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Abstract. We present a new family of 3D geometry descriptors based
on asymmetry patterns from the popular 3D Shape Contexts (3DSC).
Our approach resolves the azimuth ambiguity of 3DSC, thus providing
rotational invariance, at the expense of a marginal increase in compu-
tational load, outperforming previous algorithms dealing with azimuth
ambiguity. We build on a recently presented measure of approximate
rotational symmetry in 2D, defined as the overlapping area between a
shape and rotated versions of itself, to extract asymmetry patterns from
a 3DSC in a variety of ways, depending on the spatial relationships that
need to be highlighted or disabled. Thus, we define Asymmetry Patterns
Shape Contexts (APSC) from a subset of the possible spatial relations
present in the spherical grid of 3DSC; hence they can be thought of as a
family of descriptors that depend on the subset that is selected. The pos-
sibility to define APSC descriptors by selecting diverse spatial patterns
from a 3DSC has two important advantages: (1) choosing the appropriate
spatial patterns can considerably reduce the errors obtained with 3DSC
when targeting specific types of points; (2) Once one APSC descriptor is
built, additional ones can be built with only incremental cost. Therefore,
it is possible to use a pool of APSC descriptors to maximize accuracy
without a large increase in computational cost.

Keywords: 3D geometric descriptors · Rotational symmetry · Cranio-
facial landmarks

1 Introduction

Geometric descriptors for three dimensional (3D) data are important for a wide
range of applications, as they constitute a core element for the identification of
corresponding points in relation to object retrieval [26], recognition [9], surface
registration [2] and landmark identification [5,16].

The increased availability of 3D data in the last decade has generated much
research in this area and several 3D descriptors have been proposed. Depending
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on the data that is targeted, the descriptors can be purely geometric [4,13,17,
28] or include additional functions that are attached to the geometry, such as
radiometric information [20,27].

Among purely geometric descriptors, which are the most general type, 3D
shape contexts (and extensions derived from them) have attracted considerable
interest due to their good performance in diverse applications. A recent compar-
ison of geometric descriptors in the context of craniofacial landmark localization
highlighted 3D shape contexts as one of the most accurate algorithms [21].

Shape contexts in 3D are based on the distribution of distances with respect
to the point of interest, estimated by means of a histogram over a spherical
grid (elevation, azimuth and radius). The spherical grid is centered at the point
of interest and its North Pole is oriented in the direction of the normal to the
surface. This is enough to uniquely determine the elevation and radial bins but
leaves unresolved the origin of azimuth bins. Different approaches have been
taken to resolve this ambiguity:

• In one of the earliest works [9], the 3D Shape Contexts descriptor (3DSC)
was introduced, without actually resolving the azimuth ambiguity. The authors
compute multiple descriptors to account for all possible rotations (as many
as the number of azimuth bins). During matching, when comparing descriptors
of different points, all possible rotations are tested and the one that produces
the highest similarity score is retained.

• As an alternative that achieves invariance to the azimuth angle, Frome et al.
explored the use of Spherical Harmonics. Similarly to other descriptors based
on symmetry [14], they proposed to keep only the magnitude of the Spherical
Harmonic coefficients, which are rotationally invariant. We will refer to this
approach as Harmonic Shape Contexts (HSC) [9].

• A third option [15,26] consists of performing Singular Value Decomposition
(SVD) on the support region (i.e. all points within the considered sphere)
to identify the principal axes and disambiguate the sign by considering the
heaviest tail of each axis as the positive direction. Thus, a unique axis can
be identified to set the azimuth origin, obtaining the Unique Shape Contexts
(USC) descriptor.

It would be desirable to avoid the evaluation of multiple descriptors as done
by [9]. Such a strategy increases the computational load during matching, can
suffer from false matches (due to an unfortunate rotation of the descriptor of a
non-corresponding point) and adds considerable complexity to the application of
machine learning techniques that can be useful upon the availability of a train-
ing set. Despite the above efforts to obtain shape context descriptors without
azimuth ambiguity, the best performance is still obtained by using 3DSC (i.e.
computing multiple descriptors).

The performance of HSC was found comparable to 3DSC in some cases [9] but
at the expense of a huge increase in computational load. On the other hand, USC
was reported to perform slightly better than 3DSC in terms of precision-recall
curves for a task of feature matching on synthetically transformed shapes [26].
However, USC was found considerably less accurate than 3DSC when targeting
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specific points on a craniofacial landmark localization task [21]. This can be
explained by the instability of the sign disambiguation on objects that present a
high variability, such as the human face. That is, it cannot be assured that the
directions determined by the proposed disambiguation step are consistent across
a population of facial scans. Since USC rely on the unique definition of azimuth
bins, the lack of consistency has an important effect on accuracy [23].

