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Abstract Let μ be a Borel probability measure with compact support in R
d and

let E(�) = {e−2πλ·x : λ ∈ �}. We make a review on some recent progress about
spectral measures. We first show that the law of pure types holds for spectral measures,
i.e. if E(�) is a frame for L2(μ), thenμ is discrete or absolutely continuous or singular
continuous with respect to Lebesgue measure (see [HLL13]). And we discuss the
spectral properties of Cantor measures (see [DaHL13]), where we focus on some
exotic properties of the spectra of some Cantor measures.
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1 Introduction to the General Spectral Measures

Let μ be a Borel probability measure on R
d with compact support. We call a family

E(�) = {eλ := e−2πiλ·x : λ ∈ �} (� is a countable set) a Fourier frame for the
Hilbert space L2(μ) if there exist A, B > 0 such that

A‖ f ‖2 ≤
∑

λ∈�

|〈 f, eλ〉μ|2 ≤ B‖ f ‖2, ∀ f ∈ L2(μ). (1.1)

Here the inner product is defined as usual, x · y = ∑d
i=1 xi yi for x, y ∈ R

d and

〈 f, eλ〉μ =
∫

Rd

f (x)e−λdμ(x).

E(�) is called an (exponential) Riesz basis if it is both a basis and a frame for L2(μ).
Fourier frames and exponential Riesz bases are natural generalizations of exponential
orthonromal bases in L2(μ). They have fundamental importance in non-harmonic
Fourier analysis and wavelet. When (1.1) is satisfied, f ∈ L2(μ) can be expressed
as f (x) = ∑

λ∈� cλe2πiλx , and the expression is unique if it is a Riesz basis.
When E(�) is an orthonormal basis (Riesz basis, or frame) for L2(μ), we say that

μ is a spectral measure (R-spectral measure, or F-spectral measure respectively) and
� is called a spectrum (R-spectrum, or F-spectrum respectively) of μ. We will also
use the term orthonormal spectrum instead of spectrum when we need to emphasize
the orthonormal property. If E(�) only satisfies the upper bound condition in (1.1),
then it is called a Bessel sequence; for convenience, we also call � a Bessel sequence
of L2(μ).

Since Fuglede proposed the spectral set conjecture [Fug74] and Jorgensen and
Pedersen [JP98] discovered the first singular fractal spectral measure, there has been
a lot of interest in understanding which kind of measures are spectral and its delicate
connection with translational tiling. In this short note, we aim at giving a system-
atic survey on the recent progress in this line of research and some more detailed
explanations about our discovery in [HLL13, DaHL13] will be given.

The first fundamental result is about the law of pure type. It was proved by
He et al. [HLL13], which generalized the early investigation of spectral measures
by Łaba and Wang [LaW06]. Recall that a σ-finite Borel measure μ on R

d can be
decomposed uniquely as discrete, singularly continuous and absolutely continuous
measures, i.e., μ = μd + μs + μa . The measure μ is said to be of pure types if μ
equals only one of the three components.

Theorem 1.1 Let μ be an F-spectral measure on R
d . Then it must be one of the three

pure types: discrete (and finite), singularly continuous or absolutely continuous.

By the law of pure types, we can study spectral measures according to its type.
When μ is a discrete counting measure with finite support, it is an R-spectral measure
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[HLL13]; Whenμ is absolutely continuous, Lai proved thatμ is an F-spectral measure
if and only if its density function is bounded above and bounded away from 0 almost
everywhere on its support [Lai11]. Furthermore, Dutkay and Lai proved that if μ
is a spectral measure, then its density function is a constant on its support, that is,
μ is essentially the Lebesgue measure restricted on its support [DL00]. However,
classification of spectral measures is far from complete. For the study of R-spectral
absolutely continuous measures, one can refer to the recent work of Lev et al. with
their emphasis on the use of quasicrystals [KN00, Lev12, GL14].

From now on, we concentrate on orthogonally spectral measures. We call � an
orthogonal set if E(�) is a mutually orthogonal sequence for L2(μ). Define

Q�(ξ) =
∑

λ∈�

|μ̂(ξ + λ)|2,

where the Fourier transform of μ is define as usually by

μ̂(ξ) =
∫

Rd

e−2πξ·x dμ(x).

Q� is crucial in determining whether E(�) is complete. It is well-known that an
orthogonal sequence E(�) is complete in L2(μ) if and only if Q� ≡ 1 [JP98]. Here,
we give a slight generalization of this result and also exploit the analytic property of
Q�.

Theorem 1.2 Let μ be a compactly supported Borel probability measure with com-
pact support in R

d .
(i) Suppose that spanE(�) = L2(μ) and E(�) is an orthogonal set for L2(μ).

Then � is a spectrum of μ if and only if

Q�(γ) = 1, for γ ∈ �.

(ii) Suppose that E(�) is a Bessel sequence for L2(μ). Then Q�(·) is an entire
function in C

d .

