
Towards Multi-perspective Process Model
Similarity Matching

Michael Heinrich Baumann, Michaela Baumann,
Stefan Schönig(B), and Stefan Jablonski

University of Bayreuth, Bayreuth, Germany
{michael1.baumann,michaela1.baumann,

stefan.schoenig,stefan.jablonski}@uni-bayreuth.de

Abstract. Organizations increasingly determine process models to sup-
port documentation and redesign of workflows. In various situations cor-
respondences between activities of different process models have to be
found. The challenge is to find a similarity measure to identify similar
activities in different process models. Current matching techniques pre-
dominantly consider lexical matching based on a comparison of activity
labels and 1-to-1-matchings. However, label based matching probably
fails, e.g., when modellers use different vocabulary or model activities at
different levels of granularity. That is why we extend existing methods
to compute candidate sets for N-to-M-matchings based on power-sets of
nodes. Therefore, we impose higher demands on process models as we
do not only consider labels, but also involved actors, data objects and
the order of appearing. This information is used to identify similarities
in process models that use different vocabulary and are modelled at dif-
ferent levels of granularity.

Keywords: Business process model · Process similarity · Model
matching

1 Introduction

Organizations increasingly determine business process models for supporting the
documentation and redesign of actual workflows as well as information system
implementation [9]. In order to cover all the different peculiarities of a process
typically several expert modellers from diverse business domains are involved in
modelling activities [5].

In various situations correspondences between elements of different process
models have to be found, e.g., when analysts of different departments modelled
the same process or when merging similar processes of recently merged compa-
nies [1]. Furthermore, it is conceivable to detect correspondences in conjunction
with process improvement, pattern identification or increase of efficiency. The
challenge is to find a similarity measure to identify similar activities in differ-
ent process models [1]. Therefore, current process model matching techniques

c© Springer International Publishing Switzerland 2014
J. Barjis and R. Pergl (Eds.): EOMAS 2014, LNBIP 191, pp. 21–37, 2014.
DOI: 10.1007/978-3-662-44860-1 2

22 M.H. Baumann et al.

predominantly consider lexical matching scores based on a comparison of activ-
ity labels that appear in process models [12]. Furthermore, these methods only
consider 1-to-1-matchings, i.e., only single nodes are compared per model [1].

Think about analysts of different departments who model the same process.
Some analysts use a more technical vocabulary than others and some analysts
tend to get more granular when modelling the process. As a consequence, it
is likely that activity labels of resulting models considerably deviate from each
other or that activities are divided in different chunks. In such situations, label
based matching methods probably fail, i.e., lead to a low recall [6].

The intention of the work at hand is to find an adequate similarity measure
to identify similar activities in process models that use rather different vocab-
ulary and are modelled at different levels of granularity. Therefore, we extend
existing process model matching methods to compute candidate sets for N-to-
M-matchings based on power-sets of nodes. That is why we compute similarity
measures to identify similar sets of activities in different process models. Of
course, this implicates a considerably higher complexity. Furthermore, it is use-
less or even impossible to use only label matching to analyse sets of activities.
Therefore, we impose higher demands on process models as we do not only want
to match activities based on their labels, but also by analysing involved actors,
data objects and their order of appearing in the model. Our approach is based
upon the different perspectives of the perspective-oriented process modelling
approach [7]. Consider the simple example of Fig. 1. Here, we identified a sim-
ilarity between the activities A and B of the first model and the activity C in
the second model since the combination of data objects produced by A and B
relates to the set of data objects produced by C.

A B

x y

Model 1

C

x
y

Model 2

Fig. 1. Example process model similarity matching based on data objects

This information can help to reduce computation time and to identify similar
activities in process models that use different vocabulary and are modelled at
different levels of granularity.

2 Background and Related Work

The problem of matching two process models of a general form has already
been discussed in several papers, like in [1–3,10–16]. A lot of modeling notations

Towards Multi-perspective Process Model Similarity Matching 23

are available to capture business processes, e.g., Event-driven Process Chains
(EPCs), UML Activity Diagrams and the Business Process Modeling Notation
(BPMN) [9]. In the work at hand, we seek to abstract as much as possible from
specific notations and therefore a process model is given according to following
definition.

Definition 1 (process model). Let L ⊂ {s1s2 . . . sn | si is a character ∀i ∈
{1, 2, . . . , n}, n ∈ N} be a set of labels. Then, a process graph is a tuple (N,E, λ),
where

– N is a set of nodes,
– E ⊆ N × N is a set of edges and
– λ : N → L is a function, that maps nodes to labels.

