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Abstract. This paper proposes an online clustering approach based
on both hierarchical Dirichlet processes and Dirichlet distributions. The
deployment of hierarchical Dirichlet processes allows to resolve difficul-
ties related to model selection thanks to its nonparametric nature that
arises in the face of unknown number of mixture components. The con-
sideration of the Dirichlet distribution is justified by its high flexibil-
ity for non-Gaussian data modeling as shown in several previous works.
The resulting statistical model is learned using variational Bayes and is
evaluated via a challenging application namely images clustering. The
obtained results show the merits of the proposed statistical framework.
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1 Introduction

With the ubiquity of new information technology and media, the amount of
multimedia data generated everyday has increased exponentially. Handling the
resulting massive data sets is a difficult problem [19,20,24,33]. Fortunately,
advances in statistics and computing have made available several data mod-
eling tools and approaches in many areas such as pattern recognition, computer
vision, and data mining. Among these approaches finite mixture models play
a crucial role and have become fundamental tools for data analysis [9]. The
efficient adoption of finite mixture models, however, presents itself serious chal-
lenges related mainly to the important model selection problem (i.e. automatic
determination of the model complexity without under- or over-fitting). Thus,
much recent research has been directed at data modeling using infinite mix-
tures rather than finite ones. Indeed, as we can see from advances in the are of
machine learning, Bayesian nonparametric approaches have been widely studied
and adopted recently [26,31]. This is especially true for Dirichlet process (DP)
mixtures of distributions [10,11,19,25].

DP mixtures of Gaussian distributions have been largely adopted in the past.
In a previous work, however, we have shown that DP mixtures of Dirichlet dis-
tributions could be a better alternative especially in the case of non-Gaussian
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data [4]. A DP mixture of Dirichlet distributions can be viewed as a learn-
ing machine which estimates a given probability density function as an infinite
weighted sum of Dirichlet distributions. This learning machine has been shown
to be effective in several data mining and computer vision applications and has
been proposed as an alternative to overcome the drawbacks of finite Dirichlet
mixture models [4]. In this paper, we go a step further by taking advantage of
the flexibility that hierarchical Bayesian modeling offers via the development
of a hierarchical DP process mixture of Dirichlet distributions. A hierarchical
DP [32] is actually a dependency model for multiple Dirichlet processes. It has
been shown to be an efficient nonparametric Bayesian approach to the prob-
lem of model-based clustering of grouped data with sharing clusters [8,30]. It is
an extension to the conventional DP with a Bayesian hierarchy where the base
measure for a set of Dirichlet processes is itself distributed according to a DP.
Learning technique for DP-based models are generally designed to be run over
already observed collections of objects. In several real applications, however, the
collection grows over time which makes the use of batch learning algorithms
infeasible. In this case, we should consider online learning algorithms, which
allow to update the model’s parameters each time new objects are observed, by
maintaining high-quality inference for new introduced data [7]. We develop then
an online variational algorithm for the learning of our hierarchical DP mixture of
Dirichlet distributions model. The adoption of variational Bayesian inference [1]
is motivated by the fact that it has been shown to be an efficient alternative to
purely Bayesian inference in the case of several nonparametric Bayesian models
[13] and especially in the case of Dirichlet mixture models [14].

The paper is organized as follows. In Sect. 2 we present our hierarchical non-
parametric model. In Sect. 3, an online variational approach is developed for the
learning of the proposed model. Section 4 outlines the experimental setup involv-
ing the challenging problem of images categorization and presents the obtained
results. The paper is concluded in Sect. 5.

2 Hierarchical DP Mixture of Dirichlet Distributions

In this section, we start by briefly reviewing Dirichlet processes and then we
present in details our hierarchical model.

2.1 Dirichlet Process

The DP is a stochastic process whose sample paths are probability measures
with probability one [16,21]. Given a random distribution G, it is distributed
according to a DP if its marginals follow Dirichlet distributions. More specifi-
cally, let H be a distribution over some probability space @ and -y be a positive
real number, then G is a DP with the base distribution H and concentration
parameter 7, denoted as G ~ DP (v, H), if

(G(A1),...,G(Ay)) ~ Dir(yH(AL),...,vH(Ay)) (1)
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where (Aq,..., At) is the set of the finite partitions of ©, and Dir(yH (4,), ...,
~vH(A;)) is a finite-dimensional Dirichlet distribution with parameters (vH (A1),
CLYH(AY)).

