,
throughout this paper we will assume that the numerical grid G is a regular
equidistant array of points with mesh spacing denoted by Δx. We also denote
by G̊ the internal nodes of G and by ∂G its boundary, whose nodes act as
ghost nodes. We map all the values at the nodes onto a N -dimensional vector
U = (U1, . . . , UN). Let us denote by hi,a > 0 a (fictitious) time step, possibly
depending on the node xi and control a, and by k = Δx > 0 the space step.
For every internal node of the grid we follow the dynamics using one step of the
Euler scheme [4,5] then we compute the values at the points xi +hi,af(xi, a) via
an interpolation operator denoted by I[U] [15]. Finally, we obtain the following
scheme in fixed point form for of (6)

U = F (U) , (7)

where F : [0, 1]N → [0, 1]N (due to the Kruzkov change of variable) is defined
componentwise by

[F (U)]i =

⎧⎪⎨
⎪⎩

min
a∈A

{I [U] (xi + hi,af(xi, a)) + hi,a} xi ∈ G̊ \ T ,

0 xi ∈ T ,
1 xi ∈ ∂G .

The interpolation operator I[U] : Ω → R extends the discrete value function
U to the whole space Ω. In order to fix the ideas, one should think to the
linear interpolation in R

d described in [10] but other choices are possible [17].
We choose the time step hi,a such that |hi,af(xi, a)| = k for every i = 1, . . . , N
and a ∈ A, so that the point xi +hi,af(xi, a) falls in one of the first neighboring
cells. In the simplest case, the minimum over A is evaluated by direct comparison,
discretizing the set A with Nc points but other (more expensive and accurate)
methods are available. Note that defining F (U) = 1 on ∂G corresponds to impose
state constraint boundary conditions. The final iterative scheme reads

U (n+1) = F (U (n)) , U (0) =
{

0 on T
1 otherwise . (8)

We refer to [15,17] for details on the building blocks of this construction and for
the convergence analysis. With the discrete value function U in hand, we can
obtain a feedback map Φh : Ω → A just defining

Φh(x) := arg min
a∈A

{I[U](x + hx,af(x, a)) + hx,a} . (9)

20 M. Falcone

Under rather general assumptions (see [16]), it can be shown that this is an
approximation of the feedback map constructed for the continuous problem.
A detailed discussion on the construction of feedback maps via the value function
is contained in [3, p. 140–143]. It is important to note that weak convergence
results apply also for Lipschitz continuous value functions.

Then, the value iteration based on the semi-Lagrangian method leads to
following iterative scheme:

Data: Mesh G, Δt, initial guess V 0, tolerance ε.
forall the xi ∈ T do

set Vi = 0
end
forall the xi ∈ ∂G do

set Vi = 1
end

while ||V k+1 − V k|| ≥ ε do
forall the xi ∈ G do

V k+1
i = min

a∈A
{e−ΔtI

[
V k

]
(xi + Δtf (xi, a)) + 1 − e−Δt}

end
k = k + 1

end
Algorithm 1: (VI) Value Iteration method for minimum time problem

Here V k
i represents the values at a node xi of the grid at the k-th iteration and

I is an interpolation operator acting on the values of the grid.
Algorithm 1 is referred in the literature as the value iteration method because,

starting from an initial guess V 0, it modifies the values on the grid according
to the nonlinear rule in the loop. It is well-known that the convergence of the
value iteration can be very slow, since the contraction constant e−Δt is close to 1
when Δt is close to 0. This means that a higher accuracy will also require more
iterations. Then, there is a need for an acceleration technique in order to cut the
link between accuracy and complexity of the value iteration. Note that similar
ideas can be applied to other classical control problems with small changes [17].

A classical acceleration technique is the approximation in the policy space
(or policy iteration), it is based on a linearization of the Bellman equation.
This method is due to Howard [19] and dates back to the origin of dynamic
programming. First, an initial guess for the control for every point in the state
space is chosen. Once the control has been fixed, the Bellman equation becomes
linear (no search for the minimum in the control space is performed), and it is
solved as an advection equation. Then, an updated policy is computed and a
new iteration starts. This leads to the following algorithm.