To determine the similarity between such models, first, the similarity of two
nodes, i.e., of their labels has to be specified. This is usually done with a con-
struct called string-edit similarity which is a measure for how strong one string
resembles another one. It is defined with help of the so-called string-edit dis-
tance, sed. The string-edit distance of two strings is the minimal number of
atomar string operations, that means insertion, deletion and substitution of one
character, that is needed to transform one string into the other. Thus, the string-
edit distance is an integer with a value not more than the length of the longer
string.

Definition 2 (string-edit similarity). For two strings s and t, the string-edit
similarity Sim is given through

Sim(s, t) = 1 − sed(s, t)
max(|s|, |t|) .

Sim takes values between 0 and 1, where 1 can only be reached, if sed equals
0, that means the two compared strings are the same. As mentioned in [1,3],
it is also possible to do stemming before computing the string-edit similarity in
order to get better values. Stemming is the name for a collection of several tech-
niques, like deleting symbols, fillers, often and repeatedly used words, reducing
words to their stem, translating words into one language, sorting words, etc. to
get a standardized basis for the strings that have to be matched [17]. If possi-
ble, one can even use synonym dictionaries or a thesaurus, as suggested in [3],
or ontologies to get optimal results for comparing two strings. Of course, the
problem of homonyms cannot be solved this way, and there is no help when it
comes to spelling errors or neologisms. In [6] another label-based similarity is
proposed, namely the basic bag-of-words similarity which may be combined with
label pruning.

The next step in getting an optimal matching of two models G1 = (N1, E1, λ1)
and G2 = (N2, E2, λ2) is to consider a partial and injective mapping M : N1 →
N2, that maps nodes of G1 to nodes of G2. This mapping is partial, as not all
nodes of G1 have to be mapped, and injective, as not all nodes of G2 have to
be met and those that are in the image of M may only have a one-elemental

24 M.H. Baumann et al.

inverse image. If |N1| < |N2|, not all nodes in N2 can be met by M . With this
mapping M , all nodes and edges of the two graphs G1 and G2 are element of
one of the following sets.

Definition 3 (Substituted and deleted nodes). For a mapping M as defined
above, the set

subn := {n ∈ N1 ∪ N1 | n is in the image or the inverse image of M}
is the set of all substituted/mapped nodes. Accordingly,

skipn := (N1 ∪ N2) \ subn

is the set of all deleted nodes.

Definition 4 (Substituted and deleted edges). Consider the mapping M .
For all edges of G1 and G2 we say that an edge (n1,m1) ∈ E1 is deleted from
G1 if there is no (n2,m2) ∈ E2 with M(n1) = n2 and M(m1) = m2, and vice
versa. Then

skipe := {(n,m) | (n,m) is deleted}
is the set of all deleted edges and

sube := (E1 ∪ E2) \ skipe

is the set of all substituted/mapped edges.

Subsequently, the graph-edit similarity, a value of how good two graphs match,
is computed with the shares of deleted nodes and edges compared to their total
number and an average distance of the substituted edges where the variables
skipn, skipe, subn and Sim(·, ·) are defined as in Definitions 2, 3 and 4. These
values are given as

– fskipn =
|skipn|

|N1| + |N2| (share of deleted nodes)

– fskipe =
|skipe|

|E1| + |E2| (share of deleted edges)

– fsubn =
2 · ∑

(n1,n2)∈M (1 − Sim(n1, n2))

|subn|
(average distance of substituted nodes)

All these shares are element of the interval [0, 1] and especially fsubn takes values
near 1, when there’s not much similarity between the two compared graphs.
Combining these three values with some weight factors wskipn, wskipe and
wsubn that are element of [0, 1] and sum up to 1 leads to the graph-edit similarity
defined as

Definition 5 (graph-edit similarity induced by M). For two models G1

and G2 and a mapping M the graph-edit similarity induced by M , GSimM , is
given through

GSimM (G1, G2) = 1 − (wkipn · fskipn + wskipe · fskipe + wsubn · fsubn).

Towards Multi-perspective Process Model Similarity Matching 25

To get the best matching, that means the best mapping M between the two
models, the graph-edit similarity induced by M has to be maximized with respect
to M . The resulting value is called graph-edit similarity.

Definition 6 (graph-edit similarity). The graph-edit similarity GSim for
G1 and G2 is obtained as

GSim(G1, G2) = max
M

GSimM (G1, G2).