In this paper we present a different approach to resolve the azimuth ambi-
guity, based on asymmetry patterns, and show that it is possible to attain rota-
tionally invariant shape contexts that obtain comparable accuracy to 3DSC for
the localization of craniofacial landmarks and remarkably outperform 3DSC for
specific points like the outer eye corners and nose corners.

We build on a recently presented measure of approximate rotational sym-
metry in 2D [10], defined as the overlapping area between a shape and rotated
versions of itself. We show that such a measure can be extended to 3DSC and
derive asymmetry based on the absolute differences between overlapping bins of
the descriptor and rotated versions of itself. Both measures depend on the rota-
tion angle but not on the selection of the origin of azimuth bins, which allows
us to obtain patterns that capture the rotational asymmetry of the descriptor
over the azimuth but are invariant to the rotation of its bins.

The asymmetry patterns can be defined in a variety of ways, depending on
the spatial relationships that need to be highlighted. Thus, we define Asymme-
try Patterns Shape Contexts (APSC) [23] from a subset of the possible spatial
relations present in the spherical support region; hence they can be thought of
as a family of descriptors that depend on the subset that is selected.

Concrete examples of APSC are evaluated by defining some of the simplest
possible spatial patterns. We show that the performance of APSC depends heav-
ily on the selection of these spatial patterns, which can be useful to target dif-
ferent types of points. The computation of an APSC descriptor is slightly more
expensive than a single 3DSC but produces considerable savings in matching
time and memory (APSC requires half the memory of 3DSC). This computa-
tional efficiency contrasts with prior work exploring the use of symmetry in
geometric descriptors using Spherical Harmonics [14].

In the next section we provide the definition of APSC, as well as a brief
review of 3DSC. Experimental evaluation is presented in Sect. 3, followed by a
discussion of results (Sect. 4) and concluding remarks (Sect. 5).

2 Asymmetry Patterns Shape Contexts

Computation of the APSC descriptor starts by computing a 3DSC descriptor
[9], from which the asymmetry patterns are later extracted.

2.1 3D Shape Contexts

This descriptor is based on a 3D-histogram computed on a spherical support
region centered at the interest point, v, considering a neighborhood Nv =
{w | ‖w − v‖ ≤ rN}, namely all points within a radius rN . The North pole
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of the sphere is oriented with the normal vector at the interest point nv. The
default structure has NE = 11 elevation bins and NA = 12 azimuth bins, both
uniformly spaced, and NR = 15 radial bins logarithmically spaced as follows:

rk = exp
(

ln (rmin) +
k

NR
ln

(
rN

rmin

))
(1)

where rk is the k-th radial division from a total of NR, rN is the radius of the
spherical neighborhood and rmin is the radius of the smallest bin.

The logarithmic sampling is aimed at assigning more importance to shape
changes that are closer to the interest point. The contribution to the histogram
of each point is normalization by bin volume and sampling density.

As the spherical support region is defined based on v and nv, there is an
ambiguity in the origin of the azimuth bins. This is dealt with by calculating NA

descriptors per point, covering all possible shifts. The computation of multiple
descriptors is done for the model (i.e. during training), so that during matching
only one descriptor is computed and matched to the multiple descriptors by
choosing the one that yields the smallest Euclidean distance:

d(x,y) = min
0≤a<NA

√√√√NE−1∑
i=0

NA−1∑
j=0

NR−1∑
k=0

(xi,j+a,k − yi,j,k)2 (2)

where x and y are the descriptors to compare and the addition j + a is modulo
NA (i.e. circular) so that xi,j+a,k is an azimuth rotation of xi,j,k (i.e. about the
North-South axis of the sphere) by a bins.

2.2 Rotational Symmetry

In a recent work, Guo et al. [10] presented continuous measures of approxi-
mate bilateral and rotational symmetry. Given a shape m in 2D and a rotation
angle φ about the z-axis (i.e. perpendicular to the plane containing the shape),
they defined the rotational central symmetry degree Sc(m, φ) to be the area of
intersection of shape m with a rotated version of itself by an angle φ, R(m, φ),
normalized by the area of shape m:

Sc(m, φ) =
Area(m ∩ R(m, φ))

Area(m)
(3)

Defined in this way, Sc(m, φ) measures the degree of rotational symmetry of
shape m from 0 (no symmetry) to 1 (perfect symmetry at the considered angle).

