Law of Pure Types and Some Exotic Spectra
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Abstract Let ;1 be a Borel probability measure with compact support in R and
let E(A) = {e=2™% : X\ € A}. We make a review on some recent progress about
spectral measures. We first show that the law of pure types holds for spectral measures,
i.e.if E(A)isaframe for L2 (1), then pis discrete or absolutely continuous or singular
continuous with respect to Lebesgue measure (see [HLL13]). And we discuss the
spectral properties of Cantor measures (see [DaHL13]), where we focus on some
exotic properties of the spectra of some Cantor measures.
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1 Introduction to the General Spectral Measures

Let /1 be a Borel probability measure on R? with compact support. We call a family
E(A) = {ey := e 2™** . X\ € A} (A is a countable set) a Fourier frame for the
Hilbert space L?(y) if there exist A, B > 0 such that

AIFIP = D K foeul? < BIFIR Y f € L2(w). (1.1)

AEA

Here the inner product is defined as usual, x - y = z;izl x;y; for x, y € R? and

(fs e/\>/¢ = / S(x)e_\dp(x).
R4

E(A) is called an (exponential) Riesz basis if it is both a basis and a frame for L2 ().
Fourier frames and exponential Riesz bases are natural generalizations of exponential
orthonromal bases in L?(p). They have fundamental importance in non-harmonic
Fourier analysis and wavelet. When (1.1) is satisfied, f € LZ(,u) can be expressed
as f(x) =2 \ep €)e2™A and the expression is unique if it is a Riesz basis.

When E (A) is an orthonormal basis (Riesz basis, or frame) for L (1), we say that
W 1s a spectral measure (R-spectral measure, or F-spectral measure respectively) and
A is called a spectrum (R-spectrum, or F-spectrum respectively) of . We will also
use the term orthonormal spectrum instead of spectrum when we need to emphasize
the orthonormal property. If E(A) only satisfies the upper bound condition in (1.1),
then it is called a Bessel sequence; for convenience, we also call A a Bessel sequence
of L?(p).

Since Fuglede proposed the spectral set conjecture [Fug74] and Jorgensen and
Pedersen [JP98] discovered the first singular fractal spectral measure, there has been
a lot of interest in understanding which kind of measures are spectral and its delicate
connection with translational tiling. In this short note, we aim at giving a system-
atic survey on the recent progress in this line of research and some more detailed
explanations about our discovery in [HLL13, DaHL13] will be given.

The first fundamental result is about the law of pure type. It was proved by
He et al. [HLL13], which generalized the early investigation of spectral measures
by Laba and Wang [LaW06]. Recall that a o-finite Borel measure o on R? can be
decomposed uniquely as discrete, singularly continuous and absolutely continuous
measures, i.e., it = g + ps + jtq- The measure p is said to be of pure types if
equals only one of the three components.

Theorem 1.1 Let 1w be an F-spectral measure on RE. Then it must be one of the three
pure types: discrete (and finite), singularly continuous or absolutely continuous.

By the law of pure types, we can study spectral measures according to its type.
When . is a discrete counting measure with finite support, it is an R-spectral measure
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[HLL13]; When p is absolutely continuous, Lai proved that y. is an F-spectral measure
if and only if its density function is bounded above and bounded away from 0 almost
everywhere on its support [Laill]. Furthermore, Dutkay and Lai proved that if p
is a spectral measure, then its density function is a constant on its support, that is,
1 is essentially the Lebesgue measure restricted on its support [DLO0O]. However,
classification of spectral measures is far from complete. For the study of R-spectral
absolutely continuous measures, one can refer to the recent work of Lev et al. with
their emphasis on the use of quasicrystals [KNOO, Lev12, GL14].

From now on, we concentrate on orthogonally spectral measures. We call A an
orthogonal set if E(A) is a mutually orthogonal sequence for L?(y1). Define

OA ) = D IIE+ VI,

AEA

where the Fourier transform of y is define as usually by

) = / eI ().