For the implementation of this maximization problem, efficient algorithms are
used, like Greedy or A*-Algorithms (see e.g. [2]), as the problem of finding the
best M is of exponential order. With one of these algorithms it is now possible to
efficiently match two process models on the same level of abstraction using a sim-
ilar vocabulary. Obviously, by comparing process models with a strongly differing
number of nodes the method presented so far will not provide satisfying results.
Furthermore, a lot of information contained in the models is not considered. In
[3] there are mentioned some possibilities to expand this matching technique and
not only use the nodes’ labels, as they might not lead to the desired results, but
also their context with predecessor and successor relations. In [1] only the idea
of expanding this method to more than one node in a successive/iterative way
is mentioned. Nevertheless, all methods described so far are based on mapping
single nodes to single nodes. Reference [8] introduces 1-to-n matchings, however,
it does not imply other perspectives of business process models and only focuses
on sequence flows during analysis. To eliminate the discussed disadvantages of
existing techniques a method based on mapping sets of nodes to sets of nodes
will be introduced.

3 Extended Definitions for Graph Matching

The work at hand expands previous ideas of single node matching to a procedure
where sets of nodes are matched. Therefore, we impose higher demands on the
process models as we do not only want to match nodes based on their description,
but also based on involved positions, data objects and on their order of appearing
in the model. Therefore, our approach is based upon the different perspectives
of the perspective-oriented process modelling approach defined in [7]. We need
these additional perspectives to get better matches, as the descriptions differ very
much when comparing sets of nodes, and to reduce a combinatoric explosion,
that results from the exponential number of matches we have to check. We also
make some additional assumptions for these perspectives. Involved positions are
arranged in some kind of tree, that represents their hierarchical structure. This
tree can be seen as a combination of an organigram and maybe a population,
which we use to reduce complexity of the model and to avoid introducing another
mapping. Furthermore, all data objects appearing in the process models need to
have a unique identifier. Based on these assumptions we can define an extended
process model.

26 M.H. Baumann et al.

Definition 7 (Extended process model). Let B ⊂ {s1s2 . . . snB | si is a
character ∀i ∈ {1, 2, . . . , nB}, nB ∈ N0} be a set of descriptions, A a hierarchical
tree of positions with nodes a and levels e, and D = {D1, . . . , DnD

} a finite set
of data objects. Then a process graph is a tuple (N,E, λ) with

– N being a set of nodes,
– E ⊆ N × N a set of edges and
– λ : N → B × A × P(D) a function, that maps nodes to entities.

For all process models to be matched, the sets B, A and D have to be the same.
Note, that P(·) indicates the power set.

Taking two process models, represented by their graphs, we define the extended
graph-edit-similarity under consideration of the following sets.

Definition 8 (Set of deleted and substituted nodes). Let Gi = (Ni, Ei, λi),
i = 1, 2 be two models and Pi ⊂ P(Ni) � ∅ a complete and disjoint partition of
Ni (i.e.

⋃
p∈Pi

p = Ni & ∀p, p′ ∈ Pi : p ∩ p′ = ∅, p �= p′), i = 1, 2. Further, let
M : P1 → P2 be a bijective function (∅ �→ p2 and p1 �→ ∅ means, that p2 and p1
are deleted, respectively, p1 ∈ P1, p2 ∈ P2), where ¬(∅ �→ ∅). Then

skipn = {n1 ∈ N1 | n1 ∈ p1 ∈ P1 : p1
M�→ ∅}

∪ {n2 ∈ N2 | n2 ∈ p2 ∈ P2 : ∅ M�→ p2}

is the set of deleted nodes and

subn = (N1 ∪ N2) \ skipn

is the set of substituted nodes.

Definition 9 (Set of deleted and substituted edges). Let E∗
i = {(a, b) ∈

Ei | ∃pi �= p′
i ∈ Pi : a ∈ pi, b ∈ p′

i} be a set of edges, that connect nodes from
different elements of Pi, i.e., start node a is in pi and end node b is in p′

i with
pi �= p′

i ∈ Pi. Thus, with the assumption that p1 �= p′
1, p2 �= p′

2 we name with

sube = {(a, b) ∈ E∗
1 | a ∈ p1 ∈ P1, b ∈ p′

1 ∈ P1,M(p1) = p2,M(p′
1) = p′

2,

∃a′ ∈ p2 ∈ P2, b
′ ∈ p′

2 ∈ P2 : (a′, b′) ∈ E∗
2}

∪ {(a′, b′) ∈ E∗
2 | a′ ∈ p2 ∈ P2, b

′ ∈ p′
2 ∈ P2,M(p1) = p2,M(p′

1) = p′
2,

∃a ∈ p1 ∈ P1, b ∈ p′
1 ∈ P1 : (a, b) ∈ E∗

1}

the set of substituted edges, i.e., the set of edges, that remain connectors of
mapped pairs of nodes. Like in the definition above, let

skipe = (E∗
1 ∪ E∗

2) \ sube

be the set of deleted edges.

