
Chapter 2
Finite-Difference Time-Domain Method
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Abstract In this chapter, analysis of sound and vibration using the Finite-Difference
Time-Domain method (FDTD method) is illustrated. In Sect. 2.1, the fundamentals
of the FDTD method are described. In the FDTD method, several error factors caused
by discretization of sound field are pointed out. As methods to solve such problems,
in Sect. 2.2, the compact finite difference is described in detail. The FDTD method
can not only be applied to acoustic problem of air-borne sound, but also vibroacoustic
problems such as a floor impact sound and a sound insulation problem through a wall
structure. In Sect. 2.3, therefore, application of the FDTD method to vibroacoustic
problems is focused on, and the theoretical background and its numerical formulation
are described in detail.
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Domain

Fig. 2.1 Discretization of sound field

2.1 Fundamentals

2.1.1 Basic Equations

Sound propagation in the air is described by two kinds of differential equations,
Euler’s equation and the equation of continuity.

ρ
∂u

∂t
+ ∂p

∂x
= 0, (2.1)

ρ
∂v

∂t
+ ∂p

∂y
= 0, (2.2)

ρ
∂w

∂t
+ ∂p

∂z
= 0, (2.3)

∂p

∂t
+ κ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
= 0, (2.4)

where p, u, v, w are the sound pressure [Pa] and the particle velocities [m/s] in x, y, z
directions, respectively, κ, ρ are volume elastic ratio [N/m2] and density [kg/m3] of
the air, respectively.

By the Finite-Difference Time-Domain (FDTD) method, discrete physical
acoustic quantities, sound pressure, and particle velocity are approximately updated
based on finite difference schemes to which differential terms included in governed
Euler’s and continuity equations are substituted. For this purpose, in the first step,
as shown in Fig. 2.1, sound field under test should be discretized in rectangular
grids. Definition points of the sound pressure and the particle velocities are set at the
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Fig. 2.2 Spatial definition
points of sound pressure and
particle velocities
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appropriate positions in the discretized grids, and the difference equations regard-
ing the physical quantities are constructed. The difference equations based on the
governed differential equations are called as “difference scheme”. The most repre-
sentative difference scheme is “Yee algorithm” which is described in the following
section [1].

In order to approximate a value of first-order derivative of Eqs. (2.1)–(2.4) by a
central difference, definition points of sound pressure and particle velocities are set
at a half grid apart from each other as shown in Fig. 2.2. Such a kind of grid system
where different two kinds of physical quantities are defined at different points of
which distance is equal to a half of the grid size is called the staggered grid system.
In the same manner as the spatial grid their temporal definition points are also a half
time step apart from each other, as shown in Fig. 2.3.

Suppose that a spatial grid size and a discrete time interval are h and �t , and that
a physical quantity q at spatial grid point (x, y, z) = (ih, jh, kh) at a time n�t is
described as qn

i, j,k , then a sound pressure and particle velocities are expressed as,

pn+1/2
i, j,k , un

i+1/2, j,k , vn
i, j+1/2,k , wn

i, j,k+1/2. Using these expressions, differential terms

in space and time appearing in Eqs. (2.1)–(2.4) become

∂u

∂t

∣∣∣n+1/2

i+1/2, j,k
= un+1

i+1/2, j,k − un
i+1/2, j,k

�t
,

∂u

∂x

∣∣∣n

i, j,k
= un

i+1/2, j,k − un
i−1/2, j,k

h
,
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∂p

∂t

∣∣∣n

i, j,k
= pn+1/2

i, j,k − pn−1/2
i, j,k

�t
,

∂p

∂x

∣∣∣n+1/2

i+1/2, j,k
= pn+1/2

i+1, j,k − pn+1/2
i, j,k

h
.

Substituting these into Eqs. (2.1)–(2.4) leads to following difference scheme:

un+1
i+1/2, j,k = un

i+1/2, j,k − �t

ρh

(
pn+1/2

i+1, j,k − pn+1/2
i, j,k

)
, (2.5)

vn+1
i, j+1/2,k = vn

i, j+1/2,k − �t

ρh

(
pn+1/2

i, j+1,k − pn+1/2
i, j,k

)
, (2.6)

wn+1
i, j,k+1/2 = wn

i, j,k+1/2 − �t

ρh

(
pn+1/2

i, j,k+1 − pn+1/2
i, j,k

)
, (2.7)

pn+1/2
i, j,k = pn−1/2

i, j,k − κ�t

h

[ (
un

i+1/2, j,k − un
i−1/2, j,k

)

+
(
vn

i, j+1/2,k − vn
i, j−1/2,k

)
+

(
wn

i, j,k+1/2 − wn
i, j,k−1/2

) ]
.

(2.8)

From Eqs. (2.5)–(2.8), we can find features of the FDTD method.

• A future value of particle velocity in each direction (at a time step n + 1) is
calculated by a known value of that (at a time step n) and a present values of sound
pressure (at a time step n + 1/2).

• A future value of sound pressure (at a time step n + 1/2) is calculated by a known
value of that (at a time step n − 1/2) and a present values of particle velocities in
all directions (at a time step n).

Therefore, after an initial distribution of sound pressure and particle velocities, the
distribution of sound pressure and particle velocity at the following time steps can
be calculated successively.

2.1.2 Boundary Conditions

Reflection or absorption characteristics of boundaries are generally provided by
surface acoustic impedance,

zn = p

un
, (2.9)

where zn is normal acoustic impedance and un is normal particle velocity.
In the simplest case where surface is perfectly reflective (rigid), the surface

impedance becomes infinite and it is easy to adapt this condition to the FDTD scheme
by making the particle velocity on the boundary nodes zero. On the other hand, for
perfectly absorbing condition, the situation is not so simple. In a special case where
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Fig. 2.4 Sound pressure and particle velocity near a boundary

a plane wave is incident perpendicularly to the absorbing boundary, the surface
acoustic impedance becomes equal to the specific impedance of air. In such a case,
zn = ρc (c is speed of sound). However, if this absorbing condition is applied to a
general case where the input sound is not plane wave but a cylindrical or spherical
wave and its incidence angle is not perpendicular, theoretically there exists some
reflection. More accurate perfectly absorbing boundary condition will be discussed
in a latter part (Fig. 2.4).

In the Yee algorithm, both physical quantities of sound pressure p and particle
velocity u, v, w are obtained successively in the calculation steps. Therefore, the
surface acoustic impedance can be roughly approximated as [2],

un+1
I+1/2,J,K = pn+1/2

I,J,K

zn
nx , (2.10)

vn+1
I,J+1/2,K = pn+1/2

I,J,K

zn
ny, (2.11)

wn+1
I,J,K+1/2 = pn+1/2

I,J,K

zn
nz, (2.12)

where n = (nx , ny, nz) is the normal vector of surface. Because the definition points
of sound pressure and particle velocity are a half grid size apart from each other, note
that this impedance is a rough approximation.

One of the most representative indeces describing absorption characteristics of
materials is the absorption coefficient α. The absorption coefficient, which is obtained
on energy-base, is generally used in building acoustics, room acoustics, and environ-
mental noise. The absorption coefficient is categorized into three kinds; normal inci-
dence absorption coefficient α0, reverberation absorption coefficient α, and oblique
incidence absorption coefficient αθ . Among them, the normal incidence absorption
coefficient α0 is related to the normal acoustic impedance as

α0 = 1 −
∣∣∣∣ zn − ρc

zn + ρc

∣∣∣∣ . (2.13)
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Therefore, if normal incidence absorption coefficient of the material is known, normal
acoustic impedance can be estimated as

zn = ρc
1 + √

1 − α0

1 − √
1 − α0

. (2.14)

Acoustic impedance is generally treated in frequency domain and is expressed by
complex values. By the above method, however, only real values can be treated for
expressing the acoustic impedance because the FDTD method deals with physical
quantities in real number, and such a treatment corresponds to a situation that acoustic
impedance is a constant real value for all the frequency range under the calculation.
In order to treat more complicated characteristics such that the acoustic impedance
is dependent on frequency, another physical model is necessary. For such a compli-
cated impedance model, some calculation models have been proposed. Sakamoto has
proposed the mechanical substitution model in which the acoustic boundary surface
has been substituted by an equivalent mechanical model being composed of mass,
spring, and resistance [3]. In order to treat more general impedance characteristics,
D. M. Sullivan has used Z transform to deal with a linear system in sound reflection
by boundary surface [4]. Escolano has used digital signal processing, in which an
acoustic admittance was modeled with IIR or FIR filters [5]. For a case where homo-
geneous porous materials such as glass fibrous board or urethane form are used as a
surface absorption material, Suzuki has proposed a calculation method by which the
inner space of the material was digitized and sound propagation was obtained based
on the Rayleigh model [6].