R4

Q 1is crucial in determining whether E(A) is complete. It is well-known that an
orthogonal sequence E (A) is complete in L?(y) if and only if Qo = 1 [JP98]. Here,
we give a slight generalization of this result and also exploit the analytic property of

Ox.

Theorem 1.2 Let 1y be a compactly supported Borel probability measure with com-
pact support in R,

(1) Suppose that spanE(I") = L2(,u) and E(A) is an orthogonal set for L2(,u).
Then A is a spectrum of p if and only if

Oa(y) =1, forvyerl.

(ii) Suppose that E(A) is a Bessel sequence for Lz(u). Then QA (+) is an entire
function in C?.

The entire property is a simple extension of [JP98, Lemma 4.3]. In our proofs,
this property helps us establish the completeness by allowing us to focus on small
values of €.

Our main interest on the spectral measures is when p is singularly continuous.
The one-fourth contraction Cantor measure was the first example of such spectral
measures, which was found by Jorgensen and Pedersen [JP98]in 1998. From that time
on, various properties of singular spectral measures are studied extensively [Dail2,
DHJ09, DHS09, DHSW11, LaWw02, LaWO06]. In particular, many exotic spectra
were discovered and they do not appear in their absolutely continuous counterpart.
Here, we list some of the interesting ones.
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(1) There exists a spectrum A of a singularly continuous measure y such that kA is
also a spectrum of y for some k # 1;

(2) There exists a A so that E'(A) is a maximal orthogonal collection of exponentials
for Lz(u), but not a basis;

(3) There exists a spectrum A of a singularly continuous measure so that its Beurling
dimension is zero.

Property (1) means that we can sort of dilate a spectrum but preserve its com-
pleteness. It was first given by Laba and Wang [LaW02] and some studies are given
in [DJ12].

Property (2) has two types of variants. First, some measures have maximal orthog-
onal collections of infinite cardinality without being spectral [HuLO8, Dail2]. Sec-
ond, even though the measure is spectral, there still exists some incomplete maximal
orthogonal collections. In [DHS09], Dutkay et al. tried to give a classification on
maximal orthogonal collection for one-fourth Cantor measures and tried to study
which of them are complete. This investigation was generalized and improved in
[DaHL13]. Furthermore, we can demonstrate the existence of spectrum satisfying
property (3). Beurling dimension is a concept defined in [DHSW11], who tried to
generalize Beurling density and the elegant result of Landau [Lan67] on Fourier
frame spectra to fractal setting. Their work gave some partial positive results, letting
alone a technical assumption on the spectra. In person communication with Wang
in 2011, we were told that he can construct an example such that a spectral measure
can have a spectrum with zero Beurling dimension. However, he cannot explain why
there can be such phenomenon. Our construction gave a better picture of it.

For the rest of our paper, we will prove Theorem 1.1 and 1.2 in Sect. 2. In Sect. 3,
we will present a simplified content of [DaHL13] and the examples of zero Beurling
dimension spectra will be given. For more results on this issue, reader may refer to
[DaHL13, DHS09].

2 Law of Pure Types

In this section, we will present a self-contained proof for the law of pure types of
F-spectral measures. First, we need the following proposition, which was proved in
[DHSW11]. This can be viewed as the stability of Bessel sequence under a constant
perturbation of a Bessel sequence. It has its origin in the paper of Duffin and Schaeffer
[DS52].

Proposition 2.1 Let {)\,};2, be a Bessel sequence of ji. If there exists C such that
[An — Yl < C forn = 0, then {,};2, is also a Bessel sequence of 1.

Proof Tt is sufficient to show that all v, = (7}"), e 75")) differs \, =
()\Y’), ceey )\El")) only on the first component, and the statement follows by induc-

tion on the number of components.
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Let suppy C [— P, P]? for some P > 0. We have that

- =27y, X 2 < 27 (Y —An)x =2, x 2
Z‘< F(x), e~ 2mm >‘ = Z‘<f(x)e W= A)x | o= 27N >‘
n=0 =

gzg

2o (n) () .
‘< f(x)e27rz('yl - )x17e—2m)\n~x >’

3
Il
=}

o0

(n) (M)\\k
2 - A .
Z ( 7rl(’Y 1 ) < f(x)x{“,e_%“\”'x -

00 o) k e—27ri)\,,‘x - |2

@rC)?k S| < foxf,
522 > o

n=0 k=0 - k=0
B f(0)xF|I?

