
Rough Dynamic Response Prediction for Simple
Railway Bridges Subjected to High-Speed Trains

Christoph Adam and Patrick Salcher

Abstract This paper describes an efficient approach for prediction of the dynamic
peak response of shear deformable railway bridges subjected to high-speed trains,
which is based on response spectra. In the proposed response spectra the modal peak
response is presented as a function of a non-dimensional modal speed parameter and
the bridge span to wagon length ratio. A rough estimate of the dynamic peak bridge
response is found by modal combination of the modal peak responses identified
from readily available response spectra considering the actual train and bridge
parameters.

1 Introduction

If a high-speed train passes a railway bridge with a critical speed, resonance
effects may have a severe impact on the train-bridge interaction system. In such
a situation the serviceability may be impaired, and critical stresses exceeded, and
thus a quasistatic computation of the bridge response is insufficient. Higher modes
may contribute significantly in particular to the bridge acceleration, however they
cannot be captured with a simplified quasistatic analysis. A large bridge acceleration
response leads to instability of ballast, and passengers discomfort. Depending on
the fundamental bridge frequency and bridge geometry, Eurocode 1 [1] allows for
single-span bridges a quasistatic analysis, if the maximum travel speed is smaller
than or equal to 200 km/h. However, comparative analyses of the authors have
shown that a quasistatic computation may underestimate the actual dynamic bridge
response even in the admitted parameter range of Eurocode 1 [1].

Various mechanical models of different degrees of sophistication have been
developed to predict the dynamic response of railway bridges subjected to

C. Adam (�) � P. Salcher
Unit of Applied Mechanics, University of Innsbruck, 6020 Innsbruck, Austria
e-mail: christoph.adam@uibk.ac.at; patrick.salcher@uibk.ac.at

Alexander K. Belyaev et al. (eds.), Mechanics and Model-Based Control of Advanced
Engineering Systems, DOI 10.1007/978-3-7091-1571-8__2,
© Springer-Verlag Wien 2014

11

mailto:christoph.adam@uibk.ac.at
mailto:patrick.salcher@uibk.ac.at


12 C. Adam and P. Salcher

high-speed trains, see e.g. [2–4]. For example, Cojocaru et al. [5] model the train as
an additional elastic beam, which crosses the bridge. Some of the numerical studies
have also been validated by experiments [6]. A comprehensive state-of-the-art of
the analysis of high-speed train-bridge interaction is provided in the textbook of
Yang et al. [7].

Most generally, the assessment of the dynamic bridge response is based on
complex numerical models leading to time-consuming time history analysis. In
an effort to reduce this effort Hauser and Adam [8] have translated the response
spectrum methodology from earthquake engineering into bridge dynamics. This
methodology permits for simple bridges a rough, however quick and easy to apply
assessment of the peak response induced by high-speed trains, which is particular
useful in the initial design phase. Simultaneously, Fink and Mähr [9] have developed
independently a similar response prediction concept. Salcher [10] and Adam and
Salcher [11] derived for a large number of different characteristic train sets response
spectra for both single-span and continuous two-span bridges modeled as Bernoulli-
Euler beam. Later, also Spengler [12] has seized this idea studying the effect of
high-speed trains on the response of railway bridges. In the present study, a modified
response spectrum concept is introduced to include the effect of shear deformations
of simply supported bridges for the considered train-bridge interaction problem,
compare also with [13].

2 Mechanical Model of the Bridge-Train Interaction System

The bridge and the passing train vehicle represent a rather complex interactive
system with time-dependent mechanical properties. Depending on the response
quantity to be predicted and on the required accuracy mechanical modeling of this
system may be performed with different degree of sophistication [7]. In a detailed
model a spring-mass system describes the dynamic behavior of each train car
consisting of body, bogies, and viscoelastic connection elements [4]. For example,
the contact problem between rails and wheels, and the non-linear behavior of the
ballast should be specified appropriately. The numerical solution of the resulting
mechanical model is in general computationally expensive, and might come along
with numerical stability problems. Thus, detailed system modeling is not efficient
in the process of initial bridge design.