Towards Multi-perspective Process Model Similarity Matching 27

As one can see, we do not need to consider those edges, that connect nodes both
being inherent in the same element of Pi. The similarity can now be defined ana-
loguously to that in the section before. However, we still need to determine the
similarity of two sets of nodes p1 and p2, “Sim(p1, p2)”. Therefore, we consider
different perspectives of nodes separately from each other and define a similarity
value for each perspective. These values can then be combined with respect to
some weight factor resulting in a global similarity value. In the next section, we
look upon the four perspectives given in the process model and how we compute
a similarity value for each perspective.

4 Similarity Between Sets of Nodes

We will start with the nodes’ description, i.e., the activity label, as we can apply
a modification of the similarity concepts of Sect. 2, i.e., a modification of string-
edit similarity. For positions, we examine their hierarchical structure in form of
the given trees. Data objects have the function of an exclusion criterion due to
their unique identifiers. Finally, we examine the order of sets of nodes where we
need the concept of partial orders. In this paper, we focus on sequential process
models which should be extended in future.

The Functional Perspective. As mentioned above, for the functional per-
spective, i.e., the nodes’ description, we can apply the well-known concepts of
label matching, like string-edit similarity. The only difference is that we have to
apply it to a set of nodes, i.e., to a set of strings. For this, we concatenate the
descriptions of each node of the two sets with whitespace and in their order of
appearance in the model.

Definition 10 (Extended string-edit similarity). Let P1 be a partition of
graph G1 and P2 a partition of G2. Then, with p1 ∈ P1 consisting of nodes
n1, . . . , nk with description strings s1, . . . , sk and p2 ∈ P2 consisting of nodes
m1, . . . ,ml with description strings t1, . . . , tl, we indicate with s1.∨ . . .∨ .sk and
t1.∨ . . .∨ .tl the concatenated descriptions of p1 and p2. The string-edit similarity
of p1 and p2 is then defined as

BSim(p1, p2) = 1 − sed(p1, p2)
max(|p1|, |p2|) ,

where sed(p1, p2) = sed(s1.∨ . . .∨ .sk, t1.∨ . . .∨ .tl) is the string-edit distance of
p1 and p2. |pi| stands for the length of the respective, underlying, concatenated
string.

The range of BSim is in [0, 1] with a value of 1 if p1 and p2 have the same
descriptions and a value close to 0 if they differ very much. Of course it is clear
that comparing two sets of nodes with a strongly different number of elements,
the result of BSim has no chance to come close to 1. Thus, we strongly recom-
mend using stemming-techniques like mentioned in Sect. 2.

28 M.H. Baumann et al.

The Data/Dataflow Perspective. Our intention is to compute a number
that is 0 if the compared sets use completely different data objects and increases
to 1 if all used objects appear in both sets. Furthermore, this perspective is
meant to fulfill some important function in the context of practicability of our
approach to distinctly reduce computation time of the hyper-exponential prob-
lem. That means if under a certain mapping M at least one assignment p1 �→ p2
has 0 similarity in the data/dataflow perspective the whole mapping M gets a
similarity value of 0 and must not be considered any longer. It is likely that a
lot of mappings can be rejected before their concrete similarity values have to
be computed.

Before we define a similarity for occurring data objects of sets of nodes, we
first have to specify a value for sets of data objects, as in one node more than
one data object can be listed.

Definition 11 (Similarity for sets of data objects). For D1,D2 ⊂ D, D1∪
D2 �= ∅, we set

DSim(D1,D2) =
|D1 ∩ D2|
|D1 ∪ D2| .

If D1 = D2 = ∅ we set DSim(D1,D2) = 1.

In fact, we do not have to look at single sets of data objects, but at all data
objects in pi ∈ Pj , which can be a set of sets of data objects. To handle this
construct, we join all data object sets of the nodes and call this new set

Dpi
:= {D | ∃n ∈ pi ∈ Pj : (λ(n))3 = D ∧ D ∈ D} =

⋃

n∈pi

(λ(n))3.

Now, we can define a similarity for the data/dataflow perspective for a set of
nodes as follows

Definition 12 (Data/dataflow similarity)

DSim(p1, p2) = DSim(Dp1 ,Dp2) =
|Dp1 ∩ Dp2 |
|Dp1 ∪ Dp2 |

, pi ∈ Pi.