We can adapt this symmetry measure to the 3DSC descriptor by converting
the area overlap into the minimum value of overlapping bins. That is, as the
support region of the descriptor is spherical, the overlap of rotated shapes (in
terms of area or volume) is always perfect, but not the values assigned to the
coinciding bins. For example, assume we extract from a 3DSC descriptor x the
ring composed by all the bins at a given elevation i and radius k; this will
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generate a shape m represented as a sequence of NA non-negative values from
the corresponding bins:

mj = xi,j,k, mj ≥ 0∀j ∈ [1;NA] (4)

We can define the symmetry degree of the sequence m as follows:

S(m, a) =

∑
j min (mj ,mj+a)∑

j mj
(5)

where, as before, j + a is the addition modulo the cardinality of m (NA in this
example). Notice that the angular parameter φ used in the area-based definition
is replaced by the shift parameter a, which represents a discrete azimuth rotation
of 2π/NA. Thus, S behaves analogously to Sc.

By considering asymmetry as the complement of symmetry, we obtain a
particularly simple formulation:

A(m, a) = 1 − S(m, a) =

∑
j mj − ∑

j min (mj ,mj+a)∑
j mj

=
1
2

∑
j

(
max (mj ,mj+a) − min (mj ,mj+a)

)
∑

j mj
=

∑
j |mj − mj+a|
2

∑
j mj

(6)

which holds because for every pair (mj ,mj+a) one element is the maximum
and the other one the minimum, hence adding both guarantees to include each
element of m exactly twice in the summation [23].

The asymmetry degree A(m, a) defined in (6) is the mean of absolute differ-
ences between m and R(m, a) with an appropriate normalization factor. While
such normalization is important to facilitate a meaningful interpretation of the
asymmetry value in [0; 1], it is not desirable in our case as it removes potentially
useful information. Thus we define:

A1(m, a) =
∑
j

|mj − mj+a| (7)

2.3 Asymmetry Patterns

We obtain asymmetry patterns by considering all possible azimuth rotations of
the sequence that generate distinct values:

PA(m) = A1(m, 1),A1(m, 2), . . . ,A1(m, �NA

2
	) (8)

where �x	 is the integer part of x. Defined in this way the asymmetry pattern
accounts for approximately half the possible rotations, because those remaining
would generate only repeated values. This happens because A1(m, a) is an even
function with respect to a:

∀a ∈ [1;NA] : A1(m, a) = A1(m,−a) = A1(m, NA − a) (9)
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Fig. 1. Left: the World map as an example of a shell with (ideally) constant radius.
The azimuth (longitude) and elevation (latitude) bins are also indicated. Right: the
same spherical shell after arbitrary and independent azimuth rotations of two rings
with constant elevation (4-th and 8-th bins).

where both addition and substraction are modulo NA operations. Intuitively, this
can be understood from the definition as an overlap between m and a rotated
version of itself by an angle φ = 2π a/NA that we can call m′ = R(m, φ). The
overlap between the two would be the same if we rotate both m and m′ by any
angle, for example −φ, which would transform shape m into R(m, 2π − φ) and
shape m′ into m. Hence, the overlap between m and R(m, φ) is equivalent to
the overlap between m and R(m, 2π − φ).

Thus, the sequence PA(m) is the asymmetry pattern of the sequence m,
indicating how asymmetric is the ring that originated m for different angles of
azimuth rotation. However, from the definition of A(m, a), it is clear that the
generated pattern is invariant to the origin chosen for the azimuth bins, i.e.

PA(m) = PA(R(m, a)),∀a ∈ Z (10)

2.4 Spatial Relationships

So far, we have worked with a sequence m defined as in (4), namely the bins
of a ring at fixed elevation and radius from the spherical support of a 3DSC.
This choice seems natural, as it allows to transform each (i − k) ring of a 3DSC
descriptor x into an asymmetry pattern that is invariant to the choice of azimuth.

However, such a choice takes into account only the spatial relationships within
each (i−k) ring. To illustrate this, suppose that we consider all bins of x at a fixed
radius. This is a spherical shell and we could represent it on a Cartesian plane
similarly to a World map, as shown in Fig. 1, where latitude is the elevation
and longitude is the azimuth. If we consider the representation of each ring
independently, then any azimuth shift of a ring has no effect in our representation
and both the correct World map of Fig. 1(left) and the example with shifted rings
in Fig. 1(right) will generate the same set of patterns. A similar reasoning can
be applied to the relation between shells of different radii. While this is not
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Table 1. Description of some specific spatial patterns for APSC descriptors. In all
cases the sequences are generated by varying the azimuth index j.

