Chapter 2
The First Main Theorem

The value distribution theory with domains in several complex variables was pi-
oneered by Wilhelm Stoll [53a], [53b], [54]. While his presentation may not be
familiar or easy to us in modern terminologies, the works which he has contributed,
beginning with the integrations over singular analytic subvarieties and the extension
of Stokes’ theorem, were fundamental. In the 1960s there were many works on the
First Main Theorem; these were summarized by W. Stoll (see Stoll [70], in particular
its preface and the listed references). The relation to characteristic classes was
made explicit first by Bott—Chern [65].! In the present chapter we follow Carlson—
Griffiths [72], Griffiths—King [73], Noguchi [03b] and Noguchi—Winkelmann—
Yamanoi [08] which may be most comprehensive.

2.1 Plurisubharmonic Functions

2.1.1 One Variable

We first investigate subharmonic functions. Let U be an open subset of C. Set
d(a;0U) = inf{|a —wlywe BU}.

Definition 2.1.1 A function ¢ : U — [—00, 00) is said to be subharmonic if ¢ is
upper semicontinuous and has the submean property; that is,

(i) (upper semicontinuity) lim,_, ,¢(z) < ¢(a), Ya € U:
(i1) (submean property) On an arbitrary disk A(a;r) € U
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0@ =5 [ olatre)

IReaders may find a number of interesting papers on the theory of holomorphic mappings in Chern,
Selected Papers (Chern [78]).

J. Noguchi, J. Winkelmann, Nevanlinna Theory in Several Complex Variables and 25
Diophantine Approximation, Grundlehren der mathematischen Wissenschaften 350,
DOI 10.1007/978-4-431-54571-2_2, © Springer Japan 2014


http://dx.doi.org/10.1007/978-4-431-54571-2_2
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Remark 2.1.2 (1) If ¢ : U — [—00, 00) is upper semicontinuous, ¢ is bounded from
above on every compact subset K € U.

(ii) The upper semicontinuity of ¢ : U — [—00, 00) is equivalent to that for every
c € R the sublevel set {z € U; ¢(z) < c} is open.

(iii) The function ¢ : U — [—00, 00) is upper semicontinuous if and only if
there is a monotone decreasing sequence of continuous functions ¥, : U — R,
v=1,2,...,such that lim,_, s ¥, (2) = ¢(2).

(iv) It follows from the above Definition 2.1.1 (ii) that

2w
(2.1.3) ola) < —/ tdt/ (a+1e'”)ao

=—2 <p(a+§)—d§/\d§<0<>
= Jigl<r

Theorem 2.1.4 (i) Let ¢ be a subharmonic function on U. Let a € U be a point
such that ¢(a) > —oo. Then ¢ is locally integrable on the connected component
of U containing a.

(i) Let ¢ be a subharmonic function on U. If ¢ takes the maximum value at
a € U, then ¢ is constant on the connected component of U containing a.

(iii) Assume that ¢ € C*(U). Then ¢ is subharmonic if and only if ddp =
(i/2m)d3d¢ > 0.

@iv) Let ¢ : U — [—00, 00) be subharmonic, and let ). be a monotone increasing
convex function defined on R. Then A o ¢ is subharmonic. Here we put .(—00) =
limy_, oo A(2).

(v) Let ¢, : U — [—00,00), v=1,2,..., be a monotone decreasing sequence
of subharmonic functions. Then the limit function ¢(z) = limy_, « ¢, (2) is subhar-
monic, too.

(vi) Let @, : U — [—00, 00), 1 S v <1, be finitely many subharmonic functions.
Then ¢(z) = max <, <; ¢v(z) is subharmonic.

Proof (i) Without loss of generality we may assume that U is connected. Notice that
if p(a) > —oo, then ¢ is integrable on every relatively compact disk A(a;r) € U
by (2.1.3). Suppose that there is a point a € U with ¢(a) > —oo. Denote by U the
set of all points z € U with a neighborhood W such that the restriction ¢|w of ¢ to
W is integrable. Clearly, Uy is non-empty and open.

We show that Uy is closed in U. Let a € U be an accumulation point of Uy. Take
a sequence of points z, € Uy, v =1, 2, ..., convergent to a. One may assume that
©(zy) > —oo,v=1,2,.... There are some r > 0 and a sufficiently large v such that
a € A(zy; r) € U. By the remark at the beginning, ¢|(,:,) is integrable. Therefore
a € Uy. Since U is connected, Uy = U.

(i1) Assume that U is connected and ¢(a) is the maximum. It follows from (2.1.3)
that for every A(a;r) € U

@.15) [ o© - p@)5-dc ndt =0
Aasr) 4
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By assumption ¢(¢) — ¢(a) < 0. Suppose that ¢(b) — ¢(a) = 8y < 0 at a point
b € A(a;r). The upper semicontinuity of ¢ implies that ¢ () — ¢(a) < 670 in a
neighborhood of b. Then (2.1.5) does not hold. Hence ¢| .,y = ¢(a). Denote by
U, the set of all points z € U with a neighborhood W such that ¢|w = ¢(a). By a
similar argument to (i) U is open and closed in U. Therefore Uy = U.

(iii) About every point a € U we expand ¢ to a Taylor series up to degree two:

; b o0 .
(p(a + 86’9) =¢p(a) + a—w(a)eem + 8—(?(61)86‘_16
z Z

92 . 92 92 .
+ &2 (8_;5(@(32'9 + 2?3"2@) + a—;ﬁ(a)e—%@) (1+o(D)).

Taking the integration in 6, we have

1 2 2

i e
- p(a+ee 9)d«9=<p(a)+£2(1+0(1))28Zaz(a)-

The submean property 1mphes that (a)

Conversely, assume that m > 0. It follows from Jensen’s formula, Lemma 1.1.5
that about every point a € U

1 1
(2.1.6) —f pla+¢)do < — pla+¢)dd, O0<s<r<d(a;dU).
21 Jig)=s 2 Jig)=r

Let s \( 0. Then

< 1
pla) = 5= pa+¢)do.
2
[g]=r

(iv) Note that X is continuous. The remaining part is immediate, for A is mono-
tone increasing and convex.

(v) The upper semicontinuity of ¢ follows immediately from the assumption.
Since upper semicontinuous functions are bounded from above on every relatively
compact subset, ¢, are uniformly bounded from above on every relatively compact
subset. Take an arbitrary disk A(a; r) € U. By Fatou’s lemma in integration theory
we have

1 2 )
¢(a)= lim ¢y(a) = lim —f ov(a+re?)do
0

v— 00 27T
2w 2w
1 i0
§— lim ¢, a~|—re 9:— (p(a+re )a’@.
V—00 2 0
(vi) Both the upper-semicontinuity and the submean property are immediate by

definition. 0

Example 2.1.7 Let f : U — C be a holomorphic function. Then log|f| and | f|¢
with ¢ > 0 are subharmonic. Because a direct computation of partial derivatives of
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log(| f|> + C) with C > 0 implies the subharmonicity log(| f|*> 4+ C). Setting C =
1/v,v=1,2,..., and taking the limit, we see by Theorem 2.1.4 (v) that log |f|2 =
2log| f| is subharmonic, and so is log| f|. Since the exponential function e, 7 € R
with ¢ > 0 is monotone increasing and convex, Theorem 2.1.4 (iv) implies that | f|¢
is subharmonic.

Let x € C3°(C) be a function such that Supp x C A(1), x(z) = x(|z]) = 0 and
i
/X(Z)Edz/\d2= 1.
Set x¢(z) = x (¢ '2)e72, £ > 0. Then

/Xa(z)%dz/\dZ:l.

Consider a subharmonic function ¢ on U such that ¢ £ —00 on every connected
component of U. Put
Us={z€U;d(z;0U) > ¢}.

The smoothing ¢, (z) (z € U,) of ¢ is defined by
i _
(2.1.8) (pg(z)zgo*xg(z)=/Cg0(w)xg(w—z)§dw/\dw

=/ oz + w)xg(w)l—dw Adw
C 2

1 2 .
:/ X(t)tdt/ o(z+ete”)do
0 0

1
> 4(2) /0 2y (D1t = ().

Note that ¢, (z) is C*° on U, and subharmonic. Therefore Theorem 2.1.4 implies

82

— =0.

3Z82¢£ () 2

Taking &1 > &2 > 0, and § > 0, we consider the double smoothing (¢s)s; = (¢, )s,
i = 1,2. Note that g5 is C*° and subharmonic. Combining (2.1.6) applied to @s
with (2.1.8) applied to ¢ = @s, we deduce that (¢s5)s, = (¢5)s,- Hence (gg,)s =
(¢s,)s. Letting 8 — 0, we see that g, = @¢,. Thus as ¢ \{ 0, ¢.(z) monotonically
decreases, and it follows from (2.1.8) that

@(2) = lim @¢(2).
e—0

Here we show the equality by making use of the upper semicontinuity.
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Suppose that ¢(z) = —oo. For every K < 0O there exists a disk neighborhood
A(z;r) C U such that ¢| ;) < K. By definition (2.1.8) ¢, (z) < K for e <r, and
so limg—.0 . (z) = —o0.

Suppose that ¢(z) > —oo. For every ¢’ > 0 there is a disk A(z; r) C U such that
¢lacr) < 9(z) + ¢'. By the same reasoning as above, @, (z) < ¢(z) + ¢’ fore <r.
Thus lim—. 0 ¢¢ (2) = ¢(2).

Now we have the convergence, ¢.(2) \ ¢(z) (¢ \( 0). For n € C5°(U)

(2.1.9) /n(z)dd‘kpg(z)=/<p5(z)dd"n(z).
If n = 0, this integral is non-negative. We set
ddTe] = 1—8—2[ ldzndz
1= o7 9oz PIeE N ax

in the sense of the Schwartz distribution. As ¢ \( 0, (2.1.9) implies

/ n()dd[p(2)] = f 0()ddn(z) =0, 720,

We see that dd“[¢] is a positive Radon measure. We may also regard dd“[¢] as a
differential form with coefficients in Radon measures.

We apply (2.1.6) to the C*° subharmonic function ¢;; for A(a;r) €U,0<s <r
and sufficiently small ¢ > 0 we obtain

1 1
5= ge(a+8)do < — pe(a+0)do.
27 Jig)=s 27 Jigi=r

As £ \( 0, Lebesgue’s monotone convergence theorem implies that

1 1
(2.1.10) — pla+0)do < — o(a +¢)do.
27 Jig|=s 27 Jig|=r

By Theorem 2.1.4 (i) ¢ is locally integrable on U. Fubini’s theorem and (2.1.3)
imply that for almost all s € (0, ) with respect to the Lebesgue measure

2.1.11) ¢la+¢)do > —o0.

27 Jyg)=s
This with (2.1.10) implies (2.1.11) for all s € (0, r].
Summarizing the above we have the next theorem.

Theorem 2.1.12 Let ¢ : U — [—00, 00) be a subharmonic function on U such that
@ #£ —00 on every connected component of U.

(i) dd°[¢] is a positive Radon measure.
(ii) The smoothing ¢.(z) is subharmonic; as € \ 0 it is monotone decreasing and
converges to ¢(z).
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(iii) For A(a;r) €U and any s € (0,r)

1 1
—0°<—/ pla+¢)do = — @(a+¢)do < oco.
27 Jigi=s 27 Jigi=r

Theorem 2.1.13 (i) The subharmonicity is a local property; i.e., if ¢ : U —
[—o0, 00) is subharmonic in a neighborhood of every point a € U, then ¢ is sub-
harmonic in U.

(ii) If an upper semicontinuous function ¢ : U — [—00, 00) satisfies

1 i _
p(a) = —2/ 0(2)z—dz NdZ
r Ala;r) 2

for every disk A(a; r) C U, then ¢ is subharmonic.

Proof (i) Take the smoothing ¢, (z). Let ¢ be subharmonic in A(a;r) C U. Then
@e, 0 < & < r/2 is subharmonic in A(a; r/2). Therefore dd . (z) = 0, and hence
by Theorem 2.1.4 (iii) ¢ (z) is subharmonic in Uy.

For Definition 2.1.1 (ii), it suffices to show that ¢ is subharmonic in an arbi-
trarily fixed Us (§ > 0). As § > ¢ \( 0, ¢:(2) \{ ¢(z) in Us. We infer from Theo-
rem 2.1.4 (v) that ¢ is subharmonic in Us.

(ii) We first assume that ¢ is of C2-class. By the same computation as in the
proof of Theorem 2.1.4 (iii) we get

£ 1 2 0 e 3 32(/)
[)tdtﬂf() p(a+te )d@:/o <t¢(a)+t*(1+o(1))2azaz(a))dt.

It follows that

82</>

0707

1 ; .
S [ ela+0)—dg AdE = ga@) + (1 +0(1) ~—= (a).
& A(e) 2

This combined with the assumption implies that aazz—a‘pz(a) 2 0. Thus ¢(z) is subhar-
monic.

For the general case we may assume that U is connected, and ¢ % —oo. By the
proof of Theorem 2.1.4 (i) ¢ is locally integrable in U.

