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Abstract. This paper investigated the use of instantaneous frequency
(IF) instead of power amplitude and power spectrum in side-channel
analysis. By opposition to the constant frequency used in Fourier Trans-
form, instantaneous frequency reflects local phase differences and allows
detecting frequency variations. These variations reflect the processed
binary data and are hence cryptanalytically useful. IF exploits the fact
that after higher power drops more time is required to restore power
back to its nominal value. Whilst our experiments reveal IF does not
bring specific benefits over usual power attacks when applied to unpro-
tected designs, IF allows to obtain much better results in the presence
of amplitude modification countermeasures.
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1 Introduction

The physical interpretation of data processing (a discipline named the physics of
computational systems [20]) draws fundamental comparisons between computing
technologies and provides physical lower bounds on the area, time and energy
required for computation [5,14]. In this framework, a corollary of the second law
of thermodynamics states that in order to perform a transition between states,
energy must be lost irreversibly. A system that conserves energy cannot make a
transition to a definite state and thus cannot make a decision (compute) ([20],
9.5).

At any given point in the evolution of a technology, the smallest logic devices
must have a definite physical extent, require a certain minimum time to perform
their function and dissipate a minimal switching energy when transiting from
one state to another.
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Because CMOS state transition energy is essentially proportional to the
number of switched bits, transition energy leakage is the most popular side-
channel attack vector. Because commuting also requires time, transition time
and processed data might be also related.

Historically, timing attacks were developed to extract secrets from software
algorithms [15] while hardware algorithms were usually assumed to run in con-
stant time and hence be immune to timing attacks. The constant hardware exe-
cution time assumption is supported by the fact that usual block-cipher hardware
implementations require an identical number of clock cycles to process any data.
This article shows that this intuition is not always true, i.e. two different inputs
may require distinct processing time and can hence be distinguishable.

Energy consumed during each clock cycle creates a waveform in the power
domain. A duty cycle, i.e. the time during which the power wave is not equal to
its nominal value, can be considered as the execution time of a hardware imple-
mented algorithm. As shown later the duty cycle may depend on the processed
data. Fourier transform can not determine local duty cycles since frequency is
defined for the sine or cosine function spanning the whole data length with con-
stant period and amplitude. However, recent techniques described in this paper
that can detect local frequencies and hence determine wave duty cycle.

In 2005 it was observed that not only signal amplitude, but also power spec-
trum, can leak secret information [8]. Following the introduction of Differential
Frequency Analysis (DFA) [9], power analysis on frequency domain was inves-
tigated on a series of papers [18,19,21,22]. DFA applies Fourier transform to
map a time-series into the frequency domain. Since each Fourier point is a linear
combination of all other sample points, a spectrum is a direct function of the ini-
tial signal amplitude and hence, power spectra can also be used in side-channel
attacks.

Reference [18] rightly noted that the term Differential Spectral Based Analy-
sis (DSBA) is semantically preferable because DFA does not exploit variations
in frequencies, but differences in spectra. As the matter of fact all time-domain
power models and distinguishers remain in principle fully applicable in the fre-
quency domain.

Dynamic Voltage Scrambling (DVS) is a particular side-channel countermea-
sure that triggers random power supply changes aiming to decorrelate the sig-
nal’s amplitude from the processed data [2,17]. While DVS degrades DPA’s and
DSBA’s performances, nothing prevents the existence of more subtle side-channel
attacks exploiting DV S-resistant die-hard information present in the signal. This
paper successfully exhibits and exploits such DVS-resistant information.

Our Contribution. We show that, in addition to the signal’s amplitude and
spectrum, traditionally used for side-channel analysis, instantaneous frequency
variations may also leak secret data. To the authors’ best knowledge, “pure”
frequency leakage has not been considered as a side-channel vector so far. Hence
a re-assessment of several countermeasures, especially, these based on amplitude
alterations, seems in order. As an example this paper examines DVS, which
makes AES implementation impervious to power and spectrum attacks while
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leaving it vulnerable to Correlation Instantaneous Frequency Analysis (CIFA),
a new attack described in this paper.

