
Bertrand’s postulate Chapter 2

Joseph Bertrand

We have seen that the sequence of prime numbers 2, 3, 5, 7, . . . is infinite.
To see that the size of its gaps is not bounded, let N := 2 · 3 · 5 · · · p denote
the product of all prime numbers that are smaller than k + 2, and note that
none of the k numbers

N + 2, N + 3, N + 4, . . . , N + k,N + (k + 1)

is prime, since for 2 ≤ i ≤ k + 1 we know that i has a prime factor that is
smaller than k + 2, and this factor also divides N , and hence also N + i.
With this recipe, we find, for example, for k = 10 that none of the ten
numbers

2312, 2313, 2314, . . . , 2321

is prime.

But there are also upper bounds for the gaps in the sequence of prime num-
bers. A famous bound states that “the gap to the next prime cannot be larger
than the number we start our search at.” This is known as Bertrand’s pos-
tulate, since it was conjectured and verified empirically for n < 3 000 000
by Joseph Bertrand. It was first proved for all n by Pafnuty Chebyshev in
1850. A much simpler proof was given by the Indian genius Ramanujan.
Our Book Proof is by Paul Erdős: it is taken from Erdős’ first published
paper, which appeared in 1932, when Erdős was 19.

Bertrand’s postulate

For every n ≥ 1, there is some prime number p with n < p ≤ 2n.

� Proof. We will estimate the size of the binomial coefficient
(
2n
n

)
care-

fully enough to see that if it didn’t have any prime factors in the range
n < p ≤ 2n, then it would be “too small.” Our argument is in five steps.

(1) We first prove Bertrand’s postulate for n ≤ 511. For this one does not
need to check 511 cases: it suffices (this is “Landau’s trick”) to check that

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 521

is a sequence of prime numbers, where each is smaller than twice the pre-
vious one. Hence every interval {y : n < y ≤ 2n}, with n ≤ 511, contains
one of these 11 primes.
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10 Bertrand’s postulate

(2) Next we prove that∏
p≤x

p ≤ 4x−1 for all real x ≥ 2, (1)

where our notation — here and in the following — is meant to imply that
the product is taken over all prime numbers p ≤ x. The proof that we
present for this fact uses induction on the number of these primes. It is
not from Erdős’ original paper, but it is also due to Erdős (see the margin),
and it is a true Book Proof. First we note that if q is the largest prime with
q ≤ x, then ∏

p≤x

p =
∏
p≤q

p and 4q−1 ≤ 4x−1.

Thus it suffices to check (1) for the case where x = q is a prime number. For
q = 2 we get “2 ≤ 4,” so we proceed to consider odd primes q = 2m+ 1.
(Here we may assume, by induction, that (1) is valid for all integers x in
the set {2, 3, . . . , 2m}.) For q = 2m+ 1 we split the product and compute∏
p≤2m+1

p =
∏

p≤m+1

p ·
∏

m+1<p≤2m+1

p ≤ 4m
(
2m+ 1

m

)
≤ 4m22m = 42m.

All the pieces of this “one-line computation” are easy to see. In fact,∏
p≤m+1

p ≤ 4m

holds by induction. The inequality∏
m+1<p≤2m+1

p ≤
(
2m+ 1

m

)
follows from the observation that

(
2m+1
m

)
= (2m+1)!

m!(m+1)! is an integer, where
the primes that we consider all are factors of the numerator (2m+ 1)!, but
not of the denominator m!(m+ 1)!. Finally(

2m+ 1

m

)
≤ 22m

holds since (
2m+ 1

m

)
and

(
2m+ 1

m+ 1

)
Legendre’s theorem

The number n! contains the prime
factor p exactly∑

k≥1

⌊ n

pk

⌋

times.

� Proof. Exactly
⌊
n
p

⌋
of the factors

of n! = 1 · 2 · 3 · · ·n are divisible by
p, which accounts for

⌊
n
p

⌋
p-factors.

Next,
⌊

n
p2

⌋
of the factors of n! are

even divisible by p2, which accounts
for the next

⌊
n
p2

⌋
prime factors p

of n!, etc. �

are two (equal!) summands that appear in

2m+1∑
k=0

(
2m+ 1

k

)
= 22m+1.

