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Abstract. Product graph has been shown as a way for matching sub-
graphs. This paper reports the extension of the product graph method-
ology for subgraph matching applied to symbol spotting in graphical
documents. Here we focus on the two major limitations of the previous
version of the algorithm: (1) spurious nodes and edges in the graph repre-
sentation and (2) inefficient node and edge attributes. To deal with noisy
information of vectorized graphical documents, we consider a dual edge
graph representation on the original graph representing the graphical
information and the product graph is computed between the dual edge
graphs of the pattern graph and the target graph. The dual edge graph
with redundant edges is helpful for efficient and tolerating encoding of
the structural information of the graphical documents. The adjacency
matrix of the product graph locates the pair of similar edges of two
operand graphs and exponentiating the adjacency matrix finds similar
random walks of greater lengths. Nodes joining similar random walks
between two graphs are found by combining different weighted exponen-
tials of adjacency matrices. An experimental investigation reveals that
the recall obtained by this approach is quite encouraging.

Keywords: Product graph - Dual edge graph - Subgraph matching -
Random walks - Graph kernel

1 Introduction

Product graph was introduced for computing the random walk graph kernel for
measuring the similarity between two graphs. Recently it has been used for sub-
graph matching and applied for spotting symbols on graphical documents [3].
In this paper we propose an extension and improvement of the product graph
methodology that was proposed in [3]. Particularly, this work mainly focuses
on the two major limitations of the previous version of the method: (1) spuri-
ous nodes and edges that are generated during low level image processing and
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Fig. 1. Each critical point detected by the vectorization technique is considered as a
node and the straight lines joining them are considered as the edges.

(2) inefficient node and edge attributes. Of course, these problems are appli-
cation and representation dependent, but there is no doubt that the proposed
solution is more robust to distortion and noise, which will be further useful for
other applications and representations.

Graph representation of graphical documents involves some low level image
processing such as binarization, skeletonization, vectorization etc. For example,
we use Qgar! for vectorizing the given binary images. This particular vectoriza-
tion generates critical points and connectivity information between them. For
representing a document with a graph, we consider the critical points as the
nodes and the lines joining them as the edges (Fig.1). The main problem in
this kind of low level image processing is the addition of noisy information. As
an example, Fig. 2(b) shows the graph representation of the symbol in Fig. 2(a)
under the previously mentioned representation scheme, whereas Fig. 2(c) shows
an ideal graph representation of the symbol (considering the junctions as the
nodes and their connections as the edges). Here we can see an example of the
introduction of numerous spurious nodes near the junctions and corners. Note
that such a vectorization can also generate spurious and discontinuous edges.
This kind of structural noise always creates problems for matching or comparing
(sub)graphs. It is true that with a different kind of graph representation it may
be possible to solve the problem more efficiently, but dealing with this kind of
distortions or noise at the graph level is interesting for other domain also as it
gives more robustness in the matching method.

Product graph has been introduced for computing random walk graph ker-
nels [6]. In our previous work, we introduced product graph for subgraph match-
ing and applied it for spotting symbols in graphical documents [3]. Formally, a
symbol spotting method can naturally be formulated as a subgraph matching
problem where a query symbol can be represented as a pattern graph and the big
target document can be represented as a target graph. For more information on
symbol spotting methods based on graph representation we refer to [4,8], where
a literature review is given. Product graph provides an efficient comparison tech-
nique between a subgraph and a graph in terms of different substructures (in
this case random walks) which allows the entire subgraph matching process to

! http://www.qgar.org
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Fig. 2. Difference between a real graph representation and an ideal graph representa-
tion: (a) an architectural symbol, (b) the graph representation of the symbol in (a) after
doing the vectorization (note the spurious nodes near the corners and junctions), (c)
an ideal graph representation of the symbol in (a).

be computed online. The product graph finds the similar pair of edges in the
operand graphs. This information can be obtained from the adjacency matrix
of the product graph. Exponentiating the adjacency matrix provides the infor-
mation about similar pair of nodes which are connected with random walks of
greater lengths. This was the main motivation of the work in [3] but one of
the problems was selecting efficient node and edge attributes, especially when
the graphs contain noise or distortions like spurious nodes and edges, and the
possibility of discontinuous edges. To solve this problem in this paper we intro-
duce the dual edge graph DG with redundant edges of the original graph G and
consider the product graph of the dual edge graphs. Here the dual edge graph
DG of the original graph G is a graph that has a vertex corresponding to each
edge of G and an edge joining two neighbouring edges in G. In this work we
use a dual edge graph with redundant edges to cope with the distortions and
noise as explained in Sect. 2. The variation of dual graph provides us robust node
and edge labels and with this information the product graph is better suited for
subgraph matching applied to symbol spotting.