Organization. This paper is organized as follows. Section 2 turns a signal process-
ing algorithm called Hilbert Huang Transform (HHT) into an attack process.
Section 3 illustrates an HHT performed on a real power signal and motivates the
exploration of instantaneous frequency as a side-channel carrier. Section 4 com-
pares the cryptanalytic effectiveness of Correlation Instantaneous Frequency
Analysis, Correlation Power Analysis and Correlation Spectrum Based Analysis
on an unprotected AES FPGA implementation and on AES FPGA power traces
with a simulated DVS. Section 5 concludes the paper.

2 Preliminaries

The notion of instantaneous frequency, computable by the HHT, was intro-
duced in [12]. During the last decade, HHT has found many practical applica-
tions including oceanographic exploration and medical research [11]. This section
recalls HHT’s main mathematical features and describes the hardware setup used
for evaluating the attacks introduced in this paper.

2.1 Hilbert Huang Transform

The HHT represents the analysed signal in the time-frequency domain by com-
bining the Empirical Mode Decomposition (EMD) with the Discrete Hilbert
Transform (DHT).

DHT is a classical linear operator that transforms a signal u(1),...,u(V)
into a time series Hy(1),..., H,(N) as follows:

mn=2 Y MY (1)

T k#t mod 2 t=
DHT can be used to derive an analytical representation us(1),...,u,(N) of the
real-valued signal wu(t):
Ug(t) = u(t) +iH, (t) for 1 <t < N (2)

Equation (2) can be rewritten in polar coordinates as
ua(t) = a(t)e'*® (3)

where

a(t) = v/ (u2(t) + H2(t)) and ¢(t) = arctan (iii?) (4)

represent the instantaneous amplitude and the instantaneous phase of the ana-
lytical signal, respectively.
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The phase change rate w (t) defined in Eq. (5) can be interpreted as an instan-
taneous frequency (IF):

d
t)=¢'(t) = ot 5
wit) = (1) = Zo(0) (5)
For a real-valued time-series the definition of w(t) becomes:
w(t) = o(t) — ¢(t = 1) (6)
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Fig. 1. Illustration of the EMD: (a) is the original signal w(¢); (b) w(¢) in thin solid
black line, upper and lower envelopes are dot-dashed with their mean m; ; in thick
solid red line; (c) shows the difference between u(t) and the envelope’s mean (Color
figure online).

The derivative must be well defined since physically there can be only one
instantaneous frequency value w(t) at any given time ¢. This is insured by the
narrow band condition: the signal’s frequency must be uniform [13]. Further, the
physical meaningfulness of DHT’s output is closely related to the input’s fitness
into a narrow frequency band [6]. However, we wish to work with non-stationary
signals having more than one frequency. This is achieved by de-composing these
signals into several components, called Intrinsic Mode Functions, such that each
component has nearly the same frequency.

Definition 1 (Intrinsic Mode Function). An Intrinsic Mode Function
(IMF) is a function satisfying the following conditions:

1. the number of extrema and the number of zero crossings in the considered
data set must be either equal or differ by at most one;

2. the mean value of the curve specified as a sum of the envelope defined by the
local mazima and the envelope defined by the local minima is zero.



Practical Instantaneous Frequency Analysis Experiments 21

First Step: Empirical Mode Decomposition (EMD). EMD, the HHT’s
first step, is a systematic way of extracting IMFs from a signal. EMD involves
approximation with splines. By Definition 1, EMD uses local maxima and min-
ima separately. All the local signal’s maxima are connected by a cubic spline
to define an upper envelope. The same procedure is repeated for the local min-
ima to yield a lower envelope. The first EMD component hq o(¢) is obtained by
subtraction from u(t) the envelopes’ mean mq o(t) (see Fig.1):

hio(t) = u(t) —mio(t) (7)

Ideally, h1 o(t) should be an IMF. In reality this is not always the case and EMD
has to be applied to hq () as well:

hi,1(t) = hao(t) —maa(t) (8)
EMD is iterated k times, until an IMF hy ;(t) is reached, that is
hk(t) = hip—1(t) — ma k() 9)

Then, hi ;(t) is defined as the first IMF component ¢ (¢).

c1(t) € by k() (10)
Next, the IMF component ¢; () is removed from w(t)
ri(t) = u(t) —ei(t) (11)

and the procedure is iterated on all the subsequent residues, until the residue
r,(t) becomes a monotonic function from which no further IMF's can be extracted.