2.2 Hierarchical DP Mixture Model of Dirichlet Distributions

Hierarchical Dirichlet Process. A hierarchical DP is a distribution over
a set of random probability measures over a probability space ©. Recently, it
has been shown to be an effective framework for modeling grouped data where
observations are organized into groups that are allowed to remain statistically
linked [30,32]. Assuming that we have a data set which is separated into M
groups. A hierarchical DP involves an indexed set of DPs {G;}, one of each
group, that share a base distribution Gy, which is itself distributed as a DP:

Go ~DP(y,H) G; ~DP()\,Go) for each j,j € {1,...,M} (2)

where j is an index for each group of data. A hierarchical Dirichlet process can be
represented in a more intuitive and straightforward way using two stick-breaking
constructions [18,29] containing a base-level and a group-level construction. In
the base-level construction, since the base distribution Gy is distributed accord-
ing to the Dirichlet process DP(y, H), it can be expressed using a stick-breaking
representation as

k—1 oo
Bi ~Beta(l,7) ar~H Br=8]1-8) Go=> Bk, (3)
s=1 k=1

where {ay} are independent random variables distributed according to H, and
where J,, is an atom at aj. The variables {0} are known as the stick-breaking
weights that satisfy 7o, Br = 1, and are obtained by recursively breaking a unit
length stick into an infinite number of pieces such that the size of each successive
piece is proportional to the rest of the stick. It is noteworthy that since Gy is
discrete and has a stick-breaking representation as in Eq. (3) according to the
property of DP, the atoms «, are shared among all G; and differ only in weights.
In this work, we apply the stick-breaking representation [34] to construct each
group-level DP Gj:

t—1 o
i ~ Beta(1,\) ;i ~ Go it = Ty H(l — ) Gj= Zﬂ'jt(swjt (4)
s=1 t=1

where 6, is a group-level atom at w;;, and where {7;;} are the stick-breaking
weights which satisfy Y,°, 7y = 1. Since wj; is distributed according to the
base distribution Gy, it takes on the value «aj with probability 8;. We may also
represent this using a binary latent variable C'j; = (Cjs1, Cjs2, - - .) as an indicator
variable, such that Cj, € {0,1}, Cjip = 1 if w;; maps to the base-level atom ay
which is indexed by k; otherwise, Cjj;, = 0. Accordingly, we have wj; = ozkc'j"k’.
Consequently, group-level atoms @;; do not need to be explicitly represented
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which further simplifies the inference process as it shall be clearer in the next
section. The indicator variable Cj; is distributed according to 3:

M oo oo

p€1®) =TTTITI 8" (5)

j=1t=1k=

=

Since B is a function of B’ according to the stick-breaking construction of the
Dirichlet process as shown in Eq. (3), p(C) can then be represented in the fol-
lowing form

p(C18") HHH H(l—ﬁé)]cj“ (6)

s=1
The prior of @' is a Beta dlstrlbutlo ccording to Eq. (3):
= ] Beta(1,v) = [[ v (1 - p80) ™" (7)
k=1 k=1

One significant application of hierarchical DP is its consideration as a non-
parametric prior over the factors for grouped data. More specifically, let ¢ indexes
the observations within each group j, we assume that each variable 6;; is a fac-
tor corresponding to an observation X;, and the factors 8; = (6;1,6,2,...) are
distributed according to G, for each j. Thus, we can have the likelihood in the
following form

0;ilGi ~ G Xjil6ji ~ F(6;:) (8)
where F'(6;;) denotes the distribution of the observation Xj; given 6;;, the prior
for the factors 6;; is the base distribution H of Gj. This setting forms the defin-
ition of a hierarchical DP mixture model, where each group is associated with a
mixture component, and the components are shared among these mixture mod-
els due to the sharing of atoms «j among all G;. Moreover, since each factor
0;; is distributed according to G, it takes the value w;; with probability ;.
Next, we introduce a binary latent variable Z;; = (Zji1, Zj2,...) as an indica-
tor variable. That is, Z;; € {0,1}, we have Z;;; = 1 if §}; is associated with
component ¢ and maps to the group-level atom w;¢; otherwise, Z;;; = 0. Thus,

z .
we have 0;; = wﬁ“t Since wj; also maps to the base-level atom ay, we then

Zj; CienZys o . . .
have 0, = w’/" = """’ The indicator variable Z; is distributed according

gt
to m as
M N oo

p(zlm) = TTTI T =" )

j=1li=1t=1
According to the stick-breaking construction of the Dirichlet process in Eq. (4),
7 is a function of 7’. Then, we have