The entire property is a simple extension of [JP98, Lemma 4.3]. In our proofs,
this property helps us establish the completeness by allowing us to focus on small
values of ξ.

Our main interest on the spectral measures is when μ is singularly continuous.
The one-fourth contraction Cantor measure was the first example of such spectral
measures, which was found by Jorgensen and Pedersen [JP98] in 1998. From that time
on, various properties of singular spectral measures are studied extensively [Dai12,
DHJ09, DHS09, DHSW11, LaW02, LaW06]. In particular, many exotic spectra
were discovered and they do not appear in their absolutely continuous counterpart.
Here, we list some of the interesting ones.
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(1) There exists a spectrum � of a singularly continuous measure μ such that k� is
also a spectrum of μ for some k 	= 1;

(2) There exists a � so that E(�) is a maximal orthogonal collection of exponentials
for L2(μ), but not a basis;

(3) There exists a spectrum � of a singularly continuous measure so that its Beurling
dimension is zero.

Property (1) means that we can sort of dilate a spectrum but preserve its com-
pleteness. It was first given by Łaba and Wang [LaW02] and some studies are given
in [DJ12].

Property (2) has two types of variants. First, some measures have maximal orthog-
onal collections of infinite cardinality without being spectral [HuL08, Dai12]. Sec-
ond, even though the measure is spectral, there still exists some incomplete maximal
orthogonal collections. In [DHS09], Dutkay et al. tried to give a classification on
maximal orthogonal collection for one-fourth Cantor measures and tried to study
which of them are complete. This investigation was generalized and improved in
[DaHL13]. Furthermore, we can demonstrate the existence of spectrum satisfying
property (3). Beurling dimension is a concept defined in [DHSW11], who tried to
generalize Beurling density and the elegant result of Landau [Lan67] on Fourier
frame spectra to fractal setting. Their work gave some partial positive results, letting
alone a technical assumption on the spectra. In person communication with Wang
in 2011, we were told that he can construct an example such that a spectral measure
can have a spectrum with zero Beurling dimension. However, he cannot explain why
there can be such phenomenon. Our construction gave a better picture of it.

For the rest of our paper, we will prove Theorem 1.1 and 1.2 in Sect. 2. In Sect. 3,
we will present a simplified content of [DaHL13] and the examples of zero Beurling
dimension spectra will be given. For more results on this issue, reader may refer to
[DaHL13, DHS09].

2 Law of Pure Types

In this section, we will present a self-contained proof for the law of pure types of
F-spectral measures. First, we need the following proposition, which was proved in
[DHSW11]. This can be viewed as the stability of Bessel sequence under a constant
perturbation of a Bessel sequence. It has its origin in the paper of Duffin and Schaeffer
[DS52].

Proposition 2.1 Let {λn}∞n=0 be a Bessel sequence of μ. If there exists C such that
|λn − γn| ≤ C for n ≥ 0, then {γn}∞n=0 is also a Bessel sequence of μ.

Proof It is sufficient to show that all γn = (γ
(n)
1 , . . . , γ

(n)
d ) differs λn =

(λ
(n)
1 , . . . ,λ

(n)
d ) only on the first component, and the statement follows by induc-

tion on the number of components.
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Let suppμ ⊆ [−P, P]d for some P > 0. We have that

∞∑

n=0

∣∣∣< f (x), e−2πiγn ·x >

∣∣∣
2 =

∞∑

n=0

∣∣∣< f (x)e2πi(γn−λn)·x , e−2πiλn ·x >

∣∣∣
2

=
∞∑

n=0

∣∣∣∣< f (x)e2πi(γ(n)
1 −λ

(n)
1 )x1 , e−2πiλn ·x >

∣∣∣∣
2

=
∞∑

n=0

∣∣∣∣∣∣

∞∑

k=0

(2πi(γ(n)
1 − λ

(n)
1 ))k

k! < f (x)xk
1 , e−2πiλn ·x >

∣∣∣∣∣∣

2

≤
∞∑

n=0

∞∑

k=0

(2πC)2k

k!
∞∑

k=0

| < f (x)xk
1 , e−2πiλn ·x > |2

k!

≤ e(2πC)2
∞∑

k=0

B‖ f (x)xk
1 ‖2

k!

≤ Be(2πC)2+P2‖ f ‖2.

Note that the fourth line above uses Cauchy-Schwarz inequality. Hence, the assertion
follows. �

In the proof of the pure type property of the F-spectral measures, we need to use
the lower Beurling density of an infinite discrete set � ⊂ R

d :

D−� := lim inf
h→∞ inf

x∈Rd

#(� ∩ Qh(x))

hd
,

where Qh(x) is the standard cube of side length h centered at x . Intuitively � is
distributed like a lattice if D−� is positive. In the seminal paper [Lan67], Landau
gave an elegant and useful necessary condition for � to be an F-spectrum on L2(�):
D−� ≥ L(�), where L is the Lebesgue measure. The following proposition pro-
vides some relationships between the lower Beurling density and the types of the
measures.