Note that the solution of the policy evaluation step can be obtained either
by a linear system (assuming a linear interpolation operator) or as the limit

V k = lim
m→+∞ V k,m , (10)

Approximation of Nonlinear Optimal Control Problems 21

Data: Mesh G, Δt, initial guess V 0, tolerance ε.
forall the xi ∈ T do

set Vi = 0
end
forall the xi ∈ ∂G do

set Vi = 1
end

while ||V k+1 − V k|| ≥ ε do

Policy evaluation step:

forall the xi ∈ G do

V k
i = Δt + e−ΔtI

[
V k
] (

xi + Δtf
(
xi, a

k
i

))
end
Policy improvement step:

forall the xi ∈ G do

ak+1
i = arg min

a

{
Δt + e−ΔtI

[
V k
]
(xi + Δtf(xi, a))

}
end
k = k + 1

end

Algorithm 2: (PI) Policy Iteration method for the minimum time problem

of the linear time-marching scheme

V k,m+1
i = Δt + e−ΔtI

[
V k,m

] (
xi + Δtf

(
xi, a

k
i

))
. (11)

Although this scheme is still iterative, the lack of a minimization phase makes
it faster than the original value iteration. The sequence {V k} turns out to be
monotone decreasing at every node of the grid. At a theoretical level, policy
iteration can be shown to be equivalent to a Newton method, and therefore,
under appropriate assumptions, it converges with quadratic speed (see [21]). On
the other hand, convergence is local and this may represent a drawback with
respect to value iterations.

3 The Patchy Domain Decomposition

In this section we introduce our new domain decomposition method for solving
equations of Hamilton-Jacobi-Bellman type, in particular (6). The main feature
of the new method is the technique we use to construct the subdomains of the
decomposition, which are approximate “patches” in a sense inspired by Ancona
and Bressan [2] in their study of feedback stabilization. They introduced and
investigate the properties of a particular class of discontinuous feedbacks, the
so-called patchy feedbacks.

The following definition gives the fundamental concept of a patch.

Definition 1. Let Ω ⊂ R
d be an open domain with smooth boundary ∂Ω and

f be a smooth vector field defined on a neighborhood of Ω. We say that the pair

22 M. Falcone

(Ω, f) is a patch if Ω is a positive-invariant region for f , i.e. at every boundary
point y ∈ ∂Ω the inner product of f with the outer normal n satisfies

〈f(y), n(y)〉 < 0.

By means of a superposition of patches, we get the notion of a patchy vector
field on a domain Ω ⊂ R

d and they have shown that these can be used to
define discontinuous feedbacks stabilizing the system. However, their method is
not constructive so an effort has been made to transform this approach into
an algorithm. Clearly, from the numerical point of view, the approximation will
produce patches which will be “almost invariant” with respect to the optimal
dynamics driving the system. Their boundaries can be rather complicated, but
this has the advantage that we do not need to apply any transmission condition
between them.

Following [9], let us introduce two rectangular (structured) grids. The first
grid should be rather coarse because it is used for preliminary (and fast) com-
putations only. It will be denoted by G̃ and its nodes by x̃1, . . . , x̃ ˜N , where Ñ
is the total number of nodes. We will denote the space step for this grid by
k̃ := Δxcoarse and the approximate solution of the Eq. (6) on this grid by ŨP .

The second grid is instead fine, being the grid where we actually want to
compute the numerical solution of the equation. It will be denoted by G and its
nodes by x1, . . . , xN , where N is the total number of nodes (N>>Ñ). We will
denote the space step for this grid by k := Δxfine and the solution of the Eq. (6)
on this grid by UP . We also choose the number R of subdomains (patches) to
be used in the patchy decomposition and we divide the target Ω0 in R parts
denoted by Ωj

0, with j = 1, . . . , R.
The patchy method can be described as follows.

