Chapter 2
Reaction Kinetics Basics

Abstract This chapter provides an introduction to the basic concepts of reaction
kinetics simulations. The level corresponds mainly to undergraduate teaching in
chemistry and in process, chemical and mechanical engineering. However, some
topics are discussed in more detail and depth in order to underpin the later chapters.
The section “parameterising rate coefficients” contains several topics that are
usually not present in textbooks. For example, all reaction kinetics textbooks
discuss the pressure dependence of the rate coefficients of unimolecular reactions,
but usually do not cover those of complex-forming bimolecular reactions. The
chapter contains an undergraduate level introduction to basic simplification princi-
ples in reaction kinetics. The corresponding sections also discuss the handling of
conserved properties in chemical kinetic systems and the lumping of reaction steps.

2.1 Stoichiometry and Reaction Rate

2.1.1 Reaction Stoichiometry

In this section, we begin by explaining the formulation of chemical reaction
mechanisms and the process of setting up chemical rate equations from stoichio-
metric information and elementary reaction rates.

First, we assume that a chemical process can be described by a single stoichio-
metric equation. The stoichiometric equation defines the molar ratio of the reacting
species and the reaction products. This equation is also called the overall reaction
equation. Real chemical systems corresponding to such a single chemical reaction,
that is, when the reactants react with each other forming products immediately, are
in fact very rare. In most cases, the reaction of the reactants produces intermediates,
these intermediates react with each other and the reactants, and the final products
are formed at the end of many coupled reaction steps. Each of the individual steps is
called an elementary reaction. Within elementary reactions, there is no macro-
scopically observable intermediate between the reactants and the products. This
point is now illustrated for the case of hydrogen oxidation, but similar examples
could be cited across many different application fields.
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6 2 Reaction Kinetics Basics

The overall reaction equation of the production of water from hydrogen and
oxygen is very simple:

2H, + O, = 2H,0.

We can see that this overall reaction balances the quantities of the different
elements contained in the reactants and products of the reaction. Reaction stoichio-
metry describes the 2:1:2 ratio of hydrogen, oxygen and water molecules in the
above equation. From a stoichiometric point of view, a chemical equation can be
rearranged, similarly to a mathematical equation. For example, all terms can be
shifted to the right-hand side:

0= —-2H, — 10, + 2H,0.

Let us denote the formulae of the chemical species by the vector A = (A, A, A3z)
and the corresponding multiplication factors by vector v = (vy, v, v3). In this case,
A;="H,”, A,=%0,", A3=“H,0” and vi=-2, v,=-—1, v3=+2. The
corresponding general stoichiometric equation is

Ns
0="> VA, (2.1)
j=1

where Ng is the number of species. The general stoichiometric equation of any
chemical process can be defined in a similar way, where v; is the stoichiometric
coefficient of the jth species and A; is the formula of the jth species in the overall
reaction equation. The stoichiometric coefficients are negative for the reactants and
positive for the products. The stoichiometric coefficients define the ratios of the
reactants and products. Therefore, these are uncertain according to a scalar multi-
plication factor. This means that by multiplying all stoichiometric coefficients with
the same scalar, the resulting chemical equation refers to the same chemical
process. Thus, chemical equations 0=-2H,-10,+2H,0 and 0=-1H,-%
O0,+1H,0O (or wusing the traditional notation, 2H,+O,=2H,O and
H, + 20, =H,0, respectively) represent the same chemical process. Also, the
order of the numbering of the species is arbitrary. We show here the stoichiometric
coefficients for an overall reaction step, but the same approach is taken for each of
the elementary steps of a detailed chemical scheme. In general, for elementary
reaction steps within a chemical mechanism, the stoichiometric coefficients are
integers.

There are many chemical processes for which a single overall reaction equation
that describes the stoichiometry of the process cannot be found. For example, the
oxidation of hydrocarbons sourced from exhaust gases in the troposphere cannot be
described by a single overall reaction equation. Many types of hydrocarbons are
emitted to the troposphere, and their ratio changes dependent on the type of
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pollution source. Therefore, no single species can be identified as reactants or
products.

Let us now think about the time-dependent behaviour of a chemical system and
how we might describe it using information from the kinetic reaction system. The
simplest practical case here would be one or more reactants reacting in a well-
mixed vessel to form one or more products over time. In this case, if the molar
concentration Y; of the jth species is measured at several consecutive time points,
then by applying a finite-difference approach, the production rate of the jth species
dY;/dt can be calculated. The rate of a chemical reaction defined by stoichiometric
equation (2.1) is the following:

_1dy

r = .
vj dt

(2.2)

Reaction rate r is independent of index j. This means that the same reaction rate is
obtained when the production rate of any of the species is measured. However, the
reaction rate depends on the stoichiometric coefficient, and therefore, the reaction
rate depends on a given form of the stoichiometric equation.

Within a narrow range of concentrations, the reaction rate r can always be
approximated by the following equation:

Ny
r=k[ v, (2.3)
j=1

where the positive scalar & is called the rate coefficient, the exponents a; are positive
real numbers or zero, the operator IT means that the product of all terms behind it
should be calculated and Ng is the number of species. In the case of some reactions,
the form of Eq. (2.3) is applicable over a wide range of concentrations. When the
reaction rate is calculated by Eq. (2.3), molar concentrations (i.e. the amount of
matter divided by volume with units such as mol cm ) should always be used. The
rate coefficient £ is independent of the concentrations but may depend on temper-
ature, pressure and the quality and quantity of the nonreactive species present
(e.g. an inert dilution gas or a solvent). This is the reason why the widely used
term rate constant is not preferred and rate coefficient is a more appropriate term.
The exponent «; in Eq. (2.3) is called the reaction order with respect to species A;.

Ns
The sum of these exponents |a = Zaj is called the overall order of the
=1

reaction. In the case of an overall reaction equation such as 2H, + O, =2H,0, the
order ¢; is usually not equal to the stoichiometric coefficient v; because of the
intermediate steps that are involved in the overall reaction. For elementary reac-
tions, the reaction orders of the reactions and the absolute value of the stoichio-
metric coefficients of the reactants are commonly mathematically the same.
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As stated above, intermediates are formed within most reaction systems, and
hence, in order to define the time-dependent dynamics of a system accurately, a
reaction model should include steps where such intermediates are formed from
reactants and then go on to form products. For example, detailed reaction mecha-
nisms for the oxidation of hydrogen [see e.g. O Conaire et al. (2004), Konnov
(2008), Hong et al. (2011), Burke et al. (2012), Varga et al. (2015)] contain not only
the reactants (H, and O,) and the product (H,O) but also several intermediates
(H, O, OH, HO,, H,0,), which are present in the 30—40 reaction steps considered.
Any hydrogen combustion mechanism should contain the following reaction steps:

R1 H, + O, = H+ HO, ky
R2 0, +H=0H+O0O k>
R3 H, + OH = H + H,0 k3
R4 H, + O =H+ OH ky’
R5 O,+H+M=HO,+M ks
R6 HO, + OH =H,0+ OH kg

where species M represents any species present in the mixture and will be further
discussed in the next section.

The number of elementary reaction steps within a kinetic reaction mechanism
can typically vary from ten to several ten thousands, depending on the chemical
process, the reaction conditions and the required detail and accuracy of the chem-
ical kinetic model. Each elementary reaction step i can be characterised by the
following stoichiometric equation:

D oviA =) VA, (2.4)
7 7

where the stoichiometric coefficients on the left-hand side (viLj) and the right-hand
side (vﬁ) of an elementary reaction step should be distinguished. The stoichiometric

coefficient belonging to species i in a reaction step can be obtained from the

equation v;=vf —vi. The left-hand side stoichiometric coefficients v should be
R

positive integers, whilst the right-hand side stoichiometric coefficients v;; are
positive integers for elementary reactions and can be positive or negative, integer
or real numbers for reaction steps that were obtained by the combination
(“lumping”) of several elementary reactions. Therefore, the overall stoichiometric
coefficients v;; can also be any numbers (positive or negative figures; integers or real
numbers). Elements viLj, vg and v;; constitute the left-hand side, the right-hand side
and the overall stoichiometric matrix, respectively.