< e(ZWC)Z Z o

k=0
21C)2 P2 12
< BeCTOHP 1112,

Note that the fourth line above uses Cauchy-Schwarz inequality. Hence, the assertion
follows. U

In the proof of the pure type property of the F-spectral measures, we need to use
the lower Beurling density of an infinite discrete set A C R¢:

#(AN
DA :=liminf inf w,
h—00 xeRd hd

where Qp(x) is the standard cube of side length & centered at x. Intuitively A is
distributed like a lattice if D™ A is positive. In the seminal paper [Lan67], Landau
gave an elegant and useful necessary condition for A to be an F-spectrum on L2(£2):
D™ A > L(2), where L is the Lebesgue measure. The following proposition pro-
vides some relationships between the lower Beurling density and the types of the
measures.

Proposition 2.2 Let ;. be a compactly supported probability measure on R? and let
A be an F-spectrum of . We have

G Ifp= ZCGC pedc is discrete, then #A < 00 and #C < oo;
(i1) If w is singularly continuous, then D~ A = 0;
(iii) If w is absolutely continuous, then D~ A > 0.

Proof (i) By the definition of Fourier frame, we have for all f € Lz(u),

DD F@©ET N p P < B If (@ pe.

AeA ceC ceC
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Taking f = .., Where X, is the indictor function of the set {co} and p., > 0, we
have (#A) - pfo < Bp¢,. Hence #A < B/p., < oo. This implies #C < oo by the
completeness of Fourier frame.

(ii) Suppose on the contrary that DA > ¢ > 0. We claim that Z? is a Bessel
sequence of L2(u1). By the definition of D~ A, we can choose a large 7 € N such
that

inf (#(A N Op(x))) > ch? > 1.
xeRd

Taking x = hn, where n € 74 we see that all cubes of the form An + [—h/2, h/2)d
contains at least one points of A, say An. Since A is an F-spectrum, {Ap}pcze is a
Bessel sequence. Observing that

|An — hn| < diam([—h/2,h/2)") = d h,

then hZ is also a Bessel sequence of L2 (1) by Proposition 2.1. As a Bessel sequence

(hZ4 4+ K) is again a Bessel sequence of L?(p), which proves the claim.
Now consider

Gx) = D Ak +mP.

neZd

G is aperiodic function (mod Z%). As Z¢ is a Bessel sequence, applying the definition
to e_y, we see that G(x) < B < oco. Hence G € L1 ([0, 1)¢) and

/Iﬁ(x)lzdx => / Ii(x +n)|2dx = / |G (x)|dx < .
Rd

neZjy 1yd [0,1)4

This means that 77 € L>(R?), which implies that z must be absolutely continuous.
This is a contradiction.

(iii) If p is absolutely continuous, we write d(x) = (x)dx, for some L' function
o and denote by €2 the support of . Let

1
Ey = er:Nfgo(x)SN .

Since 1 is absolutely continuous, the support €2 must have positive Lebesgue measure
and E also has positive Lebesgue measure for N large, which we may assume it
holds for all E. Now, we claim that A is an F-spectrum of L2(E ~). To see this, let

f € L*(Ey), then we have [ |£g; *p(x)dx < N [ |f]* < co. Hence,
Ey En
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Z|/f(x)627rl/\xd | Z|/f( ) 2m/\x ()d |
En

AEA En AEA

<B/ |f( )| P(x)dx < BN/ | f (x)|Pdx.

This establishes the upper frame bound. The lower bound can also be estab-
lished analogously. This justify the claim. By the Landau’s density theorem, we have
D™ A > L(En). As Ey are increasing sequence of sets and | Jy Ey = Quptoa
Lebesgue measure zero set, we have

D™A > L(2) > 0. O
Now it is easy to conclude that an F-spectral measure is of pure type.