M N oo

p(Z|n") H H H Tt H 1 — 7} )7 (10)

j=1li=1t=1 s=1

As shown in Eq. (4), the prior distribution of 7’ is a Beta:

M oo M oo

71'/) = H HBeta(l,)\jt) = H H Ajt(l - W;‘t))\jt71 (11)

j=1t=1 j=1t=1
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The Hierarchical Infinite Dirichlet Mixture Model. We focus on a specific
form of hierarchical DP mixture model where each observation within a group
is drawn from a mixture of Dirichlet distributions. Since DP mixture models are
often considered as infinite mixture models, we refer to the proposed model as the
hierarchical infinite Dirichlet mixture model. The consideration of Dirichlet mix-
tures is motivated by their superior performance in modeling proportional data
(i.e. normalized histograms) that are naturally generated by many applications
[3,6,14]. Although the Dirichlet distribution is a multivariate distribution which
is often used as a conjugate prior to the multinomial distribution in Bayesian
statistics, it will be considered as parent distribution to model the data directly
in this work. Furthermore, since we adopt the hierarchical DP mixture model
framework, the problem of determining the number of mixture components is
avoided by assuming that there is a countably infinite number of components.

Now let us consider a data set X containing N random vectors and sep-
arated into M groups. We suppose that each vector X;; = (Xji1,...,Xjip)
is represented in a D-dimensional space and is drawn from a hierarchical infi-
nite Dirichlet mixture model. Then, the corresponding likelihood function of the
proposed model with latent variables can be written as

N oo oo
p(¥|2,.C ) = [T TTIT TT Dir(Xjilens)?ree e (12)

Next, we need to place a prior distribution over the parameter a. In our case,
conjugate prior is preferred since it greatly simplifies the mathematics in the
learning process. Since « is positive and the formal conjugate prior for the
Dirichlet distribution is intractable, a Gamma distribution G(-) is adopted to
approximate the conjugate prior with an assumption that the Dirichlet parame-
ters are statistically independent [14]:

Ukl

p(a) = G(aju,v) = H H FU(’Zkl)aZlkrle*vmam (13)

k=11=1

where u and v are positive hyperparameters.

3 Online Variational Model Learning

First, we propose a batch variational inference method for learning the proposed
hierarchical infinite Dirichlet mixture model based on a natural gradient method.
Then, an online extension is proposed to account for large-scale or streaming
data. The consideration of Variational inference [1] is motivated by the excellent
results that it has provided when applied to finite Dirichlet mixtures [14]. In
order to simplify notations, in this section, we define 2 = (Z, A) as the set of
latent and unknown random variables where A = (C, #n’, 3, ).
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3.1 Batch Variational Inference

The goal of variational inference is to find an appropriate approximation, in
terms of Kullback-Leibler (KL) divergence, ¢({2) for the true posterior distribu-
tion p(§2|X). This problem can be tackled by adopting a factorization assumption
for restricting the form of ¢({2) which is known as mean field theory [1]. More-
over, we adopt a truncation technique proposed in [2] to truncate the variational
approximations of base and group levels at K and T, such that

K
Zﬁk:L Br =0 when k> K (14)

7r;T =1, Zwﬁ =1, mjy=0 when t>T (15)

Notice that the truncation levels K and T are variational parameters which
can be freely initialized and will be optimized automatically during the learning
process. By adopting the truncated stick-breaking representation and the factor-
ization assumption, the approximated posterior distribution ¢(§2) can be fully
factorized into disjoint distributions as

q(2) = q(Z)q(C)q(w")q(8")q(ex) (16)