2.1.3 FDTD(2, 4) Method

In the Yee algorithm, central difference using two reference points secures
second-order accuracy. In order to raise the accuracy, various efforts have being
made. In this section, as the simplest method for the implementation, FDTD(2, 4)
method [7, 8] is introduced. FDTD(2, 4) means the second-order accuracy in time
and the fourth-order accuracy in space. The spatial accuracy is raised by adopting
the fourth-order scheme using four points central difference. For temporal deriv-
ative, however, the method remains to use two points central difference with the
second-order accuracy in order to avoid increase of computational memory usage.

The difference scheme with fourth-order accuracy using four reference points is
deduced from Taylor expansion of a function. Values of a function f at points x ±h/2
and x ±3h/2, f (x ± h/2) and f (x ± 3h/2), are expressed as follows, by using the
Taylor expansion around x .

f

(
x + h

2

)
= f (x) + 1

2
f (1)(x)h + 1

8
f (2)(x)h2 + 1

48
f (3)(x)h3 + 1

384
f (4)(x)h4 + · · ·,

(2.15)
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f

(
x − h

2

)
= f (x) − 1

2
f (1)(x)h + 1

8
f (2)(x)h2 − 1

48
f (3)(x)h3 + 1

384
f (4)(x)h4 + · · ·,

(2.16)

f

(
x + 3h

2

)
= f (x) + 3

2
f (1)(x)h + 9

8
f (2)(x)h2 + 9

16
f (3)(x)h3 + 27

128
f (4)(x)h4 + · · ·,

(2.17)

f

(
x − 3h

2

)
= f (x) − 3

2
f (1)(x)h + 9

8
f (2)(x)h2 − 9

16
f (3)(x)h3 + 27

128
f (4)(x)h4 + · · ·.

(2.18)

In order to deduce ∂ f
∂x from the above four equations, let us calculate {(2.15) −

(2.16)} × 27− {(2.17) − (2.18)}, then

f (1)(x) = − f (x + 3h/2) + 27 f (x + h/2) − 27 f (x − h/2) + f (x − 3h/2)

24h
+ ε,

(2.19)

where ε is an error term and it becomes fourth-order accurate as

ε = 3

640
f (5)(x)h4. (2.20)

An FDTD scheme where temporal and spatial derivatives are approximated in
the second-order and fourth-order accuracy, respectively, is called the FDTD(2, 4)
method, and the schemes are expressed as

un+1
i+1/2, j,k = un

i+1/2, j,k − �t

ρh

1∑
m=0

Cm

(
pn+1/2

i+m, j,k − pn+1/2
i−m, j,k

)
, (2.21)

vn+1
i, j+1/2,k = vn

i, j+1/2,k − �t

ρh

1∑
m=0

Cm

(
pn+1/2

i, j+m,k − pn+1/2
i, j−m,k

)
, (2.22)

wn+1
i, j,k+1/2 = wn

i, j,k+1/2 − �t

ρh

1∑
m=0

Cm

(
pn+1/2

i, j,k+m − pn+1/2
i, j,k−m

)
, (2.23)

pn+1/2
i, j,k = pn−1/2

i, j,k − κ�t

h

[ 1∑
m=0

Cm

(
un

i+1/2, j,k − un
i−1/2, j,k

)

+
1∑

m=0

Cm

(
vn

i, j+1/2,k − vn
i, j−1/2,k

)

+
1∑

m=0

Cm

(
wn

i, j,k+1/2 − wn
i, j,k−1/2

) ]
. (2.24)

where C0 = 9
8 and C1 = 1

24 .
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2.1.4 Stability and Dispersion Error

Whereas the FDTD method is easy to be implemented, the method has a sensitive
nature in which a solution unexpectedly diverges or fluctuates depending on a calcu-
lation condition. Such natures as unexpected divergence and fluctuation are caused
by violation of stability condition and dispersion error, respectively. Among them,
the stability condition is simpler and it is provided by relationship between discrete
time step �t and spatial grid size h as,

�t ≤ h

c
(1 dimension), (2.25)

�t ≤ h√
2c

(2 dimension), (2.26)

�t ≤ h√
3c

. (3 dimension), (2.27)

for the Yee algorithm using temporal second-order. This condition is called the
Courant condition. As shown in the above equation, for appropriate parameter set-
ting, a discrete time step is proportional to a spatial grid size. Therefore, more precise
modeling or raising upper limit frequency by shortening a spatial grid size leads to
a temporal high resolution. In this section, this stability condition is theoretically
explained.

A simple technique for analyzing the stability and the dispersive phase error of
a finite difference scheme has been given by Von Neumann and Richtmyer [9].
Consider a plane wave with wave number k traveling in the (θ, ϕ) direction in polar
coordinates shown in Fig. 2.5. The sound pressure at a point (x, y, z) with a wave
number k (= ω/c) and an amplitude of 1 is assumed to be

p0(x, y, z, t) = e jkx x e jky ye jkz ze− jωt , (2.28)

where kx , ky , kz are directional component of the wave number k and they are
expressed as kx = k sin ϕ cos θ , ky = k sin ϕ sin θ , kz = k cos ϕ.

Sound pressure and particle velocity at their definition points on the staggered
grid system are expressed as

un
i+1/2, j,k = u0 Zn · e jkx (i+1/2)he jky( jh)e jkz(kh), (2.29)

pn+1/2
i, j,k = p0 Zn+1/2 · e jkx (ih)e jky( jh)e jkz(kh), (2.30)

where u0, v0, w0, p0 are initial values, Z is a complex amplification ratio per time
step. Substituting the above expressions into Eqs. (2.5)–(2.8) leads to
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Fig. 2.5 Traveling direction of a plane wave

u0

(
Z

1
2 − Z− 1

2

)
− �t

ρh
· 2 j p0 sin

kx h

2
= 0, (2.31)

v0

(
Z

1
2 − Z− 1

2

)
− �t

ρh
· 2 j p0 sin

kyh

2
= 0, (2.32)

w0

(
Z

1
2 − Z− 1

2

)
− �t

ρh
· 2 j p0 sin

kzh

2
= 0, (2.33)

p0

(
Z

1
2 − Z− 1

2

)
− �t

ρh

(
2 j sin

kx h

2
u0 + 2 j sin

kyh

2
v0 + 2 j sin

kzh

2
w0

)
= 0.

(2.34)
In a matrix form of Eqs. (2.31)–(2.34),

⎡
⎢⎢⎢⎢⎢⎣

Z
1
2 − Z

−1
2 0 0 −�t

ρh 2 j sin kx h
2

0 Z
1
2 − Z

−1
2 0 −�t

ρh 2 j sin
ky h

2

0 0 Z
1
2 − Z

−1
2 −�t

ρh 2 j sin kzh
2

−κ�t
h 2 j sin kx h

2
−κ�t

h 2 j sin
kyh

2
−κ�t

h 2 j sin kzh
2 Z

1
2 − Z

−1
2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

u0
v0
w0
p0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

(2.35)

A value of determinant of the 4 × 4 matrix which appears in Eq. (2.35) should be
zero, in order that the vector [u0 v0 w0 p0]T is non-zero vector. This condition leads
the following equation regarding the complex amplification ratio Z as follows:

Z2 − 2AZ + 1 = 0, (2.36)
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A = 1 − 2

(
c�t

h

)2 (
sin2 kx h

2
+ sin2 kyh

2
+ sin2 kzh

2

)
. (2.37)

A solution of Eq. (2.36) is

Z =
{

A ± √
A2 − 1 (A < −1)

A ± j
√

1 − A2 (−1 ≤ A ≤ 1).
(2.38)

If an absolute value of Z in Eq. (2.38) is greater than 1, the solution increases
with advance of time steps and diverges at last. Accordingly, −1 ≤ A ≤ 1 is a
necessary condition for the solution being stable. Actually in this case, |Z | is equal
to 1 and arg Z = arctan A/

√
1 − A2. The fact means that the wave amplitude does

not change and the phase of the wave shifts with the progress of time steps. Then,
Eq. (2.37) leads to

sin2 kx h

2
+ sin2 kyh

2
+ sin2 kzh

2
≤

(
h

c�t

)2

. (2.39)

For arbitrary k,

�t ≤ h√
3c

(2.40)

can be obtained because sin(kx h/2) ≤ 1, sin(kyh/2) ≤ 1, sin(kzh/2) ≤ 1. A value
of A is dependent on the wave number k (see Eq. (2.37)) and therefore the degree
of the numerical phase shift is also dependent on the wave number k. This error of
phase shift owing to frequency is called dispersion error. Figure 2.6 shows an example
of a pulse propagation with dispersion error. At a center point in a cubic room of
201 h ×201 h ×201 h, a pulse source is emitted and its pulse propagation is detected
at a corner point. Comparing with a theoretical solution reveals that dispersion error
accumulates in 10,000 time steps to raise numerical fluctuations. The influence of
dispersion error on calculation results of sound propagation becomes severer as size
of sound field under test is larger. Therefore, various efforts have being made to
reduce such dispersion error heretofore as shown in the following section.