Patchy Algorithm

Step 1. (Computation on G̃). We solve the equation on G̃ by means of the clas-
sical domain decomposition algorithm (e.g. where the subdomains are
rectangles). For coherence we choose the (static) decomposition made
by R subdomains (as the number of patches). This leads to ŨP .

Step 2. (Interpolation on G). We define the function U
(0)
P on the fine grid G

by interpolation of the values ŨP . Then, we compute the approximate
optimal control

ã∗(xi) = arg min
a∈A

{I[U (0)
p](xi + hi,af(xi, a)) + hi,a} , xi ∈ G. (12)

Even if ã∗ is defined on G, we still use the symbol “tilde” to stress that
optimal controls are computed using only coarse information. We delete
G̃ and ŨP .

Step 3. (Main cycle) For every j = 1, . . . , R,
Step 3.1. (Creation of j-th patch). Using the (coarse) optimal control ã∗, we

find the nodes of the grid G that have the part Ωj
0 of the target in

Approximation of Nonlinear Optimal Control Problems 23

their numerical domain of dependence. This procedure defines the
j-th patch, naturally following the (approximate) optimal dynamics.
This step will be detailed later in this section.

Step 3.2. (Computation in j-th patch). As initial guess we initialize the j-th
solution equal to +∞ on the j-th patch and equal to 0 on the part
Ωj

0 of the target. Then, we apply iteratively the scheme (8) in the
j-th patch until convergence is reached. Finally, the j-th solution is
copied in the matrix that will contain the global solution UP .

Details on Step 3.1. The basic idea we adopt here is to divide the whole
domain starting from a partition of the target only, and let the dynamics make
a partition of the rest of the domain. To this end we use the approximation of the
optimal control given by ã∗ to obtain a domain decomposition fully compliant to
the dynamics. More precisely, we divide the target Ω0 in R parts, each associated
to a colour indexed by a number j = 1, . . . , R. Assume for instance that Ω0 is
a ball at the center of the domain and focus on the subset of the target with a
generic colour j, denoted by Ωj

0, see Fig. 1(a). The goal is to find the subset of
the domain Ω which has Ωj

0 as numerical domain of dependence. To do that, we
initialize the grid nodes with the values φi as follows:

φi =
{

1 , xi ∈ Ωj
0

0 , xi ∈ G\Ωj
0

, i = 1, ..., N.

Then we solve the following ad hoc discrete equation,

φi = I[φ](xi + hif(xi, ã
∗(xi))) , i = 1, ..., N, (13)

which is similar to the fixed-point scheme (7) for the main equation. Here hi > 0
is chosen in such a way that |hif(xi, ã

∗(xi))| = k. Once the computation is
completed, the whole domain will be divided in three zones:

Λj
1 = {xi : φi = 1} , Λj

2 = {xi : φi = 0} , Λj
3 = {xi : φi ∈ (0, 1)} ,

see Fig. 1(b). Note that Λj
3 will be nonempty because the interpolation operator

I in the scheme (13) mixes the values φi through a convex combination, thus
producing values in [0, 1] even if the initial datum is in {0, 1}. Since we need a
sharp division of the domain, we “project” the colour j into a binary value

φ̂i =
{

1 , φi ≥ 1
2

0 , φi < 1
2

, i = 1, ..., N (14)

and then we define the subdomain Ωj = {xi ∈ G\Ωj
0 : φ̂i = 1} as the j-th

patch, see Fig. 1(c). Once all the patches j = 1, . . . , R are computed, they are
assembled together on the grid G. Thus the grid results to be divided into R
patches, each associated to a different colour, as shown in Fig. 1(d). Note that
the boundaries of every patch are aligned with the coordinate axes.

The main point here is that the patches Ωj ’s are constructed to be invariant
with respect to the optimal dynamics, meaning that the solution of the equation

24 M. Falcone

(a) (b)

(c) (d)

Fig. 1. Creation of patches for a test dynamics, R = 4, Ω0 = small ball in the centre:
(a) Select a subdomain Ωj

0 of the target Ω0. (b) Find the nodes which depend, at least
partially, on Ωj

0. (c) Define Ωj projecting the color in a binary value. (d) Assemble all
patches.

in each patch will not depend on the solution in other patches. This is equivalent
to state that there is no crossing information through the boundaries of the
patches.