We take the smoothing ¢.(z) z € U,. Since ¢(z) is upper semicontinuous, by
Remark 2.1.2 (iii) there is a monotone decreasing sequence of continuous functions
Yu(z),v=1,2,..., such that

Ul_i)rgolﬂu(z) =¢(z), zeU.

We are going to show that for every compact subset K C U

(2.1.14) lim/ }%(Z)-@(Z)|l—dZ/\dZ=O.
e—0Jg 2
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Take W & U be an open subset such that W 3 K. Set
d(K,0W) =inf{d(z,dW); z € K},
and
8o =min{d(K,dW),d(W,dU)} > 0.

Take any &’ > 0. By Lebesgue’s monotone convergence theorem there is a number
vo such that for ||w| < 8¢

2.1.15) 0= [ (et w) = ple+w)5dz A dz
K 2

= ./W (Y (2) — (p(z))édz ndz <é€'.

Let 0 < & < 8. Then (Yry)e(2) = @2 (2) (z € W), and
(2.1.16)
0< /K (e @) = 9:2)) 5 dz A d2

- /ZGK (fwec»z (V) @+ w) =z + w))Xs(w)édw A da)) édz AdZ

= /wecm </Ze[( ((Wvo)(z +w) — @z + w))édz A dZ)XS(w)édw A dw

!
E.

A

Since ,, is uniformly continuous on W, (Yyy)e uniformly approximates ., on K
as & — 0. Thus there is some 0 < gy < §p such that for every 0 < ¢ < &g

i

(2.1.17) / |(Yup)e (2) — lﬁvo(z)|2—dz ndz <e'.
K T

It follows from (2.1.15)—(2.1.17) that for every 0 < ¢ < &g
i i
—@|—dzrdz < — @) —dz AdZ
/Kl% ¢lo—dz z_/K((%O)g %)2” ZAdZ

i _ i _
+/K|(wv0)8_wv0|ZdZ/\dZ+v/;<(wy0—Q)EdZ/\dZ

<3¢,

Thus (2.1.14) is deduced.
We see by the assumption and Fubini’s theorem that for A(z; r) C Us

1 j _
w@ = [ ene+orsdendt
r A(r) 27
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Therefore @5 is subharmonic in Us. Take § > &1 > &3 > 0, arbitrarily. For z € Us 1,

(¢e1)5(2) = (@8)e, (2) Z (98)e, (2) = (96,)5(2)-

As 8 = 0, ¢, (2) 2 @, (2). Put ¥ (z) = limg—0@e(z). Since ¥ is the limit of a
monotone decreasing sequence of subharmonic functions, it is subharmonic. It fol-
lows from the upper semicontinuity that for every z € U and ¢’ > 0 there is a neigh-
borhood A(z; r) C U satisfying

0@) <@+, ¢eAr).
Hence, for 0 <& <r, ¢.(z) < ¢(z) + ¢'. We have
p()—vY(@) 20, zeU.

This combined with (2.1.14) implies that for any compact subset K C U

i -

0= /K(go(z) —¥(2) 5 dzndz
. i _
= Eh_I)% K(‘P(Z) - (PS(Z)) EdZ AdZ

< 1im/ |0(2) — 9 (2)| =—dz A dZ =0.
e—~0Jg 2

Therefore v (z) = ¢(z) for almost all z € U with respect to the Lebesgue measure.
For every A(a;r) C U,

1 i _
pla) = —2/ 0(2)—dz NdZ
= JAa;r) 27

1 / i _
=— V(2)=—dz ANdZ
r2 Ala;r) 2

— Y(a) (r—0).

Hence, ¢(a) < ¥ (a), and ¥ = @, by which ¢ is subharmonic. O

Proposition 2.1.18 A function ¢ on U is subharmonic if and only if there exists a
decreasing sequence of C 2 subharmonic functions ¢, with lim¢, = ¢.

Proof 1If there is such a sequence, subharmonicity of ¢ follows from Theo-
rem 2.1.4 (v). The converse is obtained by making use of the smoothing (Theo-
rem 2.1.12 (ii)). O

Proposition 2.1.18 together with Theorem 2.1.4 (iii) implies the following.

Theorem 2.1.19 Let U,V be open in C.

() If ¢ is subharmonic on U and f : V — U is holomorphic, then ¢ o f is sub-
harmonic.
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(i) If ¢ isafunctionon U and f : V — U is biholomorphic, then ¢ is subharmonic
if and only if ¢ o f is subharmonic.

Proof (i) Due to Proposition 2.1.18 there is a decreasing sequence of C? sub-
harmonic functions ¢, (n = 1,2,...) with lim¢, = ¢. Subharmonicity of the
¢n is equivalent to dd®p, = 0 (Theorem 2.1.4 (iii)). Hence the functions ¢, o f
(n=1,2,...) form a decreasing sequence of subharmonic functions converging to
¢ o f. Now the subharmonicity of ¢ o f follows from Theorem 2.1.4 (v).
Statement (ii) is a direct consequence of (i). Il

2.1.2 Several Variables

We deal with the case of several complex variables. The notion of plurisubharmonic
functions was first introduced by K. Oka [42] VI. We let U C C™ be an open set.
Let z = (z1, ..., 2m) be the standard coordinate system of C”. As usual we set

Izl =/ 1212

d(z;0U) =inf{|lz —wl; wedU}, zeU,
Us={z€U;d(z;0U) > ¢}, ¢>0.

We write z; = x; +iy; (1 = j < m). As in (1.1.1), we define the following
differential operators:

I 1/ dp 1 d¢ ap 1/ dp 1 d¢
woalas i) e i)
dzj=dx; +idyj, dz; =dxj —idyj,
(2.1.20) g - Edg
a§0=ZTde, a§0=ZFde,
j=1 %% j=1 %%

i - 1 </ 3¢ dp
d9p=—(0¢p —0 =—E —dy; — —dx; |.
¢ 471( ¢ ¢) 4 j_l(axj Vi dy;j xj)

With this notation we have

do =3¢ + dg, dd¢ = Laf_kp,
2
m 2
_ J 17
00 = —dz; NdZ
0= 2 ozjoz, 0T
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We further introduce the following notation:
B(a;r) = {z eC™|lz—al < r}, aeC™, r>0,
B(r) = B(0; r),
R a=dd|z|>. B =ddlog|zl,
y =dlogz|> A p" 7"

Let ¢ be a differential form on C™ and let ¢ : {||z|| = r} <> C™ be the inclusion
of the sphere {||z|| = r} into C™. Associated to the map ¢ there is the “pull-back”
of differential forms. In this way ¢*¢ is the differential form induced from ¢ on the
sphere {||z|| = r}. In the present case, 1*(d||z||*) = 0, and so as differential forms in-
duced over {||z]| =}, d||z]|* = 8||z]|> + 9]z||> = 0. Therefore as differential forms
induced over {||z|| =},

dlzlI> AdllzI> =0,  BlzI> Adllz))* =0.

Hence we have, as induced forms on {||z|| =r},

(2.1.22) B=—a.

r

/ o™ =, / y=1.
B(r) lzll=r

Definition 2.1.23 A function ¢ : U — [—00, 00) is said to be plurisubharmonic if
the following conditions are satisfied:

It follows that

(1) ¢ is upper semicontinuous.
(i1) For every point z € U and every vector v € C"” the function

£e€eC— p(z+¢v) e[—00,00)
is subharmonic where it is defined.

We have the following examples by Example 2.1.7.

Example 2.1.24 1f f: U — C is a holomorphic function, log| f| and | f|¢ (¢ > 0)
are both plurisubharmonic.

Let ¢ be a plurisubharmonic function on U, and let B(a; r) € U. By making use
of the invariance of o with respect to the rotation z efz (6 €10, 27r]) we have by
Definition 2.1.1 (ii) that

/ pla+z2)a"(z) = / ¢(a+e2)a" @)
zeB(r) zeB(r)

(continued)
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1 27 .
=3 d@/ <p(a + elez)otm(z)
T Jo z€B(r)
2

_ L i0 m
_[zeB(r)(ZJT/O pla+e z)d@)a ()
> / o) (2) =r*"¢(a).

z€B(r)

Thus as in (2.1.3) the following is obtained:

1 r
(2.1.25) p(a) < ﬂ_m/o 2mz2m*‘dr/ pla+2)y (@)
lzli=t

),

=— e@)a™ (B(a;r) €U).
2" JBasr) ( )

Identifying C = R>", we see that ¢ is a subharmonic function* on U C R¥™.

When ¢ is of C2-class, we have by definition

2¢ i
dd“p = oz A
1<) km OOk

2
We write dd“¢ 2 0 if the hermitian matrix ( agé‘fh) is semi-positive definite.
9%k

The next theorem follows from the above and the same arguments as used in the
proof of Theorem 2.1.4:

Theorem 2.1.26 (i) A plurisubharmonic function is subharmonic with identifica-
tion C"™ = R¥".

(i) If ¢ is a plurisubharmonic function on U and ¢(a) > —o0 at a pointa € U,
then ¢ is locally integrable in the connected component U’ of U containing a.

(iii) Let ¢ be a plurisubharmonic function on U. If ¢ admits the maximum value
ata € U, then it is constant on the connected component of U containing a.

(iv) Let ¢ be of C?-class. Then ¢ is plurisubharmonic if and only if dd°¢ > 0.

(v) Let ¢ : U — [—00, 00) be plurisubharmonic and let A be a monotone in-
creasing convex function defined on R. Then A o ¢ is plurisubharmonic. Here,
A(—00) =1limy_, oo A(2).

(vi) Let 9, : U — [—00,00),v =1,2,..., be monotone decreasing plurisubhar-
monic functions. Then the limit function ¢(z) = limy,_ ¢, (2) is plurisubharmonic.

(vii) For finitely many plurisubharmonic functions ¢, : U — [—00,00), 1 <
v =1, ¢(z) = max,<,<; ¢v(2) is plurisubharmonic, too.

2In general, a function ¥ : W — [—00, 00) defined on an open subset W of R” is said to be sub-
harmonic if v is upper semicontinuous and satisfies the submean property in the sense of (2.1.25).
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Here we explain the notion of currents, limited to what we will need. Cf.
Noguchi—Ochiai [90] (Ochiai—-Noguchi [84]) for more detailed treatment. In gen-
eral a differential form with coefficients in distributions in the sense of Schwartz
is called a current. We introduce only (1, 1) currents that will be needed. We con-
sider only the case where the domain is an open subset U of C". A complex-valued
measure of the form u = ' + iu” with real-valued Radon measures u’ and u'”
on U is called a complex Radon measure on U. Its complex conjugate is defined by
jip=u"—iu”. Weconsidera (1, 1) current T = ) Tj];%dzj A dzy with coefficients
of complex-valued Radon measures 7', 1 < j, k £ m. The complex conjugate of T
is defined by

_ R -1 _
T:ZTJ-IETde/\deZZTﬂEEde/\de.

IfT="T,ie., 7_"/,; =T, i (hermitian), T is called a real current. If for every vector
¢EpecCr .

Z Tﬂgéjék
ik

is a positive Radon measure, T is called a (1, 1) positive current, and we write
T =0.
For tworeal (1,1) currents T, Son U we write T =2 S (S<T)if T — S = 0.
Take x (z) = x (llz])) € C§°(C™) so that x (z) = 0, Supp x C B(1), and

/x(z)a’" =1.

Set x:(z) = x(e‘lz)s , € > 0. Let ¢ be a plurisubharmonic function on U. The
smoothing ¢, (z) of ¢ is defined by

—2m

@e(2) =@ * xe(2) = /(; p(w) xe(w — 2o’ (w)

=/ e+ w)xs(w)a" (w), zeUs.
C))l

Then ¢, (z) € C*°(U,) and it is plurisubharmonic. Since x (w) = x (|w]), one gets

0:(2) = /C oz + ew)x (w)a" (w)
=, w5 A o(z+ee'’w)x(w

2 ¢(2) /Cm x(w)a™ =@(z2).

Therefore by Theorem 2.1.12 (iii) ¢, is monotone decreasing as € N\ 0. Since ¢ is
upper semicontinuous, in the same way as in the proof of Theorem 2.1.12 (ii), one
verifies that ¢, (z) \( ¢(z).
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Since Y agj(gék Ejék 2 0 for every vector (£1,...,&,) € C™",
gl | -
Z BZjBZk g/fk,
9 [g]

where the notation

5505k is used in the sense of Schwartz distributions, defines a
J

positive Radon measure, so that

. 2] i _
dd‘[p] = —dz; Ad7x = 0.
=27, 07 2 A k=

Hence we have the following.

Theorem 2.1.27 Let ¢ : U — [—00, o0) be a plurisubharmonic function such that
@ % —o0 on each connected component of U.

a2

(1) dd°[¢] 2 0 and the coefficients de ,[g%]k are complex Radon measures which are
J

m 8%l

Jj=109z;0z; "

(ii) The smoothing ¢.(z) converges monotone decreasingly to ¢(z) as € \ 0.