2.1.5 Absorbing Boundary Condition

When the FDTD method, which is categorized in a domain-type is applied to a free
field, a special treatment is required to reduce reflection sound from field termina-
tions. As a concept of absorbing boundary condition (ABC), we can choose two
kinds; Differential-based Absorbing Boundary Condition (D-ABC) and Material-
based Absorbing Boundary Condition (M-ABC). The former deals with progressive
and regressive waves at a terminating surface, and the latter absorbs sound energy
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Fig. 2.6 Numerical fluctuation caused by dispersion error appearing in a numerical result

inside a numerically lossy media with sufficient thickness installed along surround-
ing boundary. As representative D-ABC and M-ABC, hereafter, the Mur ABC and
the perfectly matched layer (PML), respectively, will be introduced.

2.1.5.1 Mur Absorbing Boundary Condition

The simplest and most commonly used grid truncation technique for open-field
FDTD modeling is the Mur ABC [10]. The Mur ABC is based on a concept in which
only progressive wave outgoing to an absorbing boundary exits and there exists no
regressive wave inbound sound field at truncation mesh of the boundary. Now, let us
consider one-dimensional wave equation in x-direction regarding x-component of
particle velocity.

(
∂2

∂x2 − 1

c2

∂2

∂t2

)
u = 0. (2.41)

The above second-order differential equation is transformed as

∂u

∂x
− 1

c

∂u

∂t
= 0, (2.42)

∂u

∂x
+ 1

c

∂u

∂t
= 0, (2.43)

then the solutions of Eqs. (??)–(2.43) mean a progressive and a regressive plane
waves, respectively. For example, in the case of Fig. 2.7, in which absorbing boundary
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Fig. 2.7 A plane wave incidence to an absorbing boundary

is set at x = h/2, there exists a progressive wave in negative x-direction, Eq. (2.43)
should be applied at x = h/2. With adopting the grid system to the Yee’s staggered
system, discretization of Eq. (??) at a time step (n + 1/2)�t by,

∂u

∂x

∣∣∣∣
n+ 1

2

i, j,k
= 1

c

∂u

∂t

∣∣∣∣
n+ 1

2

i, j,k
, (2.44)

leads,

(
un+1

3/2, j,k + un
3/2, j,k

)
−

(
un+1

1/2, j,k + un
1/2, j,k

)
2h

=
(

un+1
3/2, j,k + un+1

1/2, j,k

)
−

(
un

3/2, j,k + un
1/2, j,k

)
2c�t

. (2.45)

By arranging Eq. (2.45) regarding a particle velocity at a truncation boundary
grid, the Mur ABC is obtained as

un+1
1/2, j,k = un

3/2, j,k − c�t − h

c�t + h

(
un

1/2, j,k − un+1
3/2, j,k

)
. (2.46)

Note that the above formulation is premised that a plane wave is normally inci-
dent on the absorbing boundary. Therefore, its accuracy deteriorates for an oblique
incidence or a spherical wave incidence.

2.1.5.2 Perfectly Matched Layer

By D-ABC, a nonreflective boundary is approximated by a concept that only outward
wave through a truncation boundary propagates and there exists no inward wave
propagating to the problem region.

On the other hand, by M-ABC, sound wave penetrates into a lossy media with
a certain thickness, which is adjacent to a problem region, and the sound energy
vanishes in the lossy media, and consequently, reflecting sound from the truncation
boundary is decreased. The PML developed by Berenger [11], which utilizes such a
sound absorbing process, is the most flexible and efficient M-ABC.
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Fig. 2.8 Setting of PML
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R
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R

Nh

Rx =Ry=0
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y

x

R

0
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The following equations to which resistance terms specified by Rx , Ry and Rz

are introduced are basic equations of the acoustic PML.

ρ
∂u

∂t
+ Rx u + ∂p

∂x
= 0,

∂px

∂t
+ Rx

ρ
px + κ

∂u

∂x
= 0, (2.47)

ρ
∂v

∂t
+ Ryv + ∂p

∂y
= 0,

∂py

∂t
+ Ry

ρ
py + κ

∂v

∂y
= 0, (2.48)

ρ
∂w

∂t
+ Rzw + ∂p

∂z
= 0,

∂pz

∂t
+ Rz

ρ
pz + κ

∂w

∂z
= 0, (2.49)

p = px + py + pz . (2.50)

As shown in Eqs. (2.1)–(2.4) and Eqs. (2.47)–(2.50), governed equations in the
PML are different from those in the air, and therefore, discontinuity of sound propa-
gation media might cause sound reflection. The PML, however, contrives treatment
of resistance terms so that the specific impedance of the PML media becomes equal
to that of the air, and consequently, the impedance matching ensures no reflection
from the interface-surface between the air and the PML media. As a special case,
Rx = Ry = Rz = 0 leads Eqs. (2.1)–(2.4), which describe sound propagation in
the air.

Figure 2.8 shows how to set PML layer for two-dimensional field. In the figure,
upper PML diminishes a wave going in positive y-direction by introducing Ry as a
positive value. Resistance term in x-direction does not contribute to reduction in the
wave, so Rx is made to be zero. On the other hand, the right-hand side layer which
weakens a wave going in positive x-direction has a positive value as a parameter of
Rx and zero value as that of Ry .
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Fig. 2.9 Setting of a
cubic sound field modeling
a free field
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When medium changes between two layers, the discontinuity of the medium
results in a reflection from the interface, and the reflection may cause a numerical
error. In the PML calculation, such a numerical error is usually reduced by smooth
change of value of R in the PM layer. When total number of grids of a PM layer is N ,
for example, the value of R is given with a function of distance from the interface as

R(ih) = Rmax

(
ih

Nh

)m

, (2.51)

where m is a constant determining spatial distribution pattern of R. As is shown in
the equation, when i = 0, R is made to be zero and a sound wave smoothly penetrates
through the PM layer. As i is increased, the value of R becomes rapidly larger. The
PML calculation gradually decreases the amplitude of the traveling wave in the lossy
media with a certain depth, and therefore the calculation method is robuster for the
incidence angle than D-ABC. In order to see a difference in absorption characteristics
between D-ABC and M-ABC, transition of sound pressure distribution for a cubic
sound field shown in Fig. 2.9 with perfect absorption on all six walls was calculated
for the following two cases—1: Mur-ABC, 2: PML with N = 20. Comparison of the
calculation results are shown in Fig. 2.10. The figure shows every 64�t snapshot of
sound pressure distribution on a center x-y plane where a sound source exists. In a
calculation result of Mur-ABC, slight reflection is seen, especially, amplitudes of the
reflection from corners are larger than those from centers of boundary surfaces. On
the other hand, in the case of the PML, penetrating wave gradually diminishes in the
absorbing layer. As is seen in the figure, highly efficient perfectly absorbing boundary
condition is realized by using the PML, but it should be noted that computational
load becomes much larger than that of D-ABC from viewpoints of both of computer
storage necessity and computational time.
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Fig. 2.10 Snapshots of sound pressure distribution in horizontal plane which includes a source

2.2 Techniques for High Accuracy

When accurate values of differentiations by finite difference are required, a grid
spacing should be small compared to a typical wave length in the problem. Therefore,
for a high frequency problem, the grid spacing has to be small and the degree of
freedom amounts to a huge value. In order to resolve this problem, a higher order
or a compact difference method can be applied. Since the time integration must be
fulfilled after evaluating spatial differentiations, the accuracy of the time marching
procedure must be maintained. In order to carry out the time integration accurately,
a symplectic integration can be applied in the acoustic problem.

2.2.1 Compact Finite Difference

In the acoustic FDTD simulation, the variables are usually defined on a staggered grid.
On the staggered grid the scalar variables (pressure, mass density, sound speed, etc.)
are stored in the cell centers of the control volumes, whereas the particle velocities
are located at the cell faces.