) (t) =T (t) — C2 (t)

o (12)
Tn(t) = rp_1(t) — cn(t)
Finally, the initial signal u(t) is re-written as a sum:
Zc] +7r,(t), for 1<t<N (13)

where, ¢;(t) are IMFs and r,(¢) is a constant or a monotonic residue.

Second Step: Representation. The second HHT step is the representation
of the initial signal in the time-frequency domain. All components ¢;(t), j€[1,n]
obtained during the first step are transformed into analytical functions ¢;(t) +
iH.,(t), allowing the computation of instantaneous frequencies by formula (6).
The final transform U (¢,w) of u(t) is:

w) =Y a(t)exp (z > w; (@) (14)
j=1 =1



22 R. Korkikian et al.

35

1
08 f ~ 30
A i S
06 g 25
04|
L i 20t
= 02 £
3 ob ]
3 g 15
F-02 3
@ K
8 S 101
-0.4 5
-0.6 g 5F
08|
- 10 20 3 0 50 % 02 o o, 08
Time, s requency  w, Hz
(a) The increasing frequency function cos((a + bt)t) (b) Marginal Hilbert spectrum of Fig. 2(a)
06
BN
055 - S
=)
05 o 15
N 045 ety
s 04 e !
H
0.35 5
g 205
§ 03 2
2 3
o 0.25 2
* . 500
0.2 £0. 50
iy b=
015 5 04 o
015 70 20 30 0 0 0
Time, s Frequency  w, Hz Time t,s
¢) Hilbert’s amplitude spectrum contour of Fig. 2(a d) Hilbert’s amplitude spectrum contour of Fig. 2(a
P: P! g p! P! g

Fig. 2. Analysis of the function cos((a + bt)t).
where j€[1,n] is indexing components, t€[1, N] represents time and:

a;(t) = \/c3(t) + HZ (1) is the instantaneous amplitude;

wj(t) = arctan (%) — arctan (Ii:](t(f)) is the instantaneous frequency;

Equation (14) represents the amplitude and the instantaneous frequency as a
function of time in a three-dimensional plot, in which amplitude can be contoured
on the frequency-time plane. This frequency-time amplitude distribution is called
the Hilbert amplitude spectrum U (t,w), or simply the Hilbert spectrum [12]. In
addition to the Hilbert spectrum, we define the marginal spectrum or HT'T power
spectral density h(w), as

h(w;) = U(t,wy) (15)

t=1
The marginal spectrum measures the total amplitude (or energy) contributed
by each frequency value. To illustrate HHT decomposition consider the function
u(t) = cos(t(a+bt)). In Fig.2(a) parameters a and b were arbitrarily set to
a = 1 and b = 0.02. Figure2(a) shows that the cosine’s frequency increases
progressively. Figure 2(b) presents the Hilbert marginal spectrum of the signal
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Fig. 3. Inverters switch simulation.

u(t) = cos((1 + 0.02t)t). Figure2(c) shows the contour of Hilbert’s amplitude
spectrum, i.e. frequency evolution in time, and this evolution is indeed nearly
linear. The 3D Hilbert amplitude spectrum is illustrated in Fig.2(d).

2.2 AES Hardware Implementation

The AES-128 implementation used for our experiments runs on an Altera Cyclone
II FPGA development board clocked by an external 50 MHz oscillator. The AES
architecture uses a 128-bit datapath. Each AES round is completed in one clock
cycle and key schedule is performed during encryption. The substitution box is
described as a VHDL table mapped into combinational logic after FPGA synthe-
sis. Encryption is triggered by a high start signal. After completing the rounds
the device halts and drives a done signal high.

The implementation has no side-channel countermeasures. To simulate DVS,
200,000 physically acquired power consumption traces were processed by Algo-
rithm 1. Algorithm 1 splits a time-series into segments and adds a uniformly
distributed random voltage offset to each segment.

The rationale for simulating a DVS by processing a real signal (rather than
adding a simple DVS module to the FPGA) is the desire to work with a rigorously
modelled signal, free of the power consumption artefacts created by the DVS
module itself.