To emphasise the analogy with mathematical equations, so far the equality sign
(=) was always used for chemical equations. From now on, arrows will be used for
one-way or irreversible chemical reactions (like A — B). Reversible reactions will
be denoted by double arrows (like A 2 B).
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A detailed kinetic reaction mechanism contains the stoichiometric equations of
type (2.4) and the corresponding rate coefficient for each reaction step. These rate
coefficients can be physical constants that are valid for the conditions of the
reactions (e.g. temperature, pressure) or functions that can be used to calculate
the value of the rate coefficient applicable at the actual temperature, pressure, gas
composition, etc. The physical dimension of the rate coefficient depends on the
overall order of the reaction step. When the order of the reaction step is 0, 1, 2 or
3, the dimension of the rate coefficient is concentration X (time) ', (time) !,
((:on(:entrationYl X (time)7l or (concentration)f2 X ( time)fl, respectively.

2.1.2 Molecularity of an Elementary Reaction

The reaction steps in the mechanism of a homogeneous gas-phase reaction are
usually elementary reactions, that is, the stoichiometric equation of the reaction
step corresponds to real molecular changes. The molecularity of an elementary
reaction is the number of molecular entities involved in the molecular encounter.
Thus, an elementary reaction can be unimolecular or bimolecular. Some books on
chemical kinetics also discuss termolecular reactions (Raj 2010), but three molec-
ular entities colliding at the same time is highly improbable (Drake 2005). What are
often referred to as termolecular reactions actually involve the formation of an
energetically excited reaction intermediate in a bimolecular reaction which can then
collide with a third molecular entity (e.g. a molecule or radical).

In a unimolecular reaction, only one reaction partner species is changed. Exam-
ples include photochemical reactions (e.g. NO,+hv — NO+ O, where hv repre-
sents a photon) and unimolecular decomposition such as the decomposition of fuel
molecules in combustion or pyrolysis. In such reactions, the fuel molecule decom-
poses as a result of collision with another molecule that does not change chemically
during the molecular event (e.g. CsHg+N;— CH3+C,Hs+N;). The
rearrangement of a molecule such as the isomerisation of gas-phase molecules
and the fluctuation of the structure of a protein from one conformation to another
are also results of such so-called nonreactive collisions (Bamford et al. 1969).

Most elementary reactions are bimolecular, when two particles (molecules,
radicals, ions) meet and both particles change chemically. Bimolecular reactions
can be either direct bimolecular reactions (e.g. H,+ OH — H + H,0) or complex-
forming bimolecular reactions (e.g. O, + H — HO,* and HO,* + M — HO, + M). In
direct bimolecular reactions, the products are formed in a single step. The product
of a complex-forming bimolecular reaction is a highly energised intermediate
(in this case, a vibrationally excited HO, radical) that has to lose the excess energy
in another collision with any other particle called a third-body M. This third body
can be a molecule of the bath gas (in most experiments argon or nitrogen) or any
other species of the reaction system. A more detailed description on how the
reaction steps involving third bodies are treated is presented in Sect. 2.2.2.
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In this section, we have discussed elementary reaction steps, but there are many
reaction mechanisms where the reaction steps are not elementary reactions, but
lumped reactions. This is very common, for example, in solution-phase kinetics and
will be discussed in detail later.

The distinction between molecularity and order is an important one. It is
therefore important that the terms unimolecular reaction and first-order reaction,
and bimolecular reaction and second-order reaction are not synonyms. The first
term refers to a type of molecular change whilst the second one to the type of
applicable rate equation governed by the observed dependence of reaction rates on
concentration.

2.1.3 Mass Action Kinetics and Chemical Rate Equations

The rates of elementary reactions can be calculated by assuming the rule of mass
action kinetics. According to the chemical kinetic law of mass action (Waage and
Guldberg 1864)

ri = k,H ijif, (25)
J

where r; and k; are the rate and the rate coefficient, respectively, of reaction step
i, and Y; is the molar concentration of species j. Equation (2.5) looks similar to
Eq. (2.3), but here the exponent is not an empirical value (the reaction order), but
the corresponding stoichiometric coefficient. When the law of mass action is valid,

the overall order of reaction step i is equal to Z I/UL». In many cases, the law of mass

J
action is assumed to be also applicable for non-elementary reaction steps, but it is

not always the case that a lumped reaction follows the law of mass action. Note that
in textbooks of general chemistry, the term “law of mass action” is used in an
entirely different context. In general chemistry, the law of mass action means that a
chemical equilibrium can be shifted towards the products by adding reactants and
towards the reactants by adding products to the reacting mixture.

The kinetic system of ordinary differential equations (ODEs) defines the
relationship between the production rates of the species and rates of the reaction
steps 7;:

ay;, &
d_tj:z,-:y'fi”f; J=12,....Ns. (26)

Equation (2.6) can also be written in a simpler form using the vector of concen-
trations Y, the stoichiometric matrix v and the vector of the rates of reaction steps r:
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dy
Pl (2.7)

This means that the number of equations in the kinetic systems of ODEs is equal
to the number of species in the reaction mechanism. These equations are coupled
and therefore can only be solved simultaneously. It is also generally true that in
order to accurately represent the time-dependent behaviour of a chemical system,
the ODEs should be based on the chemical mechanism incorporating intermediate
species and elementary reaction steps rather than the overall reaction equation
which contains only reactants and products. We will see later in Chap. 7 that one
aim of chemical mechanism reduction is to limit the number of required interme-
diates within the mechanism in order to reduce the number of ODEs required to
accurately represent the time-dependent behaviour of key species.

An analogous equation to Eq. (2.6) can be written when other concentration
units are used, e.g. mass fractions or mole fractions [see, e.g. Warnatz et al. (2006)],
but Eq. (2.5) is applicable only when the “amount of matter divided by volume”
concentration units are used. The amount of matter can be defined, e.g., in moles or
molecules, whilst volume is usually defined in dm? or cm? units.

In adiabatic systems or in systems with a known heat loss rate, usually temper-
ature is added as the (Ng+ 1)th variable of the kinetic system of ODEs. The
differential equation for the rate of change of temperature in a closed spatially
homogeneous reaction vessel is given as

Cd—T—iAH9~—){—S(T—T) (2.8)

]Ddt_l.:1 R 0/ '

where T is the actual temperature of the system, T is the ambient temperature
(e.g. the temperature of the lab), C,, is the constant pressure heat capacity of the
mixture, ArHie is the standard molar reaction enthalpy of reaction step i, S and V are
the surface and the volume of the system, respectively, and y is the heat transfer
coefficient between the system and its surroundings. The change in temperature can
be calculated together with the change in concentrations as part of the coupled ODE
system. In the examples used throughout the book, the variables of the kinetic
differential equations will be species concentrations only, but in all cases, the ODE
can be easily extended to include the equation for temperature.

The kinetic system of ODEs and its initial values together provide the following
initial value problem:

% —F(Y.K), Y(i) = Yo. (2.9)

From a mathematical point of view, the kinetic system of ODEs is first-order and
usually nonlinear, since it contains first-order derivatives with respect to time and
the time derivative is usually a nonlinear function of concentrations. In general,
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each species participates in several reactions; therefore, the production rates of the
species are coupled. The rates of the reaction steps can be very different and may
span many (even 10-25) orders of magnitude. Such differential equations are called
stiff ODEs. The stiffness of the kinetic ODEs and related problems will be
discussed in detail in Sect. 6.7.