Since small grid spacing compared to the typical wavelength is required to obtain
an accurate differential value when a conventional finite difference scheme is used,
the grid spacing has to be small and the degree of freedom becomes huge for high
frequency problems. In order to resolve this problem, a higher order explicit or a
compact finite difference has been applied [12]. In the compact finite difference,
differential values are coupled and fewer grid points are required for constructing
the difference formula than the explicit finite difference. The differential value is
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Fig. 2.11 Evalutation points of differential and difference values on the uniform staggered grid

determined by the linear coupled equations whose coefficient matrix is a band matrix.
A fast algorithm can be applied to solve the linear equations with a tridiagonal
coefficient matrix.

The numerical dispersion of a compact finite difference on a uniform staggered
grid can be minimized by adjusting the coefficients. The evaluation points of the
differentiation and the difference values on staggered the uniform staggered grid
are illustrated in Fig. 2.11. Introducing a parameter α, we consider a compact finite
difference on a grid with a uniform spacing h,

α f ′
i+1 + f ′

i + α f ′
i−1 = b

fi+3/2 − fi−3/2

3h
+ a

fi+1/2 − fi−1/2

h
+ ε. (2.52)

Here, the coefficients a, b and the error term ε are related to α by

a = 3

8
(3 − 2α), b = 22α − 1

8
,

ε = 9 − 62α

1920
h4 f (5) + O(h6). (2.53)

The differential values are calculated by solving a linear equation with a tridiagonal
coefficient matrix. When α = 1/22, the coefficient b vanishes and the compact
finite difference is represented by a least number of grid points. Thus, this case
is convenient for the simulation of the wave propagation in a region of complex
configuration. When α = 9/62, the fourth-order error term in ε vanishes and the
difference equation becomes sixth order. We evaluate effective wave number k′ which
is defined by the function f (x) = sin(kx) and its first-order differentiation k′ cos(kx)

evaluated by a finite difference. The grid wave number w = hk and the effective grid
wave number w′ = hk′ are defined by the grid spacing h. For example, w = π/2
means that 4 grid points exist per one wavelength (4 PPW: point per wavelength).
By the second-order explicit finite difference on the staggered grid, the effective grid
wave number becomes w′ = 2 sin(w/2). This deviates from the exact value when
the grid wave number is not very small. On the other hand, for the compact finite
difference with α, we obtain

w′(w, α) = 2a sin(w
2 ) + 2

3 b sin( 3w
2 )

1 + 2α cos(w)
. (2.54)
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Fig. 2.12 Effective grid wave number error for various α

The exact value is w = w′ and the deviation from the exact value causes numerical
dispersion error. Some properties of w′, i.e.,

w′(0, α) = 0, w′(π, α) = 7 − 10α

3(1 − 2α)
, (2.55)

w′(π, α) < π, when α <
3π − 7

6π − 10
≈ 0.27, (2.56)

are derived. Therefore, when α is less than 0.27, there exists a point w1 (0 < w1 < π)

where w = w′, i.e.,
w′(w1, α) = w1. (2.57)

Furthermore, w′ > w holds in the interval (0, w1), and w′ < w in (w1, π ). If
α > 9/62 then w′(w, α) is larger than the exact grid wave number in the vicinity
of w = 0. General tendency is that, when α is small, the effective wave number
becomes less than the theoretical value even if the PPW is not so small. On the other
hand, when α is large, the effective wave number can approximate the theoretical
value well up to the region of short wavelength (w ≥ π/2). The effective grid wave
number error is shown in Fig. 2.12. For w1 in (0, π ), w1 and α are related by

α = 27 sin( 1
2w1) − sin( 3

2w1) − 12w1

18 sin( 1
2w1) − 22 sin( 3

2w1) + 24w1 cos(w1)
. (2.58)

Therefore, adjusting α can improve the accuracy of the finite difference in a given
interval of w. In order to optimize α, we have adopted the following strategy. First,
we set the maximum wave number w0 to be analyzed. Next, α is determined so that
the maximum absolute value of relative error in the interval (0, w0) is minimized.

The maximum absolute value of relative error in the interval of (0, w0) is plotted
in Fig. 2.13 where the abscissa means α. We see that the minimization is attained
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Fig. 2.13 Maximum absolute value of relative error for the various intervals of (0, w0). The abscissa
represents α. The minimization of the maximum absolute value of error is realized by adjusting α

Table 2.1 Maximum wave number w0, optimized α and maximum relative error. The optimization
of α reduces the maximum absolute value of relative error below 10−5

w0 Point per wave Optimized Maximum
length (PPW) α relative error

0.25π 8 0.14905 4.5 × 10−6

0.3π 6.67 0.1508 1.4 × 10−5

0.4π 5 0.15555 8.1 × 10−5

0.5π 4 0.1621 3.3 × 10−4

0.55π 3.64 0.16625 6.1 × 10−4

by adjusting the parameter α. In Table 2.1, maximum wave number, optimized α,
and maximum absolute value of relative error are shown. The maximum absolute
value of relative error is reduced even when the PPW is not so large. This estimation
has been done using a local property of coefficients, only. However, in the compact
finite difference, the differential values are coupled with those of the adjacent points.
Therefore, the differential value computed by the compact scheme is influenced by
those of neighboring grid points. When the interval is finite and non periodic, the
boundary difference scheme must be also considered.

There are two types of boundary differences in the staggered grid. The first type is
that the evaluation point of the differential value is outside of the interval of difference
value estimation. This type corresponds to the boundary difference of the pressure
which is utilized for time evolution of the velocity. However, this differential value
need not to be evaluated for a rigid boundary condition in the acoustic problem
because the velocity on the rigid boundary is always zero. The evaluation points of
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Fig. 2.14 Evaluation points of differential and difference values on boundary grid

the differentiation and the difference values on the boundary grid are illustrated in
Fig. 2.14. The compact finite difference formula on the boundary is

f ′
0 + αb f ′

1 = 1

h
(ab f1/2 + bb f3/2 + cb f5/2 + db f7/2 + eb f9/2) + ε. (2.59)

Here, coefficients are related to αb by

ab = −22αb + 93

24
, bb = 17αb + 229

24
, cb = 3αb − 75

8
,

db = −5αb + 111

24
, eb = αb − 22

24
, (2.60)

and ε is the error term,

ε = (
71αb

1920
− 563

640
)h4 f (5) + O(h5). (2.61)

For a function f (x) = cos(kx) + j sin(kx), its differential value approximated by
a finite difference, f ′(x) = jk′[cos(kx) + sin(kx)] is evaluated. Using grid wave
number w = hk, w′ is given by

jw′ = abe jw/2 + bbe j3w/2 + cbe j5w/2 + dbe j7w/2 + ebe j9w/2

1 + αbe jw
. (2.62)

Global consideration must be executed because the differential values on the inner and
boundary grid points are coupled. As an attempt to investigate the nonlocal property
of the compact finite difference scheme, a spatial distribution of the amplitude error
in a whole interval of a given grid is calculated by solving a system of linear equations
with the tridiagonal coefficient matrix. The spatial distribution of the amplitude error
in the interval with n = 60 grid points is demonstrated in Fig. 2.15. The wavelength
is set to be 6 grid spacing (6 PPW). For the estimation of the compact difference, α

of inner interval (2 ≤ i ≤ n − 2) is set to be the optimum value for the frequency
range below 6 PPW. For the evaluation of differentiation on the grid points next to
the boundary (i = 1, n−1), α is set to be 1/22. At the grid points on both boundaries,
αb is set to be 21.88. The error is the largest on each boundary grid point i = 0, n.
We evaluate the maximum absolute value of amplitude error on the boundary grid
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Fig. 2.15 Distribution of the absolute value of relative amplitude error on the grid with 60 points.
The grid wave number is set to be π/3 (6 PPW)
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Fig. 2.16 Maximum absolute value of amplitude error versus αb below upper bound frequency

point in the frequency range to be considered. The dependence of the error on αb is
demonstrated in Fig. 2.16. The absolute value of the relative error is not small in this
case. Moreover, when αb is near 22, the inverse of 1/22, the maximum amplitude
error diverges. Thus, we can conclude that the optimization may not work well for
this type of boundary difference when the value of PPW is not large.