Proof of Theorem 1.1 First let us assume that if ;1 is decomposed into non-trivial
discrete and continuous parts, it = f1q + jic. Let A be an F-spectrum of yi. As L% (j1g)
and L?(u) are non-trivial subspaces of L?(u), it is easy to see that A is also an
F-spectrum of both Lz(ud) and Lz(uc). Then #A < oo by Proposition 2.2(i); but
#A = oo since L?(u,) is an infinite dimensional Hilbert space. This contradiction
shows that p is either discrete or purely continuous.

Suppose u is continuous and has non-trivial singular part y; and absolutely con-
tinuous part 4. By applying the same argument as the above, A is an F-spectrum
of Lz(us) and L2(,ua). This is impossible in view of the Beurling density of A in
Proposition 2.2(ii) and (iii). (Il

The following corollary is immediate from Theorem 1.1.

Corollary 2.3 A spectral measure or an R-spectral measure must be of pure type.

In the rest of this section, we will prove Theorem 1.2 and it will be needed in the
next section.

Proof of Theorem 1.2 (i) It is easy to see that the necessity follows by applying
Parseval’s identity to e~ for v € I'. Now we show the sufficiency. By the hypotheses,
it is sufficient to show that e, € spanE(A) for each v € I'. Let IT be the projection
from L2(p) to spanE(A). Then e, = Il(ey) + (Id — II)(ey) and thus 1 =
[ITI(e;)||*> + |(Id — TT)(e,)||*. Note that

(e = D [Tl(ey), ex)l* = D [ley, ex)” = lley||* =

AEA AEA

Then (Id — IT)(e,) = 0 and thus e, € spanE(A).
(ii) Let M > 0 so that suppy € B(0, M), where B(0, M) is the ball with center
at 0 and radius M. Denote A = {)\,}7°, and

N
On(w) = D" i+ AP, Ywe .
n=0
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Let B be the upper bound of E(A). Note that

N
2
On(w) = Z |< e_w, e, >| < B||e,w||2 < Be47rM\Im(w)|,
n=0

where Zm (w) is the imaginary part of w. This implies that the sequence { O y (w)}3_,;
is uniformly bounded on each compact set of C?. By Montel theorem (see, e.g.,
[Gun90] p. 54), we have Q 4 is an entire function on C? and

|QA(w)| < Be47rM\Im(w)|7 YV € (Cd.

O
Now the standard Jorgensen-Pedersen Lemma follows as a corollary.

Corollary 2.4 An orthogonal sequence E(A) is complete in L*>(p) if and only if
Opr=1

Proof We only need to show that spanE (R?) is dense in L2 (1) by Theorem 1.2. Let
K = supp j. Since spanE (R?) is a subalgebra of Banach algebra C (K), the space
of all continuous function on K, and it separates points K. By Stone-Weierstrass
theorem, we have that spanE (R?) is dense in the space C(K). According to Lusin
theorem, C(K) is dense in Lz(,u). This implies the assertion. [l

3 Spectral Properties of Cantor Measures on R

This section is devoted to a simplified content of [DaHL13]. Our aim is to show the
existence of spectra with zero Beurling dimension (Theorem 3.5) when the measures
are the Cantor measure with consecutive digits. Let b, g be two integers > 1 with
b > q and g | b. Then there exists unique Borel probability measure, denoted by
b, - satisfying
19
i, ¢ () = ;Zub,q@-—i). 3.1)

i=0

I, 4 1s called a Cantor measure (with consecutive digit). It is well-known that the
Hausdorff dimension of the support of up 4 isIng/Inb < 1 and thus pp 4 is sin-
gularly continuous with respect to Lebesgue measure. We will construct a class of
orthogonal set of yp, 4.

Denote £, = {0,--+,¢ — 1}, ) = {9} and £ = £, x --- x T. Let £F =
————————
n
U;’;o E’(; be the set of all finite words. Given o = ojoy--- € X*, we define

Yo = o, ol = o1---0} for k > 0 where o|gp = 9 for any o and adopt the
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notation 0¥ = 0---0 and ¢’ is the concatenation of o and ¢’. We start with two
k

definitions.