Proposition 2.2 Let μ be a compactly supported probability measure on R
d and let

� be an F-spectrum of μ. We have

(i) If μ = ∑
c∈C pcδc is discrete, then #� < ∞ and #C < ∞;

(ii) If μ is singularly continuous, then D−� = 0;
(iii) If μ is absolutely continuous, then D−� > 0.

Proof (i) By the definition of Fourier frame, we have for all f ∈ L2(μ),

∑

λ∈�

|
∑

c∈C
f (c)e2πi〈λ,c〉 pc|2 ≤ B

∑

c∈C
| f (c)|2 pc.
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Taking f = χc0 , where χc0 is the indictor function of the set {c0} and pc0 > 0, we
have (#�) · p2

c0
≤ Bpc0 . Hence #� ≤ B/pc0 < ∞. This implies #C < ∞ by the

completeness of Fourier frame.
(ii) Suppose on the contrary that D−� ≥ c > 0. We claim that Z

d is a Bessel
sequence of L2(μ). By the definition of D−�, we can choose a large h ∈ N such
that

inf
x∈Rd

(#(� ∩ Qh(x))) ≥ chd > 1.

Taking x = hn, where n ∈ Z
d , we see that all cubes of the form hn + [−h/2, h/2)d

contains at least one points of �, say λn. Since � is an F-spectrum, {λn}n∈Zd is a
Bessel sequence. Observing that

|λn − hn| ≤ diam([−h/2, h/2)d) = √
d h,

then hZ
d is also a Bessel sequence of L2(μ) by Proposition 2.1. As a Bessel sequence

is invariant under translation, we see that the finite union Z
d = ⋃

k∈{0,...,h−1}d

(hZ
d + k) is again a Bessel sequence of L2(μ), which proves the claim.

Now consider

G(x) :=
∑

n∈Zd

|μ̂(x + n)|2.

G is a periodic function (mod Z
d ). As Z

d is a Bessel sequence, applying the definition
to e−x , we see that G(x) ≤ B < ∞. Hence G ∈ L1([0, 1)d) and

∫

Rd

|μ̂(x)|2 dx =
∑

n∈Zd

∫

[0,1)d

|μ̂(x + n)|2dx =
∫

[0,1)d

|G(x)|dx < ∞.

This means that μ̂ ∈ L2(Rd), which implies that μ must be absolutely continuous.
This is a contradiction.
(iii) If μ is absolutely continuous, we write dμ(x) = ϕ(x)dx , for some L1 function
ϕ and denote by � the support of μ. Let

EN =
{

x ∈ � : 1

N
≤ ϕ(x) ≤ N

}
.

Since μ is absolutely continuous, the support � must have positive Lebesgue measure
and EN also has positive Lebesgue measure for N large, which we may assume it
holds for all EN . Now, we claim that � is an F-spectrum of L2(EN ). To see this, let
f ∈ L2(EN ), then we have

∫

EN

| f (x)
ϕ(x)

|2ϕ(x)dx ≤ N
∫

EN

| f |2 < ∞. Hence,
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∑

λ∈�

|
∫

EN

f (x)e2πiλx dx |2 =
∑

λ∈�

|
∫

EN

f (x)

ϕ(x)
e2πiλxϕ(x)dx |2

≤B
∫

EN

| f (x)

ϕ(x)
|2ϕ(x)dx ≤ B N

∫

EN

| f (x)|2dx .

This establishes the upper frame bound. The lower bound can also be estab-
lished analogously. This justify the claim. By the Landau’s density theorem, we have
D−� ≥ L(EN ). As EN are increasing sequence of sets and

⋃
N EN = � up to a

Lebesgue measure zero set, we have

D−� ≥ L(�) > 0. �
Now it is easy to conclude that an F-spectral measure is of pure type.

Proof of Theorem 1.1 First let us assume that if μ is decomposed into non-trivial
discrete and continuous parts, μ = μd +μc. Let � be an F-spectrum of μ. As L2(μd)

and L2(μs) are non-trivial subspaces of L2(μ), it is easy to see that � is also an
F-spectrum of both L2(μd) and L2(μc). Then #� < ∞ by Proposition 2.2(i); but
#� = ∞ since L2(μc) is an infinite dimensional Hilbert space. This contradiction
shows that μ is either discrete or purely continuous.

Suppose μ is continuous and has non-trivial singular part μs and absolutely con-
tinuous part μa . By applying the same argument as the above, � is an F-spectrum
of L2(μs) and L2(μa). This is impossible in view of the Beurling density of � in
Proposition 2.2(ii) and (iii). �

The following corollary is immediate from Theorem 1.1.

Corollary 2.3 A spectral measure or an R-spectral measure must be of pure type.

In the rest of this section, we will prove Theorem 1.2 and it will be needed in the
next section.