The second type of boundary difference is that the evaluation point of
differentiation lies between grid points for difference estimation. This case corre-
sponds to the boundary difference of velocity in acoustic FDTD which is utilized
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Fig. 2.17 Evaluation points of differential and difference values on boundary grid

for time evolution of the pressure at the boundary cell. The evaluation points of
the differentiation and the difference values on the boundary grid is illustrated in
Fig. 2.17. Its compact difference equation is

f ′
0 + αb f ′

1 = 1

h
(ab f−1/2 + bb f1/2 + cb f3/2 + db f5/2 + eb f7/2) + ε. (2.63)

Relations among coefficients are

ab = αb − 22

24
, bb = −27αb + 17

24
, cb = 9αb + 3

8
,

db = −αb − 5

24
, eb = 1

24
, (2.64)

and

ε =
(

− 3αb

640
+ 71

1920

)
h4 f (5) + O(h5). (2.65)

By the similar consideration, we obtain the effective grid wave number w′ for this
type as

jw′ = abe− jw/2 + bbe jw/2 + cbe j3w/2 + dbe j5w/2 + ebe j7w/2

1 + αbe jw
. (2.66)

The absolute value of amplitude error of the compact difference in the interval with
60 grid points is illustrated in Fig. 2.18. Here, the grid wave number is set to be
π/3 (6 PPW). The parameter αb in Eq. (2.64) for the inner grid points also is set
to be the optimum value for the frequency range below 6 PPW. At the grid point
on each boundary, αb is set to be 8.21. Though the absolute value of the error is
large at the grid point on each boundary, it is less than the other case. The maximum
absolute value of relative amplitude error is also estimated on the boundary point in
the frequency range below a specified upper bound. By a similar procedure to the
previous case, the amplitude error is minimized to 2.68 ×10−2 when αb takes a value
around 8.212. However, the efficacy of the optimization is not large for 6 PPW.

From the discussions above, the dispersion error in the finite difference at the
boundary grid point cannot be greatly improved when the grid spacing is not small
enough compared to the wavelength to be considered.
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Fig. 2.18 Distribution of absolute value of relative amplitude error on the grid with 60 points. The
grid wave number is set to be π/3 (6 PPW)

2.2.2 Improvement of Time Integration

Since the time integration must be fulfilled after evaluating spatial differentiations
in FDTD, the next aim is to improve the time marching procedure. For the long
time integrations, a symplectic integration method is an excellent scheme when the
dynamics of the system possesses a Hamiltonian structure. The symplectic integra-
tion scheme is developed for the last few decades and is applied to particle dynamics
and celestial mechanics. Higher order schemes of symplectic integration are consid-
ered by many authors. Extensions of the theory to a partial differential equation have
been investigated recently. Here, we do not go far into theoretical details of the sym-
plectic integration. Instead, the acoustic simulation is carried out by the symplectic
integration keeping higher accuracy during long time steps.

We describe the outline of the symplectic integral method. When a set of ordinary
differential equations for variables p and q are described by the following form:

dp

dt
= f (q),

dq

dt
= g(p), (2.67)

the time marching by a time step �t is carried out through m intermediate stages.
The operations at i-th stage are

Pi = Pi−1 + �tbi f (Qi−1),

Qi = Qi−1 + �t b̃i g(Pi ), (2.68)
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Table 2.2 Coefficients for Ruth’s formula

i = 1 i = 2 i = 3

bi 7/24 3/4 −1/24
b̃i 2/3 −2/3 1

where

P0 = p(t), Q0 = q(t),

Pm = p(t + �t), Qm = q(t + �t). (2.69)

The coefficients bi and b̃i for Ruth’s formula [13] are shown in Table 2.2.
For sound wave propagation, p and q are considered as acoustic pressure and velocity
vector v, respectively. Also, f (q) and g(p) are described by the compact finite
differences in velocity vector v and pressure p, respectively.

Simulations of one-dimensional wave propagation have been carried out. We have
chosen the initial wave form f (x) as

f (x) = 1

2
exp[− ln 2(

x

3
)2] (2.70)

on the grid whose spacing h = 1.0. The sound speed c is supposed as unity. We let the
initial Gaussian form travel up to 10,000 time steps by using three different schemes.
The shapes of the waves at several time steps simulated by various schemes are
illustrated in Fig. 2.19. In each figure, the abscissa is x ′ = x −ct . The result obtained
by the combination of optimized fourth-order compact finite difference (α = 0.1475)
and Ruth’s time integration scheme is excellent. Even at the time step of 10,000, the
wave shape almost retains the initial form by this scheme. Therefore, the symplectic
method is an effective integration technique for long time step computations.

2.3 Application to Vibroacoustic Problems

In this section, application of the FDTD method to vibroacoustic problems such as
a sound radiation problem and a structure-borne sound problem is presented. Herein
two types of modeling methods for solid part like walls and floors, solid modeling
and beam-plate modeling, are considered. The former is a straightforward method
where longitudinal and shear waves are considered and solid part is discretized
with many small volumes. Using the solid modeling, physical phenomena can be
relatively well expressed but the computational cost will become huge. On the other
hand, the latter considers solid part as a composition of plate elements. Therefore,
longitudinal and bending waves are taken into account with plate theories. Although
there are some limitations in applicability, this modeling has an advantage of the
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Fig. 2.19 Comparison of the wave forms at several time steps obtained by a the conventional
FDTD scheme (explicit second-order finite difference and leap frog time integration) with CFL
number 0.9, b the fourth-order compact finite difference and the leap frog time integration with
CFL number = 0.25, and c the optimized fourth-order compact finite difference (α = 0.1475) and
Ruth’s time integration with CFL number = 0.5
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small computational load. The following introduce the formulations of vibroacoustic
FDTD method according to the modeling method. Numerical examples of this section
are shown in Sect. 7.6.

2.3.1 Solid Modeling

2.3.1.1 Basic Equations

To analyze vibrations of solid, consider equations of motion and constitutive equa-
tions of three-dimensional elastic bodies [14]. When probing vibration, one of the
most important phenomena is damping. Many formulations and implementations
have been suggested from various viewpoints, regardless if the medium is solid or
fluid [15–18]. Herein two types of damping terms, which give distinct damping
characteristics, are considered [19]. Then, under the conditions of small deforma-
tion, adiabatic transition, and athermic medium, the motion equations and constitu-
tive equations with two types of damping terms can be expressed in tensor notation
as [20]

ρ
∂vi

∂t
+ ζvi = ∂Ti j

∂a j
, (2.71)

Ti j = ci jklεkl + ξi jkl ekl , (2.72)

where i, j, k, l = x, y, z. ρ is the density, v is the velocity vector, and t is time. ζ is
a constant to describe the damping force proportional only to the velocity, while T
is the stress tensor. a (= [x, y, z]) is the position vector, c is the stiffness tensor, and
ε is the strain tensor. ξ is the viscosity tensor, which describes the damping force
proportional to the second-order space derivative of the velocity, and e (= ∂ε/∂t) is
the strain velocity tensor. It should be noted that combining the two types of damping
terms ζ and ξ yields similar characteristics to Rayleigh damping [21]. Considering
the reciprocities of stiffness and viscosity, stiffness tensor c and viscosity tensor ξ can
be abbreviated to their six-by-six matrix forms, each of which has 21 independent
constants.

Additionally, if an orthotropic medium is considered, the constants can be reduced
to nine independent ones. In this case, the relationship between the stiffness matrix
C and Young’s modulus E , shear modulus G, and Poisson’s ratios υ can be given by

C = S−1, (2.73)
υyz

Ey
= υzy

Ez
,
υzx

Ez
= υxz

Ex
,
υxy

Ex
= υyx

Ey
, (2.74)

http://dx.doi.org/10.1007/978-4-431-54454-8_7
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S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ex
−υxy

Ex
−υxz

Ex
0 0 0

−υyx

Ey

1

Ey
−υyz

Ey
0 0 0

−υzx

Ez
−υzy

Ez

1

Ez
0 0 0

0 0 0
1

G yz
0 0

0 0 0 0
1

Gzx
0

0 0 0 0 0
1

Gxy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.75)

where S is the compliance matrix. When dealing with vibroacoustic problems,
behaviors of a fluid should be described with its basic equations. Interestingly,
although Eqs. (2.71) and (2.72) with a stiffness matrix are derived for a solid,
they can also express governing equations of a fluid with an appropriate stiffness
matrix, i.e., the bulk modulus κ and zero should be substituted for c11 = c22 =
c33 = c12 = c21 = c13 = c31 = c23 = c32 and the other components of c,
respectively[22]. In this case, Eq. (2.72) can be interpreted as the constitutive equa-
tion of a Newtonian fluid. The linearized Navier–Stokes equation where the con-
vection term and volumetric force are neglected can be derived by neglecting the
term ζvi of Eq. (2.71) and substituting Eq. (2.72) into Eq. (2.71). As for damping
terms, χ ≡ ξ12 = ξ21 = ξ13 = ξ31 = ξ23 = ξ32 mean the second viscosity [23] and
γ ≡ ξ44 = ξ55 = ξ66 mean the shear viscosity, then ξ11 = ξ22 = ξ33 can be written
as χ + 2γ . Note that the dilatational viscosity can be expressed as χ + (2/3)γ . The
sound pressure can be obtained by calculating −κ∇ · u, where u is the displacement
vector that can be calculated by integrating the velocity vector v over time.