We stress that Step 3.1 of the algorithm is not expensive, even if it is
performed on the fine grid G. The reason for that is the employment of the
pre-computed optimal control ã∗ in the Eq. (13), which avoids the evaluation
of the minimum (see the scheme (8)). Moreover, the stopping rule for the fixed
point iterations used to solve (13) can be very rough, since we project the colors
at the end and then we do not need precise values.

Numerical examples
We will test the method described above against two minimum time problems
of the form (1). The numerical domain is always Ω = [−2, 2]2.
Test 1 (Eikonal) : d = 2 , f(x1, x2, a) = a , A = B2(0, 1) , Ω0 = B2(0, 0.5).

Test 2 (Fan) : d = 2 , f(x1, x2, a) = |x1 + x2 + 0.1|a , A = B2(0, 1) , Ω0 = {x1 = 0}.

In Fig. 2 we show the patchy decomposition for the two dynamics described
above in the case R = 8, Nc = 32, Ñ = 50 and N = 100. We also superimpose
the optimal vector field f(x, ã∗) to show that patches are (almost) invariant with

Approximation of Nonlinear Optimal Control Problems 25

)b()a(

Fig. 2. Patchy decompositions with R = 8, Nc = 32, Ñ = 50 and N = 100. For
visualization purposes not all the arrows are shown. (a) Eikonal, (b) Fan.

respect to the optimal dynamics. Indeed, only a few arrows cross from a patch to
another. Note that patches cover the whole domain but they are not equivalent
in terms of area, even if the target Ω0 was divided in R = 8 equal parts to
generate the decomposition.
It is interesting to compare the solution UP of the patchy algorithm with that of
the classical domain decomposition method UDD, both computed on the same
fine grid by means of the scheme (8). Let us denote by EP the difference EP :=
UP − UDD that in the following will be referred to as patchy error. In particular
we study the norms

‖EP ‖1 := kd
N∑

i=1

|EP i| and ‖EP ‖∞ := max
i=1,...,N

|EP i|

depending on the space steps k̃ and k. This error is exclusively due to the fact
that patches are not completely dynamics-invariant and then it will be considered
as a degree of the invariance of the patchy decomposition. Let us stress that we
apply state constraint boundary conditions on the patches.

We report the results for R = 16, which is the largest number of patches and
also the worst case we tested. Indeed, the error EP necessarily increases as R
increases because the number of boundaries increases. We present the results for
the Test 2 in Table 1, similar errors appear in other tests.

Table 1. Patchy error ‖EP ‖1 (‖EP ‖∞). Dynamics: Fan, Nc = 32, R = 16

k = 0.08 k = 0.04 k = 0.02 k = 0.01 k = 0.005

k̃ = 0.08 1.393 (3.023) 0.123 (1.507) 0.037 (0.315) 0.017 (0.263) 0.011 (0.263)
k̃ = 0.04 – 0.114 (1.502) 0.032 (0.149) 0.011 (0.095) 0.006 (0.095)
k̃ = 0.02 – – 0.032 (0.111) 0.011 (0.061) 0.004 (0.037)
k̃ = 0.01 – – – 0.011 (0.079) 0.004 (0.037)
k̃ = 0.005 – – – – 0.004 (0.037)

26 M. Falcone

We see that the first line of each table reports in many cases unsatisfactory
results, caused by the excessive roughness of the grid G̃ (see the case k̃ = 0.08,
corresponding to Ñ = 50). Even the case k̃ = k = 0.08 (i.e. the grid is not
refined at all) is not satisfactory. This can be explained by recalling that the
computations on the two grids are not identical because the second one employs
state constraints boundary conditions. If the grid is not fine enough, the error
due to the boundary conditions is large, and tends to propagate inside each
patch. Conversely, if G̃ has at least 100 nodes per dimension (k̃ ≤ 0.04), the
behaviour of the error is surprisingly good because it decreases as k decreases
(for any fixed k̃) and ‖EP ‖1 is of the same order of k itself. Note that the L∞

error is always larger than the L1 error. Quite often we find a very small number
of nodes with a large error near the boundaries of the patches, especially at those
nodes where two patches and the target meet. This mainly affect the L∞ error
but not the L1 error.