(iii) For every B(a; R) CU with0 <s <r < R,

absolutely continuous with respect to the trace Y

(2.1.28) -0 < / pla+2y@) < / pla+2)y(z) <oo.
llzll=s

lzll=r

Proof The absolute continuity of (i) follows from the positivity dd“[¢] = 0. (ii) was
already shown. Only (iii) remains.

First note that by Theorem 2.1.26 (ii) ¢ is locally integrable. We infer from
(2.1.25) and Fubini’s theorem that there is a subset £ C (0, R) of Lebesgue measure
zero with finite f”Z”:[ ¢(a+27)y(z) fort € (0, R) \ E. On the other hand, for every

t € (0, R) and ¥ € [0, 27] the C*-invariance y (te!” 7) = y (z) implies

/H cp(a+z)}/(z)=/| pla+1e”2)y(2)
z|l=t

|zl|=1
2 . 4o
= pla+tez)—y(2).

It follows from this and Theorem 2.1.12 (iii) that forevery 0 <s <r < R
[ vararos| sa+or@ <o
lzll=s lzll=r
Applying thisto 0 <t < s, t ¢ E, we see that
—OO</ <p(a+z)y(z)§/ pla+2)y(2).
lzll=t lzll=s

Thus (2.1.28) is shown. O



38 2 The First Main Theorem

As in Theorem 2.1.13 (i) the following holds.
Theorem 2.1.29 The plurisubharmonicity is a local property.

Let ¢ £ —o00 be a plurisubharmonic function on C™. In the sense of currents

. 2] i
dd[p] = —dz; nd7 = 0.
[¢] Zaz,-azk Sodzj Nz

Then

aatpna = (-3 TN A L n
° 2T *J J

= 07,07

is a volume form with a positive Radon measure as coefficient. Therefore, for a
Borel measurable subset £ C C™ and a Borel measurable function v the integral

/ Ydd°[p] Aa™ !
E

is defined; in particular, we set

1
(2.1.30) n(t,ddc[w])=t2m_2/ )ddc[go]/\am_l, t>0.
B(t

Lemma 2.1.31 The function n(t, dd‘[¢)) is left-continuous in t > 0 and monotone
increasing.

Proof By the inner regularity of Radon measure, | B(®) dd[p] A o™ is left-
continuous in ¢t > 0, and so is n(t, dd“[¢]).

Let ¢, € > 0 be the smoothing of ¢. By making use of (2.1.22) one gets for
t>s5>0

1 /' 1
— ddpe Ao — / dd g Ao
12m=2 B() € §2m=2 B(s) €

1 1
_ c m—1 __ c m—1
= —tzm_2/ dp. N s2’"—2/ dp. N
llzll=t llzll=s

=/ dc(pg/\ﬁm—l _/ dC(Pe/\,Bm_l
llzll=t lzll=s

= / ddp, A"
s<|lzll<t

Since B 2 0 (semi-positive), the integral is non-negative. Now we let ¢ — 0. Then
there is a subset £ C (0, 00) of Lebesgue measure zero such that for 0 < s < ¢
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outside E
(2.1.32) n(t,dd[p]) —n(s,dd[¢]) = / dd[el A ™' 2 0.
s<|lzll<t

For every 0 < s <t we take sequences s, /s ands <t, /'t with s, ¢ E,t, ¢ E,
v=1,2,.... Then n(s,, dd[¢]) < n(t,,dd [¢]). As v — o0, the left-continuity
implies

n(s,ddc[<p]) §n(l,dd"[<p]). 0

It follows from Lemma 2.1.31 that at every point a € C" the following limit
exists:

1
Z(a;dd[p]) = l1m - / dd[p) Aa™ L.
0rm= B(a;t)
The limit .Z(a; dd“[¢]) is called the Lelong number of the current dd“[¢] at a,
and plays an important role in various aspects of complex analysis. For example,

for a given 8 > 0 the set {a € C"; %(a;dd [¢]) = &} forms an analytic subset
(Y.-T. Siu’s Theorem,; cf. Siu [74]; Ohsawa [98]; Hormander [89]).

Lemma 2.1.33 (Jensen’s formula) Let ¢ % —o0 be a plurisubharmonic function
on C™. Then for every 0 <s <r

"o dt
lzll=r lzll=s s 1 B(1)

"dt . 1
=21 — dd [p] A "
s b JBm\o)

+2.2(0; dd°[g]) log g

Proof Take the smoothing ¢, of ¢. Since dy =0,
(2.1.35)

/ %V—/ ¢5V=/ dos Ny
llzll=r lzli=s {s<lzll<r}

= / dlog ||z|I> AdCgs A (dd‘log ||z||2)’”’1
{s<lzl<r}

" dt . . o m—
=21 — d°pe A (ddlog ||z]|”)
s b J)zll=
" dt . a1
=2 = d¢pe N ———
/s 7 /|z|=t Pe N 21

(continued)
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"odt
:2/ m/ dc(pe /\(Ym_l
s ! lzll=t

"odt :
:2/ ﬁ/ ddc(pg /\Olmil.
s M B(1)

As ¢ \( 0, ¢ \( ¢. By the monotone convergence theorem of Lebesgue the first
integral of (2.1.35) converges to the integral of ¢.
On the other hand, for almost all ¢ with respect to the Lebesgue measure

/ dd¢p, na™ 1 > ddo na™ 1 (e = 0).
B(1) B(1)

It follows from the definition that for0 <& <l andr <r

Oé/ ddps A ™! §/ ddTp]l A o™ ! < 0.
B() B(r+1)

By Lebesgue’s bounded convergence theorem we have

"odt 1 "odt _1
(2.1.36) 2/ ﬁ/ dd®ps A o™ —>2/ ﬁ/ dd°[g] A o™
s " B(r) s " B(t)

as ¢ — 0. Therefore the first equality of (2.1.34) is inferred.
Letting s — 0 (s ¢ E) in (2.1.32), we have

1
s [ ddteina = [ dattg) gt 2(0:ddl).
! B(1) B(1)\{0}

This implies the second equality of (2.1.34). O

Corollary 2.1.37 Jensen’s formula (2.1.34) holds for Borel measurable functions
@ on C™ if for every a € C™ there exist plurisubharmonic functions @1, ¢y in a
neighborhood U of a such that ¢ is written as ¢ = @1 — @2 on U.

Proof Let {U j}?il be a locally finite open covering of C” such that there are
plurisubharmonic functions ¢;1,¢;2 on U; satisfying ¢ = ¢;1 — ¢;2. Let {5}
be a partition of unity subordinated to {U;}. It suffices to show the first equality
of (2.1.34). Take a number jj so that U; NB(r) =@, j = jo. Put § = min{d (Suppn;,
aU;j); 1= j < joy. ForO<e<édandz eWﬂSupan-

e (2) = 01(2) — @j2:(2).

Thus

Jo
0e(2) =Y 1@ (0j1e() — @2:(2). z€B@).

j=1
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By the same computation as in (2.1.35) we have
Jo

zll=s

Jo
ijﬂjls)/—Zfl Nji@j2ey
j=1

The monotone convergence theorem of Lebesgue implies that

/ rlj‘PjieV_>/ njejiyv (€—0,i=1,2).
{lzll=r} {lzl=r}

Since the coefficients of dd[¢] are complex Radon measures, the convergence
of (2.1.36) holds. Thus the required formula follows. O

Supplement (Currents) In general, on a differentiable manifold M satisfying the
second countability axiom a differential form with coefficients in Schwartz’ distri-
butions is called a current. In the space of currents, the exterior differential opera-
tor d is defined in the sense of derivations of Schwartz’ distributions. If M is a com-
plex manifold, the operators 9, 9,d°¢ are defined similarly (cf., e.g., Lelong [68];
Noguchi—Ochiai [90] (Ochiai-Noguchi [84])). Let (z1, ..., Zm) be a holomorphic
local coordinate system of M (m = dim M). If a current 7 on M is written as

T= Y T,;dz' ndZ,

Hl=p.|J1=q
dz' = Ndzi, dz’ = |\ dz;
iel jedJ

with multi-index sets I, J C {1, ..., m}l T is said to be of type (p, q), or called a
(p, q) current. The complex conjugate 7 is defined by

T= Y T4 ndZ,
l=p.11=q

where ¢ is a test function. A current 7" of type (p, p) is called a positive current if
T isreal,ie., T =T, and for every C*® (1,0) formn;, 1 < j<m —p

TANimAM A Nillm—p A llm—p

is a positive Radon measure. In this case, we write 7 = 0. For two real (p, p) cur-
rents T, T, wewrite T 2T  for T — T’ 2 0.
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2.2 Poincaré-Lelong Formula

Let U € C™ be an open subset.

Definition 2.2.1 A closed subset A C U is said to be analytic, if for every point
a € A there are a neighborhood W C U of a and holomorphic functions g1, ..., g
on W (I < oo) satisfying

ANW={g1=---=g =0}

When the closedness of A is not assumed, A is called a locally closed analytic
subset. In particular, if the above g, 1 < j <1, can be taken so that their differentials
ataec A

dgi(a),....dgi(a)

are linearly independent, a is called a regular or non-singular point of A; in this
case, if W is chosen sufficiently small, A N W is a closed complex submanifold
of W. A point of A which is not non-singular is called a singular point; the subset
of all singular points of A is denoted by S(A). Set R(A) = A\ S(A).If S(A) =0,
A is said to be non-singular.

We describe elementary and useful properties of analytic subsets and of plurisub-
harmonic functions without proofs, for which cf. Oka [Iw] VII, [50], [51], Grauert—
Remmert [84], Gunning—Rossi [65], Hervé [63], Narasimhan [66], Noguchi—Ochiai
[90] (Ochiai—-Noguchi [84]), Nishino [96], Ohsawa [98], Noguchi [13].

Theorem 2.2.2 An analytic subset A C U satisfies the following:

(i) S(A) is an analytic subset and nowhere dense in A.
(i) Let R(A) =, A; be the decomposition into the connected components. Then

the closure A) = A;\ is analytic, and A = J, A, is a locally finite covering.

(i) If Ay C U, A € A are analytic subsets of U, then so is the intersection
Mrea Ar-

An analytic subset B is said to be irreducible if there are no analytic subsets
B; ;Cé B,i=1,2, with B = By U B,. The above A, are known to be irreducible.
Each A, is called an irreducible component of A. Since A} is a locally closed
submanifold, its (complex) dimension is denoted by dim A’,, and one sets

dim A;, =dim A], dim; A = maxgea, dim A,
codim; A =m —dim, A, dim A = max, dim, A,
codimA =m —dim A.
In particular, the following holds:
dim S(A) <dimA.

If dim; A =dim A at all points a € A, A is said to be of pure dimension dim A.
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Leta € A. Then there is a linear subspace L = C! passing through a such that a is
isolated in L N A. Moreover, there is a direct decomposition C"" = C"!xLsa=
(a1, a2) by linear subspaces, and there are neighborhoods U; C Cc"lofa,UyCL
of a, such that the projection p : AN (U; x Uz) — U] satisfies the following.

Theorem 2.2.3 Let the notation be as above.

() p: AN Uy x Uy) — Uy is surjective, proper, finite, and p~'a; = {a}.

(ii) There is a proper analytic subset S C Uy such that the restriction of p

Planw, xup\p-1s : AN UL X U)\p'S—>U\S

is a finite unramified covering.

(iii) The collection of such l-dimensional linear subspaces L of C™ satisfying the
above (1) and (ii) forms an open dense subset in the Grassmann space of
l-dimensional linear subspaces of C™.

If there is one holomorphic function ¢ # 0 in a neighborhood W of every point
a € A satisfying

ANW={¢p=0},

A is called a complex hypersurface or simply hypersurface. A hypersurface is an
analytic subset of pure dimension m — 1.

Let U; C C",i =1,2, be open sets, and let X; C U;, i = 1, 2, be analytic sub-
sets. A map ¢ : X1 — X> is said to be holomorphic if for every point a € X there
are a neighborhood W of a in U; and holomorphic functions ¢;, 1 <jS<n,onW
satisfying

p(xX)=(p1(xX), ..., o0, (x)), xEWNX].

In particular, when X, = C, ¢ is called a holomorphic function. If the inverse
¢~ ! X, — X exists and is holomorphic, ¢ is called a biholomorphic map or a
biholomorphism, and X is said to be biholomorphic to X».

Let X be a Hausdorff topological space. Let X carry an open covering {X,}xeca
such that there exist analytic subsets Z, C U, with open subsets U, C C"*, homeo-
morphisms ¢y, : X — Z,, A € A, and the restrictions

@0 <ﬂk_l|zmw(xmxu) N (XN Xy) = ZuNeu (X, N X,)

are biholomorphisms for all A, u € A. Then X is called a complex space.

If we can take Z, = U,, then X is called a complex manifold.

Holomorphic functions on a complex space, holomorphic maps between com-
plex spaces, and analytic subsets are defined using the coordinate charts ¢, ; e.g.,
afunction f : X — Cis holomorphic, if all the functions f|x, o ¢, 1.7, — Care
holomorphic.