Proof of Theorem 1.2 (i) It is easy to see that the necessity follows by applying
Parseval’s identity to eγ for γ ∈ �. Now we show the sufficiency. By the hypotheses,
it is sufficient to show that eγ ∈ spanE(�) for each γ ∈ �. Let � be the projection
from L2(μ) to spanE(�). Then eγ = �(eγ) + (I d − �)(eγ) and thus 1 =
‖�(eγ)‖2 + ‖(I d − �)(eγ)‖2. Note that

‖�(eγ)‖2 =
∑

λ∈�

|〈�(eγ), eλ〉|2 =
∑

λ∈�

|〈eγ, eλ〉|2 = ‖eγ‖2 = 1.

Then (I d − �)(eγ) = 0 and thus eγ ∈ spanE(�).
(ii) Let M > 0 so that suppμ ⊆ B(0, M), where B(0, M) is the ball with center

at 0 and radius M . Denote � = {λn}∞n=0 and

QN (w) =
N∑

n=0

|μ̂(w + λn)|2, ∀w ∈ C
d .
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Let B be the upper bound of E(�). Note that

QN (w) =
N∑

n=0

∣∣< e−w, eλn >
∣∣2 ≤ B‖e−w‖2 ≤ Be4πM|Im(w)|,

where Im(w) is the imaginary part of w. This implies that the sequence {QN (w)}∞N=1
is uniformly bounded on each compact set of C

d . By Montel theorem (see, e.g.,
[Gun90] p. 54), we have Q� is an entire function on C

d and

|Q�(w)| ≤ Be4πM|Im(w)|, ∀w ∈ C
d .

�
Now the standard Jorgensen-Pedersen Lemma follows as a corollary.

Corollary 2.4 An orthogonal sequence E(�) is complete in L2(μ) if and only if
Q� ≡ 1.

Proof We only need to show that spanE(Rd) is dense in L2(μ) by Theorem 1.2. Let
K = supp μ. Since spanE(Rd) is a subalgebra of Banach algebra C(K ), the space
of all continuous function on K , and it separates points K . By Stone-Weierstrass
theorem, we have that spanE(Rd) is dense in the space C(K ). According to Lusin
theorem, C(K ) is dense in L2(μ). This implies the assertion. �

3 Spectral Properties of Cantor Measures on R

This section is devoted to a simplified content of [DaHL13]. Our aim is to show the
existence of spectra with zero Beurling dimension (Theorem 3.5) when the measures
are the Cantor measure with consecutive digits. Let b, q be two integers > 1 with
b > q and q | b. Then there exists unique Borel probability measure, denoted by
μb, q , satisfying

μb, q(·) = 1

q

q−1∑

i=0

μb, q(q · −i). (3.1)

μb, q is called a Cantor measure (with consecutive digit). It is well-known that the
Hausdorff dimension of the support of μb, q is ln q/ ln b < 1 and thus μb,q is sin-
gularly continuous with respect to Lebesgue measure. We will construct a class of
orthogonal set of μb, q .

Denote �q = {0, · · · , q − 1}, �0
q = {ϑ} and �n

q = �q × · · · × �q︸ ︷︷ ︸
n

. Let �∗
q =

⋃∞
n=0 �n

q be the set of all finite words. Given σ = σ1σ2 · · · ∈ �∗, we define
ϑσ = σ, σ|k = σ1 · · ·σk for k ≥ 0 where σ|0 = ϑ for any σ and adopt the
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notation 0k = 0 · · · 0︸ ︷︷ ︸
k

and σσ′ is the concatenation of σ and σ′. We start with two

definitions.

Definition 3.1 Let �∗
q be all the finite words defined as above. We say it is a q−adic

tree if we set naturally the root is ϑ, all the k-th level nodes are �k
q for k ≥ 1 and all

the offsprings of σ ∈ �∗
q are σi for i = 0, 1, . . . , q − 1.

Definition 3.2 Let �∗
q be a q−adic tree, τ is called a regular mapping from �∗

q to
{−1, 0, ..., b − 2} if it satisfies

(i) τ (ϑ) = τ (0n) = 0 for all n ≥ 1.
(ii) For σ1 · · · σk ∈ �k

q , τ (σ1 · · ·σk) ∈ (σk + qZ) ∩ {−1, 0, ..., b − 2}.
(iii) For any σ ∈ �∗

q , τ (σ0�) = 0 for � large enough.

Let τ be a regular mapping from �∗
q to {−1, 0, ..., b − 2}. For any n ∈ N with

q N−1 ≤ n < q N , there exists unique σ = σ1 · · ·σN ∈ �N
q such that σN 	= 0 and

n = σ1 + σ2q + · · · + σN q N−1.

Associated to τ , we define a sequence of integers by λ0 = 0 and

λn = τ (σ|1) + τ (σ|2)b + · · · + τ (σ|N )bN−1 +
∞∑

k=N

τ (σ0k−N+1)bk.

