
Real-Time Reconfigurable Scheduling
of Sporadic Tasks

Hamza Gharsellaoui1,2(B) and Samir Ben Ahmed3

1 Higher School of Technology and Computer Science,
University of Carthage, Carthage, Tunisia

2 Al-Jouf College of Technology, Technical and Vocational Training Corporation,
Al-Jouf, Kingdom of Saudi Arabia
gharsellaoui.hamza@gmail.com

3 Faculty of Mathematical, Physical and Natural Sciences of Tunis, FST,
University of Tunis El Manar, Tunis, Tunisia

Samir.benahmed@fst.rnu.tn

Abstract. This book chapter deals with the problem of scheduling mul-
tiprocessor real-time tasks by an optimal EDF-based scheduling algo-
rithm. Two forms of automatic reconfigurations which are assumed to
be applied at run-time: Addition-Removal of tasks or just modifications
of their temporal parameters: WCET and/or deadlines. Nevertheless,
when such a scenario is applied to save the system at the occurrence of
hardware-software faults, or to improve its performance, some real-time
properties can be violated at run-time. We define an Intelligent Agent
that automatically checks the system’s feasibility after any reconfigura-
tion scenario was applied on a multiprocessor embedded system. Indeed,
if the system is unfeasible, then the Intelligent Agent dynamically pro-
vides precious technical solutions for users to send sporadic tasks to idle
times, by modifying the deadlines of tasks, the worst case execution times
(WCETs), the activation time, by tolerating some non critical tasks, by
sending some tasks from their current processors to be scheduled in other
processors, or in the worst case by removing some soft tasks according to
predefined heuristic. We implement the agent to support these services.

Keywords: Real-time reconfigurable sporadic tasks · Intelligent agent ·
Multiprocessor systems automatic reconfigurations · EDF-based
scheduling algorithm

1 Introduction

Nowadays, the new generations of embedded control systems are addressing new
criteria such as flexibility and agility [1]. For these reasons, there is a need to
develop tools, methodologies in embedded software engineering and dynamic
reconfigurable embedded control systems as an independent discipline. Each
system is a subset of tasks. Each task is characterized by its worst case execution
times (WCETs) Cp,ψh

i , an offset (release time) ap,ψh

i , a period T p,ψh

i and a dead-
line Dp,ψh

i for each reconfiguration scenario ψh, (h ∈ 1..M, we assume that we
c© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 24–39, 2014.
DOI: 10.1007/978-3-662-44920-2 2



Real-Time Reconfigurable Scheduling of Sporadic Tasks 25

have M reconfiguration scenarios) and on each processor p, (p∈ 1..K, we assume
that we have K identical processors numbered from 1 to K), and n real-time
tasks numbered from 1 to n that composed a feasible subset of tasks entitled
ξold. The general goal of this work is to be reassured that any reconfiguration sce-
nario ψh changing the implementation of the embedded system does not violate
real-time constraints: i.e. the system is feasible and meets real-time constraints
even if we change its implementation and to correctly allow the minimization
of the response time of this system after any reconfiguration scenario [1]. To
obtain this optimization (minimization of response time), we propose an intelli-
gent agent-based architecture in which a software agent is deployed to dynami-
cally adapt the system to its environment by applying reconfiguration scenarios.
A reconfiguration scenario ψh means the addition, removal or update of tasks in
order to save the whole system on the occurrence of hardware/software faults, or
also to improve its performance when random disturbances happen at run-time.
Sporadic task is described by minimum interarrival time P p,ψh

i which is assumed
to be equal to its relative deadline Dp,ψh

i , and a worst-case execution time
(WCET) Cp,ψh

i for each reconfiguration scenario ψh and on each processor p.
A random disturbance is defined in the current work as any random internal
or external event allowing the addition of tasks that we assume sporadic or
removal of sporadic/periodic tasks to adapt the system’s behavior. Indeed, a
hard real-time system typically has a mixture of off-line and on-line workloads
and assumed to be feasible before any reconfiguration scenario ψh. The off-line
requests support the normal functions of the system while the on-line requests are
sporadic tasks to handle external events such as operator commands and recov-
ery actions which are usually unpredictable. For this reason and in this original
work, we propose a new optimal scheduling algorithm based on the dynamic
priorities scheduling Earliest Deadline First (EDF) algorithm principles on each
processor p and for each dynamic reconfiguration scenario ψh in order to obtain
the feasibility of the system at run-time, meeting real-time constraints and for
the optimization of the response time of this system. Indeed, for independent,
preemptable tasks, on a uni-processor, EDF is optimal in the sense that if any
algorithm can find a schedule where all tasks meet their deadlines, then EDF
can meet the deadlines [2].