For discretization with a difference scheme of the leap-flog algorithm, Eqs. (2.71)
and the time-derivative form of (2.72) are rewritten as

ρ
∂vx

∂t
+ ζvx = ∂Txx

∂x
+ ∂Txy

∂y
+ ∂Tzx

∂z
, (2.76)

ρ
∂vy

∂t
+ ζvy = ∂Txy

∂x
+ ∂Tyy

∂y
+ ∂Tyz

∂z
, (2.77)

ρ
∂vz

∂t
+ ζvz = ∂Tzx

∂x
+ ∂Tyz

∂y
+ ∂Tzz

∂z
, (2.78)

∂Txx

∂t
= c11

∂vx

∂x
+ c12

∂vy

∂y
+ c13

∂vz

∂z

+ ξ11
∂2vx

∂x∂t
+ ξ12

∂2vy

∂y∂t
+ ξ13

∂2vz

∂z∂t
, (2.79)

∂Tyy

∂t
= c12

∂vx

∂x
+ c22

∂vy

∂y
+ c23

∂vz

∂z
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+ ξ12
∂2vx

∂x∂t
+ ξ22

∂2vy

∂y∂t
+ ξ23

∂2vz

∂z∂t
, (2.80)

∂Tzz

∂t
= c13

∂vx

∂x
+ c23

∂vy

∂y
+ c33

∂vz

∂z

+ ξ13
∂2vx

∂x∂t
+ ξ23

∂2vy

∂y∂t
+ ξ33

∂2vz

∂z∂t
, (2.81)

∂Tyz

∂t
= c44

∂vz

∂y
+ c44

∂vy

∂z
+ ξ44

∂2vz

∂y∂t
+ ξ44

∂2vy

∂z∂t
, (2.82)

∂Tzx

∂t
= c55

∂vx

∂z
+ c55

∂vz

∂x
+ ξ55

∂2vx

∂z∂t
+ ξ55

∂2vz

∂x∂t
, (2.83)

∂Txy

∂t
= c66

∂vy

∂x
+ c66

∂vx

∂y
+ ξ66

∂2vy

∂x∂t
+ ξ66

∂2vx

∂y∂t
, (2.84)

where vx is the x-directional velocity, vy is the y-directional velocity, and vz is the
z-directional velocity. Txx is the x-directional normal stress, Tyy is the y-directional
normal stress, and Tzz is the z-directional normal stress. Tyz is the shear stress defined
in the yz-plane, Tzx is the shear stress defined in the zx-plane, and Txy is the shear
stress defined in the xy-plane.

2.3.1.2 Averaging of Material Parameters

Figure 2.20 shows the arrangement of reference points for the stress and velocity on a
nonuniform staggered-grid system [24–27]. �x , �y, and �z are the spatial intervals
between the reference points of shear stress and velocity for the x , y, and z directions.
Point locations of normal stress are expressed as i , j , and k, while point locations
of shear stress and velocity should shift according to the staggered-grid system. For
example, the point locations of the xy-shear stress are expressed as i + 0.5, j + 0.5,
and k, whereas those of the x-velocity are expressed as i + 0.5, j , and k. �t is the
time interval for the calculation, and the elapsed-time counter is given by superscript
n for normal and shear stresses and n + 0.5 for velocities.

The target region of a vibroacoustic problem can be filled with a heterogeneous
orthotropic material, which is governed by Eqs. (2.71) and (2.72). Herein, all the
material parameters are defined at the reference points of normal stress, and the
mean values are used as reference points for shear stress and velocity [28–32].
The weighted arithmetic averages are employed at the reference points of veloc-
ity [33], for example,

ρ (i + 0.5, j, k) = ρ (i, j, k) �x (i) + ρ (i + 1, j, k) �x (i + 1)

�x (i) + �x (i + 1)
. (2.85)

At the reference points of shear stress, the weighted harmonic averages are employed
[33], for example,
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Fig. 2.20 Yee cell which has
spatial intervals of �x , �y,
and �z
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Gxy (i + 0.5, j + 0.5, k)

= {�x (i) + �x (i + 1)}{�y ( j) + �y ( j + 1)}
�x(i)�y( j)
Gxy(i, j,k)

+ �x(i+1)�y( j)
Gxy(i+1, j,k)

+ �x(i)�y( j+1)
Gxy(i, j+1,k)

+ �x(i+1)�y( j+1)
Gxy(i+1, j+1,k)

. (2.86)

Additionally, the damping constants are given by their arithmetic averages at the
velocity points and by their harmonic averages at the shear-stress points.

2.3.1.3 Boundary Conditions

A general method should accommodate a variety of boundary conditions such as
a fixed boundary, free boundary, and perfectly absorptive boundary. For absorptive
boundary, PML would be the most reliable option [34]. Implementation of the PML
to this method is introduced in reference [19, 20]. Hence, this section focuses on two
boundaries: a fixed boundary and a free boundary [33].

A fixed boundary is considered to be the boundary with the rigid body, which
has infinite density and infinite shear modulus. Therefore, the averaged density as
shown in Eq. (2.85) becomes infinite and then the velocity normal to the fixed sur-
face becomes zero. This condition can be directly satisfied for the reference points
of velocity located on the boundary. However, because the reference points of the
velocity components parallel to the boundary surface are not defined just on the
boundary, virtual reference points are assumed outside the boundary, and their val-
ues are determined so that the mean velocities on the boundary are zero. For example,
if the plane i + 0.5 = I + 0.5 is assumed to be a fixed boundary, then

vx (I + 0.5, j, k) = 0, (2.87)
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vy (I, j ± 0.5, k) + vy (I + 1, j ± 0.5, k) = 0, (2.88)

vz (I, j, k ± 0.5) + vy (I + 1, j, k ± 0.5) = 0. (2.89)

Additionally, in Eq. (2.86), the related term to the rigid body in the denominator
becomes zero. For example, the averaged shear modulus on the fixed boundary with
a uniform mesh becomes 4G/3 when one of the adjacent four media is the rigid body
and the others have the same shear modulus G.

On the other hand, a free boundary is considered to be the boundary with vacuum,
where the density and shear modulus are zero. The averaged shear modulus as shown
in Eq. (2.86) becomes zero and then the shear stress defined in the free surface
becomes zero. Although the normal stress to the boundary surface must be zero as a
matter of course, the reference points of normal stress, which should be zero, are not
arranged on the boundary. Therefore, virtual reference points are assumed outside
the boundary, and their values are determined such that the mean normal stresses on
the boundary are zero. For example, if the plane i + 0.5 = I + 0.5 is assumed to be
a free boundary, then

Txy (I + 0.5, j ± 0.5, k) = Tzx (I + 0.5, j, k ± 0.5) = 0, (2.90)

Txx (I, j, k) + Txx (I + 1, j, k) = 0. (2.91)

Additionally, the related term to vacuum in the numerator in Eq. (2.85) becomes
zero. For example, the averaged density on the free boundary with an uniform mesh
becomes ρ/2 when one of the adjacent two media is vacuum and the other has a
density ρ.

2.3.1.4 Discretization

For example, Eq. (2.76) is discretized with a central difference as

ρ (i + 0.5, j, k)
vn+0.5

x (i + 0.5, j, k) − vn−0.5
x (i + 0.5, j, k)

�t

+ ζ (i + 0.5, j, k)
vn+0.5

x (i + 0.5, j, k) + vn−0.5
x (i + 0.5, j, k)

2

≈ T n
xx (i + 1, j, k) − T n

xx (i, j, k)

{�x (i + 1) + �x (i)} /2

+ T n
xy (i, j + 0.5, k) − T n

xy (i, j − 0.5, k)

�y ( j)

+ T n
zx (i, j, k + 0.5) − T n

zx (i, j, k − 0.5)

�z (k)
. (2.92)
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Eq. (2.84) is discretized with a backward difference for time derivation of the viscosity
term and central difference for other terms as

T n+1
xy (i + 0.5, j + 0.5, k) − T n

xy (i + 0.5, j + 0.5, k)

�t

≈
{

c66 (i + 0.5, j + 0.5, k) + ξ66 (i + 0.5, j + 0.5, k)

�t

}

× vn+0.5
y (i + 1, j + 0.5, k) − vn+0.5

y (i, j + 0.5, k)

{�x (i + 1) + �x (i)} /2

− ξ66 (i + 0.5, j + 0.5, k)

�t

× vn−0.5
y (i + 1, j + 0.5, k) − vn−0.5

y (i, j + 0.5, k)

{�x (i + 1) + �x (i)} /2

+
{

c66 (i + 0.5, j + 0.5, k) + ξ66 (i + 0.5, j + 0.5, k)

�t

}

× vn+0.5
x (i + 0.5, j + 1, k) − vn+0.5

x (i + 0.5, j, k)

{�y ( j + 1) + �y ( j)} /2

− ξ66 (i + 0.5, j + 0.5, k)

�t

× vn−0.5
x (i + 0.5, j + 1, k) − vn−0.5

x (i + 0.5, j, k)

{�y ( j + 1) + �y ( j)} /2
. (2.93)

Transforming these discretized equations, updating formulas for vn+0.5
x (i +0.5, j, k)

and T n+1
xy (i +0.5, j +0.5, k) can be obtained. Updating formulas for other variables

can be obtained by a similar procedure.

