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Abstract. This article introduces a block preconditioner to solve large-
scale block structured saddle point systems using a Krylov-based method.
Such saddle point systems arise, e.g., in the Riccati-based feedback stabi-
lization approach for multi-field flow problems as discussed in [2]. Combin-
ing well known approximation methods like a least-squares commutator
approach for the Navier-Stokes Schur complement, an algebraic multigrid
method, and a Chebyshev-Semi-Iteration, an efficient preconditioner is
derived and tested for different parameter sets by using a simplified reactor
model that describes the spread concentration of a reactive species forced
by an incompressible velocity field.

Keywords: Coupled flow control · Large-scale saddle point systems ·
Preconditioned GMRES · Least-squares commutator approach · Alge-
braic multigrid · Chebyshev-Semi-Iteration

1 Introduction

In this paper we investigate the solution of large-scale saddle point systems aris-
ing in control problems for coupled partial differential equations (PDEs). The
starting points are recent publications concerning the boundary feedback stabi-
lization of non-coupled flows like the linear Stokes flow in [3] and the non-linear
Navier-Stokes flow in [1]. The analytic approach for this feedback stabilization
is given by Raymond in, e.g., [13].

Using the projection idea proposed by Heinkenschloss et al. [8], Benner et al.
[1,3] show that the solution of certain saddle point systems is the key ingredient
to ensure that the numerical solution lies on the correct solution manifold, i.e.,
the space of discretely divergence-free velocity fields, without performing an
explicit projection.

Applying these ideas to a coupled flow problem, namely the Navier-Stokes
equations combined with a diffusion-convection equation, leads to saddle point
systems with a more complicated block structure [2]. Solving these systems effi-
ciently requires the use of appropriate preconditioners. This paper investigates
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an efficient iterative solution strategy via the use of preconditioned Krylov sub-
space methods based on the framework derived in [3]. Here we consider the
full feedback system for the coupled multi-field flow problem, while in [3], only
the linear Stokes case was treated without coupling to another field equation.
Moreover, this paper complements [2] in the sense that there, we have focused
on presenting results on the convergence of the Newton-ADI method for solv-
ing the algebraic Riccati equation determining the stabilizing feedback control
for the coupled system, where the saddle point problems in the innermost step
of the Newton-ADI iteration were solved by sparse direct methods, while here,
we study preconditioned iterative solvers for this step.

The remainder of this paper is organized as follows. Section 2 briefly recalls
the feedback stabilization approach for multi-field flow problems from [2] that
leads to large-scale saddle point systems. Afterwards, we discuss properties of
these saddle point systems to derive a suitable preconditioner in Sect. 3. Section 4
shows numerical results before we conclude the paper and give a short outlook
to further investigations in Sect. 5.

2 Derivation of Saddle Point Systems

The derivation of the block structured saddle point systems in [2] starts with
the linearized coupled flow problem defined for t ∈ [0,∞) and x ∈ Ω ⊂ R

2. The
linearized Navier-Stokes equations that describe, up to first order, the difference
between actual and desired velocity and pressure are given as

∂

∂t
z − 1

Re
Δz + (w · ∇)z + (z · ∇)w + ∇p = f l,

div z = 0,
on [0,∞) × Ω. (1)

They are then coupled via the velocity field z(t,x) with the linearized diffusion-
convection equation

∂

∂t
cz − 1

ReSc
Δcz + (w · ∇)cz + (z · ∇)cw = 0, on [0,∞) × Ω (2)

that describes the concentration of a reactive species denoted by cz(t,x). The
stationary linearization points w(x) for the velocity and cw(x) for the concen-
tration are assumed to be given. The equations are scaled with the Reynolds
number Re and the Schmidt number Sc. Using the mixed Taylor-Hood finite
elements [9] for the velocity and pressure in Eq. (1) as well as linear ansatz
functions for the concentration in Eq. (2), we end up with a system of discrete
differential-algebraic equations (DAE) that can be written as the control system:

⎡
⎣

Mz 0 0
0 0 0
0 0 Mc

⎤
⎦ d

dt

⎡
⎣
z
p
c

⎤
⎦ =

⎡
⎣

Az G 0
GT 0 0

−R 0 Ac

⎤
⎦

⎡
⎣
z
p
c

⎤
⎦ +

⎡
⎣

Bz

0
0

⎤
⎦u, (3a)

y =
[
0 0 Cc

]
⎡
⎣
z
p
c

⎤
⎦ (3b)
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with the first block row for velocity (of dimension nz), the second row for pressure
(of dimension np), and the third row for concentration (of dimension nc) [2].

The matrix pencil
( ⎡

⎣
Az G 0
GT 0 0

−R 0 Ac

⎤
⎦

︸ ︷︷ ︸
A

,

⎡
⎣

Mz 0 0
0 0 0
0 0 Mc

⎤
⎦

︸ ︷︷ ︸
M

)

is of dimension n×n with n = nz +nc +np and has 2np infinite eigenvalues [5].
In [2], a linear-quadratic regulator (LQR) approach is applied to system (3)

for determining the stabilizing control function u. The solution of this LQR
problem is a linear feedback control u(t) = K(z(t),p(t), c(t)), determined via
the solution of an algebraic Riccati equation (ARE) defined on the subspace of
discretely divergence-free vector fields. The resulting ARE is then solved using a
Newton-ADI algorithm. This method yields a threefold nested iteration. In the
innermost loop, saddle point systems of the form

⎡
⎣

AT
z + qiMz G −RT

GT 0 0
0 0 AT

c + qiMc

⎤
⎦

︸ ︷︷ ︸
=AT+qiM=:Fi

⎡
⎣

Λz

Λp

Λc

⎤
⎦

︸ ︷︷ ︸
Λ

=

⎡
⎣

Ỹz

0
Ỹc

⎤
⎦ .

︸ ︷︷ ︸
Y

(4)

have to be solved for certain ADI shifts qi ∈ C
− and a block right hand side Y.

The whole nested iteration is given in [2, Algorithm 1] and is omitted here due
to space constraints.

3 Preconditioned Iterative Solvers for Block Structured
Saddle Point Systems

The use of direct solvers in (4) is only suitable for moderate problem sizes and
two-dimensional problems. Although iterative methods can handle much larger
systems, their performance will deteriorate if the mesh-size decreases. To avoid
this, a suitable preconditioner Pi ∈ C

n×n is introduced such that

P−1
i FiΛ = P−1

i Y

is solved instead of (4) (see [7,16]). Before we derive a suitable preconditioner Pi

we need to describe the properties of the saddle point system and their influence
on the chosen preconditioner.

3.1 Properties

The matrices Mz,Mc are symmetric and positive definite, G,R are of full rank,
and the ADI shift qi ∈ C

− is contained in the convex hull of the finite spectrum of
(A,M). The shifted system matrix Fi is indefinite ∀qi ∈ C

−. Due to the different
qi, the matrix Fi changes in each ADI step and, therefore, the preconditioner has
to be adapted in each ADI step as well. Nevertheless, for the remainder of this
section we assume a fixed ADI shift qi = q to omit the index i if it is obvious.
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3.2 Derivation of Block Preconditioner

Adapting the ideas from [3, Sect. 3.2] we consider

F =

⎡
⎣

Fz G −RT

GT 0 0
0 0 Fc

⎤
⎦ =

[
FNSE −R̃T

0 Fc

]
with

Fz := AT
z + qMz,

Fc := AT
c + qMc,

R̃ :=
[
R 0

]
,

(5)

and FNSE as the saddle point system for the non-coupled Navier-Stokes flow
as it is used in [1]. Using the preconditioner PNSE from [3], we define a block
preconditioner for the use with GMRES [17] to solve with the block structured
saddle point system (5) as follows:

P =
[
PNSE −R̃T

0 Pc

]
=

⎡
⎣

Pz 0 −RT

GT −PSC 0
0 0 Pc

⎤
⎦

⇒ P−1 =

⎡
⎣

P−1
z 0 P−1

z RTP−1
c

P−1
SCGTP−1

z −P−1
SC P−1

SCGTP−1
z RTP−1

c

0 0 P−1
c

⎤
⎦ .