According to [3], a hyperperiod is defined as HP = [ζ, 2 ∗ LCM + ζ],
where LCM is the well-known Least Common Multiple of the tasks periods
and ζ is the largest task offset. This algorithm, in our original work assumes
that sporadic tasks span no more than one hyperperiod of the periodic tasks
HP (p,ψh) = [ζ(p,ψh), 2∗LCM+ ζ(p,ψh)], where LCMp,ψh is the well-known Least
Common Multiple of tasks periods and (ζp,ψh) is the largest task offset of all
tasks τp,ψh

k for each reconfiguration scenario ψh on each processor p. The prob-
lem is to find which solution proposed by the agent that reduces the response
time. To obtain these results, the intelligent agent calculates the residual time
Rp,ψh

i before and after each addition scenario and calculates the minimum of
those proposed solutions in order to obtain Respp,ψh

k optimal noted Respp,ψh
opt

k .



26 H. Gharsellaoui and S. Ben Ahmed

Where Respp,ψh
opt

k is the minimum of the response time of the current system
under study calculated by the intelligent agent.

To calculate this previous value Respp,ψh
opt

k , we proposed a new theoretical
concepts Rp,ψh

i , Sp,ψh

i , sp,ψh

i , fp,ψh

i and Lp,ψh

i for the case of real-time sporadic
operating system (OS) tasks. Where Rp,ψh

i is the residual time of task σp,ψh

i ,
Sp,ψh

i denotes the first release time of task σp,ψh

i , sp,ψh

i is the last release time of
task σp,ψh

i , fp,ψh

i denotes the estimated finishing time of task σp,ψh

i , and Lp,ψh

i

denotes the laxity of task σp,ψh

i for each reconfiguration scenario ψh and on each
processor p.

The organization of this work is as follows. Section 2 introduces the related
work of the proposed approach and gives the basic guarantee algorithm. In
Sect. 3, we present the new approach with deadline tolerance for optimal schedul-
ing theory. Section 4 presents the performance study, showing how this work is
a significant extension to the state of the art of EDF scheduling and discusses
experimental results of the proposed approach research. Section 5 summarizes the
main results and presents the conclusion of the proposed approach and describes
the intended future works.

2 Background

We present related works dealing with reconfigurations and real-time scheduling
of embedded systems. Today, real-time embedded systems are found in many
diverse application areas including; automotive electronics, avionics, telecom-
munications, space systems, medical imaging, and consumer electronics. In all
of these areas, there is rapid technological progress. Companies building embed-
ded real-time systems are driven by a profit motive. To succeed, they aim to
meet the needs and desires of their customers by providing systems that are
more capable, more flexible, and more effective than their competition, and by
bringing these systems to market earlier. This desire for technological progress
has resulted in a rapid increase in both software complexity and the processing
demands placed on the underlying hardware [3].

To address demands for increasing processor performance, silicon vendors no
longer concentrate wholly on the miniaturisation needed to increase processor
clock speeds, as this approach has led to problems with both high power con-
sumption and excessive heat dissipation. Instead, there is now an increasing trend
towards using multiprocessor platforms for high-end real-time applications [3].

For these reasons, we will use in our work the case of real-time scheduling on
homogeneous multiprocessor platforms. Before presenting our original contribu-
tion, we will present some definitions below. According to [1], each periodic task
is described by an initial offset ai (activation time), a worst-case execution time
(WCET) Ci, a relative deadline Di and a period Ti.

According to [4], each sporadic task is described by minimum interarrival time
Pi which is assumed to be equal to its relative deadline Di, and a worst-case exe-
cution time (WCET) Ci. Hence, a sporadic task set will be denoted as follows:



Real-Time Reconfigurable Scheduling of Sporadic Tasks 27

Sys2 = {σi(Ci,Di)}, i = 1 to m. Reconfiguration policies in the current paper
are classically distinguished into two strategies: static and dynamic reconfigura-
tions. Static reconfigurations are applied off-line to modify the assumed system
before any system cold start, whereas dynamic reconfigurations are dynamically
applied at run-time, which can be further divided into two cases: manual recon-
figurations applied by users and automatic reconfigurations applied by intelligent
agents [1,5]. This book chapter work focuses on the dynamic reconfigurations
of assumed mixture of off-line and on-line workloads that should meet deadlines
defined according to user requirements. The extension of the proposed algorithm
should be straightforward, when this assumption does not hold and its running
time is O(n + m) [6].