In theory, if a laboratory experiment is repeated say one hour later than the first
execution, then the same concentration—time curves should be obtained (ignoring
experimental error for now). Accordingly, the time in the kinetic system of differ-
ential equations is not the wall-clock time, but a relative time from the beginning of
the experiment. Such a differential equation system is called an autonomous system
of ODEs. In other cases, such as in atmospheric chemical or biological circadian
rhythm models, the actual physical time is important, because a part of the param-
eters (the rate coefficients belonging to the photochemical reactions) depend on the
strength of sunshine, which is a function of the absolute time. In this case, the
kinetic system of ODEs is nonautonomous.

Great efforts are needed even in a laboratory to achieve a homogeneous spatial
distribution of the concentrations, temperature and pressure of a system, even in a
small volume (a few mm? or cm?). Outside the confines of the laboratory, chemical
processes always occur under spatially inhomogeneous conditions, where the
spatial distribution of the concentrations and temperature is not uniform, and
transport processes also have to be taken into account. Therefore, reaction kinetic
simulations frequently include the solution of partial differential equations that
describe the effect of chemical reactions, material diffusion, thermal diffusion,
convection and possibly turbulence. In these partial differential equations, the
term f defined on the right-hand side of Eq. (2.9) is the so-called chemical source
term. In the remainder of the book, we deal mainly with the analysis of this
chemical source term rather than the full system of model equations.

In the following chapters, the Jacobian matrix

of(Y.K) [ 0f
J:T:{GYJ} (2.10)

will be frequently used. It can be of great use in the mechanism reduction process,
forming the basis of local sensitivity analysis of each species in the mechanism, as
discussed in Chap. 5. It will also prove useful in the analysis of timescales present in
the kinetic system which may form a further basis for model reduction (see
Chap. 6). If the reaction mechanism consists of zeroth-order and first-order reaction
steps only, then the elements of the Jacobian are constant real numbers. In all other
cases, the elements of the Jacobian depend on the concentration vector Y. The

Y; of;

normalised form of the Jacobian 3 = { } is also frequently used.

oy,
: _Oof(YK) _ JOf; . .. .
The elements of matrix F = == = {5/ ¢ contain the derivative of the right-
"

hand side of the ODE with respect to the parameters. This matrix can also be used in

. L _ JKof
a normalised form: F = {f—/a—k]}


http://dx.doi.org/10.1007/978-3-662-44562-4_6#Sec7
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The solution of the initial value problem described by Eq. (2.9) can be visualised
so that the calculated concentrations are plotted as a function of time as shown in
Fig. 2.1a. Another possibility is to explore the solution in the space of concentra-
tions as in Fig. 2.1b. In this case, the axes are the concentrations and the time
dependence is not indicated. The actual concentration set is a point in the space of
concentrations. The movement of this point during the simulation outlines a curve
in the space of concentrations, which is called the trajectory of the solution . This
type of visualisation is often referred to as visualisation in phase space. In a closed
system, the trajectory starts from the point that corresponds to the initial value and
after a long time ends up at the equilibrium point. In an open system where the
reactants are continuously fed into the system and the products are continuously
removed, the trajectory may end up at a stationary point, approach a closed curve
(a limit cycle in an oscillating system) or follow a strange attractor in a chaotic
system. It is not the purpose of this book to discuss dynamical systems analysis of
chemical models in detail, and the reader is referred to the book of Scott for an
excellent treatment of this topic (Scott 1990).
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If the mechanism consists of only first-order reaction steps, then the kinetic
system of ODEs always has a solution which can be expressed in the form of
mathematical functions (Rodiguin and Rodiguina 1964). Such a solution is called
analytical in science and engineering and symbolic in the literature of mathematics
and computer science. The analytical solution of small reaction mechanisms,
consisting of mixed first-order and second-order steps, can also be found in the
chapter of Szab6 (1969) and the reaction kinetics chapter of Atkins’ Physical
Chemistry textbook (Atkins and de Paula 2009). However, in most practical
cases, for larger coupled kinetic systems, finding analytical solutions is not possible
without seeking simplifications of the chemistry representation. In most cases
therefore, numerical solutions of the kinetic differential equations (2.9) are sought.

Reaction kinetic models can be simulated not only on a deterministic basis by
solving the kinetic system of differential equations but also via the simulation of
stochastic models (Erdi et al. 1973; Bunker et al. 1974; Erdi and Téth 1976;
Gillespie 1976, 1977; Té6th and Erdi 1978; Kraft and Wagner 2003; Gillespie
2007; Li et al. 2008; Tomlin et al. 1994). If the system contains many molecules,
then the two solutions usually (but not always) provide identical solutions (Kurtz
1972). If the system contains few molecules, which frequently occurs in biological
systems, then the stochastic solution can be qualitatively different from the deter-
ministic one (Aranyi and Téth 1977). Stochastic chemical kinetic modelling is
discussed in detail in a recent monograph (Erdi and Lente 2014) .

2.1.4 Examples

The first example for the creation of the kinetic system of ODEs will be based on a
skeleton hydrogen combustion mechanism. Using the law of mass action, the rates
11 to g of the reaction steps can be calculated from the species concentrations and
rate coefficients

R1 H2 + 02 — H + H02 kl ry = kl[Hz] [02}
R2 02 + H — OH + (0] kz ry) = kz[Oz] [H]

R3 H2 + OH — H + H20 k3 r3 = k}[Hz] [OH]
R4 H,+ O — H + OH ky ry = k4[H2] [O]

R5 02 + H + M — H02 —|— M k5 rs = k5 [02] [H] [M]
R6 HO,+ OH — H,O + OH ke re = kg [HOz] [OH]

Here [M] is the sum of the concentrations of all species present. The species that are
jointly denoted by M may have a different effective concentration than their actual
physical concentration based on how effective their collisions are in making
reaction RS proceed (see Sect. 2.2.2).

The calculation of the production rates is based on Eq. (2.6). For example, the
hydrogen atom H is produced in reaction steps 1, 3 and 4 (v =+1), it is consumed in
reaction steps 2 and 5 (v = —1), and it is not present in reaction step 6 (v =0). The
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line of the kinetic system of ODEs, corresponding to the production of H is the
following:

d[H
g—t] =+41r; — lry +r3+ lry — 1rs + Org,

or

—— = ki [Hy] [02] — k2[02] [H] + k3[Hz] [OH] + k4[Hy] [O] — ks[O,] [H] [M].

d[H]
dr

In a similar way, the production of water can be described by the following

equations:

d[H,0]
dr

= +1]”3 + 1}’6,

or

d[H,0]
dt

= k3 [Hy] [OH] + k¢ [HO,] [OH].