2.3.1.5 Stability Condition

This section focuses on stability conditions considering orthotropic media. An arbi-
trary wave can be expressed as a superposition of plane waves. Hence, the stability
conditions for a plane wave of an arbitrary propagation angle are derived here [35].
The velocities and stress for a plane wave can be expressed as

vn+0.5
x (i + 0.5, j, k) = vn+0.5

x0 ei{kx (i+0.5)�x+ky j�y+kzk�z}, (2.94)

T n
xx (i, j, k) = T n

xx0ei(kx i�x+ky j�y+kzk�z), (2.95)

T n
xy(i + 0.5, j + 0.5, k) = T n

xy0ei{kx (i+0.5)�x+ky( j+0.5)�y+kzk�z}, (2.96)
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where i is an imaginary unit, and kx , ky , and kz are x , y, and z-directional wave
numbers, respectively. Substituting Eqs. (2.94)–(2.96) into Eqs. (2.76)–(2.84) yields
a homogeneous state-difference equation, which is expressed as

xn+1 = Axn, (2.97)

where

[
xn]∗ =

[
vn−0.5

x0 vn−0.5
y0 vn−0.5

z0 T n
xx0 T n

yy0 T n
zz0 T n

yz0 T n
zx0 T n

xy0

]
, (2.98)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx 0 0 Rx hx 0 0
0 ry 0 0 Ryhy 0
0 0 rz 0 0 Rzhz

b11x hx b12yhy b13zhz 1 − B11x h2
x −B12yh2

y −B13zh2
z

b12x hx b22x hy b23x hz −B12x h2
x 1 − B22x h2

y −B23x h2
z

b13x hx b23x hy b33x hz −B13x h2
x −B23x h2

y 1 − B33x h2
z

0 b44x hz b44x hy 0 −B44x hyhz −B44x hyhz

b55x hz 0 b55x hx −B55x hzhx 0 −B55x hzhx

b66x hy b66x hx 0 −B66x hx hy −B66x hx hy 0

0 Rx hz Rx hy

Ryhz 0 Ryhx

Rzhy Rzhx 0
−(B12y + B13z)hyhz −(B13z + B11x )hzhx −(B11x + B12y)hx hy

−(B22y + B23z)hyhz −(B23z + B12x )hzhx −(B12x + B22y)hx hy

−(B23y + B33z)hyhz −(B33z + B13x )hzhx −(B13x + B23y)hx hy

1 − B44zh2
y − B44yh2

z −B44zhx hy −B44yhzhx

−B55zhx hy 1 − B55x h2
z − B55zh2

x −B55x hyhz

−B66yhzhx −B66x hyhz 1 − B66yh2
x − B66x h2

y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2.99)

θ = �t

2ρ
ζ, (2.100)

r = 1 − θ

1 + θ
, (2.101)

R = i�t

ρ (1 + θ)
, (2.102)

bα = i�t

{
cα (1 − θ) − 2ξαθ

1 + θ

}
, (2.103)

Bα = cα�t2 − ξα�t

ρ (1 + θ)
, (2.104)
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hd =
2 sin

(
kd

�dmin
2

)
�dmin

, (2.105)

where the asterisk denotes the transpose, α = 11, 22, 33, 12, 13, 23, 44, 55, and
66, d = x, y, z, and subscript min means the minimum value. To obtain stable
solutions from Eq. (2.97), all eigenvalues must be equal to or less than one for
an arbitrary propagation angle, i.e., for the arbitrary coupling of kx , ky , and kz .
Therefore, assigning hx , hy , and hz to their maximum values of 2/�xmin, 2/�ymin,
and 2/�zmin, respectively, should yield �t such that all eigenvalues of matrix A are
one or less.

2.3.1.6 Initial Condition and Excitation

Herein all initial values of velocities and stresses are set to zero and an input excitation
is assumed to be a point force F(t) at the cell indicated by i , j , and k. In this
case, F(n�t)/�S (i, j, k) should be added to the normal stress in the excitation
direction, which belongs to the spatial difference term in the updating formula of
velocity. �S (i, j, k) is the unit area normal to the excitation direction, for example,
�S (i, j, k) = �y ( j)�z (k) for x-directional excitation.

2.3.2 Plate Modeling

2.3.2.1 Basic Equations

Governing equations for the bending wave and the quasi-longitudinal wave on a
plate model are described as follows. Equation (2.106) describes the bending wave
propagation on the plate existing in the x − y plane, and Eqs. (2.107) and (2.108)
describe the in-plane wave for the x and y direction.

D

(
∂2

∂x2 + ∂2

∂y2

)2

w + ξ D
∂

∂t

(
∂2

∂x2 + ∂2

∂y2

)2

w + ρhμ
∂w

∂t
+ ρh

∂2w

∂t2 = q,

(2.106)
E

1 − γ 2

(
∂2u

∂x2 + γ
∂2v

∂x∂y

)
+ G

(
∂2v

∂x∂y
+ ∂2u

∂y2

)
− ρ

∂2u

∂t2 = 0, (2.107)

E

1 − γ 2

(
∂2v

∂y2 + γ
∂2u

∂x∂y

)
+ G

(
∂2u

∂x∂y
+ ∂2v

∂x2

)
− ρ

∂2v

∂t2 = 0. (2.108)

Here, w is the displacement of the out-of-plane bending vibration, u and v are those of
the in-plane vibration in the x and y directions, ξ and μ are coefficients for modeling
the damping characteristics of the material, q is an external force, D is the flexural
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w1 w2 w3 w4 w5wi-2 wi-1 wi wi+1 wi+2

boundary

w1 w2 w3

(a)

(b)  
wiwi-1 wi+1

Virtual cells on the boundary

Fig. 2.21 Schematic figure for the finite-difference approximation nearby the boundary part in case
of fourth-/second-order differentials. a 4th-order differential, b 2nd-order differential

rigidity (D = Eh3/12(1 − γ 2) ), and E , ρ, h, γ and G are the Young’s modulus,
density, thickness of the plate, the Poisson’s ratio, and the elastic shear modulus,
respectively.

2.3.2.2 Discretization

The basic equations of Eq. (2.106)/Eq. (2.107) and (2.108) for the bending/

in-plane wave has fourth-order/second-order differential system. Finite-difference
approximation of the fourth-order/second-order differential for a function w(x) is
described as

∂4wi

∂x4 = wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2

�x4 + O
(
�x2

)
, (2.109)

∂2wi

∂x2 = wi+1 − 2wi + wi−1

�x2 + O
(
�x2

)
, (2.110)

where i is the discrete grid number in space. Equation (2.109) indicates that a
parameter wi is calculated using the neighboring five parameters including itself,
as show in Fig. 2.21. As for Eq. (2.110) wi is calculated using the neighboring three
parameters. When we calculate the parameter w3 in Fig. 2.21a or w2 in Fig. 2.21b
defined at the boundary part, two or one virtual cells must be considered for each
situation. A boundary condition of the plate can be modeled by setting appropriate
values for the virtual parameters. For example, the fixed edge condition for bending
motion of a plate can be simulated by setting 0 for both virtual parameters on the
boundary.