Abbreviation Sequence(s) equation Description

A mj = xi, j, k Azimuth ring

DAE mj = xi+j, j, k Azimuth-Elevation diagonal

DAR mj = xi, j, k+j Azimuth-Radius diagonal

DAER mj = xi+j, j, k+j Azimuth-Elevation-Radius diagonal

A +E m1,j = xi, j, k, m2,j = xi+1, j, k Azimuth ring+ Elevation neighbors

A +R m1,j = xi, j, k, m2,j = xi, j, k+1 Azimuth ring+ Radial neighbors

A +DAE m1,j = xi, j, k, m2,j = xi+j, j, k Azimuth ring+ Az-Elev diagonal

A +DAR m1,j = xi, j, k, m2,j = xi, j, k+j Azimuth ring+ Az-Rad diagonal

A +DAER m1,j = xi, j, k, m2,j = xi+j, j, k+j Azimuth ring+ Az-Elev-Rad diag

necessarily negative (e.g. it might be useful to disable certain spatial relations),
in the general case it can lead to a loss of discriminant information.

The choice of what spatial relations are considered is related to the definition
of m. Straight-forward alternatives include considering adjacent rings (either in
elevation or radius) or, if relaxing the rotational invariance requirement, diag-
onal rings, i.e. jointly changing the bin indexes of azimuth with radius and/or
elevation. In Table 1 we indicate the sequences to generate eight other simple
patterns resulting from combinations of diagonals, adjacent rings and azimuth
rings. When jointly considering two rings, e.g. A + E, A + DAR, the overlap is
computed only between rings with the same definition:

A2(m, a) =
∑
j

|m1,j − m1,j+a| + |m2,j − m2,j+a| (11)

All additions are circular, modulo the corresponding number of bins (NE , NA

and NR respectively for i, j and k). In principle, the definition of the sequences
can be arbitrary and the above are just a few intuitive choices. Thus, APSC can
be though of as a family of descriptors with a flexible definition that allows their
adaptation so as to highlight or disable specific spatial relationships.

3 Experimental Evaluation

In this section we compare the performance of APSC to the following three
algorithms, which constitute competing alternatives:

• 3DSC [9], which generate descriptors that are not invariant to azimuth rota-
tions.

• HSC [9], which achieve invariance to azimuth rotations by decomposing each
spherical shell at fixed radius rk of a 3DSC descriptor into Spherical Harmonics
keeping only the modulus of the resulting coefficients.
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• USC [26], which compute a 3DSC with a unique orientation of the spherical
support region based on the principal axes in a neighborhood of the interest
point and a sign disambiguation step.

In all cases we used the default configuration as indicated in the original
papers: NE = 11 elevation bins, NA = 12 azimuth bins and NR = 15 radial
bins. The radius of the spherical support region was set to rN = 30 mm and the
minimum radius to rmin = 1 mm (see (1)). Spherical Harmonics were computed
up to order NSH = 16. Thus, 3DSC and USC had a total of NE×NA×NR = 1980
bins while HSC had a total of NR × NSH × (NSH + 1)/2 = 2040 bins.

For APSC, we test the 9 descriptors indicated in Table 1, computed starting
from a 3DSC descriptor x, whose elements are indexed by (i, j, k) = (elevation,
azimuth, radius). We always generate sequences for all possible combinations of
i and k (while varying j), which results in full coverage of the bins of x. For each
sequence of length NA = 12 bins, an asymmetry pattern of length �NA/2	 = 6
is generated. Thus, each APSC descriptor has only NE × NA × 6 = 990 bins.

3.1 Craniofacial Landmarks

We frame our evaluation in the task of craniofacial landmark localization. This
landmark-based evaluation has two important advantages with respect to eval-
uations based on keypoints (i.e. points that are considered highly discriminant
or salient from the point of view of a descriptor): (i) all descriptors are evalu-
ated in the same set of points which are not necessarily salient and, as in the
case of facial landmarks, can include diverse (local) geometries that pose dif-
ferent degrees of challenge to the descriptor; (ii) the evaluation is done on real
world examples (e.g. a population of faces where anatomical correspondences
have been manually annotated), instead of using synthesized instances obtained
by modifying a given example by some set of transformations [3,20,26].

Our test dataset consisted of 144 facial scans acquired by means of a hand-
held laser scanner1. Special care was taken to avoid occlusions due to facial
hair. The extracted surfaces were subsampled by a factor of 4 : 1, resulting
in an average of approximately 21.3 thousand vertices per mesh. The dataset
contains exclusively healthy volunteers who acted as controls in the context
of craniofacial dysmorphology research. Each scan was annotated with a set of
anatomical landmarks, in accordance with definitions in [12] (based on [8]), from
which we target the 22 points indicated in Fig. 2(a).