Let us now consider a more complex mechanism, where the stoichiometric
coefficients are not only —1, 0 or +1. Whilst the hydrogen oxidation example is
very simple, the next example contains all possible complications. We now illus-
trate the formulation of the kinetic ODEs and their related matrices on an example
based on the well-known Belousov—Zhabotinskii (BZ) reaction. The BZ reaction
has been highly studied as an example of non-equilibrium thermodynamics where a
nonlinear chemical oscillator can easily be established in a simple reaction vessel
and illustrated by a simple colour change. The starting mixture consists of potas-
sium bromate, malonic acid and a cerium (IV) salt in an acidic solution. A
simplified mechanism of the BZ oscillating reaction (Belousov 1959; Zhabotinsky
1964; Belousov 1985) was elaborated by Field et al. (1972). The Oregonator model
(Field and Noyes 1974) was based on this mechanism. A newer version (Turanyi
et al. 1993) of the reaction steps within the Oregonator model is the following:

Rl X+Y—2P kq r :klxy
R2Z Y+ A—-X+P ko ry = kyya
R3 2X—P + A k3 V3:k3)€2

R4 X+ A—-2X + 27 ks 74 = kaxa’
RS X+Z—-05X+ A ks rs = ksxz
R6 Z+Ma—Y — Z ke re = kgzm

where X, Y, Z, A, P and Ma indicate species HBrO,, Br—, Ce4+, BrO; ™, HOBr and
malonic acid, respectively. The corresponding small italic letter denotes the molar
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concentration of the species and k.. . ., k¢ the rate coefficients of the reaction steps.
The rates of the reaction steps (7y,. . .,I's) can be calculated using the kinetic law of
mass action [Eq. (2.5)] even though not all reactions in this reduced scheme could
be classified as elementary reaction steps. Note, for example, that reactions 5 and
6 do not contain positive whole integers as stoichiometric coefficients on the right-
hand side. The concentrations of species BrOs;~ (A) and malonic acid (Ma) are
much higher than those of the others, and these concentrations are practically
constant (this is termed the pool chemical approximation, and it is detailed in
Sect. 2.3.1). Note that HOBr (P) is considered as a nonreactive product.

In the models of formal reaction kinetics, a species is called an internal species if
its concentration change is important for the simulation of the reaction system.
These species are denoted by letters from the end of the Latin alphabet (X, Y, Z).
The concentrations of the external species are either constant or change slowly in
time (A and Ma) (pool chemical) or have no effect on the concentrations of the
other species (P).

According to this model, the rates of change of the concentrations of HBrO, (X),
Br~ (Y) and Ce* (Z) in a well-mixed closed vessel are described by the following
system of ODEs:

dx
— = —1ry+ 1r; —2r3 4+ 1ry — 0.5r5,

dr
d
d—}; = —1r; — 1rp + 1rs,
d
d—j = —|—2]’4 — 1]’5 — 2]’6.

In each equation, on the right-hand side in each term, the rate of the reaction step
is multiplied by the change in the number of moles in the corresponding chemical
equation. For example, one mole of species X is consumed in reaction step
1 (therefore, the change in the number of moles is —1); in reaction step 2, one
mole of X is produced (+1); and in step 3, two moles are consumed (—2). In reaction
step 4, one mole of X is consumed and two moles are produced; therefore, the
change in the number of moles is +1.

Inserting the terms for the reaction rates r; —r¢ into the equations above gives

dx
= —kixy + kyya — 2k3x* + kaxa — 0.5ksxz,

dr

d

& —kixy — koya + kezm,
dt

d

d—j = 2kgxa — ksxz — 2kezm.

Some remarks should be made concerning the equations above. Species concen-
tration c¢; has to be present in all negative terms on the right-hand side of the
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equation dc;/dz. A negative term without concentration c; is called a negative cross
effect (Erdi and Té6th 1989). A first-order ordinary system of differential equations
with polynomial right-hand side can be related to a reaction mechanism if and only
if it does not contain a negative cross-effect term. When the reaction step is
obtained by lumping from several elementary reaction steps, then the same species
may appear on both sides of the chemical equations (see reaction steps 4, 5 and 6).
For the calculation of the rates of the reaction steps using the kinetic law of mass
action [see Eq. (2.5)], only the left-hand side stoichiometric coefficients have to be
considered. However, for the construction of the kinetic system of ODEs
[Eq. (2.6)], the difference between the right- and left-hand side stoichiometric
coefficients, that is, the change of the number of moles in the reaction step, has to
be taken into account. The left-hand side stoichiometric coefficients vf are always

positive integers, whilst the kinetic system of ODEs can still be easily constructed if

the right-hand side stoichiometric coefficients vj’ are arbitrary real numbers,

i.e. these can be negative numbers or fractions. Such reaction steps can be obtained
by lumping several elementary reaction steps. The topic of lumping will be
discussed in detail in Sect. 7.7. Furthermore, since the pool chemical approximation
has been invoked for the concentration of species Ma, the rate of reaction 6 becomes
a pseudo-first-order reaction since m is in fact constant.

Let us determine the matrices J and F belonging to the kinetic system of ODEs
above. These two types of matrices will be used several dozen times in the
following chapters. For example, the Jacobian is used within the solution of stiff
differential equations (Sect. 6.7), the calculation of local sensitivities (Sect. 5.2) and
in timescale analysis (Sect. 6.2), whilst matrix F is used for the calculation of local
sensitivities (Sect. 5.2). Carrying out the appropriate derivations, the following
matrices are obtained:

_dt _dr _dt
Oox 0y 0Oz
dy ~dy Ndy
J= dt _dt _dt
ox 0y 0Oz
dz dz dz
Oox 0y 0Oz

—k1y — 4ksx + kga — 0.5ksz  —k1x + kpa —0.5ksx

= —kly —klx — kza kﬁm s

2k4Cl — k5Z 0 —k5x — 2k6m


http://dx.doi.org/10.1007/978-3-662-44562-4_7#Sec20
http://dx.doi.org/10.1007/978-3-662-44562-4_6#Sec7
http://dx.doi.org/10.1007/978-3-662-44562-4_5#Sec2
http://dx.doi.org/10.1007/978-3-662-44562-4_6#Sec2
http://dx.doi.org/10.1007/978-3-662-44562-4_5#Sec2
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0 0 0 2xa —Xz —2zm

The examples above indicate some further rules. The main diagonal of the
Jacobian contains mainly negative numbers. An element of the main diagonal of
the Jacobian can be positive only if the corresponding reaction is a single-step
autocatalytic reaction, like A+X — B+2 X (cf. reaction step R4 above). Matrix
F is in general a sparse matrix, since most of its elements are zero. The elements of
F that are nonzero can be obtained from the expressions for the reaction rates ry,. . .,
I' in a way that multiplication of the appropriate rate coefficient k is omitted.

2.2 Parameterising Rate Coefficients

2.2.1 Temperature Dependence of Rate Coefficients

An important part of specifying a chemical reaction mechanism is providing
accurate parameterisations of the rate coefficients. In liquid phase and in atmo-
spheric kinetics, the temperature dependence of rate coefficient & is usually
described by the Arrhenius equation:

k = A exp(—E/RT) (2.11)

where A is the pre-exponential factor or A-factor, E is the activation energy, R is the
gas constant and T is temperature. The dimension of quantity E/R is temperature,
and therefore, E/R is called the activation temperature. This equation is also
referred to as the “classic” or “original” Arrhenius equation. If the temperature
dependence of the rate coefficient can be described by the original Arrhenius
equation, then plotting In(k) as a function of 1/T (Arrhenius plot) gives a straight
line. The slope of this line is — E/R, and the intercept is In(A). Figure 2.2a shows
such an Arrhenius plot.
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Fig. 2.2 Arrhenius plot of the temperature dependence of the rate coefficient of reaction
CH,4+ OH — CH; + H,0. (a) Temperature range 220 K to 320 K; (b) temperature range 300 K
to 2,200 K

In high-temperature gas-phase kinetic systems, such as combustion and pyro-
lytic systems, the temperature dependence of the rate coefficient is usually
described by the modified Arrhenius equation:

k = AT"exp(—E/RT). (2.12)
This equation is also called the extended Arrhenius equation. An alternative
notation is k=BT" exp(—C/RT), which emphasises that the physical meaning of
parameters B and C is not equal to the pre-exponential factor and activation energy,
respectively. If the temperature dependence of a rate coefficient can only be
described by a modified Arrhenius equation and not in the classic form, then a
curved line is obtained in an Arrhenius plot (see Fig. 2.2b).