Similarly, a function f : X — C on a complex manifold X is called plurisubhar-
monic if all the functions f|x, o @, L. Z) — C are plurisubharmonic. (Note that
given a biholomorphic map « : Z — Z’ a function f on Z’ is plurisubharmonic if
and only if f o« is plurisubharmonic; this is proven as in Theorem 2.1.19.)
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Theorem 2.2.4 (Remmert) Let ¢ : X — Y be a proper holomorphic map between
complex spaces, and let A C X be an analytic subset. Then ¢ (A) is an analytic
subset of Y and dim¢ (A) < dim A.

Theorem 2.2.5 (Remmert) Let X be a complex space, and let E C X be an analytic
subset. Let A C X \ E be an analytic subset such that min{dim, A; a € A} > dim E.
Then the closure A of A in X is an analytic subset of X.

For the analytic continuation of holomorphic functions we have the following.

Theorem 2.2.6 Let U C C™ be a domain, and let E g U be a proper analytic
subset. Let f : U \ E — C be a holomorphic function.

(1) (Riemann extension) If there is a neighborhood V C U of every point x € E
such that f|y\g is bounded, then f is uniquely extended to a holomorphic
function on U.

(ii) (Hartogs extension) If codim E = 2, f is necessarily extended uniquely to a
holomorphic function on U.

We know similar theorems for plurisubharmonic functions (cf. Grauert—-Remmert
[56]; Noguchi—Ochiai [90] (Ochiai—-Noguchi [84])).

Theorem 2.2.7 Let U C C™ be a domain, and let E C U be a proper analytic
subset. Let  : U \ E — [—00, 00) be a plurisubharmonic function.

(i) (Riemann type) If there is a neighborhood V. C U of every point x € E such that
Ylv\E is bounded from above, then Y extends uniquely to a plurisubharmonic
function on U.

(ii) (Hartogs type) If codimE = 2, then v necessarily extends uniquely to a
plurisubharmonic function on U .

Since the above two extension theorems are local in nature, the analogous state-
ments hold for arbitrary complex manifolds.

Take a homogeneous coordinate system [wyo, . .., wy] of the n-dimensional com-
plex projective space P"(C). A subset X C P"(C) is said to be algebraic if there are
finitely many homogeneous polynomials Py (wo, ..., w,) satisfying

X:ﬂ{Pa(wo,...,wn):O}.

If a complex space Z is biholomorphic to an algebraic subset of P*(C), Z is
called a (complex) projective algebraic variety. Then an algebraic subset of Z is
naturally defined.

Theorem 2.2.8 (Chow) Every analytic subset of P" (C) is algebraic.

The Zariski topology is defined on P"(C) by taking the algebraic subsets as
closed subsets. Similarly, the Zariski topology on a complex space Z (resp. its sub-
set Y) is defined so that analytic subsets X of Z (resp. X N Y) are closed subsets.
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Let U be an open subset of C". Let A C U be an analytic subset of pure di-
mension /, and let tg(4) : R(A) — C™ be the inclusion map. For a compact subset

K C U the integral
KNR(A) KNR(A)

is considered as a measure of K N A. We show that this is finite.

Lemma 2.2.9 Let the notation be as above.
(1) Ifl =dim A < m, the Lebesgue measure of A in C™ is zero.

(i) [xnrea @ < oo.

Proof (i) We use induction on /. When [ =0, A is a discrete subset, and so the
measure is zero. Suppose that the statement holds for dim A < [. We decompose
A = R(A) U S(A). The induction hypothesis implies that the measure of S(A) is
zero. Since R(A) is a locally closed submanifold of dimension [ (<m), its measure
is zero, and hence so is the measure of A.

(i1) It suffices to show the claim in a neighborhood W of every point a € A. By
making use of a translation and a unitary transformation of coordinates combined
with Theorem 2.2.3, we may assume that ¢ = 0 and for arbitrary 1 £ i} < --- <
i; < m there is a neighborhood W of 0 with projection W = U; x Us C C! x C"~!
satisfying the following properties:

Pzl zm) €EANW — (24, ..., 23;) €Uy
is a proper finite map, and there is an analytic subset S C U} of dim S </ such that
Plarwyp-1s: @leeeonzm) €EANWN\ p7IS > (zy,....2) €U\ S
is a unramified covering. Denote by k its covering number. Note that

. 1
i _ _
()llzn-~-(l’l—l+l) E <g>dZ,',/\dZ,‘,/\~--/\dZ,',/\dZil.

ip<---<iy

It is sufficient to show that for every i} < --- < i;

-\
l ~ -
/R(A)mw(2n> dziy NdZip A -+ Ndzip N dZi) < 00,

By (i) the Lebesgue measure of R(A) N W N p~!S is zero in R(A) N W. Therefore

N

l _ _

/ (—) dZi1 /\dZi1 AR /\dZil /\dZi,
R(ANW \ 27

N

l _ _

2/ (—) dZ,'1 /\dZ,'1 AR /\dZil /\dZi,
R(ANW\p—15 \ 270

(continued)
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. I
l _ _
:k/ (—) dziy NdZi; N+ Ndziy AdZ,
Ui\S 2

Ny
l _ _
:k/lh(Z) dzi, ANdzj) AN--- Ndzy ANdZi, < 00. 0

From now on we write
/ o = / o.
KNA KNR(A)

Corollary 2.2.10 Let B C A be an analytic subset of dim B < dim A. Then

/al=0.
B

The following is deduced from the above.

The following is immediate.

Theorem 2.2.11 Let A C U be an analytic subset of pure dimension l. Let n be
a 2l form with coefficients which are bounded Borel functions on U with compact

Supp()) 1s. Then

is defined. Let B C A be an analytic subset of dim B < dim A and let xp be the
characteristic function of the set B. Then

/ x8n=0.
A

Lemma 2.2.12 Let A C U be an analytic subset of dimension at most m — 2. Let
@ be a plurisubharmonic function on U such that ¢ £ —00 on every connected
component of U, and set dd°[¢] = TjE#de A dzy. Then A is of measure zero
with respect to Radon measures T

Proof One may assume that 0 € A, and it suffices to show the lemma in a neighbor-
hood of 0 € A. Suppose that dimpg A = /. It follows from Theorem 2.2.3 (iii) that the

coordinate system (z1, . .., Z») is chosen to satisfy the property: For arbitrary / coor-
dinates zy,, ..., z, and the others z,, |, ..., zy,, there are neighborhoods U, and U
of the origins of the (zy,, ..., zy)-space and the (zy,,,, ..., Zv,, )-Space, respectively

such that the projection

p(zj) € {(Z]) EA; (ZV|7"'7ZU[) eUl»(ZU[_Ha"'aZUm) € UZ}

= (v, 2y) €U
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satisfies Theorem 2.2.3 (i), (ii). By Theorem 2.1.27 (i) T; iE is absolutely continu-
ous with respect to > . T iTjs Therefore it is sufficient to prove that T; (A N U x

U;)) =0, 1 £ j < m. For instance, let j = m. Then there are nelghborhoods Vi of
0e C" !and V, of 0 € C such that

q:@-Zm-1,2m) €EVI X V2))NA— (21, ..., zm-1) € V1
is proper and finite. By ¢ being plurisubharmonic and the definition we have

(2.2.13) T (Vi X V2) N A)

2
:/ 9l /\ dz]/\dz,
(

VixVa)nA 0Zm0Zm i

ml.

lpC,zm)] i _
—dz; NdZ; / —————dzy ANdZp.
/(A) /\ ! ! Vi 0Zm0Zm 2 “m 1

It follows from Fubini’s theorem that for 2’ = (z1, ..., Zm—1)

32 ’
Z/ e V] - [QO(Z 7_Zm)] 2 O
1) 02 0Zm
is an integrable function on V. By Theorem 2.2.4 g(A) is an analytic subset of V;
of dimension at most / (£m — 1). Lemma 2.2.9 (i) implies that g (A) is of Lebesgue
measure zero in Vj. Thus (2.2.13) implies that 75,7 (V1 x Vo) N A) =0. O

Let M be a complex manifold of dimension m. It is clear that Theorem 2.2.11
and Lemma 2.2.12 hold generally on M.
Let {A,} be alocally finite family of hypersurfaces of M. The formal sum

> kiAx
A

with integral coefficients k) € Z is called a divisor, and the Z-module generated by
them is called the divisor group. For a given divisor D on M there are uniquely
distinct irreducible hypersurfaces D, of M and k; € Z \ {0} such that D =Yk, D,
(the irreducible decomposition). Each D), is called an irreducible component of D.
The hypersurface Supp D = | D;, is called the support of D. If D =", k) Ay
with k; = 0, D is called an effective divisor, and written as D = 0. If there is no
confusion, the notation D may be used for Supp D. For two divisors D, D’ we write
Dz=zD'ifD—-D'=0.

Let D =) k) D, be the irreducible decomposition of a divisor D. If all k; =1,
then D is called a reduced divisor.
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Let f be a holomorphic function on M. Then a hypersurface A = {f = 0} is
defined. Let A = [J, A be the irreducible decomposition. The zero degree m; of
f at a point x of every R(A,) \ S(A) is naturally defined, independently from the
choice of x because R(Aj) \ S(A) is connected. Thus a divisor

(H= ZmAAA

is determined by f.

A meromorphic function f on M is a function locally expressed by the ratio
f = g/ h of two holomorphic functions g, 4 with & £ 0. Then the divisor (f) lo-
cally expressed by (g) — (h) is defined globally on M. Let (f) =), m; D; be the
irreducible decomposition and set

(Ho= Z m; Dy, (oo = Z —my D;.

my >0 m) <0

Then (f)g is called the zero divisor of f and () is called the polar divisor of f.
Every divisor is locally expressed by the divisor of a meromorphic function; for
some special M there exists a global expression.

Theorem 2.2.14 [If M is biholomorphic to C™ or B(r), then for a divisor D on M,
there exists a meromorphic function (f) on M such that (f) = D.

As for Hartogs extension (cf. Theorem 2.2.7 (ii)) we have the following.

Theorem 2.2.15 Let E C M be an analytic subset which has a codimension of at
least two everywhere. Then every meromorphic function on M \ E extends mero-
morphically over M.

Proof This is a local property, so that M is assumed to be an open ball of C™.
Let f be a meromorphic function on M \ E. Then the support of the polar divisor
(f)oo of f extends uniquely to an analytic subset of M by Theorem 2.2.5. There-
fore, (f)o is an effective divisor on M. By Theorem 2.2.14 there is a holomorphic
function g on M such that (g) = (f)cc, S0 that gf is holomorphic in M \ E. Then
Theorem 2.2.7 (ii) implies that g f extends holomorphically to a holomorphic func-
tion & on M. Thus, f = h/g is meromorphic on M. g

Let D =) k; A, be a divisor on M. For a 2m — 2 form n on M whose coeffi-
cients are locally bounded Borel-measurable functions and whose support is com-
pact, a current by integration

D(n) = =) k
(m /Dn szxfmn

is defined.
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Theorem 2.2.16 (Poincaré—Lelong formula) Let f £ 0 be a meromorphic function
on M and let n be a 2m — 2 form of C*-class on M with compact support. Then,

/ ,72/ 10g|f|2ddcn=/ dd[log| f1*] An.
) M M

Here dd€ is taken in the sense of currents. That is, as currents,
dd‘[log| fI*] = (f).

Proof The given formula trivially holds outside Supp( f). It suffices to show it lo-
cally in a neighborhood of every point of Supp(f). Hence one may assume that f
is holomorphic. Note that log| f 1> (£—00) is a plurisubharmonic function. The di-
mension of the set S of singular points of Supp( f) is at most m — 2. It follows from
Theorem 2.2.11 and Lemma 2.2.12 that S is a measure-zero set with respect to the
currents of both sides of the formula. Therefore it is sufficient to show

/ n=/ log|f[*ddn (SN Suppn =%).
(NS M\S

Take an arbitrary point a € Supp(f) \ S. Choosing a sufficiently small neighbor-
hood W of a, we have W NS = (J and a coordinate system (wy, ..., wy) in W such
that

() Supp(/)NW ={w; =0},
(i) f(w)= (w)*h(w) and h(w) #£0,"we W,
(iii) Suppn C W.

It is immediate that ), log |h|?dd‘n = [,, ddlog|h|*> A n = 0. We get
2.2.17)

/ 10g|f|2ddcn=/ 10g|w1|2kddcn

M M

= lim(—2klog8/ dcn—k/ d10g|w1|2/\dcn>.
e—>0 lwi|=¢ lwy|Ze

Since fl wy|=¢ d“n = O(e), the first term of the right-hand side of (2.2.17) converges
to 0. We calculate the second term:

—k/ dlog|wi|> Ady =k/ d°log|wi|*> Adn
lwi|=e {lwi12¢}
:—k/ d(dlog|wi[* A n)
{lwi]2e)
=k/ dlog|wi|> An
{lwil=e)

1
=k/ —d(argwi) A7

{lwy|=¢} <7
(continued)
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— k/ n (e —0).
{w;=0}

Hence, this combined with (2.2.17) implies the required identity. 0

It follows from Theorem 2.2.16 that the integration over D defines naturally a
current with coefficients in Radon measures (Lelong [68]; Noguchi—Ochiai [90]
(Ochiai—Noguchi [84])).