The rest of the paper is organized into three sections. In Sect. 2, we present
the methodology to represent the graphical documents with dual graph with
redundant edges, computing the node and edge labels and computing the product
graphs to spot the symbol on documents. Section 3 contains a description of our
current experimental results. After that, in Sect. 4, we conclude the paper and
discuss future directions of work.

2 Methodology

Let Gy = (Var, Ear) be the basic graph representing the model or query symbol
and Gt = (V7, Et) be the same representing the input or target document, where
Vs and V7 are the set of vertices, in this case the critical points, and E); and Ey
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are the set of edges connecting the critical points. Now the subgraph matching
is intended to find the different instances or occurrences of G); in G;. Below
we describe the procedure of obtaining the dual edge graph from a basic graph
and then we describe the product graph based subgraph matching methodology
using the dual edge graph representation.

2.1 Dual Edge Graph

In general, the dual graph of a plane graph is a graph that has vertex correspond-
ing to each face (or plane) and an edge joining two neighbouring faces sharing
a common edge in plane graph. We bring the same analogy to our problem and
assign a node to each edge of the original graph and an edge joining two neigh-
bouring nodes. We can call this graph as dual edge graph. In this article, as we
are not dealing with any other type of dual graph, we can alternatively call it
dual graph. Furthermore, we will call the nodes, edges of the dual edge graph
respectively as dual nodes, dual edges. We denote DG = (DV, DE) as the dual
edge graph of the edge graph G = (V, E).
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Fig. 3. Details of adding redundant edges in the dual graph considering only three
nodes da, db and dc and n = 3: The gdist(da,db) = 2 and gdist(db, dc) = 3, that is
why there exist edges (da, db) and (db, dc) but since gdist(da, dc) = 4, there is no edge
(da,dc) (Note the spurious nodes, edges near the corners and junctions in the original
graph that are plotted in green continuous line) (Color figure online).

Let Gy = (Var, Ear) be an unattributed edge graph representing a model
or query symbol and Gy = (Vi,E;) be an unattributed edge graph repre-
senting an input or target document. Then we can get the dual edge graphs
DGy = (DVyy,DEy) and DGy = (DVy,DEy) of Gy and Gy respectively,
where DV); = Ej; and DV; = E;. Here it should be mentioned that we will
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denote a dual node which joins two nodes, say, v;, v; in the edge graph as dv;;
(see Fig. 3). Now the dual edge sets of DGy and DG are respectively defined
as follows:

DEy = {(duij, dug) = gdist(du;j, dug) < dn € N and du;j, dug € DV} (1)

DE; = {(dvij,dvy) : gdist(dv;;,dvi) < dn € N and dv;j, dvgg € DV} (2)

Here gdist(du, dv) stands for the minimum number of edges (in the edge graph)
one has to traverse for going to dv from du (or to du from dv for undirected
graph, which is our case). dn is connectivity parameter regulating the connec-
tions between any two dual nodes. The dual graphs with dual edge sets (in
magenta) can be seen in Fig. 4 which shows some stability in the representation
as visually we can observe the existence of common graph structures.

Fig. 4. Original graph and redundant dual graph representation (with dn = 3) of
(a) a real symbol and (b) an ideal symbol. The original graph is plotted with green
continuous line and its corresponding dual graph with redundant edges is plotted with
magenta discontinuous line. (Best viewed in colour.) (Color figure online)

Given this dual edge graph representation we assign node and edge labels
to capture the local structural information and create attributed dual graphs
DGM = (DVM, DEM, Qg 511\4,,812\4) and DG[ = (DW, DE], arg, ﬂ}, ﬁ%) Here
ar : DV; — R7 is a node labelling function and is defined as ar(dvi;) = Hu
moments invariants [7] of the acyclic graph paths between v; and v; of length
less than or equal to m € N, dv;; € DV;. Similarly, apr(du,j;) is the same node
labelling function but defined in DG),;. It is to be mentioned that for each path,
we get a vector of dimension seven and hence for a node dv in a dual graph DG,



16 A. Dutta et al.

we get a set of Hu moments invariants, let us denote the set as Hu(dv). The
distance between two dual nodes du, dv is computed as the minimum cost of
assigning each path of Hu(du) to a path in Hu(dv).