The Organizational Perspective. A similarity value has to be found that
is 1 if the executing positions in the compared sets are the same and decreases
to 0 the more organizational distance lies between the involved positions. In
comparing the positions of two nodes of a given hierarchical tree it is possible
to find a minimal number of edges, k̃, that have to be passed to get from one
position to the other and the number of levels, ẽ, that lie between them. Two
positions on the same level have ẽ = 0. To transform these two values into a
similarity value, we set

ksim(A,B) :=
1

k̃ + 1
and esim(A,B) :=

1
ẽ + 1

.

Therefore, by comparing a position with itself, we get a value of 1 for both
similarities, that means maximal similarity, and a value tending to 0, the more

Towards Multi-perspective Process Model Similarity Matching 29

edges and levels are between two positions. To combine these two similarity
measures, we define

HSim(A,B) = αksim(A,B) + (1 − α)esim(A,B),

with α ∈ [0, 1] being a weight factor, that allows to display some preferences for
the position similarity. This value HSim has to be extended to work for sets of
nodes, that means a set of positions. This is done the following way:

Definition 13 (Organizational similarity). Let Mpi
⊂ A be the set of posi-

tions occurring in pi ∈ Pj, i.e.,

Mpi
= {m | ∃n ∈ pi ∈ Pj : (λ(n))2 = m}.

Then, for pi ∈ Pj, it is

HSim(p1, p2) =

∑
m1∈Mp1 ,m2∈Mp2

HSim(m1,m2)

|Mp1 | · |Mp2 |
.

Hence, we compute the similarity of every pair of positions from the two sets, add
this values up and divide through the number of pairings to get an average value
for position similarity. Note, that if there is more than one tree representing the
hierarchical structure of an organization, a comparison of positions from different
trees leads to a similarity value of 0.

The Behavioral Perspective. The behavioral perspective is somehow differ-
ent to the other perspectives, as it is not a component of λ, but given through
the nodes’ sequential order in a process model. We examine whether the order
of elements from P1 is maintained, turned around or completely mixed up under
the mapping M . To define a similarity with respect to this sequence, we use the
partial order on Pi which is a result from the complete, disjoint decomposition
of Pi = {p1i , . . . , p

t
i} ⊂ P(Ni) of the i-th model, i = 1, 2. Within this partial

order, several states may occur, namely

pi � p′
i ⇔ ∀n ∈ pi, n

′ ∈ p′
i : n � n′,

pi ≺ p′
i ⇔ ∀n ∈ pi, n

′ ∈ p′
i : n ≺ n′,

pi ∼ p′
i ⇔ pi = p′

i ∨ ∃n,m ∈ pi, n
′,m′ ∈ p′

i : n � n′,m ≺ m′,
pi � ∅.

� and ≺ on Ni is given through the successive order of nodes in Ni. With
this notation, we can now assign values to sets p, p′ ∈ P1 by comparing their
order to the order of M(p),M(p′) ∈ P2. For this, we first want to distinguish
between comparisons involving the empty set and all other pairs of sets and
assign following values:

γ(p, p′) =

{
0, if p � p′ ∨ M(p) � M(p′)
1, else.

30 M.H. Baumann et al.

Next, the individual similarity values are assigned for each possible situation:

ν(p, p′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if p ≺ p′ ∧ M(p) ≺ M(p′),
1, if p � p′ ∧ M(p) � M(p′),
1, if p ∼ p′ ∧ M(p) ∼ M(p′),
0, if p ≺ p′ ∧ M(p) � M(p′),
0, if p � p′ ∧ M(p) ≺ M(p′),
1
2 , if p ≺ p′ ∧ M(p) ∼ M(p′),
1
2 , if p � p′ ∧ M(p) ∼ M(p′),
1
2 , if p ∼ p′ ∧ M(p) ≺ M(p′),
1
2 , if p ∼ p′ ∧ M(p) � M(p′),
0, if p � p′ ∨ M(p) � M(p′).

It is possible to assign other plausible values to the different cases, for example
3
4 in the third line. Function γ is necessary to make sure, later on, that we do
not divide through 0.

5 The Extended Graph-Edit Similarity

The next step is to combine the defined similarity values for the different per-
spectives in addition to the values of skipn and skipe. Therefore, we transform
all these values into normalized distances where 0 means full similarity and 1
greatest possible distance. We result in getting the following equations:

fskipn =
skipn

|N1| + |N2|
is the share of deleted nodes and

fskipe =
skipe

|E∗
1 | + |E∗

2 |
is the share of deleted edges, considering only the relevant ones. With

fsubb =

∑
(p1,p2)∈M |p1 �=∅�=p2

(1 − BSim(p1, p2))
∑

(p1,p2)∈M |p1 �=∅�=p2
1

we get an average normalized distance value for the functional perspective with
respect to M . Analoguously, we get a value for the organizational perspective
through

fsubh =

∑
(p1,p2)∈M |p1 �=∅�=p2

(1 − HSim(p1, p2))
∑

(p1,p2)∈M |p1 �=∅�=p2
1

.