3 Hilbert Huang Transform and Frequency Leakage

3.1 Why Should Instantaneous Frequency Variations Leak
Information?

Most of the power consumed by a digital circuit is dissipated during rising or
falling clock edges when registers are rewritten with new values. This activity
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is typically reflected in the power consumption trace as spikes occurring exactly
during clock rising edges. Spike frequency, computed by the Fourier transform, is
usually assumed to be constant because clock frequency is stable. In reality, this
assumption is incorrect since each spike has its own duty cycle and consequently
its own assortment of frequencies.

Differences in duty cycle come from the fact that the circuit’s power supply
must be restored to its nominal value after switching. Bigger amplitude spikes
take more time to resorb than smaller amplitude ones.

To illustrate these spike differences, consider the simple circuit in Fig. 3. Each
parallel branch has a resistor r, a switch S; and a capacitor C that simulate a
single inverter when switched from low to high. Resistor Rs; and the current i,
represent the circuit’s static current and R, is the resistor used for acquisition.
Initially all the switches S ... Sy are open, so the current flowing through R, is
simply 7.

Assume that at tg = 0 all the switches Sy ... S, are suddenly closed. All
capacitors start charging and current flowing through R, rises according to the
following equation:

io(t) = is +k (V;‘fde—r”c> (16)

Equation (16) shows that current amplitude depends on the number of closed
switches. However, there is one more parameter in the equation, namely the
time ¢ that characterizes the switching spike. The current i, needs some time
to “practically” reach an asymptotic nominal value i; and this time depends on
the number of closed switches k. Consider the time T}, required by i, () to reach

I'% of its asymptotic value, i.e. ﬁzsz
. . Viaa 7w r.
io(Tk) = is — k (;ﬂid@ Tg) = mls (17)
This is equivalent to:
100 Vg
T, =rCln| ——— 1 = 1 1
& TCH(lOO—FiSr)+TCH(k) a+ Bln(k) (18)

Equation (18) shows that convergence time has a constant part « and a vari-
able part §1n(k) that depends on the number of closed switches k. Equation (18)
shows that both spike period and spike frequency depend on the processed data
and could hence in principle be used as side-channel carriers. Nevertheless, power
consumption is a non-stationary signal, which justifies the use of HHT.

The dependency between the number of switches and spike period in
Eq. (18) is non-linear and hard to formalize as a simple formula for a real cir-
cuit. Section 3.2 shows that the standard Hamming distance model can be used
in conjunction with instantaneous frequency.

3.2 Power Consumption of One AES Round

The relationship between processed data and power amplitude is a well understood
phenomenon [1,7,10,16]. However, to the best of our knowledge the dependency
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of instantaneous frequency on processed data has not been explored so far. This
may be partially explained by the fact that Fourier Transform, previously used
in some papers, is not inherently adapted to non-stationary and non-linear sig-
nals. Fourier analysis cannot extract frequency variations from a signal because
frequency is defined as a constant parameter of the underlying sine function span-
ning the whole data-set u(t). By opposition, HHT allows extracting instantaneous
frequencies and exploiting them for subsequent cryptanalytic purposes.

To illustrate information leakage through frequency variation, the AES
last rounds’ power consumption was measured using a Picoscope 3207 A with
250 MHz bandwidth at 10 G/s equivalent time sampling rate. Every signal had
1,000 samples and 100,000 traces were acquired for various input plaintexts.
A power consumption example of the 4 last rounds is shown on the Fig. 4.

The AES last round was extracted from each power trace as shown on
Fig. 5(a). The number of bits switches in the AES last round was computed with
the known key. Afterwards the traces with the same number of bits switches were
averaged.

In classic side-channel models [7], flipping more bits would consume more
energy. Figure 5 shows that such is indeed the case for power consumption of 55,
65 and 75 bit flips where vy > vg5 > v55. As per our assumption, the frequency
signatures of these three operations are also different.