Note that λn is uniquely determined by τ (σ|1), τ (σ|2), . . . , τ (σ|N ) = τ (σ). We
call � = {λn}∞n=0 a τ -sequence. Let �n be the number of nonzero terms in the sum∑∞

k=N τ (σ0k−N+1)bk, that is

�n = #{k : τ (σ0k) 	= 0 for k ≥ 1}. (3.2)

We assume that b, q, r = b/q are integers with b > q. The following are our
main theorems.

Theorem 3.3 Let τ be a regular mapping from �∗
q to {−1, 0, ..., b − 2} and let

� = {λn}∞n=0 be the τ -sequence. Then E(r�) is a maximal orthogonal collection of
exponentials for L2(μb, q).

Theorem 3.4 Let τ be a regular mapping and let � = {λn}∞n=0 be the τ -sequence.
We have the following:

(i) If maxn≥1{�n} < ∞, then r� is a spectrum of μb, q;
(ii) If �n ≥ logq n for sufficient large n, then r� is not a spectrum of μb, q .
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Theorem 3.5 Let g(x) be an increasing non-negative function on [0,∞). Then there
exists a spectrum � of L2(μb, q) such that

lim
R→∞ sup

x∈R

#(� ∩ (x − R, x + R))

g(R)
= 0. (3.3)

Let μb, q be the Cantor measure given by (3.1) and let

M(ξ) = 1

q
(1 + e2πiξ + · · · + e2πi(q−1)ξ).

Then it is easy to obtain that

μ̂b, q(ξ) = M(b−1ξ)μ̂b, q(b−1ξ) =
∞∏

k=1

M(b−kξ). (3.4)

Note that |M(ξ)| = | sin qπξ|/q| sin πξ|. Then

ZM := {ξ : M(ξ) = 0} = 1

q
(Z \ qZ)

and
Zμ := {ξ : μ̂b, q(ξ) = 0} = r{bka : k ≥ 0, a ∈ Z \ qZ}.

Clearly, � is an orthogonal set of μb, q if and only if

� − � ⊆ Zμ ∪ {0}. (3.5)

Proof of Theorem 3.3 We first prove the orthogonal property of E(r�). Denote
λn′ = τ (σ′|1) + τ (σ′|2)b + · · · + τ (σ′|N ′)bN ′−1 + ∑∞

k=N ′ τ (σ0k−N ′+1)bk and
n 	= n′. Let s be the smallest index such that τ (σ′0|σ||s) 	= τ (σ0|σ′||s), where |σ| is
the length of σ. Then

λn′ − λn = (τ (σ′|s) − τ (σ|s))bs + bs+1 M

for some M ∈ Z. Then r(λn′ − λn) is the zero point of M(b−s+1ξ) by the definition
of τ and thus is a zero point of μ̂b, q by (3.4). This implies that r� is an orthogonal
set of μb, q .

Now we show the maximal property of E(r�). Suppose that r� ∪ {γ} is an
orthogonal set of μb, q with γ 	∈ r�. By (3.5) and 0 ∈ r�, we have γ = rbka for
some k ≥ 0 and a ∈ Z \ qZ. Since a can be expressed uniquely as

a = a0 + a1b + · · · + ambm,



Law of Pure Types and Some Exotic Spectra of Fractal Spectral Measures 57

where all ai ∈ {−1, 0, 1, . . . , b − 1}, am 	= 0 and a0 ∈ Z \ qZ, there exists unique
i0 ∈ {1, 2, . . . , q − 1} such that a0 − τ (0ki0) ∈ qZ. By the assumption we have
abk − λi0qk ∈ Zμ, that is,

abk − λi0qk

bk
= a0 − τ (0ki0) +

m∑

s=1

(ai − τ (0ki00s))bs −
∞∑

s=m+1

τ (0ki00s)bs ∈ Zμ.

Since q | (a0−τ (0ki0)), but b � (a0−τ (0ki0)) if a0 	= τ (0ki0), one has a0 = τ (0ki0).
Similarly, there exists unique i1 ∈ {0, 1, . . . , q − 1} such that a1 − τ (0ki0i1) ∈ qZ.
From abk − λi0qk+i1qk+1 ∈ Zμ, one has a1 = τ (0ki0i1). By m-steps one has as =
τ (0ki0 · · · is) for 0 ≤ s ≤ m.

Let p = ∑m
s=0 isqk+s . We claim that γ = rλp and the result follows if the claim

holds. In fact,

abk − λp

bk
=

m∑

s=0

(as − τ (0ki0 · · · is))b
s −

∞∑

s=m+1

τ (0ki0 · · · im0s−m)bs

= −
∞∑

s=m+1

τ (0ki0 · · · im0s−m)bs .