Towards Multi-perspective Process Model Similarity Matching 31

For the data perspective, we have to do a distinction of cases to enable it to
work as an exclusion criterion, as explained in Sect. 4. That is why we get

fsubd =

⎧
⎨

⎩

1, if ∃∅ �= p ∈ P1 : M(p) �= ∅,DSim(p,M(p)) = 0
∑

(p1,p2)∈M|p1 �=∅�=p2
(1−DSim(p1,p2))

∑
(p1,p2)∈M|p1 �=∅�=p2

1 , else

for the data perspective. For the behavioral perspective we also need to distinct
between some cases, as there exist some degenerated mappings. Considering such
mappings, we get

fsubv =

⎧
⎪⎪⎨

⎪⎪⎩

∑
p�=p′∈P1

(1−ν(p,p′))γ(p,p′)
∑

p�=p′∈P1
γ(p,p′) ,∃p �= p′ ∈ P1 : γ(p, p′) �= 0,

1, for fskipn = 1,

0, else.

Now, these normalized distance measures are simply added with some weight
factors and transformed back into a similarity measure with greatest possible
similarity = 1 and 0 for no similarity to get the extended graph-edit similarity.

Definition 14 (Extended graph-edit similarity induced by M). With
weight factors wskipn, wskipe, wsubb, wsubv, wsubh ∈ [0, 1] and wsubd ∈ (0, 1]
that sum up to 1 and can be chosen at one’s own discretion we get the graph-edit
similarity induced by M through

GSimM (G1, G2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if fsubd = 1,

1 − (wskipn · fskipn + wskipe · fskipe

+wsubb · fsubb + wsubd · fsubd

+wsubh · fsubh + wsubv · fsubv), else.

To get the global graph-edit similarity that means the best fitting mapping M
we define.

Definition 15 (Extended graph-edit similarity)

GSim(G1, G2) = max
M

GSimM (G1, G2).

For this task, again algorithms like Greedy or A* are used but adjusted to
make use of the exclusion criterion, as the problem we focus here is of hyper-
exponential order. Using these algorithms, the problem is still of exponential
order, but can be made fairly efficient by using the mentioned exclusion criterion
as a lot of possibilities are neglected and not completely computed.

6 Case Study and Evaluation

To give a more detailed insight of how the different similarities are computed
and applied we present a case study and find the graph-edit similarity of the two

32 M.H. Baumann et al.

scan and
read application

scan and
read CV

job interview

make assessment

scan application

scan CV

read application
and CV

case study
and workshop

interview

make overall
assessment

A
application
rating sheet

A
CV
rating sheet

B

application
CV
rating sheet

B

application
CV
rating sheet

C application

C CV

D

application
CV
rating sheet

E rating sheet

D

application
CV
rating sheet

D rating sheet

(N1, E1, λ1) (N2, E2, λ2)M1,M2

Fig. 2. Two process models for two resembling processes written down differently with
1:1-mapping M1 and N:M-mapping M2. The positions at the left-hand side and the
data at the right-hand side of the nodes are relevant for mapping M2.

examplary process models (N1, E1, λ1) and (N2, E2, λ2) under a given mapping
Mi. In fact, we will consider two mappings, one 1:1-mapping M1 and one M:N-
mapping M2. It becomes obvious that our extended approach provides better
results than simple node-to-node mappings. For this, our two sequential process
models and mapping M1 are like in Fig. 2, where the nodes mapped by M1 are
indicated with dashed lines. It can be shown, that under application of stemming
techniques this mapping M1 is the best 1:1-mapping for these two models. For
computing the graph-edit similarity we need the two values fskipn = 0.2 and
fskipe = 0.5. Applying stemming techniques on the nodes’ labels, we get for the
average distance of substituted nodes a value of fsubn ≈ 0.54. With all weights
equalling 1

3 we get for graph-edit similarity with respect to mapping M1

GSim(G1, G2) = GSimM1(G1, G2) ≈ 1 − (
1
3 · 0.2 + 1

3 · 0.5 + 1
3 · 0.54

)

≈ 0.59.