In contrast to the preconditioner derived in [3], we cannot achieve a block lower
triangular matrix due to the coupling matrix R. Applying P−1 to F yields

P−1F =[ P−1
z Fz P−1

z G −P−1
z RT + P−1

z RTP−1
c Fc

P−1
SCGTP−1

z Fz − P−1
SCGT P−1

SCGTP−1
z G −P−1

SCGTP−1
z RT + P−1

SCGTP−1
z RTP−1

c Fc

0 0 P−1
c Fc

]

(6)

If one assumes Pz = Fz, Pc = Fc, and PSC = GTF−1
z G as ideal approximations

in (6), this leads to
⎡
⎣

Iz F−1
z G −F−1

z RT + F−1
z RT

P−1
SCGT − P−1

SCGT P−1
SCGTF−1

z G −P−1
SCGTF−1

z RT + P−1
SCGTF−1

z RT

0 0 Ic

⎤
⎦

=

⎡
⎣

Iz ∗ 0
0 Ip 0
0 0 Ic

⎤
⎦

and our iterative method would converge within one step. The goal is to find
good approximations for Pz, Pc, and PSC that can be evaluated fast and still
cluster the eigenvalues in a suitable way such that our iterative solver shows fast
convergence [7]. Instead of calculating the inverse P−1 to apply the precondi-
tioner P, we consider the solution of a linear system

⎡
⎣

Pz 0 −RT

GT −PSC 0
0 0 Pc

⎤
⎦

⎡
⎣

xz

xp

xc

⎤
⎦ =

⎡
⎣

bz
bp
bc

⎤
⎦ (7)
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that can be solved in three steps:

Step I: xc = P−1
c bc, (8a)

Step II: xz = P−1
z (RTxc + bz), (8b)

Step III: xp = P−1
SC(GTxz − bp). (8c)

In conclusion, the coupling matrix R only leads to a matrix-vector multiplication.
In steps I and II, one needs to solve with the shifted velocity and concentration
system matrices as defined in (5). For both steps, an algebraic multigrid (AMG)
method can be used as it is described below. But first, we discuss the more
challenging step III that is handled as follows.

3.3 Approximation Methods

Schur Complement Approximation. PSC is an approximation of the Navier-
Stokes Schur complement SC := GTF−1

z G ∈ R
np×np . Unfortunately, the matrix

SC would be a dense matrix that includes the inverse of Fz. To avoid the use of
this matrix, we follow the approach in [3,18] and use a slightly modified variant
of the least squares commutator approach as it is described in [7, Sect. 8.2].
Namely, we consider the shifted Oseen operator in the velocity space

Fz = − 1
Re

∇2 + w · ∇ + qI.

Note that it is common practice to omit the reaction term (z ·∇)w that appears
in the linearized Navier-Stokes equations to derive preconditioners [7, Sect. 8].
Similar to [7, Sect. 8.2] and [6], we suppose that there exists an analogous oper-
ator on the pressure space defined as

Fp = (− 1
Re

∇2 + w · ∇ + qI)p.