The fact that the test dataset was acquired in the context of clinical research
makes it especially suited for tests of localization accuracy. As can be observed
in Fig. 2(a), these are high quality scans that have been carefully annotated by
experts based on anthropometric definitions. Recent studies indicate that the
intra- and inter-observer uncertainty of this type of annotation are typically
between 1 mm and 2 mm [1,25].

1 Polhemus FastSCANTM , Colchester, VT, USA. An example is available at http://
www.cipa.dcu.ie/videos/face3d/Scanning DCU RCSI.avi [Accessed on 20.05.2013].

http://www.cipa.dcu.ie/videos/face3d/Scanning_DCU_RCSI.avi
http://www.cipa.dcu.ie/videos/face3d/Scanning_DCU_RCSI.avi
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Fig. 2. (a) A scan from the clinical dataset with the 22 landmarks used in this study:
en = endocanthion; ex = exocanthion; n = nasion; a = alare; ac = alar crest; nt = nostril
top; prn = pronasale; sn = subnasale; ch = cheilion; cph = crista philtrum; li = labiale
inferius; ls = labiale superius; sto = stomion; sl = sublabiale; pg = pogonion; [12]; (b)
average accuracy curves of USC, 3DSC and APSC (using A + E rings) targeting the
nose corners (ac). Error bars indicate a 95 % confidence interval.

3.2 Accuracy

In this section we evaluate the performance of each descriptor for the different
landmarks on an individual basis. This is done using the expected local accuracy
eL(rS), as defined in [21]. For each descriptor and landmark that is targeted,
eL(rS) is computed as follows:

1. Start from an annotated set of facial surfaces represented by meshes Mi.
2. For every vertex v ∈ Mi compute a descriptor score, s(v), which measures

how similar is the descriptor of vertex v to that of the targeted landmark.
3. For every vertex v ∈ Mi compute also the Euclidean distance to the correct

position of the targeted landmark, say d(v).
4. For each Mi consider a neighborhood of radius rS around the ground truth

position of the targeted landmark and select vmax
i as the vertex with highest

score in this neighborhood. Its distance to the ground truth is d(vmax
i ).

5. There is one value of d(vmax
i ) for each mesh; eL(rS) is their expected value

over the test set:

eL(rS) = E[d(vmax
i,rS )] vmax

i,rS = argmax
v∈Ni,rS

(
s(v)

)
(12)

Ni,rS = {v ∈ Mi | d(v) ≤ rS} (13)

where E[x] is the expected value of x. That is, given a target landmark, for
each mesh Mi we consider a neighborhood of radius rS around the ground
truth position of the landmark and select vmax

i as the vertex with the maximum
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score in this neighborhood. We are interested in the expected distance of these
maximum-score vertices to the targeted landmark.

We used the negative Euclidean distance to a template as the descriptor score.
The template for each landmark was computed as the median of descriptors over
a training set. The training and test sets were obtained from the set of 144 facial
scans described above by means of 6-fold cross validation.

An indicative example is provided in Fig. 2(b), showing the obtained curves
of eL(rS) for the nose corner using USC, 3DSC and APSC (computing patterns
over A + E rings). The three curves show an initial growth of the error with the
search radius until they reach a nearly flat region or plateau. This is the most
important part of the curve, because it provides both the accuracy and usable
local range of the descriptor for the analyzed landmark. In other words, for
search radii at which eL(rS) is flat the descriptor shows stable behavior. Hence,
the first plateau is identified as the main feature of the local accuracy curves,
allowing their characterization with just three numbers: the value of eL(rS) at
the plateau and the plateau limits in terms of rS [21]. Table 2 summarizes the
results for HSC, USC, 3DSC and 5 selected APSC patterns2.

Continuing with the example from Fig. 2(b), it is interesting to analyze the
behavior of eL(rS) for radii beyond the plateau: for the three descriptors in the
plot there is a sudden increase in the error at radii between 25 and 30 mm.
Typically this is caused by the presence of a strong source of false positives (i.e.
points with a very high score but not close to the targeted landmark) at the
distance where the error increase is observed. In this case, the source of false
positives is the bilaterally symmetric point (i.e. the other nose corner), typically
located at 25 to 30 mm. This explains the strong coincidence in the upper plateau
limits shown in Table 2 for nose corners (ac) or the inner eye-corners (en), as
the bilaterally symmetric points are relatively close to each other.

The sources of false positives are not necessarily the symmetric point to the
one targeted and depend on the descriptor that is used. There are also two
special types of points: (i) the ones without false positives in the analyzed range
(which we set to 200 mm); (ii) points that do not show stable behavior in terms
of eL(rS), which are indicated in Table 2 by n.p (no plateau).

From the results in Table 2 we can conclude that:

• For the majority of landmarks, at least one of the specific patterns of APSC
that we tested showed comparable performance to the best descriptor.