(3) From Legendre’s theorem (see the box) we get that
(
2n
n

)
= (2n)!

n!n! con-
tains the prime factor p exactly∑

k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
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times. Here each summand is at most 1, since it satisfies⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋
<

2n

pk
− 2

(
n

pk
− 1

)
= 2,

and it is an integer. Furthermore the summands vanish whenever pk > 2n.

Thus
(
2n
n

)
contains p exactly∑

k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
≤ max{r : pr ≤ 2n}

times. Hence the largest power of p that divides
(
2n
n

)
is not larger than 2n.

In particular, primes p >
√
2n appear at most once in

(
2n
n

)
.

Furthermore — and this, according to Erdős, is the key fact for his proof
— primes p that satisfy 2

3n < p ≤ n do not divide
(
2n
n

)
at all! Indeed,

Examples such as(
26
13

)
= 23 · 52 · 7 · 17 · 19 · 23(

28
14

)
= 23 · 33 · 52 · 17 · 19 · 23(

30
15

)
= 24 · 32 · 5 · 17 · 19 · 23 · 29

illustrate that “very small” prime factors
p <

√
2n can appear as higher powers

in
(
2n
n

)
, “small” primes with

√
2n <

p ≤ 2
3
n appear at most once, while

factors in the gap with 2
3
n < p ≤ n

don’t appear at all.

3p > 2n implies (for n ≥ 3, and hence p ≥ 3) that p and 2p are the only
multiples of p that appear as factors in the numerator of (2n)!

n!n! , while we get
two p-factors in the denominator.

(4) Now we are ready to estimate
(
2n
n

)
, benefitting from a suggestion by

Raimund Seidel, which nicely improves Erdős’ original argument. For
n ≥ 3, using an estimate from page 14 for the lower bound, we get

4n

2n
≤

(
2n

n

)
≤

∏
p≤√2n

2n ·
∏

√
2n<p≤ 2

3n

p ·
∏

n<p≤2n

p.

Now, there are no more than
√
2n primes in the first factor; hence using (1)

for the second factor and letting P (n) denote the number of primes between
n and 2n we get

4n

2n
<

(
(2n)

√
2n

)
·
(
4

2
3n

)
· (2n)P (n),

that is,
4

n
3 < (2n)

√
2n+1+P (n). (2)

(5) Taking the logarithm to base 2, the last inequality is turned into

P (n) >
2n

3 log2(2n)
− (
√
2n+ 1). (3)

It remains to verify that the right-hand side of (3) is positive for n large
enough. We show that this is the case for n = 29 = 512 (actually, it holds
from n = 468 onward). By writing 2n − 1 = (

√
2n − 1)(

√
2n + 1) and

cancelling the (
√
2n+ 1)-factor it suffices to show
√
2n− 1 > 3 log2(2n) for n ≥ 29. (4)

For n = 29, (4) becomes 31 > 30, and comparing the derivatives
(
√
x − 1)′ = 1

2
1√
x

and (3 log2 x)
′ = 3

log 2
1
x we see that

√
x − 1 grows

faster than 3 log2 x for x > ( 6
log 2 )

2 ≈ 75 and thus certainly for x ≥ 210 =
1024. �
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One can extract even more from this type of estimates: Comparing the
derivatives of both sides, one can sharpen (4) to

√
2n− 1 ≥ 21

4
log2(2n) for n ≥ 211,

which with a little arithmetic and (3) implies

P (n) ≥ 2

7

n

log2(2n)
.

This is not that bad an estimate: the “true” number of primes in this range
is roughly n/ logn. This follows from the “prime number theorem,” which
says that the limit

lim
n→∞

#{p ≤ n : p is prime}
n/ logn

exists, and equals 1. This famous result was first proved by Hadamard and
de la Vallée-Poussin in 1896; Selberg and Erdős found an elementary proof
(without complex analysis tools, but still long and involved) in 1948.

On the prime number theorem itself the final word, it seems, is still not in:
for example a proof of the Riemann hypothesis (see page 60), one of the
major unsolved open problems in mathematics, would also give a substan-
tial improvement for the estimates of the prime number theorem. But also
for Bertrand’s postulate, one could expect dramatic improvements. In fact,
the following is a famous unsolved problem:

Is there always a prime between n2 and (n+ 1)2?

For additional information see [3, p. 19] and [4, pp. 248, 257].