The approach that we consider for deriving our optimization solutions is based
on a gradient method [28] and that can be easily extended to online settings as we
shall see in the next section. The idea of the gradient-based variational inference
approach is that, since the model has conjugate priors, the functional form of the
factors in the variational posterior distribution is known. Thus, the lower bound
L(q) can be considered as a function of the parameters of these distributions by
taking their general parametric forms. The optimization of variational factors is
then obtained by maximizing the lower bound with respect to these parameters.
In our case, the functional form for each variational factor is the same as its
conjugate prior distribution, namely Discrete for Z and C, Beta for 8’ and
7/, and Gamma for «. Therefore, the parametric forms for these variational
posterior distributions can be defined as the following

M N T M
a(z) = TTITILe5 IIIIT o (17)
Jj=1li=1t=1 j=1t=1k=1
M T K
= [ [ I Beta(wi:lase,b;0) a(8') = H Beta(Gr|gx, hk ) (18)
j=1t=1 k=1
K D
H Hg apt| i, Vi) (19)
k=11=1

exp(pjit)
> =1 exp(pjif)’

K D t—1

Piie = D (Cien)[Ric + Y (@ = 1) In Xja] + (Inwj) + D (In(L —xf,))  (20)

k=1 =1 s=1

By Maximizing the lower bound £(g), we obtain pj;;; = where
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D D D
Ri=In L0z Gr) + Z Qg [W(Z Q) — W(dkz)] [<ln akl> —1In O_Ckl] (21)

Hlil I(au) =1 =1
1 D
5 2 [P (Y aw) — ¥ (ax)] {(na —na)?)
=1 =1
1 D D
+§ ; ; QeOlkd |: Z ar)( ln Oékc —1In Ozkc)(<ln Ozkd> In qgq)
T (do)
D e = _exp(Pjex) (22)

4, exp(Fjer)

k—1
(akl - 1 lnX]zl] + lnﬂk + Z ln 1-— ﬁs (23)
s=1

&
B

Il
(7]
S
=
ol

Jr
M S

=
N
aj =1+ Z<Zjit>7 bjt = Aje + Z Z jis) (24)

i=1 i=1 s=t+1
K T K
gk = 1+ZZ<Cjtk>, hy —’Yk-l-zz Z Citm) (25)
j=1t=1 j=1t=1 m=k+1
1T N D
Upp = Ukl + Z<Cjtk> Z(ijﬁ@kz[w(z ans) — ¥(ar) (26)
j=1t=1 i=1 s=1
D D
+ Z @ksip/(z dks)(<ln aks> — In ags)]
s#l s=1
M T N
v}:l = Ukl — Z jtk Z th 111 Xja (27)
J=1t=1 im1

where ¥(-) is the digamma function. The expected values in the above formulas
are defined as

an =" (Zju)=pju (Cj) =V (Inaw) =P(upy) — vy (28)

(Inwh) = W(aze) = Wlage +b5e)  (In(1 =) = (bse) —(aze +be)  (29)
(InBi) =W(ge) —W(ge +he)  (In(1—BL)) = ¥(hi) — ¥ (g + hx) (30)
(nam —aw)?) = @(uy) - Inugp)? + %' (ujy) (31)

The batch variational inference for hierarchical infinite Dirichlet mixture model
can be considered as an EM-like algorithm and is summarized in Algorithm 1.
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Algorithm 1. Batch variational learning.

Choose the initial truncation levels K and T'.
Initialize the values for hyperparameters Aj:, vk, ug and vg;.
Initialize the value of p;;+ by K-Means algorithm.
repeat
The variational E-step:
Estimate the expected values in Egs. (28)—(31), use the current distributions over
the model parameters.
The variational M-step:
8:  Update the variational solutions for each factor using Egs. (17)-(19) and the
current values of the moments.
9: until Convergence.