If abk 	= λp, the above implies that abk − λp 	∈ Zμ, which contradicts to the
assumption. Hence the claim follows. �

Let δa be the Dirac measure with center a. We define

δE = 1

#E
∑

e∈E
δe

for any finite set E , where #E is the cardinality of E . Write D = {0, 1, . . . , q − 1}
and DN = 1

b D + · · · + 1
bN D for N ≥ 1. Let μN = δDN . Then

μ̂N (ξ) =
N∏

j=1

M(b− jξ).

By (3.4) we have

μ̂b, q(ξ) = μ̂N (ξ)μ̂b, q(
ξ

bN
). (3.6)

Lemma 3.6 Let τ be a regular mapping and let {λn}∞n=0 be the τ -sequence. Then
for all N ≥ 1,

q N −1∑

n=0

|μ̂N (ξ + rλn)|2 ≡ 1. (3.7)
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Proof Since the dimension of L2(μN ) is q N , the assertion follows by Corollary 2.4

if {rλn}q N −1
n=0 is an orthogonal set of μN , which can be proved by the same proof of

Theorem 3.3. �

For m ≥ 1, let

Qm(ξ) =
qm−1∑

n=0

∣∣μ̂b, q(ξ + rλn)
∣∣2 and Q(ξ) =

∞∑

n=0

∣∣μ̂b, q(ξ + rλn)
∣∣2

.

Let μ = μb,q . For any m, p > 0, we have the following identity:

Qm+p(ξ) = Qm(ξ) +
qm+p−1∑

n=qm

|μ̂(ξ + rλn)|2

= Qm(ξ) +
qm+p−1∑

n=qm

∣∣μ̂m+p(ξ + rλn)
∣∣2

∣∣∣∣μ̂(
ξ + rλn

bm+p
)

∣∣∣∣
2

. (3.8)

Our goal is see whether Q(ξ) ≡ 1. Then by invoking Corollary 2.4, we can
determine whether we have a spectrum. As Q is an entire function by Theorem
1.2(ii), we just need to see the value of Q(ξ) for some small values of ξ. To do this,

we need to make a fine estimation of the terms
∣∣∣μ̂(

ξ+rλn
bm+p )

∣∣∣
2

in the above. Write

α = min

{
|M(ξ)μ̂(ξ)|2 : |ξ| ≤ b − 1

qb

}
> 0

and

β = max

{
|M(ξ)|2 : 1

b2 ≤ |ξ| ≤ b − 1

qb

}
< 1.

where |M(ξ)| = | sin πqξ|
q| sin πξ| .

Proposition 3.7 Let |ξ| ≤ r(b−2)
b−1 and let t = ξ + ∑N

k=1 di bnk , where di ∈
{1, 2, · · · r − 1} and 1 ≤ n1 < · · · < nN . Then

αN+1 ≤ |μ̂(t)|2 ≤ βN . (3.9)

Proof First it is easy to check that, for |ξ| ≤ r(b−2)
b−1 and all dk ∈ {0, 1, 2, . . . , r − 1},

we have
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∣∣∣∣∣
ξ + ∑n

k=1 dkbk

bn+1

∣∣∣∣∣ ≤ 1

bn+1

(
r(b − 2)

b − 1
+ (r − 1)(b + b2 + · · · + bn)

)

= r(b − 2) + (r − 1)(bn+1 − b)

bn+1(b − 1)

≤ b − 1

qb
(3.10)

for n ≥ 1. The inequality in the last line follows from a direct comparison of the
difference and q ≥ 2. To simplify notations, we let n0 = 0 and nN+1 = ∞. Then
|μ̂(t)|2 equals

∞∏

j=1

∣∣∣M
(

b− j t
)∣∣∣

2 =
N∏

i=0

ni+1∏

j=ni +1

∣∣∣M
(

b− j t
)∣∣∣

2
. (3.11)

We now estimate the products one by one. By (3.10), we have

∣∣∣∣∣
ξ + ∑i

k=1 dkbnk

bni +1

∣∣∣∣∣ ≤ b − 1

qb
.

Hence, together with the integral periodicity of M(ξ) and the definition of α, we
have for all i > 0,

ni+1∏

j=ni +1

∣∣∣M(b− j t)
∣∣∣
2 =

ni+1∏

j=ni +1

∣∣∣∣∣M
(

b− j (ξ +
i∑

k=1

dkbnk )

)∣∣∣∣∣

2

≥
∞∏

j=0

∣∣∣∣∣M
(

b− j

(
ξ + ∑i

k=1 dkbnk

bni +1

))∣∣∣∣∣

2

≥ α. (3.12)

For the case i = 0, it is easy to see that
∣∣∣ ξ

b

∣∣∣ ≤ b−2
q(b−1)

< b−1
qb . Hence,

∏n1
j=n0+1

∣∣M(b− j t)
∣∣2 ≥ ∏∞

j=0

∣∣M
(
b− j (ξ/b)

)∣∣2 ≥ α. Putting this fact and (3.12)

into (3.11), we have |μ̂b, q(t)|2 ≥ αN+1.
We next prove the upper bound. From |M(ξ)| ≤ 1, (3.11) and the integral peri-

odicity of M(ξ),

|μ̂(t)|2 ≤
N∏

i=1

∣∣∣M
(

b−(ni +1)t
)∣∣∣

2 =
N∏

i=1

∣∣∣∣∣M
(

b−(ni +1)(ξ +
i∑

k=1

dkbnk )

)∣∣∣∣∣

2

. (3.13)

By (3.10) we have
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|ξ +
i∑

k=1

dkbnk | ≥ bni − |ξ +
i−1∑

k=1

dkbnk | ≥ bni − bni−1(b − 1)

q
≥ bni −1.