2.1 State of the Art

Nowadays, several interesting studies have been published to develop reconfig-
urable embedded control systems. In [7] Marian et al. propose a static reconfigu-
ration technique for the reuse of tasks that implement a broad range of systems.
The work in [11] proposes a methodology based on the human intervention to
dynamically reconfigure tasks of considered systems. In [10], an ontology-based
agent is proposed by Vyatkin et al. to perform system reconfigurations according
to user requirements and also the environment evolution. Window-constrained
scheduling is proposed in [8], which is based on an algorithm named dynamic
window-constrained scheduling (DWCS). The research work in [9] provides a
window-constrained-based method to determine how much a task can increase
its computation time, without missing its deadline under EDF scheduling. In [9],
a window-constrained execution time can be assumed for reconfigurable tasks in
n among m windows of jobs. In the current paper, a window constrained schedule
is used to separate old and new tasks that assumed sporadic on each processor
p and after each reconfiguration scenario ψh. Old and new tasks are located in
different windows to schedule the system with a minimum response time. In [5],
a window constrained schedule is used to schedule the system with a low power
consumption.

In the following, we only consider periodic and sporadic tasks. Few results
have been proposed to deal with deadline assignment problem. Baruah, Buttazo
and Gorinsky in [1] propose to modify the deadlines of a task set to minimize
the output, seen as secondary criteria of this work. So, we note that the optimal
scheduling algorithm based on the EDF principles and on the dynamic recon-
figuration scenario ψh is that we propose in the current original work in which
we give solutions computed and presented by the intelligent agent for users to
respond to their requirements.

2.2 Formalization

To illustrate the key point of the proposed dynamically approach, we assume that
there are K identical processors numbered from 1 to K, and n real-time tasks
numbered from 1 to n that composed a feasible subset of tasks entitled ξold and



28 H. Gharsellaoui and S. Ben Ahmed

need to be scheduled. At time t and before the application of the reconfiguration
scenario ψh, each one of the tasks of ξold is feasible, e.g. the execution of each
instance in each processor is finished before the corresponding deadline and the
tasks are not assumed to be arranged in any specific order.

Every processor p assigns a set of periodic tasks TSp = {τp
1 , τp

2 , ..., τp
n}. This

allocation is made with an allowance algorithm at the time of the design, for
example by using one of the well known techniques: first-fit (FF), next-fit (NF),
best-fit (BF), worst-fit (WF). These tasks are independent and can be inter-
rupted at any time. Every task τp

i has an execution time (Worst Case Execution
Time) Cp

i , one period T p
i , a deadline Dp

i which is assumed to be less than or equal
to its period, e.g. Dp

i ≤ T p
i . Every task instance k has to respect its absolute

deadline, namely the kth authority of the task τp
i , named τp

i,k must be completed
before time Dp

i,k = (k−1)T p
i +Dp

i . These tasks are handled by a global scheduler
(GS), which assigns them to processors by using the state informations of the
local schedulers. Moreover, under EDF scheduling, a task will fit on a processor
as long as the total utilization of all tasks assigned to that processor does not
exceed unity (the total utilization factor = 1). Finally, for reasons of simplicity,
we assume that the migration cost of the tasks are equal to zero.

We assume now the arrival at run-time of a second subset ξnew which is
composed of m real-time tasks at time t1 (t1 = t + Δt). We have a system
CurrentSys(t1) composed of n+m tasks. In this case a reconfiguration scenario
ψh is applied. The reconfiguration of the system Sysψh means the modification
of its implementation that will be as follows at time t1:

ξψh = Currentψh

Sys(t1) = ξold ∪ ξψh
new

where ξold is a subset of old tasks which are not affected by the reconfiguration
scenario ψh (e.g. they implement the system before the time t1), and ξψh

new a
subset of new tasks in the system. We assume that an updated task is considered
as a new one at time t1. When the reconfiguration scenario ψh is applied at time
t1, two cases exist:

– If tasks of ξψh = ξold ∪ ξψh
new are feasible, then no reaction should be done by

the agent,
– otherwise, the agent should provide different solutions for users in order to

re-obtain the system’s feasibility.

Running Example

In this section, we demonstrate the performance of our proposed approach for
both periodic synchronous and asynchronous, and sporadic tasks. The simula-
tion runs on our tool RT-Reconfiguration and proved by the real-time simulator
Cheddar [12] with a task set composed of old tasks (ξold) and new tasks (ξp,ψh

new )
on the processor p for each reconfiguration scenario ψh. We illustrate with a
simplified example to ease the understanding of our approach. The task set
considered for this example is given in Table 1 and is composed of 10 tasks.
The sum of utilization of all tasks is given in Table 1 and is equal to 426.1%.



Real-Time Reconfigurable Scheduling of Sporadic Tasks 29

Table 1. Task parameters of running example.

Tasks Ci Di Ti = Pi

τ1 2 9 7

τ2 3 21 20

τ3 2 9 9

τ4 2 13 10

τ5 3 15 9

τ6 14 21 19

τ7 10 24 16

τ8 8 18 18

τ9 13 16 17

τ10 5 11 12

We have 3 identical processors in our system to schedule these tasks. In this
case, we assume that each task’s deadline is less than or equal to its period.
The worst case execution times, deadlines, and the time periods of all tasks are
generated randomly. In this experiment, the system runs for time units equal to
hyper-period of periodic tasks.