I

3.2 Online Variational Inference

Inspired from the online learning framework proposed in [28] and tested success-
fully in [34], we develop an online variational inference framework for learning our
model. In contrast with batch learning algorithms, online algorithms are more
efficient when dealing with large-scale or streaming data which are naturally
present in may real-world applications. In our case, let r denotes the amount
of observed data that we currently have. Then, the current lower bound for the
observed data can be calculated by

£7(q Z/ dAZQ {%J'A)] +/q(A) ln{qgﬁ”d/l (32)

where A = (C, 7', ', ). The main idea of the online variational inference is to
successively maximize the current variational lower bound as in Eq. (32) with
respect to each variational factor. Consider that we have already observed a
data set {X1,..., X (—1)}. Then, after obtaining a new observation X,, we
can maximize the current lower bound L") (q) with respect to ¢(Z,), while
other variational factors remain fixed to ¢“=(C), ¢"~Y(a), ¢~V (x’) and
q"~1(B'). Therefore, we can update the variational solution to ¢(Z,) as

z) = n [ (33)

where pjtr = M and ﬁjtr Ek 1< ]:k 1)>[R(T 2 +Zl 1( (T 2 -

f 1exp(f)]t )’
1)In X;] + (Il ™) + 0 (1 - 707 Y))

imize the current lower bound £ (q) with respect to ¢(™(C), while ¢(Z,) is
fixed and other variational factors remain at their (r — 1)th values. Thus, the
variational factor ¢(")(C) can be updated as

. In the following step, we max-

«”©) =TT TT TTwsn (34)
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where the hyperparameter 19523 is defined by
I =05 + & A0 (35)

where &, is the learning rate. In this work, we adopt a learning rate function intro-
duced in [34], such that &. = (19 +r)~%, subject to the constraints w € (0.5, 1]
and 79 > 0. In Eq. (35), Aﬁ;;k is the natural gradient of the hyperparameter 1951,1
The natural gradient of a hyperparameter is obtained by multiplying the gradi-
ent by the inverse of Riemannian metric, which cancels the coefficient matrix for
the posterior parameter distribution. Thus, we can obtain the natural gradient
A19 k as

50r)
r r r eXp(ﬂ k) 'r
Aﬂ(tl)c - 19;»51)@ ﬁ;tk Y= —Jt(r) ﬁ;tk Y (36)
Zf 1eXP(19]zf)
D k—1
Tk = Npjer RV 4D (a7 = DIn Xy + (a7 ™) + 3" (n(1 = 877Y))

=1 s=1

(37)

Next, the current lower bound £(")(q) is maximized with respect to ¢ (7'),
¢ (') and ¢ (ax):

M

" (r HHBeta aly) bl (38)
j=1t=1
K D
¢"(3 HBeta B B @) = [ TI6@% s vi®)  (39)
k=1 k=11=1

where the hyperparameters are given by

;:) _ a(”" 1) +& Aa;’;)7 b("“) b(’" 1) +& Ab("“) (40)

g}(C ) _ gl(: 1) + & Ag(r)7 h(T) h("“ 1) +&A h(’") (41)
*(r #(r—1) *(r *(r *x(r—1 *(r

ukg )= ukg +’£TAuk§ ) vkl< )= kl( ) +5TAUM( ) (42)

The corresponding natural gradients can be calculated as

T
Adf) =14 Npjur —al;™ A0 =X+ N Y pior =050 (43)
s=t+1
M T K
I T r—1 r 7 r—1
“—1+ZZﬂ§ﬂl C AR =t ZZ Z I —hTY (44)
j=1t=1 Jj=1t=1 m=k+
M T D
* r _(r—1 _(r—1 _(r—1
Aupt =ur + NS0 pjeraly V(Y al ) —w(al ) (45)
j=11t=1 s=1

_ 1 _ 1 1 _(r—1 *(t—1
LAl z ) (I af™) — nal )] -
s#l s=1
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M T
AUI(C? = Vgl — N Z Z 19§':I)cpjt”‘ In Xjrl - UI(JIA_I) (46)

j=1t=1

It is noteworthy that the hyperparameters of ¢ (7'), ¢ (8') and ¢") () can
be updated in parallel. This online variational inference procedure is repeated
until all the variational factors are updated with respect to the current arrived
observation. The online variational inference for hierarchical infinite Dirichlet
mixture model is summarized in Algorithm 2. The proposed online learning
algorithm is much more computationally efficient than its batch counterpart.
This is because the batch algorithm updates the variational factors by using
the whole data set in each iteration, and thus its estimation quality is improved
more slowly than in the case of the online one.

Algorithm 2. Online variational learning.