If the temperature dependence of the rate coefficient is described by the modified
Arrhenius equation, then the activation energy changes with temperature. The
activation energy at a given temperature can be calculated from the slope of the
curve, i.e. the derivative of the temperature function with respect to 1/7. If the
temperature dependence is defined using the equation k= BT" exp(—C/RT), then
the temperature dependent activation energy is given by

r <%) . (d(ln{B} + nIn{T} — C/RT))

d(1/7)
s o)

Ea(T) =

(2.13)

For some gas-phase kinetic elementary reactions, the temperature dependence of
the rate coefficient is described by the power function k =AT". This can also be
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considered as a truncated form of the extended Arrhenius equation. Another type of
unusual temperature dependence is when there are two different routes from the
reactants to the products; therefore, the temperature dependence of the reaction step
in a wide temperature range is described by the sum of two Arrhenius expressions:
k=AT"exp(—E;/RT) + A,T™exp(—E,/RT). An example is the case of reaction
HO, + OH =H,0 + O, (Burke et al. 2013).

Reaction CH4 + OH — CHj3 + H,O is the major consumption reaction of methane
in the troposphere, where the typical temperature extremes are 220 K (—53 °C) and
320 K (+47 °C). In this 100 K temperature range, the temperature dependence of the
rate coefficient can be described accurately with a 2-parameter Arrhenius equation
as shown in Fig. 2.2a. The same reaction is important in methane flames, where this
reaction is one of the main consuming reactions of the fuel molecules. In a methane
flame, the temperature is changing between 300 K (room temperature or laboratory
temperature) and 2,200 K, which is the typical maximum temperature of a laminar
premixed methane—air flame. When representing the temperature dependence of the
rate coefficient within this wide temperature range in an Arrhenius plot, the
obtained function is clearly curved (see Fig. 2.2b). This example shows that the
temperature dependence of the same rate coefficient can be well described by the
original Arrhenius expression within a narrow(less than 100 K) temperature range,
but only with the extended Arrhenius expression within a wide (several hundred
Kelvin) temperature range. However, the temperature dependence of some rate
coefficients can be characterised by the original Arrhenius equation within a very
wide temperature range. One example is the reaction I+H, — HI+H, where the
experimentally determined rate coefficients could be fitted using the original
Arrhenius equation over the temperature range 230 K to 2,605 K, even though
the rate coefficient changed by about 30 orders of magnitude (Michael et al. 2000).

2.2.2 Pressure Dependence of Rate Coefficients

The rate coefficients of thermal decomposition or isomerisation reactions of several
small organic molecules have been found to be pressure dependent at a given
temperature. A model reaction was the isomerisation of cyclopropane yielding
propene. The rate coefficient of the reaction was found to be first-order and pressure
independent at high pressures whilst second-order and linearly dependent on
pressure at low pressures. These types of observations were interpreted by
Lindemann et al. (1922) and Hinshelwood by assuming that the molecules of
cyclopropane (C) are colliding with any of the other molecules present in the
system (third body, denoted by M) producing rovibrationally excited cyclopropane
molecules (C*). These molecules can then isomerise (transform into another mole-
cule with the same atoms but with a different arrangement) yielding propene (P), or
further collisions may convert the excited cyclopropane molecules back to
non-excited ones: C+M2C +M and C*— P. This model allowed the inter-
pretation of changing order with pressure (Pilling and Seakins 1995). Later research
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confirmed that the basic idea was correct. However, it was shown that the collisions
create excited reactant species having a wide range of rovibrational energies. The
cyclopropane molecules can move up and down on an energy ladder, and the rate
coefficient of isomerisation depends on the energy of the excited reactant.

The isomerisation of cyclopropane has limited practical importance, but the
pressure-dependent decomposition or isomerisation of many molecules and radi-
cals proved to be very important in combustion and atmospheric chemistry. In these
elementary reactions, only a single species undergoes chemical transformation, and
therefore, these are called unimolecular reactions. For example, the decomposition
of H,0O, is a very important reaction for the combustion of hydrogen, syngas and
hydrocarbons. Due to collisions with any species present in the mixture, the
rovibrational energy level of the H;O, molecule can move up and down on the
energy ladder (see Fig. 2.3a). Molecules having an energy level higher than a
threshold can decompose to the OH radical and the rate of decomposition is energy
dependent.

At intermediate pressures, the reaction rate of unimolecular reactions is neither
second-order nor first-order. The apparent first-order rate coefficient in this pressure
region ( fall-off region) can be calculated using the Lindemann approach (Gilbert
et al. 1983; Pilling and Seakins 1995; Atkins and de Paula 2009). Arrhenius rate
parameters are required for both the low- and high-pressure limiting cases, and the
Lindemann formulation blends them to produce a pressure-dependent rate expres-
sion. The low-pressure rate coefficient is given by the expression:

—Ey
ko = AoT™ 2.14
ol "€xXp ( RT ) ( )
and the high-pressure rate coefficient by the expression:

_EOO
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CH,OH

H,0,

Fig. 2.3 Schematic energy diagram of two reaction systems: (a) H,O,220H; (b)
CH; +OH 2 CH;0H and CH; + OH 2 'CH, + H,O
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The apparent first-order rate coefficient at any pressure can be calculated by the
expression:

P,
= F. 2.1
k= koo (1 + P,<> (2.16)

In the equation above, F =1 in the Lindemann approach and the reduced pressure
P, is given by

_ ko]

P
T koo I

(2.17)

where M is the third body. When calculating the effective concentration of the third
body, the collision efficiencies m,, are also taken into account:

M] = Zmy [Yi. (2.18)

In the case of the example reaction of H,O, decomposition, the effective concen-
tration of the third body is calculated by Metcalfe et al. (2013) as [M] = 5.00[H,0]
+5.13[H,0,] + 0.8[0,] +2.47[H,] + 1.87[CO] +1.07[CO,] +0.67[Ar] +0.43[He]+
the sum of the concentrations of all other species. Since N, is a commonly used
bath gas within experiments, it often makes up the majority of the colliding species
concentrations. N, is therefore assumed to have unit collision efficiency, and those of
the other species are compared against it. In the reaction H,O,(+M) 2 20H (+M),
species that have similar molecular energy levels to the rovibrationally excited H,O,
molecules (like HO, and H,0) have large collision efficiencies, whilst noble gases
have typically small collision efficiencies. The general trend is that larger molecules
with more excitable rovibrational frequencies have larger collision efficiency factors.
There are few measurements that specifically address third-body efficiency factors,
and these values can be quite uncertain (Baulch et al. 2005). The third-body effi-
ciency factors can also be considered as temperature dependent (Baulch et al. 2005),
but even an approximate parameterisation is hindered by the lack of appropriate
experimental data. The effective third-body concentration continuously changes
during the course of a reaction according to the change of the mixture composition.

The Lindeman equation does not describe properly the pressure dependence of
the rate coefficient, and it can be improved by the application of the pressure and
temperature dependent parameter F. In the Troe formulation (Gilbert et al. 1983),
F is represented by a more complex expression:
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: (2.19)

logP; + ¢ 2
logF = 10gF cent £ )}

14 |——2 "
+ [n —d(logP; + ¢

with c=—0.4 —0.6710g F e, n=—0.75 — 1.271 log F ¢, d =0.14
and

T T T
Feent = (1 — a)exp <_W) + aexp <_F) + exp (— T) (2.20)

so that four extra parameters, a, T***, T" and T**, must be defined in order to
represent the fall-off curve with Troe parameterisation.