Definition 3.1 Let E(’; be all the finite words defined as above. We say it is a g —adic

tree if we set naturally the root is 1J, all the k-th level nodes are ¥ 5 for k£ > 1 and all
the offsprings of o € E;‘ are oi fori =0,1,...,9g — 1.

Definition 3.2 Let E; be a g—adic tree, 7 is called a regular mapping from E;‘ to
{—1,0, ..., b — 2} if it satisfies

@A) 7)) =70" =0foralln > 1.
(i) Foroy---op € B, 7(01 -+ 01) € (04 +9%) N{—1,0, ..., b — 2}
(iii) Forany o € %, 7(c0%) = 0 for ¢ large enough.

Let 7 be a regular mapping from E(’; to {—1,0,...,b — 2}. For any n € N with
gV~ < n < ¢V, there exists unique ¢ = o1 ---oN € EZIV such that oy # 0 and

n=01+02q+-~-+0NqN_1.

Associated to 7, we define a sequence of integers by Ao = 0 and

[e¢)
M =7) +7@)b+ -+ 7@ BV 4 D (00N E,
k=N

Note that ), is uniquely determined by 7(c|), 7(c|2), ..., 7(c|y) = 7(0). We
call A = {\, }flozo a T-sequence. Let £, be the number of nonzero terms in the sum

>0 v T(@OFNFhpE that is
0, = #{k : 7(c0") #£ 0 for k > 1}. (3.2)
We assume that b, g, r = b/q are integers with b > ¢. The following are our

main theorems.

Theorem 3.3 Let 7 be a regular mapping from E;‘ to {—1,0,...,b — 2} and let
A = {\}72 be the T-sequence. Then E(r A) is a maximal orthogonal collection of
exponentials for Lz(ub, q)-

Theorem 3.4 Let T be a regular mapping and let A = {\,},°, be the T-sequence.
We have the following:

(1) If max,>1{€,} < 00, thenrA is a spectrum of jip, 4;
(i) If €y = log, n for sufficient large n, then r A is not a spectrum of pp, 4.
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Theorem 3.5 Let g(x) be an increasing non-negative function on [0, 0o). Then there
exists a spectrum A of L*(up, q) such that

. #AN(x—R,x+ R))
lim sup =
R—00 R 9(R)

0. (3.3)
Let 15, 4 be the Cantor measure given by (3.1) and let
1 . .
M) = —(1 + ¥ ... 4 2=,
q

Then it is easy to obtain that

Tib,q () = Mbb' = [ [ MBT ). (3.4)

k=1

Note that [M (&)| = | singn&|/q| sin w€|. Then
1
Zy =1{: M) =0} = ZI(Z\QZ)

and
Z, =€ b g(©) =0 =r{b*a:k>0,acZ\qZ}.

Clearly, © is an orthogonal set of j1; 4 if and only if
0 -0 Cc Z,U|{0}. (3.5)

Proof of Theorem 3.3 We first prove the orthogonal property of E(rA). Denote
A = T(@']1) + 70 [)b + -+ 7@ |n)bV T+ 352 700N H Dbk and
n # n'. Let s be the smallest index such that 7(c70!71|;) # 7(50!7l|,), where || is
the length of . Then

Mt = M = (1(0]y) = T(al)b* + b M

for some M € Z. Then r(\,s — \,) is the zero point of M (b~*T1¢) by the definition
of 7 and thus is a zero point of 15, 4 by (3.4). This implies that r A is an orthogonal
set of fip, 4.