1: Choose the initial truncation levels K and T'.

2: Initialize the values for hyperparameters \j¢, Vi, ur and vi.
3: forr=1— N do

The variational E-step:

Update the variational solution to ¢(Z,) using Eq. (33).
The variational M-step:

Compute learning rate & = (no + 1)~ .

Calculate the natural gradient Aﬁ;?i using Eq. (36).

Update the variational factor ¢'™(C) as shown in Eq. (34).

Calculate the natural gradients of the remaining hyperparameters using
Egs. (43)—(46).

11:  Update variational factors ¢ (%), ¢ (8') and ¢ (e) through Egs. (38)—(39).
12:  Repeat the E- and M-steps until new data are observed.

13: end for

—_

4 Experimental Results: Online Images Categorization

4.1 Experimental Design

In this section, we evaluate the effectiveness of the proposed online hierarchi-
cal infinite Dirichlet mixture (referred to as OnHIDM ) model through a chal-
lenging real-world application namely online images categorization. The tackled
problem is a fundamental task in computer vision and has drawn significant
attention during the last decade [12,15,17,35]. This problem, however, remains
challenging due to the difficulty of capturing the variability of appearance and
shape of diverse objects belonging to the same class, while avoiding confus-
ing objects from different classes [23]. In our experiments, we demonstrate the
advantages of our OnHIDM model by comparing its performance with three
other mixture models involving the batch hierarchical infinite Dirichlet mixture
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(BaHIDM) model, the online hierarchical infinite Gaussian mixture (OnHIGM )
model and the online finite Dirichlet mixture (OnFDM) model. To make a fair
comparison, all of these models are learned using variational inference. It is
noteworthy that our goals are mainly to demonstrate the advantages of using
online variational inference learning framework over the batch one, and using
hierarchical infinite mixture model over the finite one, as well as using Dirich-
let over the Gaussian mixture. In our experiments, the testing data are sup-
posed to arrive sequentially in an online manner except for the BaHIDM model.
We initialize the base truncation level K to 50, and the group truncation level
T to 15. The parameters w and 79 of the learning rate are set to 0.65 and
64, respectively. The hyperparameters involved in our model are initialized as
(Njt, Vies Ukt Vi) = (0.05,0.05,0.1,0.01). Our simulations have supported these
specific choices.

4.2 Methodology and Results

We apply the proposed OnHIDM to the problem of online images clustering
using the following methodology. First, 128-dimensional scale-invariant feature
transform (SIFT) [22] descriptors! are extracted from each image using the
Difference-of-Gaussians (DoG) interest point detectors and then normalized.
Next, these features are modeled using the proposed approach. Specifically, each
image Z; is considered as a “group” and is therefore associated with a Dirichlet
process mixture (infinite mixture) model G;. Thus, each extracted SIFT feature
vector X;; from image Z; is supposed to be drawn from an infinite mixture model
G, in which mixture models can be viewed as a representation of “visual words”.
A global vocabulary is constructed and is shared among all groups (images)
through the introduction of the common global infinite mixture model Gy. This
setting matches the desired design of a hierarchical Dirichlet process mixture
model. An important step in image categorization approaches with bag-of-visual
words representation is the construction of a visual vocabulary. The majority of
these approaches need to use a separate vector quantization algorithm (such as
K-means) to build the visual dictionary, where the vocabulary size is normally
manually selected. In our approach, the construction of the visual vocabulary is
part of the hierarchical Dirichlet process mixture framework, and the size of the
vocabulary (number of mixture components in the global level mixture model)
can be automatically inferred from the data thanks to its Bayesian nonparamet-
ric nature. Since our goal is to determine automatically the category to which a
testing image Z; should be assigned, our hierarchical Dirichlet process mixture
framework needs to be augmented by an indicator variable B, associated with
each image (or group). Bj,, means that Z; is generated from category m and
then is drawn from an other infinite mixture model which is truncated at level J.
This means that we need to add a new hierarchy level to our hierarchical infinite
mixture model with a sharing vocabulary among all image categories. In this

! Other state-of-the-art local visual descriptors may provide better results, however,
this is not the focus of this work.
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Fig. 1. Samples from the Dogs database. (a) Afghan hound, (b) Airedale, (c¢) Basenji,
(d) Chihuahua, (e) Chow, (f) Entlebucher, (g) Pekinese, (h) Pug.

experiment, we truncate J to 20 and initialize the hyperparameter of the mixing
probability of Bj,, as 0.05. Finally, a testing image is affected to the category
which has the highest posterior probability according to Bayes’ decision rule.

