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Abstract. In many data mining and machine learning applications,
data are not free, and there is a test cost for each data item. Due to
economic, technological and legal reasons, it is neither possible nor nec-
essary to obtain a classifier with 100 % accuracy. In this paper, we con-
sider such a situation and propose a new constraint satisfaction problem
to address it. With this in mind, one has to minimize the test cost to
keep the accuracy of the classification under a budget. The constraint is
expressed by the positive region, whereas the object is to minimizing the
total test cost. The new problem is essentially a dual of the test cost con-
straint attribute reduction problem, which has been addressed recently.
We propose a heuristic algorithm based on the information gain, the test
cost, and a user specified parameter λ to deal with the new problem.
The algorithm is tested on four University of California - Irvine datasets
with various test cost settings. Experimental results indicate that the
algorithm finds optimal feature subset in most cases, the rational setting
of λ is different among datasets, and the algorithm is especially stable
when the test cost is subject to the Pareto distribution.

Keywords: Feature selection · Cost-sensitive learning · Positive region ·
Test cost

1 Introduction

When industrial products are manufactured, they must be inspected strictly
before delivery. Testing equipments are needed to classify the product as qual-
ified, unqualified, etc. Each equipment costs money, which will be averaged on
each product. Generally, we should pay more to obtain higher classification accu-
racy. However, due to economic, technological and legal reasons, it is neither
possible nor necessary to obtain a classifier with 100 % accuracy. There may
be an industrial standard to indicate the accuracy of the classification, such as
95 %. Consequently, we are interested in a set of equipments with minimal cost
meeting the standard. In this scenario, there are two issues: one is the equipment
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cost, and the other is the product classification accuracy. They are called test
cost and classification accuracy, respectively. Since the classification accuracy
only needs to meet the industrial standard, we would like to choose some testing
equipments to minimize the total cost.

In many real applications of data mining, machine learning, pattern recogni-
tion and signal processing, datasets often contain huge numbers of features. In
such a case, feature selection will be necessary [15]. Feature selection [10,32,42] is
the process of choosing a subset of features from the original set of features form-
ing patterns in a given dataset. The subset should be necessary and sufficient
to describe target concepts, retaining a suitably high accuracy in representing
the original features. Feature selection serves as a pre-processing technique in
machine learning and pattern recognition application [1]. Consequently, it has
been defined by many authors by booking at it from various angles [2].

According to Pawlak [27], minimal reducts have the best generalization abil-
ity. Hence many feature selection reduction algorithms based on rough set have
been proposed to find one of them (see, e.g., [29,31,36,38,46]). On the other
side, however, data are not free, and there is a test cost for each data item
[9]. Therefore the classifier should also exhibit low test cost [19]. With this in
mind, the minimal test cost reduct problem has been defined [17] and with some
algorithms proposed to deal with it [6,7,21,25,35,41].

In this paper, we formally define the feature selection with positive region
constraint for test-cost-sensitive data (FSPRC) problem. The positive region is
a widely used concept in rough set [26]. We use this concept instead of the
classification accuracy to specify the industrial standard. The new problem is
essentially a dual of the optimal sub-reduct with test cost constraint (OSRT)
problem, which has been defined in [20] and studied in [14,22,23]. The OSRT
problem considers the test cost constraint, while the new problem considers the
positive region constraint. As will be discussed in the following text, the classical
reduct problem can be viewed as a special case of the FSPRC problem. Since
the classical reduct problem is NP-hard, the new problem is at least NP-hard.

We propose a heuristic algorithm to deal with the new problem. The algo-
rithm follows a popular addition-deletion framework. Since we do not require
that the positive region is unchanged after feature selection, there does not exist
a core computing stage. The heuristic information function is based on both the
information gain and the test cost. It is deliberately designed to obtain a tradeoff
between the usefulness and the cost of each feature.