4 Fast Marching and Fast Sweeping Methods

The second technique which has been proposed to reduce the computational
load and memory allocations is based on the localization of the algorithm. At
every iteration only a subset of the grid (the active region) is taken into account
and the solution is computed just on the nodes belonging to this region. An
important feature of this method is the fact that the value at a single node is
computed only a finite number of times and this allows to show that the solution
is obtained in a finite number of iterations. Here we list and briefly describe some
iterative and single-pass methods for solving HJ equations.

Let us sketch the Fast Marching Method (FMM) [25,27] introduced as a fast
solver for the eikonal equation. Despite the standard global iterative method, the
nodes are visited in a solution-dependent order, producing a single-pass method:
the algorithm itself finds a correct order for processing the grid nodes. The order
which is determined satisfies the causality principle, i.e. the computation of a
node is declared completed only if its value cannot be affected by the future
computation. To this end, at each step the grid is divided in three regions: ACC,
where computation is definitively done, CONS, where computation is going on
and FAR, where computation is not done yet. Then, the node in CONS with
the minimal value enters ACC, its first neighbours enter CONS (if not yet in)
and are (re)computed.

Following [23], we remark that this minimum-value rule corresponds to com-
pute the value function T step by step in the ascending order (i.e., from the
simplex containing −∇T). It follows that CONS expands under the gradient
flow of the solution itself, which is exactly equivalent to say that CONS is, at
each step, an approximation of a level set of the value function. In the case of
isotropic eikonal Eq. (6), the gradient of the solution coincides with the char-
acteristic field of the HJ equation, hence FMM computes the correct solution.
Moreover, FMM still works for problems with mild anisotropy, where gradient
lines and characteristics define small angles and lie, at each point, in the same

Approximation of Nonlinear Optimal Control Problems 27

simplex of the underlying grid. On the other hand, when a strong anisotropy
comes into play, as for a general anisotropic eikonal equation, FMM fails and
there is no way to compute the viscosity solution following its level sets. Finally,
we remark that FMM is also a local method, since each node is computed by
means of first neighbors nodes only and CONS is one-cell thick. Moreover, FMM
computes the same solution of the global fixed point method (ITM), provided
the same scheme is employed.

The Fast Sweeping Method (FSM) [24,28] is similar to the global fixed point
iteration ITM , but the grid is visited in a multiple-direction predefined order.
Usually, a rectangular grid is iteratively swept along four directions: N → S,
E → W , S → N , and W → E, where N,S,E, and W stand for North, South,
East, and West, respectively. This method has been shown to be much faster than
ITM, but (as ITM) it is neither local nor single-pass. A well known exception is
given by the eikonal equation, for which it is proved that only 1 sweep (i.e. four
visits of the whole grid) is enough to reach convergence (see [28] for details).
FSM computes the same solution of ITM, provided the same scheme and the
same stopping rule are employed.

Numerical examples
Let us compare the methods in terms of velocity and accuracy.
Test 1. Let us choose T = (0, 0), f(x, y, a) ≡ a. We know the exact solution of
the corresponding eikonal equation which is T (x, y) =

√
(x2 + y2).

As one can see in Table 2 the two fast marching methods (FM-FD and FM-
SL, respectively based on a finite difference and a semi-Lagrangian solver) give a
big speed-up in the computation. The fast sweeping method (FS-SL) gives good
results but is generally slower than the fast marching methods.
Test 2: state constraint problem. T = (−1,−1).

f(x, y, a) =
{

0 (x, y) ∈ ([0, 0.5] × [−2, 1.5]) ∪ ([1, 1.5] × [−1.5, 2])
a elsewhere.