By (3.10), (3.13), the above and the definition of β, we obtain that |μ̂(t)|2 ≤ βN . �

Proof of Theorem 3.4 (i) Without loss generality we assume that |ξ| ≤ r(b−2)
b−1 .

Recall that

Qm+p(ξ) = Qm(ξ) +
qm+p−1∑

n=qm

∣∣μ̂m+p(ξ + rλn)
∣∣2

∣∣∣∣μ̂
(

ξ + rλn

qm+p

)∣∣∣∣
2

. (3.14)

Let also L = maxn≥1 �n (< ∞ by assumption). For qm ≤ n < qm+p, there exists
unique N , m < N ≤ m + p, such that q N−1 ≤ n < q N . By the definition of τ , we
have τ (σ0k) ∈ {0, q, 2q, . . . , (r − 1)q} for k ≥ 1. We therefore have

ξ + rλn = ξ + rτ (σ|1) + rτ (σ|2)b + · · · + rτ (σ|N )bN−1 +
∞∑

s=N

rτ (σ0s−N+1)bs

= ξ + r
N∑

i=1

τ (σ|i )bi−1 + rτ (σ0)bN + · · · + rτ (σ0m+p−N )bm+p−1

+
∞∑

s=m+p

dsbs+1

Hence,

ξ + rλn

bm+p = 1

bm+p

⎛

⎝ξ + r
N∑

i=1

τ (σ|i )bi−1 + rτ (σ0)bN + · · · + rτ (σ0m+p−N )bm+p−1

⎞

⎠

+
∞∑

s=m+p

dsbs+1−(m+p) := t +
∞∑

s=m+p

dsbs+1−(m+p).

Note that, from |τ (σ)| ≤ b − 2 for any multi-indices σ,

|t | ≤ 1

bm+p

(
|ξ| + r(b − 2)(1 + b + b2 + · · · + bm+p−1)

)
≤ r(b − 2)

b − 1
.

Also, ds ∈ {0, 1, . . . , r − 1} and there are at most L non-zero terms. By Proposition

3.7, we conclude that
∣∣∣μ̂

(
ξ+rλn
qm+p

)∣∣∣
2 ≥ αL+1. Using (3.14) and Lemma 3.6. we obtain
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Qm+p(ξ) ≥ Qm(ξ) + αL+1
qm+p−1∑

n=qm

∣∣μ̂m+p(ξ + rλn)
∣∣2

= Qm(ξ) + αL+1

⎛

⎝1 −
qm−1∑

n=0

∣∣μ̂m+p(ξ + rλn)
∣∣2

⎞

⎠ .

Fixing m, we first let p approaches infinity and obtain

Q(ξ) ≥ Qm(ξ) + αL+1

⎛

⎝1 −
qm−1∑

n=0

|μ̂(ξ + rλn)|2
⎞

⎠ .

We then finally let m goes to infinity.

αL+1

(
1 −

∞∑

n=0

|μ̂(ξ + rλn)|2
)

≤ 0.

This means that Q(ξ) ≥ 1 for |ξ| ≤ r(b − 2)/(b − 1). As Q(ξ) ≤ 1 for mutually
orthogonal sets and by the entire function property of Q on C, we must have Q(ξ) ≡ 1
and hence � is a spectrum for μ.

(ii) With loss of generality we assume that �n ≥ logq n for n ≥ 1. Again we begin
with

Qm(ξ) = Qm−1(ξ) +
qm−1∑

n=qm−1

|μ̂m(ξ + rλn)|2
∣∣∣∣μ̂(

ξ + rλn

qm
)

∣∣∣∣
2

.

Note that for qm−1 ≤ n < qm , �n ≥ logq n ≥ m − 1. Using it and the same estimate
as in (i) so as to apply Proposition 3.7, we have

Qm(ξ) ≤ Qm−1(ξ) +
qm−1∑

n=qm−1

|μ̂m(ξ + rλn)|2 β�n

≤ Qm−1(ξ) + βm−1
qm−1∑

n=qm−1

|μ̂m(ξ + rλn)|2

= Qm−1(ξ) + βm−1(1 −
qm−1−1∑

n=0

|μ̂m(ξ + rλn)|2)

≤ Qm−1(ξ) + βm−1(1 − Qm−1(ξ)).
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Consequently,

1 − Qm(ξ) ≥ (1 − Qm−1(ξ))(1 − βm−1) ≥ (1 − Q1(ξ))

m−1∏

k=1

(1 − βk).