In this experiment, our task set example is initially implemented by 5 char-
acterized old tasks (ξold = {τ1; τ2; τ3; τ4; τ5}). These tasks are feasible because
the processor utilization factor U = 1.19 ≤ 3. These tasks should meet all required
deadlines defined in user requirements and we have Feasibility(Currentξold

(t)) ≡
True.

Firstly, tasks are partitioned; task τ1 is partioned on first processor, τ2 and τ3
are partitioned on processor 2 while task τ4 and τ5 are partitioned on processor
3. We have three sets of local tasks. As there is only one task on first processor
then task τ1 utilization factor is the same as the first processor 1 utilization
factor (u1,0 = 0.285 ≤ 1) while utilization factors of processor 2 and processor 3
are calculated as follows:

U2,0 =
∑(2)2

i=1

C2
i

T 2
i

= 0.372 < 1,

U3,0 =
∑(2)3

i=1

C3
i

T 3
i

= 0.533 < 1.

We suppose that a first reconfiguration scenario ψ1 (h = 1) is applied at
time t1 to add 5 new tasks ξψ1

new = {τ6; τ7; τ8; τ9; τ10}. The new processor
utilization becomes Uψ1 = 4.261 > 3 time units. Therefore the system is unfeasi-
ble. Feasibility(Currentψ1

ξ (t1)) ≡ False. Indeed, if the number of tasks
increases, then the overload of the system increases too. Our optimal earliest
deadline first (OEDF) algorithm is based on the Guarantee Algorithm presented
by Buttazo and Stankovic in [4]. Indeed, OEDF algorithm is an extended and



30 H. Gharsellaoui and S. Ben Ahmed

ameliorate version of Guarantee Algorithm that usually guarantee the system’s
feasibility.

3 New Approach with Deadline Tolerance

In this section we will present some preliminaries concepts and we will describe
our contribution after.

In [4], Buttazo and Stankovic present the Guarantie Algorithm without the
notion of deadline tolerance, and then we will extend the algorithm in our new
proposed approach by including tolerance indicator and task rejection policy.
For this reason, and in order to more explain these notions we will present some
preliminaries.

3.1 Preliminaries

ξ denotes a set of active sporadic tasks σi ordered by increasing deadline in a
linked list, σ1 being the task with the shortest absolute deadline.

ai denotes the arrival time of task σi, i.e., the time at which the task is
activated and becomes ready to execute.

Ci denotes the maximum computation time of task σi, i.e., the worst case
execution time (WCET) needed for the processor to execute task σi,k without
interruption.

ci denotes the dynamic computation time of task σi, i.e., the remaining worst
case execution time needed for the processor, at the current time, to complete
task σi,k without interruption.

di denotes the absolute deadline of task τi, i.e., the time before which the
task should complete its execution, without causing any damage to the system.

Di denotes the relative deadline of task σi, i.e., the time interval between the
arrival time and the absolute deadline. Si denotes the first start time of task σi,
i.e., the time at which task σi gains the processor for the first time. si denotes
the last start time of task σi, i.e., the last time, before the current time, at which
task σi gained the processor.

fi denotes the estimated finishing time of task σi, i.e., the time according to
the current schedule at which task σi should complete its execution and leave
the system.

Li denotes the laxity of task σi, i.e., the maximum time task σi can be delayed
before its execution begins.

Ri denotes the residual time of task σi, i.e., the length of time between
the finishing time of σi and its absolute deadline. Baruah et al. [13] present a
necessary and sufficient feasibility test for synchronous systems with pseudo-
polynomial complexity. The other known method is to use response time analy-
sis, which consists of computing the worst-case response time (WCRT) of all
tasks in a system and ensuring that each task WCRT is less than its rela-
tive deadline. To avoid these problems, and to have a feasible system in this
paper, our proposed tool RT-Reconfiguration can be used. For this reason,
we present the following relationships among the parameters defined above:



Real-Time Reconfigurable Scheduling of Sporadic Tasks 31

di = ai + Di (1)
Li = di − ai − Ci (2)
Ri = di − fi (3)
f1 = t + c1; fi = fi−1 + ci ∀ i > 1 (4)

The basic properties stated by the following lemmas and theorems are used to
derive an efficient O(n + m) algorithm for analyzing the schedulability of the
sporadic task set whenever a new task arrives in the systems.

Lemma 1. Given a set ξ = {σ1, σ2, ..., σn} of active sporadic tasks ordered by
increasing deadline in a linked list, the residual time Ri of each task σi at time
t can be computed by the following recursive formula:

R1 = d1 − t − c1 (5)

Ri = Ri−1 + (di − di−1) − ci. (6)

Proof. By the residual time definition (Eq. 3) we have:

Ri = di − fi.