Now we show the maximal property of E(rA). Suppose that rA U {7} is an
orthogonal set of y 4 with v & rA. By (3.5) and 0 € r A, we have v = rbFa for
some k > 0 and a € Z \ gZ. Since a can be expressed uniquely as

a=ay+ab+- - +a,b",



Law of Pure Types and Some Exotic Spectra of Fractal Spectral Measures 57

where all ¢; € {—1,0,1,...,b—1},a,, # 0and ag € Z \ q7Z, there exists unique
ip € {1,2,...,qg — 1} such that agp — T(Okio) € qZ. By the assumption we have
ab® — )\ioqk € Z,, that is,

abk—)\ioqk k. “ k- ns s - k: AS\2.S
— e = a0 — 7(0%) + > (ai = 7(0%ig0)b* — D 7(0Fig0%)b" € Z,,.
s=1 s=m+1

Sinceq | (ag—7(0%ip)), butb | (ap—7(0%ig)) ifag # 7(0¥ip), one has ag = 7(0%ip).
Similarly, there exists unique i1 € {0, 1,...,qg — 1} such that a; — T(Oki0i1) € qZ.
From ab® — )\ioqk+l~lqk+l € Z,,onehasa; = 7(0%igiy). By m-steps one has a; =
7(0Fig - - -iy) for 0 < s < m.

Let p = > ,i;q"**. We claim that ¥ = ), and the result follows if the claim
holds. In fact,

ab® — Ap - ad

= > (ag =g i)b = > 7(O0Fig- iy ™D
s=0 s=m+1
o
== > 70 in0 b’
s=m+1

If ab® # Ap, the above implies that ab® — Ap & Z,, which contradicts to the
assumption. Hence the claim follows. (I

Let 6, be the Dirac measure with center a. We define

1
552#—526;56

for any finite set £, where #£ is the cardinality of £. Write D = {0, 1,...,q — 1}
and Dy = %D—}—u-—l—bLNDforN > 1. Let uy = dp,,. Then

N
& =[] Mo,

j=1
By (3.4) we have
Hb, q(€) = ﬁﬁ(&)ﬁb,q(b%)- (3.6)

Lemma 3.6 Let 7 be a regular mapping and let {\,},2, be the T-sequence. Then
forall N > 1,

gV -1

SN E+ranlP=1. 3.7)

n=0
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Proof Since the dimension of L?(uy) is g”, the assertion follows by Corollary 2.4

N_
if {r/\n}Z=0 "is an orthogonal set of iy, which can be proved by the same proof of
Theorem 3.3. O

Form > 1, let

q" -1 00
Om(© = D [fib g€ +rA)|* and Q€ =D [fip. o€ + M|
n=0 n=0

Let it = pip 4. For any m, p > 0, we have the following identity:

an»p_l
Onip©) =0m© + D [AE+rA)
n=g™
g"tP—1 2
— ~ An
=0n©+ > |imipE+rin) u(gbt,:,, ) (3.8)
n=qg™

Our goal is see whether Q(§) = 1. Then by invoking Corollary 2.4, we can
determine whether we have a spectrum. As Q is an entire function by Theorem
1.2(ii), we just need to see the value of Q (&) for some small values of £. To do this,

E+rn

e in the above. Write

we need to make a fine estimation of the terms ‘ﬁ(

b—1
a = min [IM(f)ﬁ(fﬂz I _] >0
qb

and

B=maX||M(§)|2 L €l < u] <1

where |M (€)| = o]

q|sinm|”

Proposition 3.7 Let |¢| < “2=2 and let t = € + SN, dib", where d; €
{1,2,---r—=1}and 1 <ny <--- < ny. Then

N <) ”? < pN. (3.9)

Proof Firstitis easy to check that, for [¢] < “2=2 and all dj, € {0,1,2, ..., — 1},
we have
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iy dib® 1 b—2
SR (2 o)
_r(b=2)+ (= D" —b)
B b+ (b — 1)
b—1
== (3.10)

for n > 1. The inequality in the last line follows from a direct comparison of the
difference and ¢ > 2. To simplify notations, we let ng = 0 and ny4+; = oo. Then
[7i(1)[* equals

00 . 2 N  niyl ) 2
H‘M (b‘ft)‘ -T1 11 ‘M (b_/t)‘ . 3.11)
j=1 i=0 j=n;+1

We now estimate the products one by one. By (3.10), we have

b—1
< .
qb

€+ Doy i
bn,—+l

Hence, together with the integral periodicity of M(£) and the definition of «, we
have for alli > O,

nj+] o N1 ) i 2
I1 ‘M(bw)‘ =[] M(bf(£+deb”k))
j=ni+1 j=ni+1 k=1
00 i 2
i &+ 2ok=1 dib™
> 1] M(b J(Zb:’;i—jl >a. (312
j=0
b—2 b—1
< m < q_b Hence,