Let M = C™. Let D be an effective divisor on C™ with the irreducible decom-
position D =3, k, D;. For 1 <k < oo the truncated counting functions to level k
are defined by

am—17

—g2m=2 /B(f)m(zA min{k,k; ) Dy)
"ni(t, D)
t

(2.2.18) N (r, D):/ dt, r>1,
1

n(t’D)ZnOO(IaD)’ N(raD)zNOO(er)
In particular, n(¢, D) and N (r, D) are simply called the counting functions.

Theorem 2.2.19 Let D be an effective divisor on C". Then ny(t, D) is increasing
int>0.

Proof If we reconsider D to be ZA min{k, k; } D, in (2.2.18), we may take k = oo.
By Theorem 2.2.14 there is a holomorphic function f on C” such that (f) = D and
dd[log| f|*] = D. Therefore we see by Lemma 2.1.31 that n(z, D) is increasing in
t>0. O

2.3 The First Main Theorem
2.3.1 Meromorphic Mappings, Divisors and Line Bundles

Let M and N be complex spaces (cf. Convention (xvi)). A meromorphic mapping
f:M — N from M into N is a correspondence such that for a point x € M a subset
f(x) C N is assigned and the graph I'(f) = {(x, f(x));x € M} C M x N forms
an irreducible analytic subset and satisfies the following:

(1) The first projection p : I'(f) — M is proper.
(i1) There is a nowhere dense analytic subset S C M such that the restriction
Plrinp-ts : TN p~'S — M\ S is biholomorphic.

Therefore the restriction f|apns: M \ S — N is a holomorphic mapping. The
set I (f) of points x € M with f(x) containing more than one point is called the
indeterminacy locus of f.
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Theorem 2.3.1 Let f: M — N be a meromorphic mapping. Assume that M is
non-singular. Then 1(f) is an analytic subset of codimension 2 2 and f is holo-
morphic on M\ I (f).

1

Proof Note that for every x € M, p~ x is connected. Set

Z={zel(f);dim, p~'p(x)>1}.

Then Z is an analytic subset, dimZ < dim "' (f) = dim M, and p(Z) = I(f).
By definition p(Z) < dimZ, and hence codim/(f) = 2. Let x ¢ I(f). Then
plx)={(x,y)}el(f)isa point set. By Theorem 2.2.3 there are a holomor-
phic local coordinate neighborhood (V, (y1,...,ys)),|yjl <1 of y € N, a neigh-
borhood U of x € M, and a proper analytic subset S C U such that f(U) C V,
fIU \ S) is represented by holomorphic functions f;(x) € A(1). It follows from
Theorem 2.2.6 (i) that f;(x) are holomorphic functions on U. Thus f|U is a holo-
morphic mapping. g

Remark 2.3.2 The above theorem holds if M is a normal complex space. For a
holomorphic function which is defined outside an analytic subset Z of codimension
> 2 in a normal complex space extends holomorphically over Z; the same exten-
sion holds for plurisubharmonic functions in a normal complex space (Grauert—
Remmert [56]).

Corollary 2.3.3 If M is a Riemann surface, then a meromorphic mapping
f M — N is necessarily holomorphic.

Remark 2.3.4 There is a one-to-one correspondence between non-constant mero-
morphic functions and non-constant meromorphic mappings to P! (C).

Definition 2.3.5 A meromorphic mapping f : M — N is said to be analytically
degenerate, if the image f (M) is contained in a proper analytic subset of N; other-
wise, f is said to be analytically non-degenerate. When N is contained in an projec-
tive algebraic manifold, we similarly define f to be algebraically (non-)degenerate
by using algebraic subsets in place of analytic subsets.

Remark 2.3.6 If N is projective algebraic, by Theorem 2.2.8 the analytic degener-
acy is the same as the algebraic degeneracy. If N is an open subset of a projective
algebraic variety, the two notions are different.

Let f : M — N be a meromorphic mapping. Let A C N be a hypersurface which
is Cartier; that is, it is locally defined as zero locus of a single holomorphic function.
Assume that f(M) ¢ A. Unless (f|M\1(f))_1A is empty, it is a hypersurface of
M\ I(f). By Theorem 2.2.5 the closure of (f|M\1(f))_1A is a hypersurface, and is
denoted by f~! A, which is called the pull-back of A by f. Therefore the pull-back
(flm\i(r))* A as divisor, extends uniquely to a divisor f*A on M.
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On singular N we only deal with Cartier divisors defined as follows. Let N =
U, Us be an open covering and let ¢, be a meromorphic function on each U,.
We assume that ¢y /¢g restricted to Uy N Ug is a holomorphic function without
zero for every « and 8. Let N = | V) and {v;} be another such family. We say
that {¢} and {¥,} are equivalent if there is a refinement {W,} of {U,} and {V,}
such that ¢y () /¥ (v) restricted to W, is holomorphic and zero free for every v. The
equivalence class D = [{¢,}] is called a Cartier divisor on N. The restriction D|y
to an open subset U C N is naturally defined.

Let M be non-singular. Let f : M — N be a meromorphic mapping, and let D
be a Cartier divisor on N. Assume that D has a representation ¢y = @14/P24
such that ¢y o f|am\1(r) does not vanish identically on any open subset where
they are defined. Then the pull-back (f|an\1(s))*D by flu\i(r) is defined as a
divisor on M \ I(f). Then the support Supp(f|m\1(r))*D is a hypersurface of
M \ I(f). Since codimI(f) = 2, it follows from Theorem 2.2.5 that the clo-
sure of Supp(f|m\1¢(s))*D in M is a hypersurface of M, and hence the divisor
(flm\1¢p))* D has a unique extension as divisor over M, which is denoted by f*D.

For a holomorphic function ¥ on N (f{\7())*¥ is a holomorphic function on
M\ I(f). Since codimI(f) = 2, Theorem 2.2.6 (ii) implies that it uniquely ex-
tends to a holomorphic function on M denoted by f*i. Let ¢ be a meromorphic
function on N with local representations ¢|y, = @1o/$24, With an open covering
N =, Uo. Assume that ¢y, o fIn\7(r) does not vanish identically on any open
subset where they are defined. Then (f|a\7(r))*¢ is a meromorphic function on
M\ I1(f). Then we have a divisor f*(y) on M as above and so there is a holo-
morphic function g in a neighborhood U of an arbitrary point x € M such that
(&) + fF*(Y)ly is effective. Thus g - (flu\1(r))*¥ is holomorphic and by The-
orem 2.2.6 (ii) extends to a holomorphic function %z on U. Hence the pull-back
meromorphic function f*vy is defined locally by b on U. For a plurisubharmonic
function on N its pull-back by f is defined as well by Theorem 2.2.7.

Example 2.3.7 Let M =C", N =P"(C), and let f : C" — P"(C) be a meromor-
phic mapping. Let [wo, ..., w,] be a homogeneous coordinate system of P"(C).
The hyperplane {w; = 0} is itself an effective divisor. There is an index j with
f(C™) ¢ {w; = 0}. Changing the indices, we may assume without loss of generality
that f(C™) ¢ {wg = 0}. For the pull-back f*{wo = 0} as divisor, Theorem 2.2.14
implies the existence of an entire function f on C™ such that (fy) = f*{wo = 0}.
As w;/wo is a meromorphic function on P"(C), the pull-back f*(w;/wo) is a
meromorphic function on C™", and f; = fo - f*(w;/wop) is holomorphic. By the
construction we have

codim{fo="--= f, =0} =2 2, I(f)={fo=--=/fa=0}

We represent f = [ fo, ..., fu], which is called the reduced representation.

Let L be a complex space and let 7 : L — N be a surjective holomorphic map-
ping. If the following three conditions are satisfied, the triple (L, 7, N) or simply L
is called a holomorphic line bundle (or simply a line bundle) over N:
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Condition 2.3.8 (i) There is an open covering {V) },ca of N such that the restric-
tion L]y, = A (V3) admits a biholomorphic mapping ¢, : L|y, — Vi x C.

(ii) Whenever V, NV, # @, there is a holomorphic function ¢, without zero on
Vi NV, such that

G0, lvnvxe: (x.8) € (VN V) x C
— (x, prp(¥)EL) € (VN V3) x C.

Q) Ifr=pu, ppp = 1.

In this case {V) } is called a local trivialization covering of L and {¢,,} is called
the transition function system.

At every x € N the inverse image L, = 7~ !(x) is a one-dimensional complex
vector space. For y; € Ly, ¢; € C, i =1, 2 the natural operation as vector space

ciyr+cey, €Ly

is defined by Condition 2.3.8 (ii).

A mapping o : W — L from a subset W C N into L satisfying 7 o o =idw, is
called a section of L over W. In particular, when W is open, we denote the set of
holomorphic sections of L over W by H(W, L), which naturally forms a complex
vector space. We denote by &'(L) the sheaf of germs of holomorphic sections of L.

The transition function system {¢; , } in Condition 2.3.8 (ii) satisfies the so-called
cocycle condition:

d =1,
2.3.9) OruPp.=1 (onVyNVy,),
¢Au¢uv¢vk =1 (onV,nN Vu nw).

On the other hand, suppose that we are given a system {¢; } of holomorphic
functions satisfying the cocycle condition (2.3.9). Then we may construct as follows
a holomorphic line bundle over N whose transition function system is {¢,}. First
we consider the disjoint union L, 4 Vi x C of topological spaces. We introduce an
equivalence relation ~ for two elements (x;, &3, (x,, §,) by

X, =x, €N, Er = Pap ()8

The quotient space L = (U4 Vi x C)/~ constitutes a complex space, as is easily
checked, and the mapping 7 : L — N projecting an equivalence class [(x;, £,)] to
x; € N is a holomorphic surjection. It is easily checked that this is what was desired.

Let W C N be an open subset and let S C W be an analytic subset which is
nowhere dense in W. Let o : W\ S — L be a holomorphic section. On an arbitrary
Vi, N W we represent ¢, (o (x)) = (x, 03 (x)) € Vi x C. If g3 (x) is a meromorphic
function on V) N W, then o is called a meromorphic section of L on W. Since the
transition functions have no zero, a meromorphic section o : W — L (we write it in
this way) defines a Cartier divisor (o) on W. In particular, when W = N, a Cartier
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divisor (o) on N is obtained. It is equivalent for o to be a holomorphic section that
(0) 0.

Conversely, let a Cartier divisor D on N be given. We take an open covering
{V.} of N such that there exist meromorphic functions o; on Vj, defining Dl|y, .
Then o) /0, has no zero on V) N V. Put ¢, = 0, /0. Then these are holomor-
phic functions on Vj N V,, without zero, which satisfy the cocycle condition (2.3.9).
Thus a holomorphic line bundle L(D) is obtained as above. By the construction
L(D)|y, = Vi x C and {¢;,,} is the transition function system. Setting locally
x € V) — (x, 05(x)), we obtain a meromorphic section o on N satisfying (o) = D.

In the present book we deal only with holomorphic line bundles, which we call
simply line bundles.

Letmw; : L; — N,i =1, 2 be two line bundles over N. If there is a biholomorphic
mapping ¥ : L1 — L such that my =m0 and ¥, : Lix — Loy (x € N) is
a linear isomorphism, ¢ : L1 — L» is called an isomorphism, and L is said to be
isomorphic to L. We identify isomorphic line bundles with each other. The line
bundle 1y = N x C is called a trivial line bundle. A line bundle L — N is trivial if
and only if there exists a holomorphic section on N without zero.

Take a local trivialization covering of both L and L;. Let {¢;,,} be the transition
function system of L;. The product {¢1;,, - $23,} yields a line bundle L3 — N. This
is called the tensor product of L and L, and is denoted by L1 QL.

The line bundle given by {(pl_?»lu} is denoted by Ll_1 . Then L4 ®L1_1 =1y. We set

LY=11® --®L, (k-times,k >0),
LY=L{'®---®L]" (k|-times, k <0).
For two given divisors D;,i =1,2on N,
L(D + Dy) = L(D1)QL(D>).

Assume for a moment that N is non-singular. Let {V) (xp1,...,Xaxn)}rea be
a covering of holomorphic local coordinate neighborhood system of N. For
V,. NV, # ¥ we consider the following transition of holomorphic forms:

dxyi N Adxyy = kpp()dxyr A Adxyp,

a(-x)»lv e 7x)\.n)

= (Jacobian).
O(Xpuls - s Xun)

Kux

Since {ky,} satisfies the cocycle condition (2.3.9), a line bundle Ky over N is ob-
tained from it, and K is called the canonical bundle over N. Meromorphic sections
of Ky are identified with meromorphic n-forms.