By letting m to infinity, we have

1 − Q(ξ) ≥ (1 − Q1(ξ))

∞∏

k=1

(1 − βk).

Since Q1(ξ) < 1 for almost all ξ ∈ R, the second assertion follows by
Corollary 2.4. �
Proof of Theorem 3.5 Let {mk}∞k=1 be a strictly increasing sequence of positive
integers with m1 ≥ 2. Then mk > k for k ≥ 1. We now define a regular mapping
in terms of this sequence by induction. Let τ (ϑ) = τ (0k) = 0 for k ≥ 1. For
σ ∈ {1, 2, . . . , q − 1} ⊂ �1

q , we define τ (σ) = σ and τ (σ0l) = 0 or q according to
l 	= mσ or l = mσ , respectively. Suppose we have defined all τ (σ), σ = σ1 · · · σs

with s ≤ k and σs 	= 0, and τ (σ0l) for l ≥ 1. For σ = σ1 · · · σk+1 ∈ �k+1
q with

σk+1 	= 0, we define τ (σ) = σk+1 and τ (σ0l) = 0 or q according to l 	= m pσ

or l = m pσ , respectively, where pσ = ∑k+1
i=1 σi qi−1. By induction we have well-

defined a regular mapping from the q-adic tree to {−1, 0, 1, . . . , b − 1}.
For any n ∈ N, there exists unique k ≥ 1 such that qk−1 ≤ n < qk. Then n can

be expressed by

n =
k∑

j=1

σ j q
j−1, (3.15)

where all σ j ∈ {0, 1, . . . , q − 1} and σk 	= 0. By the definition of τ -sequence, we
have λ0 = 0 and

λn =
k∑

j=1

τ (σ1 · · · σ j )b
j−1 + qbmn ,

consequently, �n = 1 and by Theorem 3.4(i), � = {λn}∞n=0 is a spectrum of μb, q .
We now find � satisfying (3.9) by choosing mn . To do this, we first note that there

exists a strictly increasing continuous function h(t) from [0,∞) onto itself such that
h(t) ≤ g(t) for t ≥ 0 and it is sufficient to replace g(t) by h(t) in the proof. In this
way, the inverse of h(t) exists, and we denote it by h−1(t).

Now, note that

λn ≤ q
bk − 1

b − 1
+ qbmn ≤ (q + 1)bmn .

Hence,
λn+1 − λn ≥ qbmn+1 − (q + 1)bmn ≥ bmn+1. (3.16)
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Therefore, we choose mn so that bmn ≥ 2h−1(bn+1) for all n ≥ 1. For any h(R) ≥ 1,
there exists unique s ∈ N such that bs−1 ≤ h(R) < bs . Then

supx∈R #(� ∩ (x − R, x + R))

h(R)
≤ supx∈R #(� ∩ (x − h−1(bs), x + h−1(bs)))

bs−1 .

(3.17)

Note from (3.16) that the length of the open intervals (x − h−1(bs), x + h−1(bs))

is less than λn+1−λn whenever n ≥ s. This implies that the set �∩(x −h−1(bs), x +
h−1(bs)) contains at most one λn where n ≥ s. We therefore have

sup
x∈R

#(� ∩ (x − h−1(bs), x + h−1(bs))) ≤ s + 1.

Thus the result follows by taking limit in (3.17). �
We conclude the paper with some remarks.

Remark (1) When observing the proofs of theorems, the main crux of the proof to
spectra of zero Beurling dimension is in Proposition 3.7. The uniform control on
the Fourier transform depends only on the number of non-zero digits in the b-adic
expansion rather than the size of the frequencies.

(2) Indeed, all maximal orthogonal exponentials for μb,q can be classified through
either regular or irregular mappings. This note discusses only the regular mappings.
For irregular mappings, we can discuss its spectral properties if the number of irreg-
ular paths is finite. One can refer the details to [DaHL13].

(3) Much less is known about dilating a spectrum of a spectral measure. A standard
example is that if � = {0, 1} ⊕ 4{0, 1} ⊕ ...., then 5� is also a spectrum for the
standard one-fourth Cantor measure (i.e. q = 2, b = 4) [DHSW11]. However, one
can prove that the tree mapping corresponding to 5� is irregular with infinitely many
irregular paths. To see this, we re-write the following elements 5� into our standard
4-adic expansions.

5 · 4n + 5 · 4n+1 + · · · + 5 · 4m = 4n + 2 · 4n+1 + 2 · 4n+2 + ... + 2 · 4m + 4m+1.

This means the paths 0n−110∞ are irregular paths. Hence, there are infinitely many
such paths. This example of spectra cannot be covered by our theory and is also the
first example of spectra with infinitely many irregular paths .
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