Table 1. The average categorization accuracy rate (Acc) (%) obtained over 30 runs
using different methods. The numbers in parenthesis are the standard deviation of the
corresponding quantities.

Method OnHIDM — BaHIDM — OnFDM  OnHIGM
Acc (%) 80.87 (1.19) 81.32 (1.02) 76.18 (1.54) 75.43 (1.31)

AfghanHound

Airedale

Basenji

Chihuahua

Chow

Entlebucher

Pekinese

Pug

Fig. 2. Accuracy as a function of the number of images in the training set.

In our experiments, we consider a challenging public available database known
as the Stanford Dogs database?. This database contains 20,580 images of 120
breeds of dogs from around the world. The images are characterized by large
scale, pose and light variations. The large intra-class and the small inter-class

2 Database available at: http://vision.stanford.edu/aditya86/ITmageNetDogs.
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variabilities make this data set more challenging. In our experiments, we use
a subset of this database consisting of 8 classes of dogs: Afghan hound (239
images), Airedale (202 images), Basenji (209 images), Chihuahua (152 images),
Chow (196 images), Entlebucher (202 images), Pekinese (149 images) and Pug
(200 images). Thus, we have 1,549 images in total. Sample images from each
class are displayed in Fig. 1. We evaluated the categorization performance of the
proposed algorithm by running it 30 times. We quantified the performance of
our categorization approach using a confusion matrix as well as the rate of over-
all categorization accuracy. Each entry (i, j) of the confusion matrix denotes the
percentage of images in category ¢ that are assigned to category j. Figure 2 shows
the confusion matrix computed by the proposed OnHIDM for our Dogs data-
base. According to this matrix, the average categorization accuracy obtained by
using OnHIDM was 80.87 % (error rate of 19.13 %). For comparison, we have also
applied three other mixture-based approaches as mentioned earlier: BaHIDM,
OnHIGM and OnFDM. The average performances of all tested approaches are
given in Table 1. According to the results shown in this table, it is clear that the
proposed OnHIDM and its batch counterpart (the BaHIDM) behave similarly
(i.e., a Students t-test shows that the difference in performance between the
BaHIDM and OnHIDM is not statistically significant: p-values between 0.1364
and 0.2237 for different runs) by providing better results than other two tested
approaches. In this case, OnHIDM is a better choice over the BaHIDM, since
OnHIDM is significantly faster, thanks to its online learning property, than the
BaHIDM. According to our results, the BaHIDM required 2h and 32min to
categorize all images while the OnHIDM only needed 47 min to do so on a com-
puter with Intel’s Core i7 processor 2.00 GHz. Furthermore, the advantage of
using a hierarchical infinite mixture model over a finite mixture model is clear
by observing that better performance was obtained by OnHIDM (80.87 %) than
by OnFDM (76.18%) in terms of categorization accuracy rate. It is also worth
mentioning that, as we can see from Table 1, the proposed OnHIDM (80.87 %)
outperformed OnHIGM (75.43 %) which shows again the fact that the Dirichlet
model has better modeling capability than the Gaussian for normalized data.

5 Conclusion

Nonparametric Bayesian models have been quite popular recently in many pat-
tern recognition and computer vision problems due to their high accuracy and
potential for data modeling. The success of these techniques rests largely on good
choices of the distributions. This paper has presented and evaluated a hierar-
chical DP mixture model of Dirichlet distributions learned within a variational
framework. The approach strives to achieve a high accuracy of online data clus-
tering and has been validated through a challenging application namely images
categorization. Further efficiency improvements are possible by performing sev-
eral extensions such as introducing feature selection within the proposed model
or considering Beta-Liouville distribution that has been shown to be a good
alternative to the Dirichlet recently [5]. The consideration of the proposed model
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with other learning approaches such as transfer learning [27] or its application
to other challenging problems such as images annotation or objects recognition
are interesting avenues for future research, also.
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