Bt DE; — R is an edge labelling function and is defined as:

B} (dvij, dvg) = min Z(dv;j, dvgy), (dvij, dvg) € DEJ.
(% : DE; — R is another edge labelling function and is defined as:

HldiSt(d’UZ‘j s dq}kl)

Br (dvij, dvkr) max (length(dv;;), length(dvy))’

(d’Uij, dvkl) € DFE;.

here mdist(dv;;, dvg;) is the length of the line joining the midpoint of the edges
dv;j and dvg. B3, and (5%, are defined respectively as 8} and 37 but in DEjy.

The main limitation of this representation that one could face is when the
extremities of a certain edge of the edge graph do not have any other connection.
In that case the corresponding dual node will lose local discrimination as shown
in Fig. 5a.
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Fig.5. An example of transitive closure edges: (a) original graph representation of
doorl, (b) edges (shown in blue) connect the pair of nodes that were not connected by
more than one graph paths in the original graph representation (Color figure online).

We resolve this difficulty by relating those nodes in the edge graph by a
relation inspired by the transitive closure of a graph. For that we select the pair
of nodes u, v such that (u,v) € E but there is no other graph path between u
and v. Let V* be the set of all such nodes. V* may contain two different kind of
nodes. Ones having an adjacent node from V —V*ie.u € V andv eV —V*
such that 3(u, v) € E, let us call all such nodes as V7* (for example nodes like 251
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and 254 in Fig.5). And others having adjacent nodes only from V* i.e. u,v € V*
so that (u,v) € E, let us call such nodes as V3 (for example nodes like 271,
272, 273 and so on in Fig.5). We update the edge set E by adding edge (u,v)
where u € V" and v € V5 and there exist at least one graph path between them.
We can call this new kind of edge as transitive closure edge. We update both the
edge graphs G, G and assign a dual node to each transitive closure edge and
connect them with dual edges accordingly. The Hu moments of the set of paths
joining the extremities of the transitive closure edges serve as the attributes of
the new nodes. The attributes of the new dual edges are computed as explained
previously. In this way we update DG and DGy, respectively.

This dual graph gives us the attributed graphs and because of having redun-
dant edges the representation is stable to distortions such as spurious edges,
nodes. Moreover, the idea of transitive closure gives us the possibility to group
several similar patterns.

So given the dual graph representation of the graphical documents, the sym-
bol spotting problem can be formulated as a subgraph matching problem. Let
DGy = (DVy, DEy,an, Biy, 83) and DG = (DVy, DEq,ay, 3%, 3%) be the
dual graphs of the edge graphs Gj; and G respectively.

2.2 Product Graph

Product graph Gp = (Vp, Ep) of DGy and DGy relates the target graph DGy
and the pattern graph DG); with the node and edge sets. The properties or the
conditions are included in the set definitions as follows:

Vp = {(duij,dvij) : duij c DVM,d’Uij S DV[,aM(duZ—j) o~ a[(dvij),
ﬂ}w(duij, dukl) ~ ﬂ} (dvij, dvkl) and ﬁ?w(duij, dukl) ~ ﬂf(dvij, dvkl)}
and given the above set of nodes, the edge set Ep will be:
Ep = {((duij, dvij), (duki, dvir)) : (duij, dug) € DEpyr, (dvij, dvg) € DEr}

We use the parameters ¢n, tg, and tg, for measuring the node and edge
similarities as follows:

an(duis) >~ ar(dvij) < o (duij) — ap(dvig)| <t
Here

lans (dugy) — ap(dvij)| = Z min d(p1,p2) + Z min d(p1,p2)
pr€Hu(du,;) p2E€Hu(dvgj;) poeHutdvi) P € Hu(dugj)

is a modified Hausdorff distance as investigated in [5] and d(.,.) denotes the
Euclidean distance.