By the assumption on set ξ, at time t, the task σ1 in execution and cannot be
preempted by other tasks in the set ξ, hence its estimated finishing time is given
by the current time plus its remaining execution time:

f1 = t + c1

and, by Eq. 3, we have:

R1 = d1 − f1 = d1 − t − c1.

For any other task σi, with i > 1, each task σi will start executing as soon as
σi−1 completes, hence we can write:

fi = fi−1 + ci (7)

and, by Eq. 3, we have:

Ri = di − fi = di − fi−1 − ci =
di − (di−1 − Ri−1) − ci = Ri−1 + (di − di−1) − ci

and the lemma follows.

Lemma 2. A task σi is guaranteed to complete within its deadline if and only
if Ri ≥ 0 [4].



32 H. Gharsellaoui and S. Ben Ahmed

Theorem 3. A set ξ = {σi, i = 1 to m} of m active sporadic tasks ordered by
increasing deadline is feasibly schedulable if and only if Ri ≥ 0 for all σi ∈ ξ, [4].

3.2 Feasibility Analysis for Tasks

By considering real-time tasks and as we mentioned before, the schedulability
analysis should be done in the hyperperiod HP (p,ψh) = [ζ(p,ψh), 2∗LCM+ζ(p,ψh)],
where LCMp,ψh is the well-known Least Common Multiple of tasks periods and
(ζp,ψh) is the largest task offset of all tasks τp,ψh

k for each reconfiguration scenario
ψh on each processor p.

Let n+m be the number of tasks respectively in ξold and ξψh
new. By assuming

unfeasible system at time t1, and every processor p will execute its tasks in local
by using EDF, the following formula is satisfied:

∑n+m

i=1

Cψh

i

Tψh

i

> K,where K is the number of identical processors.

Our proposed algorithm provides guarantees to both old and new tasks in each
processor p if and only if,

∑n−j

i=1

Cp,ψh

i

T p,ψh

i

+
∑n+m

i=n−j+1

Cp,ψh

i

T p,ψh

i

≤ 1

where
∑n−j

i=1
C

p,ψh
i

T
p,ψh
i

denotes sum of utilization factor of n old tasks in processor

p for each reconfiguration scenario ψh and,
∑n+m

i=n−j+1
C

p,ψh
i

T
p,ψh
i

denotes sum of uti-

lization factor of new arrival m tasks to the processor p for each reconfiguration
scenario ψh.

We propose, for each reconfiguration scenario ψh, to add the tasks of ξold to
a linked list Lψh

old that we sort on the increasing order of their utilization factor
values.

3.3 Contribution: An Algorithm for Feasibility Testing
with Respect to Sporadic Task Systems

In the current book chapter, we suppose that on each processor p, each system
ξ(p) can be automatically and repeatedly reconfigured at each reconfiguration
scenario ψh. ξ(p) is initially considered as ξ(p,0) and after the hth reconfiguration
ξ(p) turns into ξ(p,ψh), where h∈ 1..M. We define V P p,ψh

1 and V P p,ψh

2 two virtual
processors to virtually execute old and new sporadic tasks, implementing the
system after the hth reconfiguration scenario for each processor p. In ξ(p,ψh),
all old tasks from ξ(p,ψh−1) are executed by the newly updated V P

(p,ψh)
1 and

the added sporadic tasks are executed by V P
(p,ψh)
2 . The proposed intelligent

agent is trying to minimize the response time Respp,ψh
opt

k of ξ(ψh) after each
reconfiguration scenario ψh and for each processor p.



Real-Time Reconfigurable Scheduling of Sporadic Tasks 33

For example, after the first addition scenario, ξ(p,0) turns into ξ(p,1). ξ(p,1) is
automatically decomposed into V P

(p,1)
1 and V P

(p,1)
2 for old and new tasks with

the processor utilization factors UV P
(p,1)
1 and UV P

(p,1)
2 respectively on each

processor p.
After each addition scenario, the proposed intelligent agent proposes to mod-

ify the virtual processors, to modify the deadlines of old and new tasks, the
WCETs and the activation time of some tasks, to send some tasks from proces-
sor i to another processor j, or to remove some soft tasks as following:

• Solution 1: Moving some arrival tasks to be scheduled in idle times for each
reconfiguration scenario ψh and on each processor p. (idle times are caused
when some tasks complete before its worst case execution time) (S1)

• Solution 2: maximize the dp,ψh

i for each reconfiguration scenario ψh and on
each processor p (S2)

By applying Eq. 3 that notices:
Ri = di − fi, we have:

Rp,ψh

i = dp,ψh

i − t − Cp,ψh

i .