Since in the design process of a bridge the properties of all passing trains to be
developed during the bridge life cycle cannot be foreseen, analysis should not be
performed considering particular characteristics of the vehicle [3]. Consequently, in
the simplest approach the passage of a bridge by a high-speed train is considered as
a sequence of moving concentrated forces of constant speed v. Each concentrated
load represents the static reaction force of a train axle. This model, which is adopted
for the present study, disregards the inertia effect of the train, and thus, it leads in
general to slightly conservative bridge response predictions [3].
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In this paper simply supported single span bridges with a single track are
analyzed. In contrast to previous studies [11, 12] the effect of shear deformation
is taken into account, which may play a significant role for truss and/or short span
bridges. Consequently, it is assumed that lateral bridge vibrations w.x; t/ induced
by the N axle loads Fi , i D 1; 2; : : : ; N of the considered train, are described
sufficiently accurate by means of the partial equations of motion of a shear beam
with constant structural parameters (mass per unit length �A, bending stiffness EI,
shear stiffness GAS ) [14]
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The Dirac delta function ı.x��i / describes mathematically the action of the i th axle
load with amplitude Fi , which is located at time t at length coordinate �i D vt � si

(of the bridge). The unit step functions H specify the arrival and departure of Fi at
time instants t0

i D si =v and tE
i D .si C L/=v, respectively. v is the constant train

speed, si denotes the initial location of Fi , and L is the span of the bridge [11].
Modal decomposition of the lateral displacement w.x; t/ into the mode

shapes �n, n D 1; : : : ; 1, of the actual boundary value problem, w.x; t/ DP1
nD1 qn.t/�n.x/, leads to an infinite set of ordinary oscillator equations of motions

for the modal coordinates qn, viscous damping is modally added,
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The solution of this equation can be found by standard methods of structural
dynamics such as Duhamel’s integral [15].

The nth mode shape �n, the corresponding natural circular frequency !n, and
modal mass mn of a simply supported shear beam are derived as [14]
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2
(3)

Structural bridge damping is a fundamental bridge parameter, in particular for
excitation at resonance. In Eurocode 1 [1] lower limit values for �n used in this
study are defined. They depend on the bridge structure and on span L.
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Fig. 1 Comparison of modal
peak accelerations RNq1.S

.1/
0 /

and RNq1.S.1// of the first mode

3 Proposed Response Spectra

In a response spectrum the dynamic peak response of a single-degree-of-freedom
oscillator is presented as a function of characteristic excitation and structural
parameters. A readily available response spectrum provides the design engineer
with a tool to predict the dynamic peak response without performing computational
expensive time-history analyses. The characteristic excitation parameters of the
considered problem are the ratio of bridge length L to wagon length d, L=d , and
the modal speed parameters S.n/; n D 1; 2; : : :. For given length ratio L=d and
nth speed parameter S.n/ the nth modal peak bridge response is presented in non-
dimensional form,

Nqn D max jqn.t/j �AL

Fmax

�
!n

2�

�2

; RNqn D max j Rqn.t/j �AL

Fmax
; S.n/ D �v

!nL
(4)

Fmax is the maximum single force of the analyzed train model. Since in general
the peak response does not occur at the maximum admissible speed S

.n/
0 but at a

lower speed S.n/ < S
.n/
0 , coefficients Nqn.S

.n/
0 / and RNqn.S

.n/
0 / denote the nth modal

peak displacement and acceleration, respectively, in the range 0 � S.n/ � S
.n/
0 . As

an example, Fig. 1 shows for the specific train load model HSLM-A1 according
to [1], a length ratio of L=d D 1:4, and viscous damping of �1 D 0:015 the
peak acceleration of the first mode, plotted against the corresponding modal speed
parameter. The bold line shows the modal peak acceleration as a function of the
maximum admissible speed parameter S

.1/
0 (which enters the response spectrum),

while the thin line corresponds to the actual modal peak response at the specific
speed parameter S.1/.

Based on the mechanical model of the bridge-train interaction system presented
before, the authors have derived modal response spectra for simply supported
bridges subjected to high-speed trains by series of time history analyses for the
HSLM-A load models of Eurocode 1 [1] and for real European high-speed trains.
For each train load model and viscous damping specified according to Eurocode
1 [1] these readily available spectra are presented as a function of S

.n/
0 and L=d .
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Fig. 2 Acceleration response spectrum of the first mode. HSLM-A1 load model. Damping
coefficient �1 D 0:015

Figure 2 shows as a showcase the acceleration response spectrum of the first mode
for the HSLM-A1 train set and bridge damping of �1 D 0:015. It can be seen that
for certain values of S

.1/
0 and L=d the gradient of the response surface is very steep,

which makes the peak response vulnerable to small parameter variations.