In several cases, the pressure dependence in the fall-off region is described by
temperature-independent F ., but still keeping the Troe representation. For exam-
ple, for the reaction H + O,(+M) =HO, (+M), O Conaire et al.(2004) provided the
following Troe parameters: a=0.5, T =1.0x10"%, T"=1.0x10"° and
T =1.0 x 10"'%°, At combustion temperatures (7 =700 — 2,500 K), the exponen-
tial terms are approximately exp (—10*%)~ 0, exp(—10~>") ~exp(0) =1 and exp
(—1097) ~0; therefore, using these Troe parameters in Eq. (2.20) gives a
temperature-independent Fe, =0.5.

Figure 2.4 shows the change of the apparent first-order rate coefficient k"™ with
pressure for the reaction H,O,220H at T=1,000 K. Using log-log axes
(Fig. 2.4a), it is clear that when applying both the Lindemann approach (F=1)
and the Troe parameterisation, the calculated apparent rate coefficient converges to
the low-pressure limit and the high-pressure limit rate coefficient at low and high
pressures, respectively. However, closely approaching the high-pressure limit
requires very high pressures of about 10° bar. Figure 2.4b uses non-logarithmic
axes and shows that at pressures characteristic for an internal combustion engine
(1-60 bar), the rate coefficient cannot be approximated well with the low-pressure
limit. In addition, the Lindemann and Troe equations provide very different rate
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Fig. 2.4 The change of the apparent first-order rate coefficient "™ with pressure for reaction
H,0, 220H at temperature 7= 1,000 K using bath gas N,. The source of data is the article of
Troe (2011); (a) logarithmic axes and (b) non-logarithmic axes
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coefficients. The rate coefficient X" corresponding to the low-pressure limit is a
linear function of pressure on both the log—log and non-logarithmic plots.

Not only the rate coefficients of unimolecular reactions may have pressure
dependence. The other category of reactions with pressure-dependent rate coeffi-
cients is those of complex-forming bimolecular reactions. An example of such
a pressure-dependent reaction is the reaction of OH with CH; radicals, which is
important both in combustion and atmospheric chemistry. The reaction first pro-
duces a rovibrationally excited CH3;OH molecule, which may decompose to
many directions (such as product channels CH;0 +H, CH,OH+H, HCOH + H,,
HCHO + H,), but the main products are the stabilisation product CH3;OH and
decomposition products singlet methylene and water; 'CH,+H,0 (Jasper
et al. 2007). As Fig. 2.3b shows, the excited CH30H molecule can lose the extra
energy in collisions and stabilise as a thermally equilibrated CH;0H molecule, can
decompose back to radicals OH and CHj; or can decompose forward to species
'CH, and H,0. The rate coefficients of the decomposition channels depend on the
energy level of the CH3;0H molecule, and decomposition is possible only above an
energy threshold. At very high pressures, the collisions with the molecules present
in the gas mixture are frequent. Therefore, almost all excited CH;OH molecules get
stabilised. Consequently, the reaction can be described with stoichiometry
CH;+OH 2 CH;0H, and it is a second-order reaction. The corresponding rate
coefficient k., is called the high-pressure limit. At low pressures, the reaction is
third-order and mainly proceeds via CH;+OH+M2a 'CH,+H,O+M. The
corresponding third-order rate coefficient & is called the low-pressure limit. Within
the fall-off region, the apparent second-order rate coefficient of reaction CH; + OH
(+M) 2 CH30H (+M) increases with pressure.

The pressure dependence of the apparent second-order rate coefficient can be
calculated by Equations (2.14) to (2.20). Figure 2.5 shows the change of the
apparent second-order rate coefficient " with pressure for reaction
CH; + OH 2 CH30H at temperature 7= 1,000 K. Again, the figure with log—log
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Fig. 2.5 The change in apparent second-order rate coefficient k** with pressure for reaction
CH;+OH 2 CH;0H at temperature 7=1,000 K using bath gas He. The source of data is
the article of De Avillez Pereira et al. (1997); (a) logarithmic axes and (b) non-logarithmic axes
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Fig. 2.6 The change in apparent third-order rate coefficient k™ with pressure for reaction
CH;+OH 2 'CH, + H,0 at temperature 7= 1,000 K using bath gas He. The source of data is
the article of De Avillez Pereira et al. (1997); (a) logarithmic axes and (b) non-logarithmic axes

axes (a) shows that the rate coefficient approaches the limits at extremes pressures,
whilst the figure with non-logarithmic axes (b) indicates that in the pressure range
of 0-5 bar, the apparent second-order rate coefficient significantly changes with
pressure using both the Lindemann and Troe formulations.

The apparent third-order rate coefficient of reaction CH;+OH
+Mea 1CHz +H,0 (+M) decreases with pressure. Rate coefficient &' of the
decomposition of the excited species can be calculated in the following way:

) 1
= ko[ ———F. 2.21
k k“(l + P, (2.21)

Figure 2.6 shows the change of the apparent third-order rate coefficient X" with
pressure for this reaction channel at temperature 7= 1,000 K. Again, the figure with
the log—log axes (a) shows the approach of the limiting rate coefficients, whilst the
non-logarithmic plot (b) indicates the significant change in rate coefficient at engine
conditions of about of 1 to 60 bar. It is interesting to note that the k™ corresponding
to the high-pressure limit is a linear function of pressure on the log—log plot, but it is
a curved function on the non-logarithmic plot, which is a characteristic of functions
log(a) —log(x) and a/x , respectively.

The Troe equation and the similar SRI equation (Stewart et al. 1989) can
accurately represent the fall-off region only for single-well potential energy sur-
faces (Venkatech et al. 1997). For more complicated elementary reactions, the
difference between the theoretically calculated rate coefficient and the best Troe
fit can be as high as 40 %. A series of fitting formulae for the parameterisation of the
fall-off curves are discussed in Zhang and Law (2009, 2011). In some mechanisms,
the pressure dependence is given by the so-called log p formalism [see e.g. Zador
etal. (2011)] :
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tn{k} = In {5} + (in (&1} — In {k;}) 11{;”} e

Here £ is the rate coefficient belonging to pressure p, whilst the (p;, k;) pairs are a
series of tabulated rate coefficients, defined by Arrhenius parameters, belonging to
different pressures. Hence, this is an interpolation method which is linear in log p.
Usually the rate coefficient at a given pressure will follow the extended Arrhenius
formulation, but this need not be the same at different pressures making the log
p formulation more flexible than the Troe formulation. Differences in third-body
efficiencies can also be accounted for each collider separately, but the log p
formalism is not compatible with the effective concentration formalism [see
Eq. (2.18)]. Another possible approach is the application of Chebyshev polynomials
to represent the temperature and pressure dependencies of the apparent rate coef-
ficients (Venkatech et al. 1997). Whilst this may be more accurate in some cases
than using interpolation based on a limited number of pressures, care should be
taken not to extrapolate the use of Chebyshev polynomials outside the range in
which they were fitted. Further discussion of the handling of pressure-dependent
reactions can be found in Pilling and Seakins (1995) and Carstensen and
Dean (2007).

2.2.3 Reversible Reaction Steps

In theory, all thermal elementary reactions are reversible, which means that the
reaction products may react with each other to reform the reactants. Within the
terminology used for reaction kinetics simulations, a reaction step is called irre-
versible, either if the backward reaction is not taken into account in the simulations
or the reversible reaction is represented by a pair of opposing irreversible reaction
steps. These irreversible reactions are denoted by a single arrow “—”. Reversible
reaction steps are denoted by the two-way arrow symbol within the reaction step
expression “2”. In such cases, a forward rate expression may be given either in the
Arrhenius or pressure-dependent forms, and the reverse rate is calculated from the
thermodynamic properties of the species through the equilibrium constants. Hence,
if the forward rate coefficient ks, is known, the reverse rate coefficient can be
calculated from

Ky,

b =

(2.23)

where K, is the equilibrium constant expressed in molar concentrations. K., is
obtained from the thermodynamic properties of the species.