For the case i = 0, it is easy to see that )f—]‘
=

H;”:raﬂﬂ |M(b_‘/t)|2 z Hiio iM (b_j (5/b))|2
into (3.11), we have |7ip, 4 (1)|> > oV T,

We next prove the upper bound. From [M(£)| < 1, (3.11) and the integral peri-
odicity of M (¢),

«. Putting this fact and (3.12)

2
0P < ﬁ ‘M (bf<n,~+1>t))2 “T1 (3.13)

i=1 i=1

M (b(niJrl)(g + zdkbnk))

k=1

By (3.10) we have
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b=t (b — 1)

> bn,-—l

i i—1
€+ D dib™ | = b — |6+ D dib™ | = b —
k=1 k=1

By (3.10), (3.13), the above and the definition of 3, we obtain that [7i()|*> < gN. O

Proof of Theorem 3.4 (i) Without loss generality we assume that |£| < %.

Recall that
qm+p_1 2
~ ~ An
Qunsp© = On(© + D [fmtp& +rA)|’ u(sq*,;ip ) (3.14)
n=q™

Let also L = max,>; £, (< 0o by assumption). For ¢ < n < ¢"*?, there exists
unique N,m < N < m + p, such that qN_l <n< qN. By the definition of 7, we
have 7(c0%) € {0, q,2q, ..., (r — 1)q} for k > 1. We therefore have

oo
E+rhn=E+rr(ol) +rr@l)b+ -+ 7@+ D rr(e0 VY
s=N
N .
=&4r D 1@l T+ rr(@0)bY 4 (00PN

i=1

oo
+ Z dsbs+l
s=m+p

Hence,

N

A 1 .

gbfn:p” = pmtr <€+r§ (alb' ! +r7’(aO)bN+-~-+rT(aOm+”_N)bm+1’_l)
i=1

00 00
+ Z dsbs+17(m+p) =14 Z dst»lf(erP).
s=m+p s=m+p

Note that, from |7(c)| < b — 2 for any multi-indices o,

_ 24yt L1022
112 oo (16147 =21 45467 4o 457 7h) < D=
Also,d; € {0, 1, ..., r — 1} and there are at most L non-zero terms. By Proposition

2
3.7, we conclude that ‘ﬁ (E(;,LA; ) ‘ > ot Using (3.14) and Lemma 3.6. we obtain



Law of Pure Types and Some Exotic Spectra of Fractal Spectral Measures 61

qm+17 —1

Ontp(©) = On(© + P > [Ty €+ )|
=q™

m -1

= 0n(© + ! ( Z [Tt p (€ + )|

Fixing m, we first let p approaches infinity and obtain

qn171

0(6) = Qn(&) + ! ( Z [+ ran))?

We then finally let m goes to infinity.

! (1 - > I+ wnz) <0.

n=0

This means that Q(&) > 1 for [£] < r(b —2)/(b — 1). As Q(&) < 1 for mutually
orthogonal sets and by the entire function property of Q on C, we musthave Q(§) = 1
and hence A is a spectrum for p.

(i1) With loss of generality we assume that £, > log, n forn > 1. Again we begin
with

q" -1

On@©) = 0n 1+ D |inE+ri)l

n=q"- 1

\y 2
£t

a(

Note that for q’"‘1 <n<qg"{,> logq n > m — 1. Using it and the same estimate
as in (i) so as to apply Proposition 3.7, we have

qg"—1
On(©) < Qm-1©+ D (€ +rAn)po
n=gm-1
q"—1
<O ©+8"" D I+ Al
n=gm=1
g" -1
= 0n 1O+ 8" U= D B +rAP)

n=0

< Qm—1(© + "1 = Om-1(9).