Or, to obtain a feasible system after a reconfiguration scenario ψh , the follow-
ing formula must be enforced:

Rp,ψh

i ≥ 0 on each processor p.

By this result we can write: dp,ψh

inew −t−Cp,ψh

i ≥ 0, where dp,ψh

inew = dp,ψh

i +θp,ψh

i .

So, dp,ψh

i + θp,ψh

i − t − Cp,ψh

i ≥ 0 ⇒

θp,ψh

i ≥ t + Cp,ψh

i − dp,ψh

i .

• Solution 3: minimize the ci for each reconfiguration scenario ψh and on each
processor p (S3)

By applying Eq. 3 that notices:
Ri = di − fi, we have:

Rp,ψh

i = dp,ψh

i − t − Cp,ψh

i .

Or, to obtain a feasible system after a reconfiguration scenario, the following
formula must be enforced:

Rp,ψh

i ≥ 0.

By this result we can write: dp,ψh

i −t−Cp,ψh

inew ≥ 0, where Cp,ψh

inew = Cp,ψh

i +βp,ψh

i .
So, dp,ψh

i − t − Cp,ψh

i − βp,ψh

i ≥ 0 ⇒ dp,ψh

i − t − Cp,ψh

i ≥ βp,ψh

i

⇒ βp,ψh

i ≤ dp,ψh

i − t − Cp,ψh

i



34 H. Gharsellaoui and S. Ben Ahmed

• Solution 4. Enforcing the release time to come back: ap,ψh

i → ap,ψh

inew →
(ap,ψh

inew = ap,ψh

i + Δp,ψht) for each reconfiguration scenario ψh and on each
processor p (S4)

By applying Eq. 1 that notices:
di = ai + Di, we have:

Rp,ψh

i = ap,ψh

i + Dp,ψh

i − t − Cp,ψh

i .

Or, to obtain a feasible system after a reconfiguration scenario, the following
formula must be enforced:

Rp,ψh

i ≥ 0 ⇒ ap,ψh

i + Dp,ψh

i − t − Cp,ψh

i ≥ 0.

By this result we can write:

ap,ψh

inew + Dp,ψh

i − t − Cp,ψh

i ≥ 0, where ap,ψh

inew = ap,ψh

i + Δp,ψht.

So, we obtain: ap,ψh

i + Δp,ψht + Dp,ψh

i − t − Cp,ψh

i ≥ 0.

⇒ Δp,ψht ≥ t + Cp,ψh

i − ap,ψh

i − Dp,ψh

i .

• Solution 5: Tolerate some non critical Tasks m1
p among (n+m)p (according

to the (m, n) firm model), on each processor p for a reasonable cost, and for
each reconfiguration scenario ψh (S5)

ξp = {τp
i (Cp

i ,Dp
i ,mp

i , I
p
i ), i = 1 to np}.

mp
i = 1, it tolerates missing deadline,

mp
i = 0, it doesn’t tolerate missing deadline,

Ip
i = H, Hard task,

Ip
i = S, Soft task.

• Solution 6: Migration of some tasks from a processor source i in order to be
scheduled on another processor destination j for each reconfiguration scenario
ψh (S6)

The agent proceeds now as a sixth solution to migrate some tasks of ξp,ψh
new

and ξp
old on the processor p for each reconfiguration scenario ψh. Indeed, the

agent is responsible for allocating the tasks to the K computing processors in
an optimal way (Fig. 1).

Run-time task migration can be defined as the relocation of an executing
task from its current location, the source processor i, to a new location, the
destination processor j (i �= j; i, j = 1..K) that must belong to the inclusion set.
We need by inclusion set in paper, the set of processors in which tasks can
be scheduled after any reconfiguration scenario ψh when a migration request
has done and in this case all the relevant state information of that migra-
tion is transferred to the new processor. Otherwise, it is called exclusion set.



Real-Time Reconfigurable Scheduling of Sporadic Tasks 35

Fig. 1. The task migration sequence.

This allows the OS to e.g., minimize energy savings and response time of the
whole system. It also enables processors management by moving tasks away
from processors with a high amount of workload or which have their utilization
factors >1. The architectural differences between the source processor i and
destination source processor j are masked by capturing and transferring the
logical task state, shown by Fig. 2. In order to relocate a task, the intelligent
agent notifies the task by means of a migration request signal(1). Whenever
that signaled task reaches a migration point (MP), it checks if there is a
pending migration request or the destination processor j belongs to the exclu-
sion group of the current migrated task for each reconfiguration scenario ψh.
In such case of these two reasons, all the relevant state information of that
migration point is transferred to the intelligent agent(2). Consequently, the
intelligent agent will instantiate the same task on a different processor. The
new task instantiation will be initialized using the state information previ-
ously captured by the intelligent agent(3). Finally, the task resumes execution
at the corresponding migration point (MP).