In combustion systems, thermodynamic properties are often calculated from
14 fitted polynomial coefficients called the NASA polynomials for each species
(Burcat 1984). Seven are used for the low-temperature range 7oy t0 Tniq and seven



2.2 Parameterising Rate Coefficients 27

for the high-temperature range Tpniq t0 Thigh. Typical values are Ty, =300 K,
Tmia = 1,000 K and Thien = 5,000 K. The polynomial coefficients are determined
by fitting to tables of thermochemical or thermodynamic properties, which are
either measured values or calculated using theoretical methods and statistical
thermodynamics (Goos and Lendvay 2013). The polynomial coefficients can then
be used to evaluate various properties at a given temperature (7), such as standard
molar heat capacity (CPG), enthalpy (H®) and entropy (S°) as follows:

Ce
Fp: aj +(12T+(I3T2 +a4T3 +Cl5T4, (224)
He as deg
Lp Bya | Dys | Dy 2o 2.25
R =@ TS5 +4 +5T 4o (2.25)
§© as,.p Q4,3 454
? = alln {T} +(12T+?T +?T> +ZT +(l77 (226)

where the a, parameters are the NASA polynomial coefficients, and R is the
universal gas constant. The standard molar reaction enthalpy (ArHje) and entropy

(ArSje) can be calculated from the following equations:

ASe 1

Z v,, (2.27)

AHP . HP
J
T _Z; i (2.28)

The equilibrium constant K in terms of normalised pressures p/p® is then obtained
from

A,G® = —RTInK, (2.29)
AS®  AH®
K= - : 2.
exp( R RT ) (2.30)

The equilibrium constant in concentration units K, is related to the equilibrium
constant in normalised pressure units K by the following:

K. K(Ri)m’ (2.31)

where p® is the standard pressure and Av = Z”i is the sum of stoichiometric
i

coefficients. Remember that the stoichiometric coefficients of the products and

reactants have positive and negative signs, respectively. In this way, the reverse

rate coefficient for a thermal reaction can be defined by its forward rate coefficient
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and the appropriate NASA polynomials for the component species within the
reaction.

2.3 Basic Simplification Principles in Reaction Kinetics

Simplification of a kinetic mechanism or the kinetic system of ODES is often
required in order to facilitate finding solutions to the resulting equations and can
sometimes be achieved based on kinetic simplification principles. In most cases,
the solutions obtained are not exactly identical to those from the full system of
equations, but it is usually satisfactory for a chemical modeller if the accuracy of the
simulation is better than the accuracy of the measurements. For example, usually
better than 1 % simulation error for the concentrations of the species of interest
when compared to the original model is appropriate. Historically, simplifications
were necessary before the advent of computational methods in order to facilitate the
analytical solution of the ODEs resulting from chemical schemes. We begin here by
discussing these early simplification principles. In later chapters, we will introduce
more complex methods for chemical kinetic model reduction that may perhaps
require the application of computational methods.

The following four kinetic simplification principles may provide a nearly iden-
tical solution compared to the original system of equations if applied appropriately:
(i) the pool chemical approximation, (ii) the pre-equilibrium approximation, (iii)
the rate-determining step and (iv) the quasi-steady-state approximation. An alter-
native approach, where the kinetic system of ODEs can be formulated to have fewer
variables than the number of species, is based on the application of conserved
properties, and this topic is discussed in Sect. 2.3.5. Decreasing the number of
calculated variables based on conserved properties is different from the previous
four principles, because in this case, the number of variables is decreased without
an approximation and without losing any information. The last subsection deals
with the lumping of reaction steps based on previously introduced principles.

2.3.1 The Pool Chemical Approximation

The pool chemical approximation (also called the pool component approximation)
is applicable when the concentration of a reactant species is much higher than
those of the other species, and therefore the concentration change of this species is
considered to be negligible throughout the simulation period. For example, a
second-order reaction step A+ B — C can be converted to first-order, if concen-
tration b of reactant B is almost constant during the simulations. In this way, the
product X' =k b of concentration b and rate coefficient & is practically constant;
therefore, the second-order expression can be converted to a first-order one:
dc/dt =kab =K a. In this special case, the pool chemical approximation is called
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the pseudo-first-order approximation and k' is the pseudo-first-order rate
coefficient.

2.3.2 The Pre-equilibrium Approximation

The pre-equilibrium approximation (PEA; also called the partial equilibrium
approximation or fast—equilibrium approximation) is applicable when the species
participating in a pair of fast-equilibrium reactions are consumed by slow reactions.
After the onset of an equilibrium, the rates of the forward and backward reactions
become equal to each other, and therefore the ratios of the concentrations of the
participating species can be calculated from the stoichiometry of the reaction steps
and the equilibrium constant. According to the pre-equilibrium approximation, if
the rates of the equilibrium reactions are much higher than the rates of the other
reactions consuming the species participating in the equilibrium reactions, then the
concentrations of these species are determined, with good approximation, by the
equilibrium reactions only.

As an example, let us consider the equilibrium reaction A2B. The
corresponding rate coefficients are k; and k, and the equilibrium constant is
denoted by K=k /k,. In the case of an onset of equilibrium, the rates of the
opposing reactions are identical: kja = k,b, and therefore, b =k /k,a = Ka. Now
consider the reaction system A 2 B — C, where species B is consumed by a slow
reaction with a small rate coefficient k3 compared to k; and k,. In this case, we can
still assume that b=Ka is a good approximation, and thus, dc/dt=k;b, dc/
dt = k;Ka. Therefore, the concentration of B is not required in order to calculate
the rate of production of C as long as the rate coefficients are known.

A common example of such a situation is the enzyme-substrate reaction
involved in biochemical pathways. In this type of reaction, an enzyme E binds to
a substrate S to produce an enzyme-substrate intermediate ES, which then forms the
final product P:

ky b
E+S &—ES—E+P.

<1

Here the rate of production of the final product (usually an essential biomolecule)
can be derived using the pre-equilibrium approximation to be

where the square brackets indicate the molar concentrations of the given species.

Another common situation is when a large organic molecule isomerises in a
fast—equilibrium reaction to a low-concentration, more reactive form, and this more
reactive species is consumed by a slow reaction. Using the equation dc/dt = k3Ka
means that the rate equation contains the less reactive organic species that is present
in higher concentration and therefore can be measured more easily.
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2.3.3 Rate-Determining Step

Even in the case of large reaction mechanisms, the production rate of a reactant or
final product of the overall chemical reaction may depend mainly on the rate
coefficient of a single reaction step. This reaction step is called the rate-determining
step. If we have sequential first-order reactions, then the reaction step having the
smallest rate coefficient is the rate-determining one. In this case, the production rate
of the final product is equal to the rate coefficient of the rate-determining step
multiplied by the concentration of the reactant of this reaction step. In this example

O -
A= —C —>D—+E—

if ky < ky, k3, kg, ks, then dp/dt = k,b.

In the case of an arbitrary mechanism, the rate-determining step is characterised
by the fact that increasing its rate coefficient increases the production rate of the
product significantly. However, in general, this may not be the reaction step having
the smallest rate coefficient. For example, when species P is produced from species
A in parallel pathways, then the rate coefficient of the rate-determining step may be
relatively high. In the example below, rate coefficient k; belonging to the rate-
determining step is relatively large if k3, k4 < k; << ky:

PN
A P
ANy’

In the general case, we have to investigate how a small change of rate coefficient
k; changes the production rate dy;/dt of product Y;. This effect appears in the local
rate sensitivity coefficient 0(dc,;/dr)/0k; (see Sect. 5.2). If this coefficient is much
higher for reaction j than for the other reaction steps, then reaction j is the rate-
determining step of the production of species i (Turanyi 1990).