2.3.2 Differentiable Functions on Complex Spaces

Here we have to be precise on the definition of C* functions on a singular com-
plex space N. There have been more than one such definitions, but here we follow
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Fujiki [78a]. Since it is a local notion, we restrict ourselves for a moment to the
case where N is an analytic subset of an open set £2 C C". Let .# (N) be the ideal
sheaf of N in the structure sheaf O, of holomorphic functions over §2. The quotient
On = Ogq /% (N) is called the structure sheaf (of holomorphic functions) over N.
Since .# (N) is coherent’ and we are concerned here only with a local property, we
may assume that there are finitely many holomorphic functions,

2310 t,...,y el (2, 7(N))over §2, generating .¥ (N ), atevery point x € 2.

Let & denote the sheaf of germs of complex-valued C* functions over £2. We
denote by &.(N) the sheaf of ideals of & generated by 7; and 7;, 1 £ j <1,
over &p; that is,

1 1
(2.3.11) EI(N)=) (batj+ o))=Y (Safit) + E0ST)).
j=1 j=1

Then we have that #(N) C &7 (N) C &g. We define the sheaf of germs of C*°
functions over N by the quotient

(2.3.12) &y = Eq/E I (N).

Because of the definition, &y is well-defined for a complex space N. It is clear
that & is a sheaf of rings with unit 1. A section ¢ of &y over an open subset U C N
is called a differentiable or C*° function on U, and it uniquely defines a continuous
function

¢:U— C.

If ¢ (x0) # 0, then in a neighborhood of xq, ¢ is invertible; this is seen as follows.
Since it is a local problem, we let N C £2 C C" and t; be as in 2.3.10. Let ¢ be
represented by ¢, ¢’ € I'(£2, &p) satisfying

!
dE =<5/+Z(afrj +b;T)).
j=1
Taking a} =a;/¢’ and b;. =bj/¢’, one gets

[
@ :(Z)’(l + Z(a}tj +b;fj)>-

J=1

3K. OKa, in [Iw] VIL, [50] and [51], proved three fundamental coherence theorems for (i) O,
(ii) #(N), and (iii) the normalization of &y . Cf. H. Cartan [50] for another proof of the coherence
of .#(N}), and Grauert—-Remmert [84]. K. Oka called .#(N) the geometric ideal sheaf (I’idéal
géométrique de domaines indéterminés). It is interesting to see the comments in Oka [Sp] and
Cartan [79].
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We may assume that

! 1 ! 1
Z’“}UV} Z\b}fj’<§
Jj=1 j=1

Then | le:l(a}tj + b;.f.,-)| <1, and we have

—_—

1 1
¢ ¢ 1+ YL@ +bT)

[ee) I k
:%4—2(—1)"(2511’14—17@)
A =
 — ¢
:T/—i-Z(—l)k(Za T+ DT ) .
I o

The second term above is written as an absolute convergent power series in a} T,

b;. 7; without constant term. Therefore there are C* functions a}/ , b;./ in £2 such that

(2.3.13)

‘e-zl
'@ﬂ

1
Z (] rj —i—b”rj

Thus 1 and L 7 define the same section ¢ € I'(N, &y) such that ¢ - —
We then define the tangent space over N. This is again a local object so that
we let N C £2 C C" and 7; be as above (cf. 2 3.10). Let (x1, ..., x,) be the natural

coordinate system of C". Let X =Y /_, X' i be a holomorph1c tangent vector of
T(£2) at x € N. We define

(2.3.14) T(N), = | (x, X): X(t])_ZX’ f(x) 0,15 <1A}
i=1

This yields an analytic subset

T(N) = U T(N), C N x C"
xeN

with the natural projection 7 : T(N) — N, the fibers of which are vector spaces.
We call T(N) the holomorphic tangent space over N. Because of the coherence
of Z(N) it is easy to see that the definition of T(N) is compatible with the
change of coordinates (i.e., the embedding into £2), so that for a general complex
space N the holomorphic tangent space T(V) is defined with the natural projection
m : T(N) — N, the fibers of which are vector spaces.
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In terms of (2.3.14) we set

J

n n
_ .9 . _ _. 9
T(N):{Y:ZYJ—_;Y/eC,Y:ZYJ_eT(N)},
(2.3.15) o 0% o

T(N)=T(N)® T(N).

We call T(N) the anti-holomorphic tangent space over N, and T(N) the tangent
space over N.

Let ¢ € I'(U,&n) be a C* function over an open subset U of a complex
space N. We want to define the differential d¢ (X) for a tangent vector X € T(N)|y.
There is locally a C* function </~> € I'(£2, &) which represents ¢ on U. If we take
another q5’ € I'(2, &g), then there are C* functions a;, b; on £2 such that

I
(2.3.16) ¢=0'+) (ajT; +b;T)).
j=1

For the differentials we get

l
0 =0¢'+ > (tjda; +a;dt; + ;0b)),
j=1

(2.3.17) l

3 =39/ + Y (rjPa; + bd, + 700y

It follows from (2.3.14) that for X € T(N), (x € N),
Ip(X)=04"(X),  Ip(X)=03'(X).

Thus 3¢ : T(N) — C and 3¢ : T(N) — C are well-defined, and we have the differ-
ential of ¢:

dp =00 ®dp:T(N)=T(N)®T(N)— C.
From the second equation of (2.3.17) it follows that
- - [ - - - -
00§ =00¢' + > (97j Adaj +1;00a; + db; A IT; +T;00b;).
j=1

Therefore we can define the Levi-form of 9d¢ along with the real form %85(15 by

(2.3.18) 90¢9(X,Y)=00¢(X,Y)=00¢'(X,Y), X,Y eT(N).
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2.3.3 Metrics and Curvature Forms of Line Bundles

Let L — N be a line bundle over a complex space N. Let N =_J, Vi be an open
covering such that there is a transition function system {¢,, } of L. A hermitian met-
ric in L is a family h = {h,} of positive real-valued C* functions i, € I"(V,, &n)
satisfying

(2.3.19) () = | O 1 (), x € VANV,

The line bundle L endowed with £ is called a hermitian line bundle and is denoted
by the pair (L, h); we sometimes write simply L for a hermitian line bundle when
there is no confusion. We take a local trivialization

Lly, = V), x C.
For v = (x, &) € V) x C C L we set the norm of v with respect to & by

€x]
Vi (x)

Then this is independent of the choice of V,. The norm function ||v|| is also called
a hermitian metric in L.

If N is paracompact, we may construct such a hermitian metric in every line
bundle L over N. In fact, let {V,} and {¢;} be as above. We may assume that {V}}
is locally finite. Taking a partition {c;} of unity subordinated to {V;}, we set C*
functions on V, by ¢, (x)log |¢;\‘,(x)|2 extending as 0 on V; \ V,, and set

vl =

h.(x) =€XP{ZCV(X)10g|¢Av(x)|2}, xeV,.

It follows from the cocycle condition (2.3.9) that
(2.3.20) hy. = |goul*hy  (on Vi NV, #0).

Going back to (2.3.19), we want to define the Levi-form 99 logh;). Asin (2.3.16),
let i) and h; be C* functions such that

!
hy = h} + Z(axjij + b5 Tj),
j=1

where ay; and by ; are C* functions on £2;, into which V}, is embedded, and 7;; are
generators of .# (N)|y, . Since h|_is positive valued, we have

1
/':l)\ = ﬁ;\ . (1 + Z(aijr)tj + bijfkj)>,
j=1
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where a/M. =ay,;/h} and b;j = byj/ b} . Since 1, vanish on V,, we may assume that
[ / 1 1 /= 1 . .
Zj:l |a)\jrxj| < 5 and Zj:l |bAjrAj| < 5. By making use of the power expansion

log(14+1)=>,2, %t" (Jz] < 1), we deduce in the same way as in (2.3.13) that

I
logh;, =log ), + Z(aﬁfjmj +b3,%),
j=1

where a/’\’ f and bﬁ\’ . are C™ functions. Hence the Levi-form @, = 93 log k), of logh;,
is well-defined, and (2.3.19) implies

O,x)=0,x), xeV,NV,.
The curvature form ©(y, 5y of the hermitian line bundle (L, &) is globally defined by
Ow.mlv, (X.Y) =O:(X.Y), XY eT(N)ly,,

and the real form

i
o
is called the Chern form of (L, h); here we recall

W(L,h) = Ow.n = dd®logh; in V;,

i -
d¢=—(0—9).
471( )

When it is not necessary to specify the hermitian metric /2, we write wy, for o ).

Let /1 be another hermitian metric in L. After taking a refinement {V; } of open cover-
ings of N, we have h = {h, } and h = {h, }, so that &, (x)/h) (x) is globally defined,
independently from the choice Vj > x. Thus there is a C* function b on N such that

(2.3.21) o =g j +ddb.

If N is non-singular, the Chern form w(;, ;) defines a cohomology class ¢1 (L) =
[wr] € H3(N,R), which is independent of the choice of the hermitian metric
by (2.3.21) and is called the Chern class of L.

If w(y p) is positive (resp. semi-)definite at all points of N, we write w5y >0
(resp. wr .ny = 0). We write L > 0 (resp. L 2 0) if there exists a hermitian metric &
in L with Chern form w(z p) > 0 (resp. o p) = 0); in this case we say that L is
positive (resp. semi-positive). If N is non-singular and L > 0, wy defines a Kahler
metric on N.

Leto; (1 £i < p)ando’, (1 £ j < ¢g) be holomorphic sections of L over N (may
be singular) and let {V,} be as above. On each V,,_ they are given by holomorphic
functions o7 (1 <i < p) and ";x (1< j <¢q). Assume that Zj |<7‘;A|2 # 0. For
x € N we take Vj > x and set

Yiloi@P ¥ lon()
PG MGl

(2.3.22)
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This is independent of the choice of V, > x, and defines a function on N outside
where the denominator vanishes.

Assume that dim H(N, L) =2 and take linearly independent elements oy, . .., oy
of HO(N, L). Then we get a meromorphic mapping

d:xeN— [Uo(x), ...,on(x)] e P"(C).

Note that this is not necessarily reduced representation. If dim H°(N, L) < oo and
{0} is a base of HO(N, L), we write for the above @

(2.3.23) @ : N — P*(C).

Let S(N) denote the set of singular points of N. Then S(N) is a nowhere dense
analytic subset of N. Let N be compact. If the meromorphic mapping @;; : N —
P"(C) (n; = dim HO(N, Kf\,) — 1) for some / has the differential d<DK§Vx of rank
equal to dim N at some point x € N \ I(@ng) U S(N), L is said to be big. If N is
non-singular and K is big, N is said to be of general type.

If @ gives rise to a holomorphic embedding, L is said to be very ample. If there
is a number k € N with very ample L¥, L is said to be ample.

Going back to Example 2.3.7, we denote by H — P"(C) the line bundle deter-
mined by the transition function system {¢ ;i = z—’;} associated to the affine open
covering, P"(C) = U'}:O U; withU; = {w; # 0}. We call H the hyperplane bundle
over P (C). Then the functions

lw;|?
(2.3.24) pi=1+3%

on U; define a hermitian metric in H with the curvature form wgy > 0. That is,
H > 0. The Kihler metric hy is called the Fubini—Study metric. The associated
Kihler form wp is called the Fubini—Study metric form on P"*(C).

Let f: C" — P"(C) be a meromorphic mapping with reduced representation
f=1fo0,---, ful The pull-back of wy by f is written as

. . n
* _ ! k0o _l_ Y 12
(2.3.25) fron=5—[*3dlogpj = 2n8810g<§|f,| )

The function log(3_"_, | f; ?) is a plurisubharmonic function on C”.

Let N be a complex projective algebraic variety with a holomorphic embedding
¥ : N < P"(C). The pull-back ¥*H is a positive line bundle and a meromorphic
mapping into P"(C) given by n + 1 linearly independent sections of HO(N, ¥* H)
coincides with @. The next theorem gives the converse for it; the non-singular case
is due to Kodaira [54], [74] (cf. Nakano [81] for a further generalization).

Theorem 2.3.26 (Grauert [62]) Let N be a compact complex space and let L — N
be a positive line bundle over N.
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(1) Let & — N be a coherent sheaf over a compact complex space N. Then there
is a number lo such that H1(N, Q0O (L") =0,1>1y, g > 1.

(i1) Let E — N be a line bundle over N. Then there is a number ly such that
for every I 2 ly the meromorphic mapping ®;1op : N — P ~1(C) with n; =
dim HO(N, L'QE) is a holomorphic embedding, and hence N is projective al-
gebraic.

A divisor D on N defines a line bundle L(D). If L(D) satisfies the above prop-
erty (i), D is said to be ample; hence, D is ample iff L(D) is positive. If the holo-
morphic sections of L(D) over N give a holomorphic embedding into a projective
space, D is said to be very ample.