• Solution 7: Removal of some non critical tasks (to be rejected) for each
reconfiguration scenario ψh and on each processor p (S7)

ξp = {τp
i (Cp

i ,Dp
i ,mp

i , I
p
i ), i = 1 to np}.

mp,ψh

i = 1, it tolerates missing deadline,
mp,ψh

i = 0, it doesn’t tolerate missing deadline,
Ip,ψh

i = H, Hard task,
mp,ψh

i = S, Soft task.

For every solution the corresponding response time is:
Respp,ψh

k,1 = the response time calculated by the first solution,
Respp,ψh

k,2 = the response time calculated by the second solution,
Respp,ψh

k,3 = the response time calculated by the third solution,
Respp,ψh

k,4 = the response time calculated by the fourth solution,



36 H. Gharsellaoui and S. Ben Ahmed

Respp,ψh

k,5 = the response time calculated by the fifth solution,
Respp,ψh

k,6 = the response time calculated by the sixth solution,
Respp,ψh

k,7 = the response time calculated by the seventh solution.

We define now, Respp,ψh

k optimal noted Respp,ψh
opt

k according to the previ-
ous seven solutions calculated by the intelligent Agent (Solution 1, Solution
2, Solution 3, Solution 4, Solution 5, Solution 6 and Solution 7) by the fol-
lowing expression: Respp,ψh

opt

k = min(Respp,ψh

k,1 , Respp,ψh

k,2 , Respp,ψh

k,3 , Respp,ψh

k,4 ,

Respp,ψh

k,5 , Respp,ψh

k,6 and Respp,ψh

k,7 ) (the minimum of the seven values). So, the

calculation of Respp,ψh
opt

k allows us to obtain and to calculate the minimiza-
tions of response times values and to get the optimum of these values. In
conclusion, we can deduce that by arrival of ξψh

new tasks at run-time and the
whole system become unfeasible, the following formula is satisfied for each
reconfiguration scenarioψh:

∑(n+m)ψh

i=1

Cψh

i

Tψh

i

> K,where K is the number of identical processors.

Then, after the reconfiguration scenario ψh was applied at run-time to the
whole system by the intelligent agent, our proposed algorithm provides guaran-
tees to both old and new tasks if and only if, we have in each processor p for
each reconfiguration scenario ψh:

∑(n+m)(p,ψh)

i=1

C
(p,ψh)
i

T
(p,ψh)
i

≤ 1, in each processor p for each reconfiguration scenario ψh.

Moreover, we have calculated R
(p,ψh)

opt

k = min(R(p,ψh)
k,1 , R

(p,ψh)
k,2 , R

(p,ψh)
k,3 ,

R
(p,ψh)
k,4 , R

(p,ψh)
k,5 , R

(p,ψh)
k,6 and R

(p,ψh)
k,7 ); so we obtain also:

∑(n+m)(p,ψh)

i=1

C
(p,ψh)
i

T
(p,ψh)
i

< 1,
in each processor p for each reconfiguration scenario ψh

with 1 ≤ p ≤ K, 1 ≤ h ≤ M.

We can observe that all tasks meet their deadlines after a reconfiguration
scenario ψh was applied at run-time. We can also observe that our proposed
algorithm outperforms other scheduling multiprocessor algorithms and a number
of scheduling events are much lower than appearing in others.

3.4 The General OEDF Scheduling Strategy

When dealing with the deadline tolerance factor mi, each task has to be com-
puted with respect to the deadline tolerance factor mi.



Real-Time Reconfigurable Scheduling of Sporadic Tasks 37

We show the results of our optimal proposed algorithm by means of experi-
mental result’s evaluation.

4 Experimental Results

In order to evaluate our optimal OEDF algorithm, we consider the following
experiments applied to our running example.



38 H. Gharsellaoui and S. Ben Ahmed

Fig. 2. Processor utilization.

4.1 Simulations

To quantify the benefits of the proposed approach (OEDF algorithm) over
the predictive system shutdown (PSS) approach, over the MIN algorithm, the
OPASTS algorithm and over the HPASTS algorithm. We performed a number
of simulations to compare the response time and the utilization processor under
the four strategies. The PSS technique assumes the complete knowledge of the
idle periods while the MIN algorithm assumes the complete knowledge of the
arrivals of sporadic tasks. For more details about both four techniques, you can
see [14]. The OEDF scheduling result is shown in figure (Fig. 2).