For our second mapping M2 we choose the M:N-mapping according to Definition
8 indicated with different colors in Fig. 2. The mappings λ1 and λ2 of G1 and
G2 are given through

Towards Multi-perspective Process Model Similarity Matching 33

– λ1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n11 �→ (scan and read application, A, { application, rating sheet})
n12 �→ (scan and read CV, A, { CV, rating sheet})
n13 �→ (job interview, B, {application, CV, rating sheet})
n14 �→ (make assessment, B, {application, CV, rating sheet})

– λ2 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n21 �→ (scan application, A, {application})
n22 �→ (scan CV, A, {CV, rating sheed})
n23 �→ (read application and CV, B, {CV})
n24 �→ (case study and workshop, B, {rating sheet})
n25 �→ (interview, B, {application, CV, rating sheet})
n26 �→ (make overall assessment, B, {rating sheet})

where

– N1 = {n11, n12, n13, n14},
– N2 = {n21, n22, n23, n24, n25, n26},
– E1 = {(n11, n12), (n12, n13), (n13, n14)} and
– E2 = {(n21, n22), (n22, n23), (n23, n24), (n24, n25), (n25, n26)}
and thus the mapping M2 is the following:

– M2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{n11, n12} =: p11 �→ {n21, n22, n23} =: p21

{n13} =: p12 �→ {n25} =: p22

{n14} =: p13 �→ {n26} =: p23

∅ =: p14 �→ {n24} =: p24

This leads to edge sets

– E∗
1 = {(n12, n13), (n13, n14)} and

– E∗
2 = {(n23, n24), (n24, n25), (n25, n26)}.

With this, the share of deleted nodes has the same underlying set of nodes,
whereas the share of deleted edges changes its denominator with respect to this
new edge sets and we get

fskipn =
1

4 + 6
= 0.1

and
fskipe =

3
2 + 3

= 0.6.

The next step is to compute fsubb. Concatenating the respective descriptions
and using the same stemming techniques as before we get for the stemmed
descriptions

34 M.H. Baumann et al.

– sed(application CV read scan, application CV read scan) = 0,
BSim(p11, p21) = 1

– sed(interview job, interview) = 4,
BSim(p11, p21) = 1 − 4

13 ≈ 0.69
– sed(assesment make, assessment make overall) = 8,

BSim(p11, p21) = 1 − 8
23 ≈ 0.65

This leads to a fsubb of value

fsubb =
(1 − 1) + (1 − 9

13) + (1 − 15
23)

3
≈ 0.22.

For fsubd we have to determine DSim. It is

– Dp11 = {application,CV,rating sheet},
– Dp12 = {application,CV,rating sheet},
– Dp13 = {application,CV,rating sheet},
– Dp21 = {application,CV,rating sheet},
– Dp22 = {application,CV,rating sheet} and
– Dp23 = {rating sheet}.

So, we get

– DSim(p11, p21) = 1, DSim(p12, p22) = 1, DSim(p13, p23) =
1
3

and with that, it is

fsubd =
(1 − 1) + (1 − 1) + (1 − 1

3)
3

=
2
9

≈ 0.22,

as the exclusion criterion does not occur with this mapping M2.
For computation of fsubh we need the organizational structure for the positions
A,B,C,D and E, that is given via the tree in Fig. 3. For the weights, we find
it appropriate to give more weight to level similarity, so we choose α = 1

4 . With
this, we get

– HSim(p11, p21) = HSim(A,C)+HSim(A,D)
2 = 0.25· 15+0.75·1+0.25· 14+0.75· 12

2 ≈ 0.62
– HSim(p12, p22) = HSim(p13, p23) = HSim(B,D)

1 = 0.25 · 1
3 + 0.75 · 1 ≈ 0.83

This leads to a value for fsubh of

fsubh ≈ (1 − 0.62) + (1 − 0.83) + (1 − 0.83)
3

= 0.24.

For the last part of the formula for graph-edit similarity we need to compute
fsubv. For this, we have to consider the order of the sets pij under our mapping
M2.

– γ(p11, p12) = 1, ν(p11, p12) = 1,
– γ(p11, p13) = 1, ν(p11, p13) = 1,

Towards Multi-perspective Process Model Similarity Matching 35

B

A

D

C E

Fig. 3. Organizational structure of the five positions in our example

– γ(p11, p14) = 0, ν(p11, p14) = 0,
– γ(p12, p13) = 1, ν(p12, p13) = 1,
– γ(p12, p14) = 0, ν(p12, p14) = 0,
– γ(p13, p14) = 0, ν(p13, p14) = 0.

Therefore, it is

fsubv =
(1 − 1) · 1 + (1 − 1) · 1 + (1 − 1) · 1

3
= 0,

which means perfect behavioral similarity.
With weights equalling 1

6 , especially wsubd �= 0, we get for the graph-edit simi-
larity with respect to M2

GSimM2(G1, G2) ≈ 1 − (
1
6 · (0.1 + 0.6 + 0.22 + 0.22 + 0.24 + 0)

)

= 0.77

We can conclude that GSim(G1, G2) ≥ 0.77 as there may exist a mapping M3

that leads to a better matching of the two graphs than M2.