Br(dugs, durr) ~ Bf (dvij, dvgr) < |Bhy (duij, dury) — B (dvig, dv)| < tg,

Bar(duij, dug) ~ B7(dvij, dvg) < |8 (duij, dugy) — B3 (dvig, dvg)| < tg,
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From the above definition of product graph it is clear that an edge in the
product graph Gp corresponds to a pair of similar edges in DGy and DGj.
A simple synthetic example is given in Fig. 6, where we have two different graphs
with discrete node labels, one having labels {a, b, ¢, d, e} and the other with labels
{z,y, z}. For simplicity, let us ignore the edge labels. Now, if we define the node
label similarities as a = x, b = y and ¢ = z, we get the product graph in Fig. 6.
Here, each edge in the product graph locates a pair of edges in the operand
graphs.

e
X ozt 88

Fig. 6. Demonstration of product graph computation with a synthetic example.
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2.3 Powers of Adjacency Matrix

It is a well known fact that the (4, j)th element of the adjacency matrix of a graph
denotes the number of edges from the ith node to the jth node and vice versa
for undirected graphs. If we exponentiate the adjacency matrix to the power
of n, then the (i, 7)th element of the exponentiated adjacency matrix denotes
the number of random walks of length n from the node i to the node j. So, if
we multiply the adjacency matrix Ep of the product graph Gp with itself, we
get the E%. The (i,j)th element of E% denotes the number of walks of length
two between nodes i and j. Since matrix multiplication is associative we can
exponentiate Ep as follows to get Ep:

E} = Ep.(Ep)" ' = (Ep)" “.Ep

Then from the known fact it follows that the (i,j)th element of E% always
denotes the number of walks of length n between ¢ and j [6]. Since an edge in Ep
denotes the similarity between respective connected node pairs, walks of longer
length denote series of similar nodes between DG); and DG;. This information
is helpful for getting nodes in DG that are similar to nodes in DGy and it can
be utilized by integrating different weighted exponentiations of Ep into a new
matrix A as follows:

nl
A=) "N xEp (3)
i=1
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where nl is the maximum number of times the matrix Ep is being exponentiated
and A is sufficiently small to converge the above summation.

These weights to different walk lengths are inspired by the traditional random
walk graph kernel [6]. This way of weightings reduces the influence of walks of
greater lengths because they often contains redundant or repeated information.
We have observed that for sufficiently smaller value of A such as A € [0.1,0.2] the
above sum converges rapidly. However, this fact was also observed by Gértner
et al. [6].

Now let us take an example of the matrix A as follows:

(duy,dvi) - (dug,dv;) (dugs1,dvig1) - (dum,dvy)

(duy,dvy) 0 0 0 0

A— (dui—1.dvi_1) 0 0 1 0
- (dul,dvk) 0 T2 0 0
(dup41,dvi41) 0 0 T3 0
(dtdvy,) o 0 0 0

where m <n and 1 < k,l < m,n.

Let us further assume for simplicity that only z1,z2 and x3s are the real
numbers greater than zero and all the other values in A are zero. As, for example,
x1 # 0, this particularly signifies that du;—1 ~ dvip—1 and du;4+1 ~ dvgy; and
also (duj—1,dujy1) ~ (dvg—_1,dvg+1) according to the node and edge similarity
defined before. Now it can be noted that if two nodes u, v in a graph G = (V, E)
are connected with more than one walks, they supposed to have more and more
random walks of different lengths which should be reflected in the matrix A.
Following this explanation it is to be mentioned that similar nodes in DG, and
DGy should be connected with different walks in the product graph Gp. So the
non zero entry in the combined weighted matrix A identifies the similar nodes in
DG with DGy and with this the occurrences of the graph DG s can be found in
DGj. The similar pair of nodes in the redundant dual graphs should be connected
in the matrix A as above and the dissimilar pair of nodes should get the zero
entries, as in the exponentiation of the adjacency matrix Ep, the existence of
solitary graph edge must be diminished. The connected sub-component in the
matrix A (in this case component with non zero entries viz. x1, 9 and x3) can
be found by searching maximal subgroup of entries that are mutually reachable
(graphconncomp function in the matlab). Each component is then regarded as
a single instance of the pattern graph in the target graph and can be found
according to the position of the second nodes of the vertices of A.

3 Experimental Results

Our experiments were conducted on the SESYD dataset? [2]. This dataset con-
tains 10 different subsets and 16 query symbols (Fig.8). Each of the subsets

2 http://mathieu.delalandre.free.fr /projects/sesyd/symbols/floorplans.html
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contains 100 synthetically generated floorplans. All the floorplans in a subset
are created from the same floorplan template by putting different model sym-
bols in different places in random orientation and scale. In this experiment we
have only considered a subset of 300 images (floorplans16-01, floorplans16-05
and floorplans16-06) and all the query symbols. For each retrieved instance of
a given symbol if there exist an overlapping with the ground truth of the same
symbol, we compute the overlapping ratio as follows:

area(A) N area(B)
area(A) U area(B)

overlapping ratio =

where A is the area of the retrieved symbol and B is the area of the correspond-
ing symbol in the ground truth. A retrieval is classified as true positive if the
overlapping ratio is greater than 0.5.