The least squares commutator of the shifted Oseen operator with the gradient
operator is defined as

E = (F)∇ − ∇(Fp)

and is supposed to become small in some sense [7]. Using the discrete versions
of the operators, we end up with

E = (M−1
z Fz)M−1

z G − M−1
z G(M−1

p Fp)

with Mp the mass matrix and Fp = AT
p + qMp the shifted system matrix, both

defined on the pressure space. Premultiplying this by GTF−1
z Mz and postmul-

tiplying by F−1
p Mp yields [3]

GTM−1
z GF−1

p Mp ≈ GTF−1
z G = SC.
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The large and dense matrix GTM−1
z G cannot be used explicitly, but it is shown

in [7, Sect. 5.5.1] that this matrix is spectrally equivalent to the Laplacian Sp

defined on the pressure space for an inf-sup stable discretization and an inflow-
outflow problem [7, Sect. 8.2], as it is considered in this paper. Finally, we obtain

PSC ≈ SpF−1
p Mp ⇒ P−1

SC ≈ M−1
p FpS−1

p .

In [4] the authors use a similar approach for the Navier-Stokes equations. In
summary, the application of P−1

SC requires to solve with Sp (step IIIa), multiply
with Fp (step IIIb), and solve with Mp (step IIIc). The step IIIa can be solved
with an AMG method, similar to the steps I and II.

Algebraic Multigrid. As it is described above, the steps I (8a), II (8b) and IIIa
are solved using an AMG method [14]. Due to the possibly complex ADI shifts
q in (8a) and (8b), we use the AGMG package developed by the group of Y.
Notay [10–12]. In all three cases we use the MATLAB R©-based implementation
to solve systems of the form

Fx = b

with a sparse matrix F ∈ {Fz, Fc, Sp}. Details about the used parameters for the
function agmg are discussed in Subsect. 4.2. For more details about the internally
used methods and the implemented syntax we refer the reader to [11]. Although
the AGMG method can handle complex arithmetic, it needs significantly more
steps to converge to the desired tolerance. Additionally, we note that agmg is a
non-linear function, such that one should use a flexible iterative method, e.g.,
FGMRES [15]. However, our numerical experiments do not show any drawbacks
using a standard GMRES implementation.

Chebyshev-Semi-Iteration. Although the solution of step IIIc with the symmetric
positive definite mass matrix Mp is relatively cheap, this can still be accelerated
by using the Chebyshev-Semi-Iteration as it is described, e.g., in [18]. Numerical
tests showed that one needs only 4−6 steps to obtain a suitable result for the
preconditioner, which results in a speedup that is shown in Subsect. 4.2.

The next section depicts selected results to show the performance of the
preconditioned iterative method.

4 Numerical Examples

To test the efficiency of the preconditioned iterative method, the same data and
configurations as in [2] are used. After refining the initial triangulation of the
reactor model in Fig. 1, we end up with the variable dimensions as depicted in
Table 1b. Furthermore, we define five parameter sets for different combinations
of Reynolds and Schmidt numbers as shown in Table 1a. We use the MATLAB
implementation of GMRES [17] to solve the saddle point systems (4) for selected
ADI shifts qi that appear during the Newton-ADI iteration. Each qi is used for
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Fig. 1. Initial triangulation of the reactor model with coordinates and boundary con-
ditions [2].

Table 1. Test parameter settings.

Set Re Sc

I 1 1
II 1 10
III 10 1
IV 1 100
V 10 10

(a) Different parameter settings.

Variable Dimension

nz 9 092
np 1 276
nc 1 187

n 11 555

(b) Different dimensions of FE space.

three ADI steps with four right hand sides every time. Thereby, the number of
GMRES steps and the CPU times are measured and arithmetically averaged.
The preconditioner P is evaluated as a MATLAB function handle that solves
the linear system (7) using the steps (8). The GMRES tolerance is set to 10−10

to ensure the same convergence of the ADI iteration that a direct solve would
imply [3]. Although a few complex ADI-shifts qi appear for each parameter set
during the Newton-ADI process, the pictures only show the real parts of qi.

All computations were executed in MATLAB R2012a on a 64-bit server with
2×Intel R© Xeon R© X5650 @2.67 GHz, 12 Cores (6 Cores per CPU) and 48 GB
main memory available.