• For eight landmarks (ex (2), ac(2), nt(2) and cph(2)) there were one or more
APSC descriptors that significantly outperformed 3DSC. Interestingly, HSC
also outperformed 3DSC for ac, nt and cph, but not for ex.

• There were four landmarks (a(2), li and sl) for which none of the tested APSC
achieved sufficient performance when compared to 3DSC.

• The performance of APSC descriptors strongly depends on the spatial pat-
terns that are considered. Jointly considering two rings produced lower errors
than APSC derived from single rings.

2 The complete results for all patterns listed in Table 1 are available at http://www.
cipa.dcu.ie/pubs full.html [Accessed on 15.07.2013].

http://www.cipa.dcu.ie/pubs_full.html
http://www.cipa.dcu.ie/pubs_full.html
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Table 2. Expected local accuracy [mm]. If a plateau is found, its value and limits are
indicated, otherwise n.p (no plateau) is indicated. For each landmark (rows), the best
descriptor is highlighted in boldface as well as those with no statistically significant
difference from it. The latter are further highlighted with an asterisk.

Lmk HSC USC 3DSC APSC

DAR DAER A+E A+R A+DAER

en 1.3* 1.9 1.4 1.5 1.5 1.4* 1.3 1.3*

(2) (2–24) (3–25) (3–25) (3–25) (3–25) (3–24) (3–25) (3–25)

ex 4.5 n.p 4.3 2.9 3.9 5.4 4.7 3.1*

(2) (16–90) (13–88) (6–67) (19–48) (13–88) (14–89) (8–88)

n 1.8 4.6 1.5 1.6* 1.6* 2.3 2.0 1.7*

(3–200) (5–12) (3–200) (4–200) (4–64) (4–200) (3–200) (4 - 200)

a 1.4* n.p 1.4 2.9 n.p 2.1 1.8 2.0

(2) (3–26) (4–27) (6–12) (4–25) (4–26) (6–26)

ac 2.1* 5.8 4.7 9.0 n.p 2.3 2.1 5.1

(2) (5–25) (14–25) (9–25) (16–24) (7–25) (4–11) (14–25)

nt 2.0 12.2 8.0 6.9 7.5 2.3 2.2 6.6

(2) (4–8) (14–200) (14–200) (12–200) (11–200) (5–8) (5–9) (11–200)

prn 1.4 1.4 1.2 1.3 1.3* 1.3* 1.3* 1.3

(3–200) (2–200) (2–200) (3–200) (2–200) (2–200) (2–200) (3–200)

sn 1.8 n.p 1.6 1.8* 2.0 1.9 1.9 1.9

(4–200) (4–55) (4–22) (5–16) (3–200) (3–200) (4–200)

ch 3.8 2.4 2.1 2.5 2.9 2.8 2.9 2.3*

(2) (11–22) (4–42) (5–19) (9–29) (10–39) (6–18) (5–20) (5–28)

cph 2.1 13.3 8.4 7.1 7.0 n.p 7.7 2.7

(2) (4–9) (20–34) (18–200) (17–86) (16–59) (16–200) (5–8)

li 5.0 2.7 2.3 4.4 3.4 4.9 4.8 3.8

(16–51) (7–48) (5–10) (16–37) (11–45) (10–15) (9–15) (15–95)

ls 4.1 n.p 2.3* 2.7 2.2 5.2 5.7 3.8

(6–14) (8–46) (8–13) (6–11) (14–200) (10–54) (7–200)

sto 2.7* 2.9 2.2 2.5* 6.1 4.0 4.5 3.1

(6–14) (8–46) (8–78) (7–17) (14–40) (9–14) (11–89) (12–54)

sl 5.4 3.0 3.2* 5.5 7.4 4.7 6.0 6.2

(10–54) (10–18) (11–27) (13–79) (16–29) (11–77) (12–84) (17–62)

pg 7.0 11.6 5.4 7.9 7.1 7.6 5.6* 5.7*

(10–200) (19–120) (10–200) (19–200) (13–200) (13–26) (13–23) (10–200)

In global terms, averaging eL(rS) over all 22 landmarks for each descriptor,
3DSC, HSC and the APSC descriptors using patterns of two rings showed very
similar overall accuracy. On the other hand, USC and the two APSC based on
a single ring showed poorer performance [23]. This confirms that, in general,
considering individual rings implies a loss of important information, as all spa-
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tial relationships between different rings are not taken into account (Sect. 2.4).
Nevertheless, Table 2 shows that for some particular cases this might not have
an impact in local accuracy (e.g. n, prn, ls) or might even be beneficial (ex ).