4.2 Discussion

We observe that our approach, by the solutions of the OEDF algorithm gives us
the minimum bound for response time and utilization factor. This observation
was proven by the results given by OEDF algorithm which are lower (better) than
these of the solutions given by the predictive system shutdown approach, the
MIN algorithm, the OPASTS algorithm and the HPASTS algorithm. Also, we
observe that, when we have no knowledge of the arrival of sporadic tasks, our
proposed algorithm is optimal and gives better results than others for a big
number of arrival sporadic tasks and in overload conditions, but in a small
number of tasks or light workload, OEDF algorithm is optimal but not strictly
since it gives results close to that of the solutions of MIN, OPASTS and HPASTS
algorithms, but it is efficient and effective.

5 Conclusions

This book chapter deals with reconfigurable homogeneous multiprocessor sys-
tems to be implemented by hybrid systems composed of a mixture of periodic



Real-Time Reconfigurable Scheduling of Sporadic Tasks 39

and sporadic tasks that should meet real-time constraints. In this work, we pro-
pose an optimal scheduling algorithm based on the EDF principles and on the
dynamic reconfiguration for the minimization of the response time of sporadic
and periodic constrained deadline real-time tasks on multiprocessor systems and
proven it correct.

References

1. Gharsellaoui, H., Khalgui, M., BenAhmed, S.: Feasible Automatic Reconfigurations
of Real-Time OS Tasks. IGI-Global Knowledge, London (2012)

2. Dertouzos, M.: Control robotics: the procedural control of physical processes. In:
Proceedings of the IFIP Congress (1974)

3. Balbastre, P., Ballester, R., Brocal V., Ripoll, L.: Task period selection to minimize
hyperperiod, emerging technologies and factory automation. In: 16th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA),
pp. 1–4. IEEE Press, Toulouse, France (2011)

4. Buttazzo, G., Stankovic, J.: RED: robust earliest deadline scheduling. In: 3rd Inter-
national Workshop On Responsive Computing Systems, Austin (1993)

5. Wang, X., Khalgui, M., Li, Z.W.: Dynamic low power reconfigurations of real-
time embedded systems. In: 16th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1–4. IEEE Press, Toulouse,
France (2011)

6. Tia, T., Liu, J.W.-S., Sun, J., Ha, R.: A linear-time optimal acceptance test for
scheduling of hard real-time tasks, Technical report. Department of Computer
Science, University of illinois at Urbana-Champaign, Urbana-Champaign (1994)

7. Marian, N., Angelov, C., Sierszecki, K.: Design models for reusable and recon-
figurable state machines. In: Yang, L.T., et al. (eds.) Proceedings of Embedded
Ubiquitous Computing (2005)

8. Schwan, K., West, R.: Dynamic window-constrained scheduling for multimedia
applications. In: 6th IEEE International Conference on Multimedia Computing
and Systems (1999)

9. Balbastre, P., Ripoll, I., Crespo, A.: Schedulability analysis of window-constrained
execution time tasks for real-time control. In: 14th IEEE International Conference
on Euromicro Conference Real-Time Systems (ECRTS) (2002)

10. Al-Safi, Y., Vyatkin, V.: An ontology-based reconfiguration agent for intelligent
mechatronic systems. In: Mař́ık, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS
2007. LNCS (LNAI), vol. 4659, pp. 114–126. Springer, Heidelberg (2007)

11. Rooker, M.N., Subder, C., Strasser, T., Zoitl, A., Hummer, O., Ebenhofer, G.:
Zero downtime reconfiguration of distributed automation systems: the CEDAC
approach. In: 3rd IEEE International Conference on Industrial Applications of
Holonic and Multi-Agent Systems, Regensburg (2007)

12. Legrand, J., Singhoff, L.M.F.: Cheddar : a flexible real time scheduling framework.
In: ACM SIGAda Ada Letters, vol. 24, no 4, pp. 1–8. ACM Press, ISSN:1094–3641
(2004)

13. Baruah, S., Koren, G., Mishra, B., Raghunathan, A., Rosier, L., Shasha, D.: On-
line scheduling in the presence of overload. In: IEEE Symposium on Foundations
of Computer Science, San Juan, Puerto Rico (1991)

14. Hong, I., Potkonjak, M., Srivastava, B.M.: On-line scheduling of hard real-time
tasks on variable voltage processor. In: 8th International Conference on Computer-
Aided Design, San Jose, California, USA (1998)



http://www.springer.com/978-3-662-44919-6


	Real-Time Reconfigurable Scheduling of Sporadic Tasks

	1 Introduction
	2 Background
	2.1 State of the Art
	2.2 Formalization

	3 New Approach with Deadline Tolerance
	3.1 Preliminaries
	3.2 Feasibility Analysis for Tasks
	3.3 Contribution: An Algorithm for Feasibility Testing with Respect to Sporadic Task Systems
	3.4 The General OEDF Scheduling Strategy

	4 Experimental Results
	4.1 Simulations
	4.2 Discussion

	5 Conclusions
	References