2.3.4 The Quasi-Steady-State Approximation (QSSA)

The quasi-steady-state approximation (QSSA) is also called the Bodenstein prin-
ciple, after one of its first users (Bodenstein 1913). As a first step, species are
selected that will be called quasi-steady-state (or QSS) species. The QSS-species
are usually highly reactive and low-concentration intermediates, like radicals. The
production rates of these species are set to zero in the kinetic system of ODEs. The
corresponding right-hand sides form a system of algebraic equations. These
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algebraic equations can be used to calculate the concentrations of the QSS-species
from the concentrations of the other (non-QSS) species. The system of ODEs for
the non-QSS-species and the system of algebraic equations for the QSS-species
together form a coupled system of differential algebraic equations. For the success-
ful application of the QSSA, the solution of this coupled system of differential
algebraic equations should be very close to those of the original system of kinetic
ODE:s. In some cases, the system of algebraic equations can be solved separately,
that is, the concentrations of all QSS-species can be calculated from (explicit)
algebraic equations. The calculated QSS-species concentrations can then be used
in the system of kinetic ODE:s for the remaining species. In this case, following the
application of the QSSA, the kinetic system of ODEs is transformed to a smaller
system of ODEs having fewer variables. The background to the QSSA is that in
chemical kinetic models, the timescales involved usually span quite a wide range
(see Sect. 6.2).

As an example, consider the following reaction sequence where B is a
QSS-species linking reactant A to product C:

k; k>
A =—=B—-C.
k-

If the QSSA is applied to B, then we assume:

= — 2.32
o (2.32)
so that
ki [A] — k_{[B] — k2[B] = 0. (2.33)
Therefore,
ki
B| = Al. 2.34
Bl = A (2.34)
Hence,
d[C] kika[A]
2 bIBl = /25 kA 2.
where
! k1k2
k=—= . 2.36
k_i +ky ( )

Therefore, the above set of reactions can be replaced by a single reaction of the
form:
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A—C (2.37)

with the effective rate coefficient £’ defined in Eq. (2.36). The quantitative kinetic
involvement of intermediate B in the overall reaction is encapsulated in £, but the
species has been removed from the mechanism. Should the concentration of B be
required, it can be calculated from the expression (2.34), but usually the concen-
trations of the QSS-species are not required in practical applications. Therefore, the
method constitutes their complete removal from the scheme, thus reducing the
overall number of variables in the model and also usually its stiffness since the
range of timescales remaining has been reduced .

Whilst it is quite straightforward to comprehend the applicability of the previous
three basic kinetic simplification principles, the QSSA is not so easy to understand.
For example, it may seem strange that the solution of a coupled system of algebraic
differential equations can be very close to the system of ODEs. Another surprising
feature is that the concentrations of QSS-species can vary substantially over time;
for example, the QSSA has found application in oscillating systems (Tomlin
et al. 1992). The key to the success of the QSSA is the proper selection of the
QSS-species based on the error induced by its application. The interpretation of the
QSSA and the error induced by the application of this approximation will be
discussed fully in Sect. 7.8.

2.3.5 Conserved Properties

As noted above, the consideration of conserved properties allows the kinetic system
of ODE:s to contain fewer variables than the number of species. However, it is an
exact transformation, and therefore it is usually handled separately from the rules
above which are based on approximations.

In many reaction mechanisms, there are conserved properties. The simplest
conserved property occurs when the sum of the molar concentrations is constant.
This is obtained when the volume is constant and for each reaction step
0= Zv,f — 1/5 , that is, the change of the number of moles is zero for each

J
reaction step.

In a closed chemical system, the chemical reactions do not change the moles of
elements, and therefore the number of moles of each element is a conserved
property. Other conserved properties include the total enthalpy in an adiabatic
system or the charge in an electrochemical system. Another way of referring to a
conserved property is as a reaction invariant (Gadewar et al. 2001). If an atomic
group remains unchanged during the reaction steps, then its number of moles is also
a conserved property (conserved moiety). Such a conserved moiety may be, for
example, the adenosine group, and the sum of species AMP, ADP and ATP may
remain constant in a closed biochemical system (Vallabhajosyula et al. 2006).
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The presence of conserved elements and conserved moieties cause linear depen-
dence between the rows of the stoichiometric matrix v and decrease the rank of the
stoichiometric matrix. In most cases, the number of species Ng is much less than the
number of reaction steps Ny, that is, Ng < Ny. If the stoichiometric matrix v has Ng
rows and Ng columns, and conserved properties are not present, then the rank of the
stoichiometric matrix is usually Ng. If Nc conserved properties are present, then the
rank of the stoichiometric matrix is N = Ng — Nc. In this case, the original system of
ODE:s can be replaced by a system of ODEs having N variables, since the other
concentrations can be calculated from the computed concentrations using algebraic
relations related to the conserved properties.

2.3.6 Lumping of Reaction Steps

In some cases, without much mathematical background, common sense rules can be
applied to the simplification of reaction mechanisms by lumping the reaction steps.
For example, reaction steps having common reactants can be lumped together:

A+B—-C+ D 0.4k
A+B—E+F 0.6k

Such reactions are common in detailed mechanisms. The usual terminology is that
reaction “A+B — products” is a multichannel reaction that has two reaction
channels, one resulting in products C+ D and the other products E + F. The overall
rate coefficient of the reaction is therefore k, whilst the channel ratio is 0.4:0.6. A
synonym of the term channel ratio is the branching ratio. Following the rules for
the creation of the kinetic system of differential equations, the two chemical
equations above result in exactly the same terms when starting from the single
chemical equation below:

A+B—-04C 4 04D + 0.6E + 0.6F k

The number of reaction steps in the mechanism is decreased by one, but since
lumping of the reaction steps resulted in exactly the same set of ODEs, there is no
gain in simulation speed. Nevertheless, the lumping of multichannel reactions as
above is common in atmospheric chemical mechanisms, because it may clarify the
main reaction routes for the user.

Reaction steps can also be lumped using the principle of a rate-determining step
(see Sect. 2.3.3). Let us consider the following two reactions:

A+B—-C+ D ri=kab slow
D+ E—F ry = kode  fast -~

The first, slow reaction, is the rate-determining step, and therefore, the rate of the
lumped reaction obtained by merging these two reactions can be calculated by the
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equation r = kyab. If we want to keep the mass action kinetics formalism, then on
the left-hand side of the lumped reaction should be A+ B. During the course of
these two reactions, A, B and E are consumed; C and F are produced. Equal
amounts of D are consumed and produced; therefore, D should not be present in
the lumped equation. Species E is consumed, but since it is not part of the rate-
determining step, it should not be present on the left-hand side of the chemical
equation. Therefore, it appears on the right-hand side, with a —1 stoichiometric
coefficient. The lumped reaction is the following:

A+B—-C+ F—E r = kjab.

Using the rules of mass action kinetics, (almost) the same equations can be derived
for the production rates of all species but D. The presence of a negative stoichio-
metric coefficient is perhaps surprising at first glance, but there are several lumped
atmospheric chemical mechanisms (Gery et al. 1989) that contain negative stoichio-
metric coefficients on the right-hand side of some chemical equations.

One result of the reaction lumping above is the removal of the highly reactive
species D. This means that a fast timescale was removed from the system, and the
stiffness of the corresponding ODE system was decreased. The calculation of
lifetimes of species is discussed in Sect. 6.2. Reaction lumping based on timescales
may remove species and decrease stiffness, and thus may lead to increases in
simulation speed. For example, its application was successful for the further
reduction of a skeletal scheme describing n-heptane oxidation in Peters
et al. (2002). This will be discussed more fully in connection with the application
of the QSSA in Sect. 7.8.6.
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