4 Application

Based on the parameters S
.n/
0 and L=d of the actual considered bridge problem

the modal peak responses Nqn.S
.n/
0 /, RNqn.S

.n/
0 / are identified from the corresponding

response spectra. The number of included modes k (n D 1; : : : ; k) depends on
the considered response quantity. In general, the fundamental mode approximates
sufficiently accurate the peak deflection max jw.x; t/j, i.e. k D 1. When estimating
the maximum acceleration max j Rw.x; t/j, three modes should be taken into account
(k D 3). In all cases, the selection of k should be based on a convergence test taking
into account the symmetry and antisymmetry of the mode shapes. Note that the peak
response does not occur necessarily at mid-span because of higher mode effects.

The modal peak responses must be superposed to obtain an estimate of the actual
maximum bridge response. Since in a response spectrum representation information
of the phase shift between the individual modal peak responses is not available,
modal combination rules such as the ABSUM method [15]
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and the SRSS method [15]
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well known from applications in earthquake engineering, are utilized. The SRSS
rule provides in general more accurate results than the ABSUM method, but may
underestimate the peak response. The ABSUM rule gives always an upper bound of
the peak acceleration in the context of the underlying mechanical model.

5 Example

In an example problem the peak displacement and peak acceleration at mid-
span of a composite steel-reinforced concrete bridge subjected to the train
model HSLM-A1 is assessed. The train and bridge parameters are specified as:
L D 30 m, �A D 18,000 kg/m, EI D 1.40�1011 N/m2, GAs D 5.5�109 N, �n D 0.015,
vmax D 300 km/h (D 83:3 m/s), d D 18 m, Fmax D 170 kN.

Based on these parameters the first three natural circular frequencies of the
shear deformable bridge (Eq. 3) are evaluated: !1 D 27.1 rad/s, !2 D 84.5 rad/s,
!3 D 149 rad/s. At mid-span the amplitudes of the corresponding mode shapes are:
�1.x D 0:5L/ D 1, �2.x D 0:5L/ D 0, �3.x D 0:5L/ D �1. Thus, in a three
mode approximation only the first and third mode contribute to the peak response at
mid-span. The non-dimensional parameters of this train-bridge interaction problem
required for application of response spectra are: L=d D 1.67, S

.1/
0 � 0.32, S

.3/
0 �

0.06. From the two-dimensional representation of the corresponding response
spectra shown in Figs. 3 and 4 the following modal peak response quantities for
the first and third mode are identified: Nq1 D 0.48, Nq3 D 0.23, RNq1 D 12.0, RNq3 D 1.66.
The SRSS combination yields a maximum mid-span peak deflection of max w.x D
0:5L/ D 0.0081 m, which is identical to the exact solution (from a complete
time history analysis) of the considered beam problem. Note that only the first
mode contributes significantly to peak mid-span deflection. Thus, the ABSUM
combination rule, max w.x D 0:5L/ D 0:0083 m, overestimates slightly the peak
deflection, when both the first and the third modal displacements are considered.

Evaluation of the peak acceleration leads to the following outcomes. SRSS:
max Rw.x D 0:5L/ D 3.80 m/s2, ABSUM: max Rw.x D 0:5L/ D 4.29 m/s2,
exact: max Rw.x D 0:5L/ D 3.83 m/s2, one mode approximation: max Rw.x D
0:5L/ D 3.76 m/s2. The results show that for this example the ABSUM rule
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overestimates the exact peak acceleration by 12 %, however, the result from the
SRSS rule gives a very accurate estimate. The difference between the exact peak
acceleration and its one mode approximation is 2 %.

Subsequently, the effect of shear deformation is assessed comparing the derived
peak bridge responses with outcomes based on the corresponding Bernoulli-Euler
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beam (which is rigid in shear). The first natural circular frequencies of the Bernoulli-
Euler beam, !1.BE/ D 30.6 rad/s, !2.BE/ D 122 rad/s, !2.BE/ D 275 Hz, show that
these quantities are significantly affected by shear. In Fig. 1 the effect of the
frequency shift is visualized. Since !1.BE/ is larger than !1, the corresponding

maximum admissible speed drops from S
.1/
0 � 0.32 to S

.1BE/
0 � 0.28. According

to Fig. 1 at S
.1BE/
0 the modal peak acceleration is much smaller than at S

.1/
0 . Thus,

the exact peak displacement and peak acceleration based on the Bernoulli-Euler
theory, max w.BE/.x D 0:5L/ D 0:0064 m and max Rw.BE/.x D 0:5L/ D 1:90 m=s2,
respectively, underestimate considerable the response based on the more accurate
shear beam theory. It can be concluded that for certain bridges response spectra
considering the effect of shear deformation must be utilized for a reliable peak
response prediction.
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