3.3 Implementation and Complexity

Our implementations of 3DSC and USC are based on the Point Cloud Library
[18] with some modifications to improve the computation speed by removing
redundant operations and including multi-threading with OpenMP [7]. A trilin-
ear interpolation was included in the construction of the histograms as it was
experimentally found to improve the performance of all tested descriptors.

It is interesting to analyze the sign disambiguation step when deriving the
axes for USC: the orientations of the generated normals were not consistently
pointing inwards or outwards for 30%–35% of points. This is easy to verify and
correct in our case as the input data are facial surfaces. The results reported
in this paper include the correction of the reference frame orientation to ensure
that all normals were pointing outwards from the object, which reduced the
overall error of USC by approximately 10%. The latter suggests that similar
inconsistencies might also exist in the sign of the other axes (and hence in the
origin of the azimuth bins), which explains the lower accuracy of USC with
respect to the other methods that were tested.

Regarding computational complexity, there are two aspects to consider:
(i) computation of the descriptor and (ii) point-wise comparisons or matching.

The fastest descriptor to compute is 3DSC, as all the others are built from it
plus some additional step. In the case of USC the additional step is dominated
by an SVD on a neighborhood of the point of interest. For APSC and HSC the
additional step is carried out based on the 3DSC bins and is therefore decou-
pled from the sampling density of the mesh. However, the computation of the
histogram to build the 3DSC descriptor depends on the number of neighbors
considered and, therefore, on the density of the mesh.

The above hampers our ability to produce an exact analysis of complexity.
Thus, in Table 3 we provide numerical results for the computation time of the
descriptors, relative to the computation time of 3DSC, which in our experiments
averaged 3.45 s on an Intel Xeon E5320 @1.86 GHz. Note that HSC was approx-
imately an order of magnitude slower than all other descriptors, as it required
the decomposition of each fixed-radius shell into Spherical Harmonics. Assum-
ing that the NSH × (NSH +1)/2 basis functions are pre-computed, we still need
to project each shell into each basis function, which roughly implies NA × NE

complex multiplications and additions. Thus, the whole decomposition takes at
least

O

(
NA NE NR

NSH (NSH + 1)
2

)
(14)

The above cost is considerably higher than the cost of computing APSC,
which for each ring m takes only O(N2

A/2) additions. Thus, if considering only
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Table 3. Computational complexity of the descriptors relative to 3DSC = 1.

Descriptor Computation Matching

HSC 11.1 NSH (NSH+1)

2NE N2
A

USC 1.23 1
NA

1-ring APSC 1.05 1
2NA

2-ring APSC 1.09 1
2NA

single rings, the complexity added by APSC to the computation of 3DSC is
O(NE NRN2

A/2). This cost grows linearly with the number of rings jointly con-
sidered, so it approximately doubles for the last row of Table 3. Note that the
complexity in (14) in not directly comparable to that of APSC, as the first one
is a lower bound based on complex additions and multiplications while the latter
involves only real additions.

The matching time depends exclusively on the bins for all descriptors. Hence,
the relative complexity to that of 3DSC can be easily derived and is shown in
Table 3. Being the fastest to compute, 3DSC are also the slowest to match as
they require computation of the NA distances that correspond to all possible
azimuth rotations, as in Eq. (2). All other descriptors compute a single distance.
In the case of HSC, as the number of bins is different to 3DSC, the relative
computation time depends on the choice of NSH , but approaches (1/NA) with
the default parameters. Finally, all APSC have just half as many bins as 3DSC
and USC, which makes them the fastest to match.

4 Discussion

From the results presented in the previous section we can conclude that APSC
allows construction of descriptors that perform comparably to 3DSC in terms of
overall accuracy, with little extra load in computation of the descriptor (<10%
in our experiments), and run several times faster during matching.

With respect to the previous alternatives to achieve azimuth-invariance in
shape contexts, APSC showed similar accuracy to HSC at a much lower com-
putational load (an order of magnitude) and outperformed USC both in terms
of accuracy and speed. However, the greatest potential of APSC is their flexi-
bility to derive different descriptors depending on the spatial patterns that are
selected to construct the sequences m, from which asymmetry is extracted. As
shown in Table 2, specific choices of spatial patterns might produce considerably
lower errors than those obtained with 3DSC for certain landmarks.

It might be argued that none of the tested APSC was optimal for all land-
marks; a potential reduction in the error generalized through the majority of
points would require different APSC to target different landmarks. Nonetheless
such a strategy is possible and prior work in landmark localization has indeed
adopted different features to localize each of the targeted landmarks [6,11,19].
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Table 4. Best-performing APSC descriptors for each landmark (i.e. the one with the
lowest error and all those with no statistically significant difference from it) for three dif-
ferent annotated dataset, as indicated by the makers: clinical (�), FRGC with GTA-1
(�) and FRGC with GTA-2 (�).