Four open datasets from the University of California-Irvine (UCI) library
are employed to study the performance and effectiveness of our algorithms.
Experiments are undertaken with open source software Cost-sensitive rough sets
(Coser) [24]. Results indicate the algorithm can find the optimal feature subset
in most cases, the rational setting of λ is different among datasets, and the algo-
rithm is especially stable when the test cost is subject to the Pareto distribution.

The rest of this paper is organized as follows. Section 2 describes related
concepts in the rough set theory and defines the FSPRC problem formally. In
Sect. 3, a heuristic algorithm based on λ-weighted information gain is presented.
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Section 4 illustrates some results on four UCI datasets with detailed analysis.
Finally, Sect. 5 gives some conclusions and indicates possibilities for further work.

2 Preliminaries

In this section, we define the FSPRC problem. First, we revisit the data model
on which the problem is defined. Then we review the concept of positive region.
Finally we propose feature selection with positive region constraint problem.

2.1 Test-Cost-Independent Decision Systems

Decision systems are fundamental in machine learning and data mining. A deci-
sion system is often denoted as S = (U,C,D, {Va|a ∈ C ∪ D}, {Ia|a ∈ C ∪ D}),
where U is a finite set of objects called the universe, C is the set of conditional
attributes, D is the set of decision attributes, Va is the set of values for each a ∈
C ∪D, and Ia : U → Va is an information function for each a ∈ C ∪D. We often
denote {Va|a ∈ C ∪ D} and {Ia|a ∈ C ∪ D} by V and I, respectively. Table 1
is a decision system, which conditional attributes are symbolic values. Here
C = {Patient, Headache, Temperature, Lymphocyte, Leukocyte, Eosinophil,
Heartbeat}, d = {Flu}, and U = {x1, x2, . . . , x7}.

A test-cost-independent decision system (TCI-DS) [19] is a decision system
with test cost information represented by a vector, as the one in Table 2. It is the
simplest form of the test-cost-sensitive decision system and defined as follows.

Table 1. An exemplary decision table

Patient Headache Temperature Lymphocyte Leukocyte Eosinophil Heartbeat Flu

x1 Yes High High High High Normal Yes

x2 Yes High Normal High High Abnormal Yes

x3 Yes High High High Normal Abnormal Yes

x4 No High Normal Normal Normal Normal No

x5 Yes Normal Normal Low High Abnormal No

x6 Yes Normal Low High Normal Abnormal No

x7 Yes Low Low High Normal Normal Yes

Table 2. An exemplary cost vector

a Headache Temperature Lymphocyte Leukocyte Eosinophil Heartbeat

c(a) $12 $5 $15 $20 $15 $10

Definition 1. [19] A test-cost-independent decision system (TCI-DS) S is the
6-tuple:

S = (U,C,D, V, I, c), (1)
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where U,C,D, V and I have the same meanings as in a decision system, and
c : C → R+ ∪{0} is the test cost function. Here the test cost function can easily
be represented by a vector c = [c(a1), c(a2), . . . , c(a|C|)], which indicates that
test costs are independent of one another, that is, c(B) =

∑
a∈B c(a) for any

B ⊂ C.
For example, if we select tests Temperature, Lymphocyte, Leukocyte and

Heartbeat, the total test cost would be $5 + $15 + $20 + $10 = $50. This is
why we call this type of decision system “test-cost-independent”. If any element
in c is 0, a TCI-DS coincides with a DS. Therefore, free tests are not considered
for the sake of simplicity. A TCI-DS is represented by a decision table and a test
cost vector. One example is given by Tables 1 and 2 [19].

2.2 Positive Region

Rough set theory [27] is an approach to vagueness and uncertainty. Similarly to
fuzzy set theory it is not an alternative to classical set theory but it is embedded
in it. Positive region is an important concept in rough set theory. It is defined by
through lower approximation. Let S = (U,C,D, V, I) be a decision system. Any
∅ �= B ⊆ C ∪ D determines an indiscernibility relation on U . A partition deter-
mined by B is denoted by U/B. Let B(X) denote the B-lower approximation
of X.