To show that HHT can detect frequency differences consider the power spec-
tral density (PSD) of signals during 55, 65 and 75 bits switchings (Fig. 5(c)). The
maximal spectral amplitude of the 55 bit change is located at 51.18 MHz (point
f55), that of the 65 bit change is at 51.12 MHz (point fg5) and that of the 75 bit
change is at 50.73 MHz (point f75) which is supportive of the hypothesis that
HHT can distinguish frequency variations even in non-stationary signals because
Is5 > fes > f15.
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Fig. 5. AES last round power consumption for 55 (red), 65 (blue) and 75 (black)
register’s flip-flops (Color figure online).
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This shows that not only amplitude but also frequency varies during register
switch. Logically, power consumption increases as more bits are flipped. However,
HHT was previously applied only for one AES round and HHT’s applicability
for the entire AES power traces must be verified. That is why the next section
carefully examines the effect of register alteration on IF when AES FPGA imple-
mentation is sampled at a smaller rate.

3.3 Hilbert Huang Transform of an AES Power Consumption Signal

We start by performing a Hilbert Huang decomposition of a real signal. The
analysis was performed on the power trace of the previously described AES-
128 implementation. The acquisition was performed 1G/s real time rate with
1 GHz differential probe. Signals were averaged 10 times and had 1,000 samples
(Fig.6(a)).

EMD decomposed the power trace to five IMFs and a residue, shown in
Fig.6(b). After decomposition, each IMF was Hilbert Transformed to derive the
power signal’s time-frequency representation.

Figure 6(c) is an IF distribution of Fig. 6(a).

Amplitude combination over frequency gave the power spectral density plot
shown in blue on Fig. 7. An important observation in Fig. 7 is that HHT spectrum
shows the distribution of a periodic variable over the main peak frequencies.
Notably, the peak near 50 MHz that corresponds to the board’s oscillator is not
represented by a single point, but by a set of points. This data scatter can be
explained by the fact that the IF of AES rounds varies, and HHT distinguishes
this variation.

The main difference between HHT and FFT spectra (see plot shown in red
on Fig.7) is that HHT defines frequency as the speed of phase change and can
hence detect intra-time-series deviations from the carrier’s oscillation, whereas
FFT frequency stems from the sine function, which is independent of the signals’
shape.

So far, it was shown that IF varies for different rounds even within a given
trace. However, an attack is only possible when IF depends on the data’s Ham-
ming weight.

The dependency is apparent in Fig. 8 showing the relationship between Ham-
ming distance of the 9-th and 10-th AES round states and IF, taken from the
first IMF component at the beginning of the 10-th round. Figure8 was drawn
using 200,000 HHT-processed power traces. The thin solid line in Fig. 8 repre-
sents the mean IF value, obtained from the first IMF component, as a function
of Hamming distance.

The principal trend is the ascending line. Figure8 corresponds well to the
simulation of a register’s power consumption since frequency is decreasing due to
the increase in Hamming distance. The relationship in Fig. 8 between Hamming
distance and IF looks linear and therefore the Pearson correlation coefficient can
be used as an SCA distinguisher.

IF adoption for side-channel attacks presents some particularities. The disad-
vantage of the method is that data scatter is higher than in usual DPA and hence
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of the last AES round).

the attack requires more power traces. Another issue is that each time-series will
be decomposed into a set of IMFs; hence every sample will be wrapped-up with
a set of IFs virtually multiplying the amount of data to be processed. How-
ever, the advantage is that because frequency based analysis is independent of
local amplitude, CIFA can still be attempted in the presence of certain
countermeasures.

4 Correlation Instantaneous Frequency Analysis

This section introduces Correlation Instantaneous Frequency Analysis (CIFA)
and compares its performance with Correlation Power Analysis (CPA) and to
Correlation Spectral Based Analysis (CSBA).

4.1 Correlation Instantaneous Frequency Analysis on Unprotected
Hardware

During the acquisition step 200,000 power traces were acquired at a sampling
rate of 2.5 GS/s. Each power signal was averaged 10 times to reduce noise. All
traces were HHT-processed using the Matlab HHT code of [3,4]. Most traces
were decomposed into 6 components, but 5 and 7 IMFs occurred as well. To
reduce the amount of processed information only the first four IMFs were used.

Generally, each higher rank IMF carries information present in smaller instan-
taneous frequencies (Fig. 6(c)), this is why IMFs from different power traces were
aligned index-wise, i.e. all first IMF's from every encryption were analyzed first,
then all second IMF's and so on.