APSC ‘ en ex n prn ac ch ls li pg

A

DAE

DAR

DAER

A+E
A+R

A+DAE

A+DAR

A+DAER

Moreover, combining two or more APSC can be far more efficient than combining
other different descriptors, as the extra computation required would be rather
marginal due to all spatial patterns being extracted from the same 3DSC, which
would be computed only once. For example, all five APSC descriptors listed in
Table 2 can be computed together with less than 1.4 times the computational
load of a single 3DSC descriptor.

The spatial patterns that were tested correspond to some straightforward
definitions from a large set of possibilities. While the wrong choice of spatial
patterns might negatively affect performance, it would be expected that more
elaborate strategies to choose these patterns, such as feature selection, would
bring further improvement. While feature selection strategies would also be pos-
sible in 3DSC, the issue of azimuth ambiguity can considerably complicate the
search for an optimal solution.

Another important aspect is how stable would the selected patterns be for
different databases. To investigate this, we selected a subset of 100 scans from
the Face Recognition Grand Challenge (FRGC) database, with two independent
sets of manual Ground Truth Annotations (GTA):

• GTA-1: Made available by Szeptycki et al. [24], with some additions and cor-
rections introduced by Creusot et al. [6], which are available on line3.

• GTA-2: Our own manual annotations [22], also available on line4.

The difference between these two sets is that the annotations in GTA-1 were
marked up based on 2D images, while those in GTA-2 were annotated directly in
3D and were shown to be considerably more precise [22]. Hence, these sets allow
us to test the influence of noisy ground truth in the selection of descriptors.
3 http://clementcreusot.com/phd/ [Accessed on 08.07.2013].
4 http://www.cipa.dcu.ie/pubs full.html [Accessed on 15.07.2013].

http://clementcreusot.com/phd/
http://www.cipa.dcu.ie/pubs_full.html
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Table 4 summarizes the results obtained by testing all APSC descriptors
defined in Table 1. We targeted the 11 landmarks that are common to three
annotated datasets: clinical (Sect. 3), FRGC with GTA-1 and FRGC with GTA-2
(the latter two correspond to the first 100 scans of FRGCv1; see [22] for details).
For each landmark in Table 4, we indicate with a marker all best-performing
descriptors, i.e. the one with the lowest error and all those with no statistically
significant difference from it.

It is observed that, for a majority of the landmarks tested, the selection of
best performing descriptors correlates reasonably well across the three datasets,
highlighting the following set as the most stable choices: ex → A + DAR; n →
DAR; prn → {DAR or DAER or A + DAR or A + DAER}; ac → {A + E or A + R};
ls → DAER; li → DAER; pg → A + DAER. On the other hand, the selection of
descriptors for en and ch showed a strong dependency on the dataset that is
employed. This was true both for changes in the 3D data (from clinical data to
FRGC) and for changes in the annotations (GTA-1 vs GTA-2).

5 Conclusions

In this paper we present a new family of 3D geometric descriptors based on a
simple measure of rotational symmetry that has recently been proposed based on
the overlap of a shape with a rotated version of itself [10]. We compute asymme-
try patterns on sequences of bins extracted from a 3DSC descriptor by varying
the azimuth index and, optionally, the radial and/or elevation bins. This allows:
(i) definition of APSC descriptors with azimuth invariance, (ii) highlighting or
disabling some of the spatial patterns present in the spherical grid of a 3DSC
that can be used to specialize the descriptor for different types of points.

We evaluated nine examples of APSC in terms of local accuracy by targeting
22 craniofacial landmarks on a set of 144 facial scans. The accuracy was measured
in terms of distance to ground truth consisting of expert annotations. Our results
showed that APSC can provide invariance to azimuth rotations at the expense
of a small overhead in computation of the descriptor, relative to 3DSC, which
did not exceed 10%. On the other hand the rotation invariance reduces the time
required for matching two descriptors by a factor of twice the number of azimuth
bins. APSC were also shown to perform better than previous approaches that
provided azimuth invariance to shape contexts.

The greatest potential of APSC is their flexibility to derive different descrip-
tors at an incremental computational cost. By appropriately selecting the pat-
terns to extract, we can build descriptors especially tuned to produce highly
accurate detections of one or several landmarks. While in general, the selection
of these patterns depends on the dataset, our tests suggest that such variability
is limited; for a majority of the landmarks that we tested, it was possible to
identify APSC descriptors with stable performance across different datasets.
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