Table 2. Errors for Test 1.

Method Δx L∞ error L1 error CPU time (s)

FM-FD 0.08 0.0875 0.7807 0.5
FM-SL 0.08 0.0329 0.3757 0.7
SL (46 it) 0.08 0.0329 0.3757 8.4
FS-SL 0.08 0.0329 0.3757 0.8
FM-FD 0.04 0.0526 0.4762 2.1
FM-SL 0.04 0.0204 0.2340 3.1
SL (86 it) 0.04 0.0204 0.2340 60
FS-SL 0.04 0.0204 0.2340 3.2
FM-FD 0.02 0.0309 0.2834 9.4
FM-SL 0.02 0.0122 0.1406 14
SL (162 it) 0.02 0.0122 0.1406 443.7
FS-SL 0.02 0.0122 0.1406 12.5

28 M. Falcone

−2
−1

0
1

2

−2
−1

0
1

2
0

2

4

6

8

10

12

−1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

griglia= 80x80 FMM−SL

Fig. 3. Domain of the equation (left), value function T (center) and level sets of T
with one optimal trajectory (right).

In this test the dynamics has been set to 0 on the obstacles to enforce the
state constraint. The results are shown in Fig. 3.

5 An Accelerated Policy Iteration Algorithm with Smart
Initialization

Let us conclude with an accelerated iterative algorithm which is constructed
upon the building blocks previously introduced in Sect. 2. We aim to an effi-
cient formulation exploiting the main computational features of both value and
policy iteration algorithms. As it has been stated in [21], there exists a the-
oretical equivalence between both algorithms, which guarantees a rather wide
convergence framework. However, from a computational perspective, there are
significant differences between both implementations. A first key factor can be
observed in Fig. 4, which shows, for a two-dimensional minimum time prob-
lem, the typical situation arising with the evolution of the error measured with
respect to the optimal solution, when comparing value and policy iteration algo-
rithms. To achieve a similar error level, policy iteration requires considerable
fewer iterations than the value iteration scheme, as quadratic convergent behav-
ior is reached faster for any number of nodes in the state-space grid. Despite the
observed computational evidence, a second issue is observed when examining the
policy iteration algorithm in more detail. That is, the sensitivity of the method
with respect to the choice of the initial guess of the control field. It can be seen
that different initial admissible control fields can lead to radically different con-
vergent behaviors. While some guesses will produce quadratic convergence from
the beginning of the iterative procedure, others can lead to an underperformant
value iteration-like evolution of the error. This latter is computationally expen-
sive, because it translates into a non-monotone evolution of the subiteration
count of the solution of Eq. (2).

A final relevant remark goes back to Fig. 4, where it can be observed that
for coarse meshes, the value iteration algorithm generates a fast error decay
up to a higher global error. This, combined with the fact that value iteration
algorithms are rather insensitive to the choice of the initial guess for the value

Approximation of Nonlinear Optimal Control Problems 29

20 40 60 80 100 120
10

−2

10
−1

10
0

of iterations

L∞
 e

rr
or

212 DoF

412 DoF

812 DoF

1612 DoF

0 10 20 30 40
10

−2

10
−1

10
0

of iterations

L∞
 e

rr
or

212 DoF

412 DoF

812 DoF

1612 DoF

Fig. 4. Error evolution in a 2D problem: value iteration (left) and policy iteration
(right).

function, are crucial points for the construction of our accelerated algorithm.
The accelerated policy iteration algorithm is based on a robust initialization of
the policy iteration procedure via a coarse value iteration which will yield to a
good guess of the initial control field (see [1] for details).