Appendix: Some estimates

Estimating via integrals

There is a very simple-but-effective method of estimating sums by integrals
(as already encountered on page 4). For estimating the harmonic numbers

Hn =

n∑
k=1

1

k

we draw the figure in the margin and derive from it

1

1 n2

Hn − 1 =

n∑
k=2

1

k
<

∫ n

1

1

t
dt = logn

by comparing the area below the graph of f(t) = 1
t (1 ≤ t ≤ n) with the

area of the dark shaded rectangles, and

Hn −
1

n
=

n−1∑
k=1

1

k
>

∫ n

1

1

t
dt = logn
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by comparing with the area of the large rectangles (including the lightly
shaded parts). Taken together, this yields

logn+
1

n
< Hn < logn + 1.

In particular, lim
n→∞

Hn → ∞, and the order of growth of Hn is given by

lim
n→∞

Hn

logn = 1. But much better estimates are known (see [2]), such as

Here O
(

1
n6

)
denotes a function f(n)

such that f(n) ≤ c 1
n6 holds for some

constant c.
Hn = logn+ γ +

1

2n
− 1

12n2
+

1

120n4
+O

(
1

n6

)
,

where γ ≈ 0.5772 is “Euler’s constant.”

Estimating factorials — Stirling’s formula

The same method applied to

log(n!) = log 2 + log 3 + · · ·+ logn =

n∑
k=2

log k

yields

log((n− 1)!) <

∫ n

1

log t dt < log(n!),

where the integral is easily computed:∫ n

1

log t dt =
[
t log t− t

]n
1

= n logn− n+ 1.

Thus we get a lower estimate on n!

n! > en logn−n+1 = e
(n
e

)n

and at the same time an upper estimate

n! = n (n− 1)! < nen log n−n+1 = en
(n
e

)n

.

Here a more careful analysis is needed to get the asymptotics of n!, as given
by Stirling’s formula Here f(n) ∼ g(n) means that

lim
n→∞

f(n)

g(n)
= 1.

n! ∼
√
2πn

(n
e

)n

.

And again there are more precise versions available, such as

n! =
√
2πn

(n
e

)n
(
1 +

1

12n
+

1

288n2
− 139

5140n3
+O

(
1

n4

))
.

Estimating binomial coefficients

Just from the definition of the binomial coefficients
(
n
k

)
as the number of

k-subsets of an n-set, we know that the sequence
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
of

binomial coefficients
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• sums to
n∑

k=0

(
n
k

)
= 2n

• is symmetric:
(
n
k

)
=

(
n

n−k

)
.

From the functional equation
(
n
k

)
= n−k+1

k

(
n

k−1

)
one easily finds that for

every n the binomial coefficients
(
n
k

)
form a sequence that is symmetric

and unimodal: it increases towards the middle, so that the middle binomial
coefficients are the largest ones in the sequence:1

1
1
1
1
1
1
1
1

2
3

4
5

6
7

15
10

6
3
1
1

4
10

20
35

15
5
1
1

6
7
1
121 2135

Pascal’s triangle
1 =

(
n
0

)
<

(
n
1

)
< · · · <

(
n

	n/2

)
=

(
n

�n/2�
)
> · · · >

(
n

n−1

)
>

(
n
n

)
= 1.

Here 	x
 resp. �x� denotes the number x rounded down resp. rounded up
to the nearest integer.

From the asymptotic formulas for the factorials mentioned above one can
obtain very precise estimates for the sizes of binomial coefficients. How-
ever, we will only need very weak and simple estimates in this book, such
as the following:

(
n
k

)
≤ 2n for all k, while for n ≥ 2 we have(

n

	n/2


)
≥ 2n

n
,

with equality only for n = 2. In particular, for n ≥ 1,(
2n

n

)
≥ 4n

2n
.

This holds since
(

n
	n/2


)
, a middle binomial coefficient, is the largest entry

in the sequence
(
n
0

)
+
(
n
n

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n

n−1

)
, whose sum is 2n, and whose

average is thus 2n

n .

On the other hand, we note the upper bound for binomial coefficients(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
≤ nk

k!
≤ nk

2k−1
,

which is a reasonably good estimate for the “small” binomial coefficients
at the tails of the sequence, when n is large (compared to k).
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