In case a vibration model is composed of two plate elements which are rigidly
connected with each other, the vibration transmission through each element can be
simulated by considering the relationship between the virtual parameters defined at
the boundary belonging to each plate. Then, the relationship of the parameters is
defined based on the continuity conditions concerning the bending and the in-plane
wave motion of each plate. Detailed procedure is described in the next section. Spatial
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and time differential terms in the governing equations described above are approx-
imated by finite difference, and time development of the bending/in-plane wave is
calculated by an implicit method. The procedure of the approximation for the basic
equations are shown herein. The space derivative of the parameter is approximated by
central difference method, and time derivative of that is approximated by following
one-sided differencing approximation:

∂2wn+1

∂x2 = 2wn+1 − 5wn + 4wn−1 − wn−2

�t2 + O
(
�t2

)
, (2.111)

where n indicates the time step. As a result of the approximation, a discretized
equation is obtained. Transforming the equations, updating formula for the out-of-
plane displacement is described as follows. In this equation, the parameters at the
time step of n +1 in the left side are unknown, and those at the time steps of n, n −1
and n − 2 on the right side are already known parameters.

(2 + μ�t) +
(

1 + ξ

�t

)
�t2 D

ρh
An+1 = qn

i, j

ρh
�t2 + (5 + μ�t)wn

i, j

−4wn−1
i, j + wn−2

i, j + ξ D

ρh
�t An, (2.112)

where

An =
(

wn
i+2, j − 4wn

i+1, j + 6wn
i, j − 4wn

i−1, j + wn
i−2, j

�x4

+ wn
i, j+2 − 4wn

i, j+1 + 6wn
i, j − 4wn

i, j−1 + wn
i, j−2

�y4

+ 2

(
wn

i+1, j+1 − 2wn
i+1, j + wn

i+1, j−1

)
− 2

(
wn

i, j+1 − 2wn
i, j + wn

i, j−1

)
�x2�y2

+
(
wn

i−1, j+1 − 2wn
i−1, j + wn

i−1, j−1

)
�x2�y2

⎞
⎠ . (2.113)

Following the same procedure, the discretized equations of the quasi-longitudinal
wave for the x and y directions derived from Eqs. (2.107) and (2.108) are described as
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− 2un+1
i, j + E�t2(

1 − γ 2
)
ρ

(
un+1

i+1, j − 2un+1
i, j + un+1

i−1, j

�x2

+ γ

(
vn+1

i+1, j+1 − vn+1
i+1, j−1

)
−

(
vn+1

i−1, j+1 − vn+1
i−1, j−1

)
2�x · 2�y

⎞
⎠

+ G�t2

ρ

(
un+1

i, j+1 − 2un+1
i, j + un+1

i, j−1

�y2

+
(
vn+1

i+1, j+1 − vn+1
i+1, j−1

)
−

(
vn+1

i−1, j+1 − vn+1
i−1, j−1

)
2�x · 2�y

⎞
⎠

= −5un
i, j + 4un−1

i, j − un−2
i, j , (2.114)

−2vn+1
i, j + E�t2(

1 − γ 2
)
ρ

(
vn+1

i, j+1 − 2vn+1
i, j + vn+1

i, j−1

�x2

+ γ

(
un+1

i+1, j+1 − un+1
i+1, j−1

)
−

(
un+1

i−1, j+1 − un+1
i−1, j−1

)
2�x · 2�y

⎞
⎠

+ G�t2

ρ

(
vn+1

i+1, j − 2vn+1
i, j + vn+1

i−1, j

�x2

+
(

un+1
i+1, j+1 − un+1

i+1, j−1

)
−

(
vn+1

i−1, j+1 − vn+1
i−1, j−1

)
2�x · 2�y

⎞
⎠

= −5vn
i, j + 4vn−1

i, j − vn−2
i, j , (2.115)

where i and j indicate the discrete grid number in the x and y direction. To protect
symmetry, discretization for the first-order differentiation in Eqs. (2.114) and (2.115)
are performed based on the following equation:

∂wi

∂x
= wi+1 − wi−1

2�x
+ O

(
4�x2

)
. (2.116)

Finally, the obtained discrete equations and the continuity conditions for the junctions
between elements are solved as simultaneous equations. Details of the procedure are
described in the following section.
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Fig. 2.22 Schematic figure and one-dimensional discrete form of a plate model

2.3.2.3 Composite Model with Multiple Plate Elements

In order to simulate a vibration model in which multiple plates are rigidly connected
to each other, continuity conditions for vibration propagation at the joint part should
be considered. In this section, the connecting method is described.

In Fig. 2.22, an axonometric view of the target plate model and a schematic figure,
in which the three-dimensional model is illustrated in a one-dimensional discrete
form, are shown. In the figure of the one-dimensional discrete form, w

n,P1
1, j , w

n,P1
2, j ,

w
n,P1
3, j and w

n,P1
4, j indicate the out-of-plane displacements in the time step of n, caused

by bending deformation of Plate 1, and they are defined nearby the junction part.
w

n,P2
1, j , w

n,P2
2, j , w

n,P2
3, j and w

n,P2
4, j indicate the out-of-plane displacements of Plate

2. un,P1
1, j , un,P1

2, j and un,P2
1, j and un,P2

2, j indicate the in-plane displacements caused by
in-plane deformation of Plate 1 and Plate 2, respectively. The parameter j attached
in the subscript of each parameter indicates the grid number in the y−direction.
In the simulation, continuity conditions described below are considered. First, the
physical parameters of the displacement and the rotation angle at the boundary of
Plate 1 are made to be equal to those of Plate 2. Second, the bending moments acting
at the boundary of both Plate 1 and 2 are balanced. Lastly, the shear force acting
at the boundary of Plate 1 and the in-plane force acting at the boundary of Plate 2
are also balanced. Totally, four conditions are considered. Here, the rotational angle
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θb, bending moment Mx , shear force Fx , and in-plane force Tx are described by the
following equations.

θb = ∂w

∂x
, (2.117)

Mx = −D

(
∂2w

∂x2 + γ
∂2w

∂y2

)
, (2.118)

Fx = −D

(
∂3w

∂x3 + (2 − γ )
∂3w

∂x∂y2

)
, (2.119)

Tx = Eh

1 − γ 2

(
∂u

∂x
+ γ

∂v

∂y

)
. (2.120)

These equations are transformed to discrete forms, and are rewritten by considering
the continuity conditions.

1. Displacement:

3

2
w

n,P1
2, j − 1

2
w

n,P1
1, j = un,P2

1, j + un,P2
2, j

2
, (2.121)

3

2
w

n,P2
2, j − 1

2
w

n,P2
1, j = −un,P1

1, j + un,P1
2, j

2
. (2.122)

2. Rotational angle:

w
n,P2
2, j − w

n,P2
1, j

�xP2
= w

n,P1
2, j − w
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1, j
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3. Bending moment:
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w
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n,P1
2, j−1

�y2
P1

= 0.

(2.124)

4. Shear force and in-plane force:
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Here, Pm shown in each superscript indicates Plate m, the spatial intervals �xP1
and �yP1 indicate the spatial intervals of Plate 1, and �xP2 and �yP2 indicate
those of Plate 2. In these equations, each parameter indicates the in-plane or out-
of-plane displacement shown in Fig. 2.22. Solutions of the six unknown parameters
(wn,P1

1, j ,wn,P1
2, j ,wn,P2

1, j ,wn,P2
2, j ,un,P1

1, j and un,P2
1, j ) at the junction are solved by consider-

ing the six equations above. Then, these continuity equations and the discrete forms
of Eqs. (2.112), (2.114), and (2.115) are solved together as simultaneous equations.
These equations are solved in every time step, and time development of vibration
is simulated. To solve the simultaneous equations, PARDISO [36], built in the Intel
Math Kernel library, was used.

2.3.2.4 Vibroacoustic Coupling Method

To couple the vibration field on the plate and the sound field as shown in Fig. 2.23a,
the following continuity conditions should be considered. First, the external pressure
to the plate described in Eq. (2.112) is given as the difference of the sound pressure
on both sides of the plate; pn

i, j,k and pn
i−1, j,k , as shown in the Step 1 of Fig. 2.23b.

qn
j,k = pn

i, j,k − pn
i−1, j,k . (2.127)

In the next step, the bending motion of the plate is calculated based on the external
pressure, and the displacement of the plate is obtained. Then, the velocity is calculated
using the displacement and is given to the particle velocity in the sound field.
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Fig. 2.23 Coupling method between the vibration and the sound

un+1/2
i, j,k = wn+1

j,k − wn
j,k

�t
, (2.128)

where wn
j,k is the displacement of the plate. In case the normal impedance Zn on

the receiving side of the plate is considered, following relationship is used instead
of Eq. (2.128).

un+1/2
i, j,k = wn+1

j,k − wn
j,k

�t
− pn

i, j,k

Zn
. (2.129)

To update the sound pressure and particle velocity in the sound field, high-order
scheme using eight reference points is applied. Detailed method is described in the
Ref. [37].
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