Let N be a compact complex space. Take a vector subspace E C HO(N, L),
dimE =1+ 1 = 2. For the divisor (o) given by ¢ € E \ {0} and for ¢ € C*
(co) = (o) holds clearly. Conversely, if o, t € E'\ {0} satisfy (o) = (t),theno =ct
for some ¢ € C*. Therefore we have the following isomorphism:

{(0);0 € E\{0}} = (E\ {0})/C* = P(E) =P (C).

The space P(E) is called a linear system of D, and in particular, when E =
HO(N, L), it is called the complete linear system of L denoted by |L|. The ana-
Iytic subset B(E) = {x € N; o (x) =0, Yo € E} is called the base locus of E.

In what follows we assume N to be projective algebraic unless otherwise men-
tioned. For any line bundle L over N there are by Theorem 2.3.26 very ample line
bundles L;, i = 1,2, such that L = L1®L2_1. By making use of the Chern forms
wr; >0 of L; we obtain

Wl =W, —WL,.
Noting (2.3.25), we see the following.

Lemma 2.3.27 Let N, L be as above. Let f : C" — N be a meromorphic map-
ping. Then there are plurisubharmonic functions &;,i = 1,2 on C" such that

o =dds —dd°g.

Let L — N be a line bundle with a hermitian metric || - ||. For an element D € |L|
we take and fix a holomorphic section o € H O(N, L) \ {0} such that (¢) = D and
llo|l £ 1. The next follows from the Poincaré-Lelong Theorem 2.2.16.

Lemma 2.3.28 Let ||o|| and wy, be as above. Let U C C™ be an open subset and
let f : C™ — N be a meromorphic mapping such that the pull-back f* D is defined.
Then we have a current equation on U':

ddc|:log :| = ffwp — f*D.

1
oo f(2)]?
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Theorem 2.3.29 (Poincaré duality) Let N be a compact complex manifold of di-
mension n. Let L — N be a hermitian line bundle and let D € |L|. Then

/77=/wL/\77
D N

forall d-closed (n — 1,n — 1) forms n on N.

Proof Let U C N be a holomorphic local coordinate neighborhood of N and let
t: U — N be the inclusion. Suppose that Suppn C U. By Lemma 2.3.28 we have

1
/a)L/\n—/ n:/(log—2>dch*n=O.
U D U lloll

By making use of the partition of unity, we get the required formula. d

Let f: C™ — N be a meromorphic mapping such that the pull-back f*D is
defined. We apply Lemma 2.3.28 for U = B(r) and n = o™~ ! = (dd¢||z|>)™ .
Then the equality such as in Theorem 2.3.29 does not hold, and a boundary integral
appears:

f*(!)L /\am—l _/ am—l
B(r) f*DNB(r)

1
=/ dlog ——— A"
IB(r) lloo f(2)l

The first term of the above equation should be the order function, the second should
be the counting function, and the third might be some remainder. Since the boundary
integral contains a differentiation, it is inconvenient to handle this formula directly,
and we need some more modifications as follows.

The counting function N(r, f*D) is already defined by (2.2.18). By Lem-
ma 2.3.27 and the result in Sect. 2.1, in particular, by Corollary 2.1.37, we may
define the following two quantities:

1
o= eg— ),
s D) /uzu_r oo ron’ Y
(2.3.30)

"odt
T(r,wL)=/ —-— fropna" 21,
f R P

We call m ¢ (r, D) the proximity function or the approximate function of f for D. We
call Ty (r, a)L)4 the order function of f with respectto wy.If wy 2 0, it follows from

“In S. Lang [87] the notation Ty, p is used, but this is not proper and mises an essential point: the
order function is not dependent on each D, but determined solely by the complete linear system or
by its cohomology class, and this is where the First Main Theorem 2.3.31 makes sense.
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Lemma 2.1.31 that T (r, w. ) is a monotone increasing convex function in log r. Let
)/, be the Chern form of another hermitian metric in L. By (2.3.21) we see that

1 1
Tr(r,op) — Tr(r, o)) = 5/ bo f(2)y(z) — 5/ bo f(2)y(z)
lzll=r llzll=1
=0() (r— o).
Thus the order function of f with respect to L is defined by
Ty(r,L)=Ty(r,or)

modulo up to addition with a bounded term in » = 1. In the same sense the prox-
imity function m ¢ (r, D) is determined modulo up to addition with a bounded term
inr2>1.

We obtain the following important formula from Corollary 2.1.37.

Theorem 2.3.31 (The First Main Theorem) Let L — N be a line bundle and let
f:C™" — N be a meromorphic mapping. For D € |L| with Supp D 2 f(C™),
Ty(r,or) = N(r, f*D) +my(r,D) —mys(1, D),
Tr(r,L)y=N(r, f*D) +my(r, D)+ O(1).
Corollary 2.3.32 With the conditions in Theorem 2.3.31 we suppose one of the
following:
1) f*D#0.

(i) f*wr 2 0and f*wr(z9) > 0 at some point zg € C™.

Then there is a constant C > 0 such that
Clogr = T¢(r,wr) + O(1).

Proof In the case of (i) there is a ty > 0 with n(tg, f*D) > 0. It follows from The-
orem 2.2.19 that n(¢, f*D) is a monotone increasing function in ¢. Therefore

"n(y, f*D
N(r, f*D) g/ %dt:n(to,f*D)(logr —log ).
fo
It follows from Theorem 2.3.31 that
T¢(r,oL) Z N(r, f*D)+ O(1).

Thus the claim is deduced.

To deal with the case of (ii) we may assume that (i) does not hold; that is,
f~'D =¢. Then ddlog1/|lo o f||*> = f*wr =0, and so log1/||loc o f(z)|? is
a plurisubharmonic function. By Lemma 2.1.31

1
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is a monotone increasing function in #. By assumption we have for 79 = ||zo|| + 1

1 -1
Cozm/B(to)f*wL Ad™T > 0.

0
By definition
"odt
T:(r,wp) 2> / / fror Aad™ 1 > Co(logr — log ).
f o 2" Jg O

Remark 2.3.33 In the above First Main Theorem N is assumed to be projective
algebraic, but in fact suffices to be a compact complex manifold. In that case we
consider the integral over I"(f) (cf. Theorem 2.2.11). To show Jensen’s formula on
I'(f) (Lemma 2.1.33) one needs Stokes’ Theorem on I"(f) with singularities in
general, or a desingularization.

Example 2.3.34 Let [wo, ..., w,] be a homogeneous coordinate system of P"(C)
and let H — P"*(C) be the hyperplane bundle. Let f : C" — P"(C) be a meromor-
phic mapping with reduced representation f =[fo,..., fu]. Then w;, 0= j <n
form a base of H(P"(C), H). We take a holomorphic section o = > i—ociwj,

(cj) € C"+1\ {0} and the hyperplane D = (o) defined by it. The coefficients (c;)
may be normalized so as

n

> lejP=1.

j=0

The length of o with respect to the hermitian metric in H given by (2.3.24) is

Lcjw;
el

ol = S
\/ (Z] |wj|2)

Then the quantities appearing in the First Main Theorem 2.3.31 are as follows:
D= (Zij/) = (Zij/) ;
‘ ~ 0
J J
Vi lfi@P?
m¢(r, D) = / —_
I

=1 1225 ¢ fi @I

Todt _
Ty (r, H)=/ m/ dd”log<2|fj|2>/\ocm g
1! B() 7

Here, Jensen’s formula (Lemma 2.1.33) applied to the above expression of Ty (r, H)
yields

v(2),
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. 1/2
(2.3.35) Ts(r, H)=/”” log(2|fj(z)|2> Y (2)
zl|l=r j=0
n 1/2
_[| 1101(g<2:|fj(z)|2> v (2).
= j=0

We take a vector subspace E C HON,L)of dimE =1+ 1 2 2 and introduce a
homogeneous coordinate system [u, ..., u;] of P(E). The volume element §2 = a)é

defined by the Fubini-Study metric form wo =dd“log )" |u; |? satisfies

2=1.
IL]

The unitary transformation group of the homogeneous coordinate system ug, . .., u;
naturally acts on |L| by

(U.[wp]) eUC+ 1) x |L| — [Uw)] € L]

This action is transitive and leaves wg and £2 invariant. For an arbitrary D € P(E)
we take 0 = Y cju; so that (6) = D,y |c;|*> = 1. While the vector (c;) is not

124172
uniquely determined, % depends only on D. In this sense the following
77

holds:

2012
(2.3.36) / log MQ(D) =C) >0.
D=(0)eP(E) |2 cjujl

Here C(J) is a constant dependent only on /, and a computation yields (H. Weyl—
J. Weyl [38])

cry=~(1+L4. 4]
2 2 1)

Theorem 2.3.37 Let L — N be a line bundle and let E ¢ H(N, L) be a vector
subspace. Suppose that B(E) = (. Then for an arbitrary meromorphic mapping
f:C"— N,
Ty(r,L) =/ N(r, f*D)22(D) + O(1).
‘ DeP(E)

Proof We take bases oy, ..., 07 of E. By assumption / = 1 and a hermitian metric
in L may be assumed to satisfy that for a section o € E

o (x0)]?
(23.38) o] = o R
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It follows from (2.3.36) and Fubini’s theorem that

1
/DEP@)mf(r e /|z|—r/D—<a>ep<E) TR M

=C().

By the First Main Theorem 2.3.31

Ts(r,or) =/ N(r, f*D)2(D) =Ts(r,L) + O(1). 0
DeP(E)

The properties of the order function Ty (r, L) will be summarized in the next
section, but here we assume that

Tr(r,L) > 00 (r— 00)

(cf. Corollary 2.3.32). In this case we define Nevanlinna’s defect

— N(, f*D)
8(f,D)y=1— lim ————
r—00 Tf(V,L)
of D e |L|. This satisfies
0=8(f,D)=1.

With k € N we define the k-defect 6;(f, D) by

— N(r, f*D
50(f.D)=1— Tim /D)
r—00 Tf (r, L)
In particular, when f(C"™)N D =@, §(f, D)= 1. A divisor D with §(f, D) >0
is called Nevanlinna’s exceptional divisor. Theorem 2.3.37 implies the following.

Theorem 2.3.39 (Casorati—Weierstrass) Let the assumption be the same as in The-
orem 2.3.37 and moreover T¢(r,wr) — 00 (r — o0). Then almost all D € P(E)

with respect to the measure §2 satisfy §(f, D) =0, i.e., they are not Nevanlinna’s
exceptional divisors.

2.4 The First Main Theorem for Coherent Ideal Sheaves

2.4.1 Proximity Functions for Coherent Ideal Sheaves

In Theorems 2.3.37 and 2.3.39 the assumption B(E) = @ is essential. To deal with
the case of B(E) # ¢ it is necessary to define the proximity function m ¢ (r, D)
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not only for divisors but also for cycles of higher codimension. W. Stoll [70]
and Bott—Chern [65] dealt with such a case. The First Main Theorem for coher-
ent ideal sheaves was dealt with by Noguchi [03b] and Noguchi—Winkelmann—
Yamanoi [08].

Because of a technical reason we assume in what follows that N is a projective
algebraic variety, possibly singular with reduced structure (cf. Hartshorne [77]).
Let .# C On be a coherent ideal sheaf of the structure sheaf O. Then by defini-
tion there are a finite open covering N = | JU, of N and holomorphic functions
&ty - -+, &y, on U, such that their germs (SN TS %x generate the stalk .7, of .
at every point x € U,,.

Lemma 2.4.1 Let ¥ be a coherent ideal sheaf of O . Then there is a very ample
line bundle over N such that I'(N, S QC (L)) generates the stalk .9,Q0 (L) at
all x € N; that is, there are bases ¢; (1 < j <1) of I'(N, #®C (L)) such that the
germs ﬁx (1= j 1) generate 9,0 (L) as On x module at all x € N.

Proof In the algebraic sense of coherence the proof is immediate, since U, of the
aforementioned open covering {U,} are affine varieties and ¢, are regular rational
functions on U,.

If the coherence is taken in the analytic sense, we then use Theorem 2.3.26. For
an every fixed point x € N we denote by the same .#, the coherent sheaf over N
extending .7, to be a zero sheaf on N \ {x}. Then there is a natural morphism
Ky : & — J, whose kernel is denoted by % :

0—> X — S — 7 — 0.
We fix a positive line bundle Lo over N. Then we have
0— #4QO(L") > IRC(L') — F£.Q0(L") — 0.
There is a number vg € N such that for v > vy H' (N, #.®0(L")) = 0. Therefore,
H°(N, #®0(L")) - H°(N, #,®0(L")) — 0.
By the coherence of .#, HO(N, #®0C(L")) generates %y in a neighborhood U (x)

of x. Since N is compact we can cover N by a finite number of such U (x)’s. If v is
large enough, then LY is very ample. U

We extend the bases ¢p; (1 = j <1) of I'(N, #®0C(L)) in Lemma 2.4.1 to
bases ¢; (1= j <!') of I'(N, O(L)). Then in the sense of (2.3.22) we set

Y16 ()2

2.4.2) dey(x)= | ————,
Y1 ()2
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A different choice of L yields another d /j (x), for which there is a constant C > 0
satisfying

(2.4.3) Cldy(x)<d,(x) SCdys(x), "xeN.