Definition 2. [27] Let S = (U,C,D, V, I) be a decision system, ∀B ⊂ C, the
positive region of D with respect to B is defined as

POSB(D) =
⋃

X∈U/D

B(X), (2)

where U,C,D, V and I have the same meanings as in a decision system.

In other words, D is totally (partially) dependent on B, if all (some) elements
of the universe U can be uniquely classified to blocks of the partition U/D,
employing B [26].

2.3 Feature Selection with Positive Region Constraint Problem

Feature selection is the process of choosing an appropriate subset of attributes
from the original dataset [34]. There are numerous reduct problems which have
been defined on the classical [28], the neighborhood (see, e.g., [11,12]), the
covering-based [16,40,43–46], the decision-theoretical [37], and the dominance-
based [4] rough set models. Respective definitions of relative reducts also have
been studied in [8,29].

Definition 3. [27] Let S = (U,C,D, V, I) be a decision system. Any B ⊆ C is
called a decision relative reduct (or a relative reduct for brevity) of S iff:

(1) POSB(D) = POSC(D).
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(2) ∀a ∈ B,POSB−{a}(D) �= POSB(D).

Definition 3 implies two issues. One is that the reduct is jointly sufficient,
the other is that the reduct is individually necessary for preserving a particular
property (positive region in this context) of the decision systems [17]. The set
of all relative reducts of S is denoted by Red(S). The core of S is the intersec-
tion of these reducts, namely, core(S) = ∩Red(S). Core attributes are of great
importance to the decision system and should never be removed, except when
information loss is allowed [37].

Throughout this paper, due to the positive region constraint, it is not nec-
essary to construct a reduct. On the other side, we never want to select any
redundant test. Therefore we propose the following concept.

Definition 4. Let S = (U,C,D, V, I) be a decision system. Any B ⊆ C is a
positive region sub-reduct of S iff ∀a ∈ B, POSB−{a}(D) �= POSB(D).

According to the Definition 4, we observe the following:

(1) A reduct is also a sub-reduct.
(2) A core attribute may not be included in a sub-reduct.

Here we are interested those feature subsets satisfying the positive region
constraint, and at the same time, with minimal possible test cost. To formalize
the situation, we adopt the style of [18] and define the feature selection with pos-
itive region constraint problem, where the optimization objective is to minimize
the test cost under the constraint.

Problem 1. Feature selection with positive region constraint (FSPRC) problem.
Input: S = (U,C, d, V, I, c), the positive region lower bound pl;
Output: B ⊆ C;
Constraint: |POSB(D)|/|POSC(D)| ≥ pl;
Optimization objective: min c(B).

In fact, the FSPRC problem is more general than the minimal test cost
reduct problem, which is defined in [17]. In case where pl = 1, it coincides with
the later. The minimal test cost reduct problem is in turn more general than
the classical reduct problem, which is NP-hard. Therefore the FSPRC problem
is at least NP-hard, and heuristic algorithms are needed to deal with it. Note
that the FSPRC is different with the variable precision rough set model. The
variable precision rough set model changes the lower approximation by varying
the accuracy, but in our problem definition, it is unchanged.

3 The Algorithm

Similar to the heuristic algorithm to the OSRT problem [20], we also design a
heuristic algorithm to deal with the new problem. We firstly analyze the heuristic
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function which is the key issue in the algorithm. Let B ⊂ C and ai ∈ C −B, the
information gain of ai with respect to B is

fe(B, ai) = H({d}|B) − H({d}|B ∪ {ai}), (3)

where d ∈ D is a decision attribute. At the same time, the λ-weighted function
is defined as

f(B, ai, c, λ) = fe(B, ai)cλ
i , (4)

where λ is a non-positive number.