We chose the Hamming distance model and Pearson’s correlation coefficient
to investigate CIFA’s properties and compare CIFA with other attacks.
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Fig.9. Maximum correlation coefficients for a byte of the last round AES key
in an unprotected implementation. Although the three attacks eventually succeed
CPA>CSBA>CIFA. (a) CPA (b) CSBA (c¢) CIFA.

CPA. CPA applied to power traces produces Fig.9(a). Clearly, CPA outper-
forms CIFA. CIFA’s poorer performance can be partially attributed to the power
model, because IF is not linearly dependent on the Hamming distance.

CSBA. Figure9(b) presents CSBA applied against Fourier power trace spectra
with the same power model and distinguisher. The correct key byte can be
distinguished from 2000 power traces and on.

CIFA. The application of the selected power model and of the distinguisher to
IFs yields Fig. 9(c) where the correct key byte emerges from 16,000 power traces
and on.

The three experiments seem to suggest that CSBA is superior to CIFA but
inferior to CPA. That is CIFA < CSBA < CPA.

While it appears that CPA and CSBA outperform CIFA in the absence of
countermeasures, we will now see that CIFA survives countermeasures that derail

CPA and CSBA.

4.2 Correlation Instantaneous Frequency Analysis in the Presence
of DVS

As mentioned previously DVS alters power supply to reduce dependency between
data and consumed power. According to [2,17] DVS is cheap in terms of area
overhead since only a voltage controller and a random number generator must
be added to the protected design.

To simulate DVS all the traces of the unprotected AES were modified
by Algorithm 1. Each power trace was partitioned into 7 segments of normally
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distributed lengths covering the whole dataset.! Each segment was lifted by a
uniformly distributed random offset ¢ that did not exceed a predetermined value
D set to D =12mV.

Algorithm 1. Dynamic Voltage Scrambling (DVS) Simulator.
Input:

A power trace u(1),...,u(N);

v :the number of segments;

m : mean value of segment length m% N/~;

o : standard deviation of segment length;

D : maximum offset for segment lifting;
Output:

a DVS-protected power trace u’(1),...,u (N);

> Split a trace to a set of segments of normally distributed random length chunks
T0 < 1
Ty — N
fori=1to~vy—1do
Ti «— Ti—1 + N(m, o)
end for

> Lift each segment by a uniformilly distributed random offset ¢
for s=1to v do
L:€r [0, D]
fort =75_1 to 75 do
u'(t) — u(t) + £s
end for
end for

A trace modification example is presented in Fig. 10, in which the trace of
Fig. 6(a) was processed by Algorithm 1.

Logically, DVS decreases power analysis performance by reducing the
attacker’s SNR. We disposed of 200,000 DVS-modified power traces. All of which
were used to mount power analysis attacks under the same conditions as before,
i.e., using Pearson’s correlation coefficient and the Hamming distance model.

The same final round key byte used for attacks against the unprotected imple-
mentation was targeted. CPA and CSBA failed to detect the correct key byte
even with 150,000 traces (Fig. 11(a), (b)). This confirms the intuition that DVS
has a beneficial effect on the required number of power traces.

However CIFA was able to recover the byte from 60,000 traces and on
(Fig.11(c)). This illustrates that whilst CIFA is usually outperformed by CPA
and CSBA, CIFA is much more resilient to DVS, to which CPA and CSBA are

very sensitive.

! The mean m and the standard deviation ¢ were arbitrary set to m = 40ns and
o = 51ns in our experiment.
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Fig. 11. Maximum correlation coefficient for a byte of the last round AES key with
simulated DVS. (a) CPA (b) CSBA (c) CIFA.

5 Conclusions and Further Research

This paper investigated the use of instantaneous frequency instead of power
amplitude and power spectrum in side-channel analysis. By opposition to the
constant frequency used in Fourier Transform, instantaneous frequency reflects
local phase differences and allows to detect frequency variations. These variations
depend on the processed binary data and are hence cryptanalitically useful.
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The relationship stems from the fact that after higher power drops more time is
required to restore power back to its nominal value.

IF analysis does not bring specific benefits when applied to unprotected

designs on which CPA and CSBA yield better results. However, CIFA allows to
discard the effect of amplitude modification countermeasures, e.g. DVS, because
CIFA extracts from signal features not exploited so far.
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