Random walks with path length = 20, dn = 1 Random walks with path length = 22, dn = 1
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Fig. 7. Precision Recall curves for path length (a) 20, (b) 22, (c) 24, (d) 26.
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(a) (b) (c) (d) (e)

Fig. 8. Examples of model symbols: (a) armchair, (b) bed, (c) sofa2, (d) tablel,
(e) tables.

Fig. 9. Qualitative results of spotting armchair which shows correct detection of all
the occurrences of armchair, at the same time it includes two false detection of bed and
tablel respectively.

Fig. 10. Qualitative results of spotting bed which shows correct detection of the only
one occurrence of bed, note there is no false detection.

All the experiments are done with the parameter values set as: tg, = 6,
tg, = 0.2, we have observed that these two parameters are quite stable through
all the images. However the other parameter ¢, plays an important role selecting
the compatible nodes while computing the product graph. For that reason we
have performed a detailed experiments varying the parameter t,, from 0.2 to 0.8
with the step 0.2. Also we consider the length of the paths used as node labels
as another parameter and for that we have performed experiments varying the
path length from 20 to 26 with the step 2. All the experiments are performed
by setting the connectivity parameter dn = 2.

For each of the pattern graphs we perform our product graph based subgraph
matching method for spotting symbols on the documents and as an output we
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Fig. 11. Qualitative results of spotting sofa2 which shows correct detection of all the
occurrences of sofa2 and also it false detection of two instances of armchair. This is
because of the square regions in armchair resemble with the square region in sofa2.

Fig. 13. Qualitative results of spotting table3 which shows all the correct detection but
a lot of false positives most of them resemble with the smaller subpart of the symbol
table3.

obtain a ranked list of retrieved zones supposed to contain the queried graph. To
evaluate the ranked list of retrievals we have drawn the precision recall curves
for each set of parameters for each path length and they are shown in Fig.7,
where Fig. 7a shows the precision recall curves for path length 20, Fig. 7b for
path length 22 and so on. From the plots, it is clear that the length of the paths
used for node labels do not effect so much the overall performance of the system.
It sometime can affect the bigger symbols where small paths can not connect the
extremities of a dual node but in our case (or dataset) the range of path lengths
considered were enough to handle all category of symbols. The parameter ¢, has
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a good influence on the performance of the system. It is clear from the plots
that the performance of the system drops while increasing t,, this is because
larger values of ¢, create lot of nodes in the product graph and hence increase
the number of false positives. Moreover, increasing this parameter increase the
computation time, this is also due to the increment of the number of nodes in
the product graph.

For an overall performance evaluation we have computed the precision (P),
recall (R) and F-measure (F). The present system with the best set of parameters
has obtained P = 78.20 %, R = 81.43 %, F = 76.49 %, which is quite better than
the method in [3]. Some qualitative results are shown in Figs. 9, 10,11, 12 and 13°.

4 Conclusions

In this paper we have extended the product graph methodology by using the
dual graph rather than the original representation as a basis. It turns out that
this dual graph representation with redundant edges provides a robust way
to deal with noise and distortions in the structural information. The product
graph exhibits similar walks and exponentiation of the product graph’s adja-
cency matrix allows one to extract simultaneous similar walks of any desired
length. So these walks similarities help to get similar set of nodes in the pat-
tern and target graph. The precision recall values obtained by the method are
very encouraging albeit we experienced false positives with larger values of t,.
A closer analysis reveals that this kind of false positives are generated due to
the tottering between the nodes in the product graph [9]. So one direction of our
future work will address the removal of totterings from exponentiated adjacency
matrices [1,10]. Another possible improvement can address the exact nature of
matching the nodes while computing the product graph, which needs a thresh-
old. Finding such a threshold is often difficult and heuristic. A possible improve-
ment can come from working with similarities on the full product graph, which
needs further research activities. One more direction of future work will concern
detailed experimental study on various datasets to show the efficiency of the
graph matching algorithm.
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