Data: Coase mesh Gc and Δtc , fine mesh Gf and Δtf , initial coarse
guess V 0

c , coarse-mesh tolerance εc, fine-mesh tolerance εf .
begin

Coarse-mesh value iteration step: perform Algorithm 1
Input: Gc, Δtc, V 0

c , εc

Output: V ∗
c

forall the xi ∈ Gf do
V 0

f (xi) = I1[V ∗
c](xi)

A0
f (xi) = argmin

a∈A
{e−ΔtI1[V 0

f](xi + f(xi, a)) + Δt]

end
Fine-mesh policy iteration step: perform Algorithm 2
Input: Gf , Δtf , V 0

f , A0
f , εf

Output: V ∗
f

end
Algorithm 3: (API) Accelerated Policy Iteration

Numerical axamples
The next two cases are based on a two-dimensional eikonal equation. For both
problems, common settings are given by

f(x, y, a) =
(

cos(a)
sin(a)

)
, A = [−π, π] , Δt = 0.8Δx .

What differentiates the problems is the domain and target definitions.

Test 1: Ω =] − 1, 1[2, target T = (0, 0).

Test 2: Ω =] − 2, 2[2, T = {x ∈ R
2 : ||x||2 ≤ 1}.

30 M. Falcone

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU TIME

L−
∞

 N
O

R
M

2D EIKONAL EQUATION,64 CONTROLS, Δ x=0.0125.

Value Iteration
Policy Iteration
Accelerated PI

0 2 4 6 8 10 12 14 16

10
−1

10
0

CPU TIME

L−
∞

 N
O

R
M

2D EIKONAL EQUATION,72 CONTROLS, Δ x=0.0315.

Value Iteration
Policy Iteration
Accelerated PI

Fig. 5. Error evolution in 2D eikonal equations: Test 1 (left) and Test 2 (right).

Reference solutions are considered to be the distance function to the respective
targets, which is an accurate approximation provided that the number of possible
control directions is large enough. For Test 1, with a discretization of the control
space into a set of 64 equidistant points, it can be seen that API provides a
speedup of 8× with respect to VI over fine meshes despite the large set of discrete
control points. Figure 5 illustrates, for both problems, the way in which the
API idea acts: pre-processing of the initial guess of PI leads to proximity to a
“quadratic convergence neighborhood”; fast error decay that coarse mesh VI has
in comparison with the fine mesh VI is clearly noticeable.

In Test 2 we have a “fat” target. In general, larger or more complicated
targets represent a difficulty in terms of the choice of the minimizing control,
which translates into a larger number of iterations. In this case, the CPU time
spent in the pre-processing is significant to the overall CPU time, but increasing
this ratio in order to reduce its share will lead to an underperformant PI part of
the algorithm.

6 Conclusions

We illustrated some recent results concerning the numerical approximation of
optimal control problems governed by ordinary differential equations. The above
methods can be combined in order to obtain fast algorithms and accurate solu-
tions. Fo example one can use a patchy domain decomposition to set up a parallel
algorithm and inside every patch use an Accelerated Policy Iteration (API) or
a Fast Marching method. Several open problems still remain. For example, we
would like to prove error bounds for the patchy domain decomposition and for
the API acceleration method. Moreover, we continue our investigations to extend
these methods to differential games and to the control of partial differential
equations.

Approximation of Nonlinear Optimal Control Problems 31

References

1. Alla, A., Falcone, M., Kalise, D.: An efficient policy iteration algorithm for dynamic
programming equations. SIAM J. Sci. Comp. (still to appear)

2. Ancona, F., Bressan, A.: Patchy vector fields and asymptotic stabilization. ESAIM:
Control Optim. Calc. Var. 4, 445–471 (1999)

3. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of
Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997)

4. Bardi, M., Falcone, M.: An approximation scheme for the minimum time function.
SIAM J. Control Optim. 28, 950–965 (1990)

5. Bardi, M., Falcone, M.: Discrete approximation of the minimal time function for
systems with regular optimal trajectories. In: Bensoussan, A., Lions, J.L. (eds.)
Analysis and Optimization of Systems. Lecture Notes in Control and Information
Sciences, vol. 144, pp. 103–112. Springer, Heidelberg (1990)

6. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
7. Cacace, S., Cristiani, E., Falcone, M.: A local ordered upwind method for Hamilton-

Jacobi and Isaacs equations. In: Proceedings of the 18th IFAC World Congress,
pp. 6800–6805 (2011)

8. Camilli, F., Falcone, M., Lanucara, P., Seghini, A.: A domain decomposition
method for Bellman equations. In: Keyes, D.E., Xu, J. (eds.) Domain Decom-
position methods in Scientific and Engineering Computing, Contemporary Math-
ematics, vol. 180, pp. 477–483. AMS, Providence (1994)

9. Cacace, S., Cristiani, E., Falcone, M., Picarelli, A.: A patchy dynamic programming
scheme for a class of Hamilton-Jacobi-Bellman equations. SIAM J. Sci. Comp 34,
2625–2649 (2012)

10. Carlini, E., Falcone, M., Ferretti, R.: An efficient algorithm for Hamilton-Jacobi
equations in high dimension. Comput. Vis. Sci. 7, 15–29 (2004)

11. Carlini, E., Falcone, M., Forcadel, N., Monneau, R.: Convergence of a generalized
fast marching method for an Eikonal equation with a velocity changing sign. SIAM
J. Numer. Anal. 46, 2920–2952 (2008)

12. Crandall, M.G., Lions, P.L.: Two approximation of solutions of Hamilton-Jacobi
equations. Math. Comput. 43, 1–19 (1984)

13. Cristiani, E.: A fast marching method for Hamilton-Jacobi equations modeling
monotone front propagations. J. Sci. Comput. 39, 189–205 (2009)

14. Cristiani, E., Falcone, M.: Fast semi-Lagrangian schemes for the Eikonal equation
and applications. SIAM J. Numer. Anal. 45, 1979–2011 (2007)

15. Falcone, M.: Numerical solution of dynamic programming equations, Appendix
A in [3].

16. Falcone, M.: Some remarks on the synthesis of feedback controls via numerical
methods. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.), Optimal Control and
Partial Differential Equations, pp. 456–465. IOS Press (2001)

17. Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and
Hamilton-Jacobi equations. SIAM, Philadelphia (2014)

18. Falcone, M., Lanucara, P., Seghini, A.: A splitting algorithm for Hamilton-Jacobi-
Bellman equations. Appl. Numer. Math. 15, 207–218 (1994)

19. Howard, R.A.: Dynamic programming and Markov processes. Wiley, New York
(1960)

20. Navasca, C., Krener, A.J.: Patchy solutions of Hamilton-Jacobi-Bellman partial
differential equations. In: Chiuso, A., et al. (eds.) Modeling, Estimation and Con-
trol. Lecture Notes in Control and Information Sciences, vol. 364, pp. 251–270.
Springer, Heidelberg (2007)

32 M. Falcone

21. Puterman, M.L., Brumelle, S.L.: On the convergence of policy iteration in station-
ary dynamic programming. Math. Oper. Res. 4(1), 60–69 (1979)

22. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge Univer-
sity Press, Cambridge (1999)

23. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-
Jacobi equations: theory and algorithms. SIAM J. Numer. Anal. 41, 325–363 (2003)

24. Tsai, Y., Cheng, L., Osher, S., Zhao, H.: Fast sweeping algorithms for a class of
Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41, 673–694 (2004)

25. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans.
Autom. Control 40, 1528–1538 (1995)

26. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential
Equations. Oxford University Press, Oxford (1999)

27. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proc. Nat. Acad. Sci. USA 93, 1591–1595 (1996)

28. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comp. 74, 603–627
(2005)

http://www.springer.com/978-3-662-43879-4

	Recent Results in the Approximation of Nonlinear Optimal Control Problems
	1 Introduction
	2 Two Classical Algorithms for Dynamic Programming
	3 The Patchy Domain Decomposition
	4 Fast Marching and Fast Sweeping Methods
	5 An Accelerated Policy Iteration Algorithm with Smart Initialization
	6 Conclusions
	References