Algorithm 1. A heuristic algorithm to the FSPRC problem
Input: S = (U, C, D, V, I, c), pcon, λ
Output: A sub-reduct of S
Method: FSPRC

1: B = ∅; //the sub-reduct
2: CA = C; //the unprocessed attributes
3: while (|POSB(D)| < pcon) do
4: For any a ∈ CA compute f(B, a, c, λ)

//Addition
5: Select a′ with maximal f(B, a′, c, λ);
6: B = B ∪ {a′};
7: CA = CA − {a′};
8: end while

//Deletion, B must be a sub-reduct
9: CD = B; //sort attribute in CD according to respective test cost in a descending

order
10: while CD �= ∅ do
11: CD = CD − {a′}; //where a′ is the first element in CD
12: if (POSB−{a′}(D) = POSB(D)) then
13: B = B − {a′};
14: end if
15: end while
16: return B

Our algorithm is listed in Algorithm 1. It contains two main steps. The first
step contains lines 3 through 8. Attributes are added to B one by one according
to the heuristic function indicated in Eq. (4). This step stops while the positive
region reaches the lower bound. The second step contains lines 9 through 15.
Redundant attributes are removed from B one by one until all redundant have
been removed. As discussed in Sect. 2.3, our algorithm has not a stage of core
computing.

4 Experiments

To study the effectiveness of the algorithm, we have undertaken experiments
using our open source software Coser [24] on 4 different datasets, i.e., Zoo, Iris,



Feature Selection with Positive Region Constraint 29

(a)

(b)

(c)

(d)

Fig. 1. Optimal probability: (a) zoo; (b) iris; (c) voting; (d) tic-tac-toc.
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Voting, and Tic-tac-toe, downloaded from the UCI library [5]. To evaluate the
performance of the algorithm, we need to study the quality of each sub-reduct
which it computes. This experiment should be undertaken by comparing each
sub-reduct to an optimal sub-reduct with the positive region constraint. Unfor-
tunately, the computation of an optimal sub-reduct with test positive region
constraint is more complex than that of a minimal reduct, or that of a minimal
test cost reduct. In this paper, we only study the influence of λ to the quality of
the result.

4.1 Experiments Settings

Because of lacking the predefined test costs in the four artificial datasets, we
specify them as the same setting as that of [17] to produce test costs within
[1, 100]. Three distributions, namely, Uniform, Normal, and bounded Pareto,
are employed. In order to control the shape of the Normal distribution and the
bounded Pareto distribution respectively, we must set the parameter α. In our
experiment, for the Normal distribution, α = 8, and test costs as high as 70 and
as low as 30 are often generated. For the bounded Pareto distribution, α = 2,
and test costs higher than 50 are often generated. In addition, we intentionally
set the constraint as pl = 0.8. This setting shows that we need a sub-reduct
rather than a reduct.

4.2 Experiments Results

The experimental results of the 4 datasets are illustrated in Fig 1. By running our
program in different λ values, the 3 different test cost distributions are compared.
We can observe the following.

(1) The algorithm finds the optimal feature subset in most cases. With appropri-
ate settings, it achieves more than 70 % optimal probability on these datasets.

(2) The result is influenced by the user-specified λ. The probability of obtained
the best results is different with different λ values, where the “best” means
the best one over the solutions we obtained, not the optimal one.

(3) The algorithm’s performance is related with the test cost distribution. It
is best on datasets with bounded Pareto distribution. At the same time,
it is worst on datasets with Normal distribution. Consequently, if the real
data has test cost subject to the Normal distribution, one may develop other
heuristic algorithms to this problem.

(4) There is not a setting of λ such that the algorithm always obtain the best
result. Therefore the settings might be learned instead of provided by the
user.

5 Conclusions

In this paper, we firstly proposed the FSPRC problem. Then we designed a
heuristic algorithm to deal with it. Experimental results indicate that the optimal



Feature Selection with Positive Region Constraint 31

solution is not easy to obtain. In the future, one can borrow ideas from [13,30,33,
39] to develop an exhaustive algorithm to evaluate the performance of a heuristic
algorithm. One also can develop more advanced heuristic algorithms to obtain
better performance.
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