62 X.-R. Dai et al.

Consequently,

m—1
1= 0n(© = (1= Qua(ENU =" =1 =0:1) [Ja-5Y.

k=1

By letting m to infinity, we have

1-0© = (1 -0 [ -85

k=1

Since Q1(§) < 1 for almost all & € R, the second assertion follows by
Corollary 2.4. O

Proof of Theorem 3.5 Let {m}7° | be a strictly increasing sequence of positive
integers with m| > 2. Then my > k for k > 1. We now define a regular mapping
in terms of this sequence by induction. Let 7(9) = 7(0%) = 0 for k > 1. For
cef{l,2,...,q -1} C ! we define 7(¢0) = o and T(O’Ol) = 0 or ¢ according to
| # mgy or I = mg, respectively. Suppose we have defined all 7(0), 0 = o1 --- 0y
with s < k and oy # 0, and 7(00') for I > 1. For 0 = o1+ 031 € T with
ok+1 # 0, we define 7(0) = o4+ and 7'(001) = 0 or g according to [ # m,
orl = mp,_, respectively, where p, = le-“:ll 0;q'~!. By induction we have well-
defined a regular mapping from the g-adic tree to {—1,0, 1,...,b — 1}.

For any n € N, there exists unique k& > 1 such that qk_l <n< qk. Then n can
be expressed by

k
n :Za,-qf*‘, (3.15)
j=1

where all o; € {0,1,...,¢9 — 1} and o}, # 0. By the definition of 7-sequence, we
have A\g = 0 and

k
)\n = ZT(JI .. Jj)b]il +qun’
Jj=1

consequently, £, = 1 and by Theorem 3.4(i), A = {\,};2, is a spectrum of 1, 4.

We now find A satisfying (3.9) by choosing m,,. To do this, we first note that there
exists a strictly increasing continuous function /4 (¢) from [0, co) onto itself such that
h(t) < g(t) for t > 0 and it is sufficient to replace g(z) by () in the proof. In this
way, the inverse of /(¢) exists, and we denote it by L.

Now, note that
k

M =4

+qb™ < (g + D™,

Hence,
Mitl — Ap = gb™ 1 — (g + D™ > p"ntl (3.16)
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Therefore, we choose m,, so that 5™ > 2~ 1 ("1 foralln > 1. For any hi(R) > 1,
there exists unique s € N such that »*~! < h(R) < b°. Then

sup, g #(A N (x — R, x + R)) _ SUpcR #HAN(x—h LB, x +hLB*))
h(R) - bs—1 ’

(3.17)

Note from (3.16) that the length of the open intervals (x —h = (b%), x +h =1 (b%))
is less than A\, -1 —\, whenever n > s. This implies that the set AN (x —A~ ' (b*), x+
h~L(b*)) contains at most one \, where n > s. We therefore have

sup#(A N (x —h~ 1B, x + =1 (B*)) <s + 1.
xeR

Thus the result follows by taking limit in (3.17). ([l

We conclude the paper with some remarks.

Remark (1) When observing the proofs of theorems, the main crux of the proof to
spectra of zero Beurling dimension is in Proposition 3.7. The uniform control on
the Fourier transform depends only on the number of non-zero digits in the b-adic
expansion rather than the size of the frequencies.

(2) Indeed, all maximal orthogonal exponentials for 15, , can be classified through
either regular or irregular mappings. This note discusses only the regular mappings.
For irregular mappings, we can discuss its spectral properties if the number of irreg-
ular paths is finite. One can refer the details to [DaHL13].

(3) Much Iess is known about dilating a spectrum of a spectral measure. A standard
example is that if A = {0, 1} & 4{0, 1} & ...., then 5A is also a spectrum for the
standard one-fourth Cantor measure (i.e. ¢ = 2, b = 4) [DHSW11]. However, one
can prove that the tree mapping corresponding to SA is irregular with infinitely many
irregular paths. To see this, we re-write the following elements 5A into our standard
4-adic expansions.

54" 4 5.4 g5 =g 4 0 g2 0 gm g

This means the paths 0"~ 110 are irregular paths. Hence, there are infinitely many
such paths. This example of spectra cannot be covered by our theory and is also the
first example of spectra with infinitely many irregular paths .
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