4.1 Influence of ADI Shifts and Reynolds and Schmidt Numbers

The influence of the variation of the Reynolds and Schmidt numbers as given in
Table 1 is depicted in Fig. 2. To obtain the best approximations for the precon-
ditioning steps (8a)–(8c), a direct solver is used to solve with Fz, Fc, and Sp.
It can be observed that for ADI shifts −105 < Re (qi) < −101, between 20–25
GMRES steps are needed. As soon as the absolute value of qi gets smaller then
10 the number of steps increases. This is a natural behavior, because the influ-
ence of the mass matrices Mz and Mp vanishes. Nevertheless, GMRES converges
within at most 40–80 steps for all parameter configurations. An empirical test to
set: qi = −10 ∀|qi| < 10, during the Newton-ADI process showed similar ADI
convergence behavior as for the original shift selection, without the drawback of
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Fig. 2. Average number of GMRES steps for a representative selection of ADI shifts
from the Newton-ADI iteration for the configuration sets in Table 1a.

higher GMRES cost for certain shifts. In summary, the derived preconditioner is
suitable concerning different Reynolds and Schmidt numbers, as well as different
ADI shifts.

4.2 Approximations Using AMG and Chebyshev-Semi-Iteration

As described in Subsect. 3.3, the different preconditioning steps should be solved
by an easy to evaluate approximation that is accurate enough to ensure the
convergence of GMRES, but avoids the use of sparse factorizations of large-scale
sparse matrices. We exchanged the direct solver by its approximation step by
step and depict the results in Fig. 3. At first, we use the MATLAB based function
agmg [11] to solve with Fz and Fc in (8b) and (8a) with an accuracy of 10−10.
Depending on the used ADI shift, the function agmg needed 1–30 steps. Thus, the
times to solve the whole saddle point system with the same number of GMRES
steps increased a little bit compared to the direct solver. At second, we approx-
imately solved with Sp in step IIIa using agmg as a preconditioner. This was
sufficient enough to achieve the GMRES accuracy and, furthermore, decreased
the time. Finally, we applied a Chebyshev-Semi-Iteration to approximately solve
with Mp in step IIIc. The obtained speedup finally decreased the times below
the time used by the direct solver in each step without the loss of any accuracy
in GMRES. Due to the above addressed problems with complex ADI shifts in
agmg, we restrict our comparison in Fig. 3 to a selection of real ADI shifts. The
selection has been performed such that the span of all ADI shifts appearing in
the entire Newton-ADI process is covered. Where those shifts clustered we only
chose one representative per cluster.

At the end of this section it should be noted that the suggested preconditioned
GMRES method for the considered class of saddle point problems would show
its full strength in comparison to a direct solver when using finer discretizations,
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Fig. 3. Average time to solve Eq. (4) with GMRES for a representative selection of
real ADI shifts from the Newton-ADI iteration for different approximations of the
preconditioning steps (8).

leading to larger dimensions, and in particular when moving to 3D problems.
This will be addressed in future work.

5 Conclusions and Outlook

We have recalled the formation of block structured saddle point systems as
they arise within the Riccati-based feedback stabilization approach for coupled
flow problems that avoids any explicit projection [2]. We were able to extend
the results from [3], developed for uncoupled Stokes flow, to the coupled flow
described by incompressible Navier-Stokes and a diffusion-convection equation.
For that reason, the least-squares commutator approach in [7] has been modi-
fied to approximate the shifted Navier-Stokes Schur complement. Exploiting the
block structure of the arising preconditioner guarantees a fast evaluation within
GMRESĖach of the blocks can either be approximated by an AMG method
or a Chebyshev-Semi-Iteration. Several numerical experiments showed that the
derived preconditioning method is able to solve the arising saddle point systems
efficiently independent of the different parameter settings. Only the use of com-
plex ADI shifts during the Newton-ADI process is not yet optimally covered by
this approach and will be investigated in the future.
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