7 Conclusion and Future Work

The contribution of the work at hand is to find an adequate similarity measure to
identify similar activities in process models that use rather different vocabulary
and are modelled at different levels of granularity. We extended existing process
model matching methods to compute candidate sets for N-to-M-matchings based
on power-sets of nodes. In order to cope with the increasing complexity we
imposed higher demands on process models. Therefore, we did not only consider
activity labels but also comprised involved actors, data objects and the order of
activities. Using this additional information we reduced computation time and
identified similar activities in process models that use different vocabulary and
are modelled at different levels of granularity. Table 1 provides a short compar-
ison of traditional 1-to-1-matching techniques and the N-to-M-matching of the
work at hand.

For future work it is conceivable to extend the set-of-nodes-matching to gen-
eral process models containing gateways and the possibility, that not only one
specific position, but roles are allowed for the organizational perspective. For the

36 M.H. Baumann et al.

Table 1. Comparison of 1:1- and N:M-matching techniques

1:1 M:N

Utilized dimensions fskipn, fskipe, fsubn fskipn, fskipe, fsubb,

fsubd∗, fsubh, fsubv

Process model (N, E, λ) with λ : N → L (N, E, λ) with
λ : N → B × A × P(D)
with A being a tree

Findings 1:1-mappings (+ extensions) 1:1-, 1:N-, M:N-mappings

Runtime/complexity Low High (improved by special
assumptions, etc.)

Robustness Possibly against inaccurate
labels

against inaccurate
descriptions, different
granularities

weights in the formula of the graph-edit similarity and the weights of computing
the organizational similarity, we proposed to choose their values according to
everybody’s own preferences. It is conceivable that if training graphs with given
similarities are available, one may find the best suiting values for the weights
with help of statistical methods, like maximum likelihood estimation.

Acknowledgement. The presented work is developed and used in the project “Kom-
petenzzentrum für praktisches Prozess- und Qualitätsmanagement”, which is funded
by “Europäischer Fonds für regionale Entwicklung (EFRE)”.

The work of Michael Heinrich Baumann is supported by Hanns-Seidel-Stiftung e.V.

References

1. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L., Käärik, R.: Aligning Business
Process Models (2009)

2. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009)

3. Dijkman, R., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business
process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

4. Minor, M., Tartakovski, A., Bergmann, R.: Representation and structure-based
similarity assessment for agile workflows. In: Weber, R.O., Richter, M.M. (eds.)
ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 224–238. Springer, Heidelberg (2007)

5. Dijkman, R.: A Classification of Differences between Similar Business Processes
(2007)

6. Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall
of process model matching by improved activity label matching. In: Daniel, F.,
Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer,
Heidelberg (2013)

Towards Multi-perspective Process Model Similarity Matching 37

7. Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architec-
ture and Implementation. International Thomson Computer Press, London (1996).
ISBN: 1850322228

8. Weidlich, M., Dijkman, R., Mendling, J.: The ICoP framework: identification of
correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

9. Weske, M.: Business Process Management: Concepts, Languages, Architecture.
Springer, New York (2007)

10. Branco, M.C., Troya, J., Czarnecki, K., Küster, J.M., Völzer, H.: Matching Busi-
ness Process Workflows across Abstraction Levels, Models (2012)

11. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
166–181. Springer, Heidelberg (2011)

12. Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in
business process models. Inf. Syst. 37(5), 443–459 (2012)

13. Dumas, M., Garćıa-Bañuelos, L., Dijkman, R.M.: Similarity search of business
process models. Bull. Tech. Comm. Data Eng. 32(2), 23–28 (2009)

14. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models. In: Proceedings of the 4th Asia-Pacific Conference on
Conceptual Modelling, Ballarat, Victoria, Australia, pp. 71–80 (2007)

15. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Process
equivalence: comparing two process models based on observed behavior. In:
Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
129–144. Springer, Heidelberg (2006)

16. van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring similarity between busi-
ness process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

17. Lovins, J.B.: Development of a stemming algorithm. Mech. Transl. Comput. Lin-
guist. 11, 22–31 (1968)

http://www.springer.com/978-3-662-44859-5

	Towards Multi-perspective Process Model Similarity Matching
	1 Introduction
	2 Background and Related Work
	3 Extended Definitions for Graph Matching
	4 Similarity Between Sets of Nodes
	5 The Extended Graph-Edit Similarity
	6 Case Study and Evaluation
	7 Conclusion and Future Work
	References