Let Y = (SuppOn/.#, On/.%) be the subspace (subscheme), possibly non-
reduced of N defined by .# and set dy (x) = d_#(x). We call

¢7(x)=—logds(x), xeN, ¢y (x) = —logdy (x)

the proximity (approximation) potential of the coherent ideal sheaf .# (resp. the
subspace Y).

Let f: C™ — N be a meromorphic mapping such that f(C™) ¢ Supp Oy /7.
Then as in (2.3.25) and Lemma 2.3.27 we see that f*¢ » is written as a difference
of two plurisubharmonic functions &; and &,:

(24.4) ffor@)=¢go0 f(2) =&1(2) —&(z), zeC™.

The proximity function (or approximation function) for .# (or, Y) is defined by

(24.5) my(r, ) =myr,Y) =/” ” ¢.70 f(@)y(2).
zl|l=r
It follows from (2.4.4) that the integral is finite, and then from (2.4.3) that m ¢ (r, %)
is well-defined up to addition of O (1)-term.
Moreover, because of (2.4.4) the current dd[¢ # o f(z)] is of degree 0; i.e.,
its coefficients are Radon measures, and the differential form dd¢ » o f(z) has
coefficients that are locally integrable. We set

i -
(2.4.6) Wy =0r==2ddG5 0 f(2) = =03 f(2)
1
=2dd‘log ———, ze(C".
$ds0 /)

The order function of f with respect to . or Y is defined by
"dt
(2.4.7) T(rowg p)=Tr wyy)= — Wy 5.
1t JBw

We have to be careful to consider f*.#, or f*Y. Let I'(f) C C™ x N be the
graph of f,let p: I'(f) —> C™ and g : I'(f) — N be respectively the natural
projections. Then we have an analytic cycle (a locally finite formal sum of analytic
subsets with integral coefficients) p,(¢*Y), whose supports are of codimension one
or more in general. We denote by f*Y or f*.# the sum of only those components of
P+« (q*Y) whose supports are of codimension one. Then we have the current equation
by Theorem 2.2.11 and Lemma 2.2.12:

dec[f*d)j’f] = a)j,f - f*f,

(2.4.8) .
deL [f*¢yf] = a)y,f — f*Y.
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The counting function for f*Y or for f*.# is defined by

* * Tt m—1
N( f*I)=N(r f"Y)= | = o r2 L
1 " F*YNB()

We have also the truncated counting function Ni(r, f*.#) or Ni(r, f*Y) as in
(2.2.18). Then by Jensen’s formula (Corollary 2.1.37) and (2.4.8) we have the fol-
lowing.

Theorem 2.4.9 (The First Main Theorem) Let f : C™ — M and let .% be as above.
Then we have

T(rowg )=N(r, f*"2)+ms@r, ) —ms(1,.9).

Let . (i = 1, 2) be two coherent ideal sheaves of &y and let ¥; be the subspace
defined by .%;, which is possibly non-reduced. We write Y| D Y; if .| C .%.

Theorem 2.4.10 The proximity function for coherent ideal sheaves has the follow-
ing properties.

W IfrscC g,mpr, ZY<msp(r,#)+00);if Y =0n/ F CZ=0n/I,
mp(r,Y)<mys(r, Z)+ O(1).
(i) mf(r, /ARI2) = m ¢ (r, 1) +m ¢ (r, 52) + O(1). In particular, m ¢ (r, %) =
km g (r, )Y+ 0(),keN.
(iii) my(r, £1 + ) Smin{my(r, 1), ms(r, 52)} + O(1).

Remark 2.4.11 Let D be an effective Cartier divisor on N. Let .# be the ideal sheaf
determined by D, and let L(D) be the line bundle determined by D. Then we have

T(r,oz ;) =Tr(r, L(D)) + O(1),
myg(r, %) =mys(r, D)+ 0(1),
N(r, f*7)=N(r, f*D).
These follow from
|—log o] —ds|SC, xeN,

where C is a positive constant.

Let E c HO(N, L) be a vector subspace and let % be the coherent ideal sheaf
generated by {0 ;0 € E} at every x € N. Then .#, decomposes into the common
divisor part .#] and the remaining part .%,, that is,

Fo=I1Q5, codim Supp Oy / % =1, codimSupp Oy /% 2 2.

It may happen that there is no .#;-factor, that is, %) = .%,. Let D be the effective
divisor given by .#1, if exists. Note that D — D is an effective divisor. The next
theorem is due to R. Kobayashi in the case of D = .
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Theorem 2.4.12 Let the notation be as above. For a meromorphic mapping
f:C"™ — N with f(C™) ¢ B(E) we have the following.

/ m 1 (r. DY2(D) = m p(r. Dy) +m g (r. 52) + O(1),
DeP(E)
Ty (r, L):/DGP(E)N(V, f*D)2(D) +mys(r, D) +ms(r, #2) + O(1).

Proof Take 11 € HO(N, L(Dy)) so that (r;) = D;. Let oy, ..., o7 be the bases of E.
Every o is written as

0j =11®mn;, T2;€H(N,L(D—-Dy)), 0= =1,
For an arbitrary 0 = )_cjo; =11Q0(>_cjn2;),

Ol (x)H)1/2

—log|o ()| =—log||ri(x)| + ¢.s, +log el +b(x),
where b(x) is a C* function on N. Therefore
my (r, (o)) =mys(r,D1) +mys(r, 5)
Ol (f@)IH'?
1 o).
+/|z|=r ey O FOW

We integrate this with respect to £2([c;]), [c;] € PI(C); by (2.3.36)

/ my(r, D)2(D) =my(r, D1) +my(r, £2) + O(1).
DeP(E)

The claimed second formula follows from this and the First Main Theo-
rem 2.3.31. O

Example 2.4.13 In general, even if D1 =0, m ¢(r, #) is not bounded. Consider the
following holomorphic map:

f:zeC— [l,ez,ecz] = [wyp, wi, wa] EPz(C), c>1.

Let H — P?(C) be the hyperplane bundle, and let E ¢ H*(P?>(C), H) be the sub-
space generated by holomorphic sections wy, wy. Then B(E) = {[1, 0, 0]} and .,
is the maximal ideal of Op2 ) [1.0,0;- Its proximity potential is

1 Jwol® + [wi]? + |wa|?

=—1lo
L N R N
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Following the definition, we calculate m ¢ (r, H):

! L+ [e7]? 4 e 2
(r, Io) = — L4 16 + e
mf (r 2) 47-[ /|Z|=" |eZ|2 + |€CZ|2
! 1
= ot ey e )40
! 1
= E C059<O]0g 1 + ezrcosﬁ + eZCVCOsg do + 0(])
/2 |
= E ap log(l + e—2rcost + 6—20r0059>d9 +0(Q)
1 /2 2r cos
am _n/zk’g(‘ * W)dé +0(1)
1 /2
=1 2rcos6d6 4+ O(1)
4 —x)2
r
=—+0().
b

The order function Ty (r, H) is calculated by (2.3.35) as
1
Tp(r, H) = —f log(1 + [€]* + [e%|?)do + O(1)
4 |z|=r

log(l +e2rcos0 +e2crcos@)d0+ 0(1)

4 |z|l=r

1 .
log(l+62rC059+62LrC050)d9+0(1)

47 Jeos6>0
1 /2
= — 2crcosfdb + O(1)
4 -n/2
=< 1 o.
b4

2.4.2 The Case of m =1

In the preceding subsection the assumption for N to be projective algebraic was
used to deduce (2.4.4), which was used to apply Jensen’s formula, Corollary 2.1.37.
For Jensen’s formula it is sufficient to know that (2.4.4) holds locally in C™.

In the case of m = 1 we give here another simpler way to define the proximity
potential function ¢ » without the projective algebraic assumption for N such that
(2.4.4) holds in every disk A(r) (cf. Noguchi—Winkelmann—Yamanoi [08]).

Let N be a compact complex space in general, and let .# be a coherent ideal
sheaf of O . Take an open covering {U;} of N such that
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(i) there is a partition of unity {c;} subordinate to {U},
(i) there are finitely many sections o € I'(U;, #),k=1,2, ..., generating every
fiber ., over x € U;.

We set
) 172
(2.4.14) p.7(x) = C(Zc‘/(x)z |0k ()] ) .
j k

Here a positive constant C is chosen so that
prs(x)=1, xeN.

Using the compactness of N, one easily verifies that, up to addition by a bounded
function on N, log p_» is independent of the choices of the open covering, the par-
tition of unity, the local generators of the ideal sheaf .#, and the constant C.

Let f: C —> N be a holomorphic mapping, which we will call an entire
curve, such that f(C) ¢ SuppY. Then the function p 4 o f(z) is smooth over
C\ f~'(SuppY). For zg € f~!(Supp¥) there is an open neighborhood U of zg
and a positive integer v such that f*.7 = ((z — z9)"?), and then

logps o f(z) =wloglz — zol +Yo(z), zeU

for some C function v/o(z) defined on U. Setting A(r) N Supp f*Y = {zj}?:] , we
have a finite sum Z?:l vjlog|z — z;| with v; € N such that

h
Y@ =logpso f(2)— Y vjloglz -zl

j=1

is a C* function in a neighborhood of A(r). Ttis easy to see that a C* function in
a neighborhood of A(r) is written as a difference of two subharmonic functions in
a (possibly smaller) neighborhood of A(r). Therefore, at least in a neighborhood of
A(r), (2.4.4) holds for log p s o f(z).

We then define the proximity function of f for .# or for Y by

1 do
(2.4.15) my(r,Y)=mg(r, f)Z/ler logmﬁ

We define the counting function N (r, f*.#) and N;(r, f*.#) by using the divisor
> vjf{z;}. Moreover we define

(20).

(2.4.16) W,fzwy,fz—zddcw(z)z—éaéw(z)

1
—ddlog———— (zeU),
S0 f)
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which is well-defined on C as a C* (1,1)-form. The order function of f for . or
Y is defined by

"dt
2.4.17) T(r,a)y)f)zT(r,wy,f)zf —/ ®g f.
1t Jaw

If N is projective algebraic, the difference of the proximity potential functions
(cf. (2.4.2), (2.4.14))

log p.s (x) —logd s (x) (x €N)

is a bounded function.
Therefore we see the following.

Proposition 2.4.18 (i) The proximity function m ¢ (r, %) (=m ¢ (r, Y)) in the present
subsection differs from that defined in the previous subsection only by a bounded
function.

(ii) There is no change in the counting function for f*I (=f*Y).

(iii) Thus the difference of the order functions T(r,w. g ) (=T (r,wy,5)) is
bounded, too.

2.5 Order Functions

Let N be an n-dimensional compact complex space and let f : C" — N be a mero-
morphic mapping. We will define several order functions of f and will give their
comparison. Then we will give a characterization of rational f in terms of the order
function, when N is projective algebraic.

2.5.1 Metrics

Let

h=>"hdx;@dxy
Jj.k
be a hermitian metric on the holomorphic tangent space T(N) of N; that is, the
coefficients of h are C* functions, the quadratic form (X, Y)in X,Y € T(N),
(x € N) is hermitian and positive definite. Let 0 =}, %hj,;dxj A dXxi be the
associated (1, I)-form. If dw = 0, we call @ a Kihler form, 4 is called a Kéhler
metric, and N is called a Kéhler manifold if N is non-singular. As in (2.3.30), we
define the order function of f with respect to w by

2.5.1) Troy= [ -2 [ Foreml re1
5. 1= | ; :
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Lemma 2.5.2 Let w and o' be two hermitian metrics on N . Then there is a constant
C > 0 such that for an arbitrary meromorphic mapping f : C" — N

C'Tr(r,w) S Tp(r,0) £ CTy(r, o).

Proof Since w and o’ are both positive definite and N is compact, there is a constant
C > 0 such that

Cow—w 20, Co' —w>0.
Therefore
Cfrfona™ ' — ffo/ Aa™ 1 20,
o' A" V= Cffona™ T 2 0.
Thus the required inequalities follow. 0

We define the symbol S ¢ (r, w) with respect to T¢(r, ) as (1.2.4). That is,
(2.5.3) Sr(r,w) = 0(10g Ty (r, a))) +SlogrllEee)-

The above definition is independent of the choice of w by Lemma 2.5.2. When it is
not necessary to specify w, we simply write

Sp(r)=S8y(r, w).

Theorem 2.5.4 Let w be a hermitian metric form on N. A meromorphic mapping
f:C" — N is constant if and only if lim,_, Ty (r, w)/logr = 0. This condition is

equivalent to Ty (r, w) = Sy (r, ), provided that dw =0, or m = 1.

Proof The “only if” part is trivial. Assume that @ is a Kéhler form on N. Sup-
pose that dw = 0. Then f*w is a d-closed positive semi-defined (1, 1)-form. By
Poincaré’s Lemma for d and for d on C™ there exists a plurisubharmonic function ¢
on C™ such that ddp = f*w in the sense of currents. (For the present argument, the
existence on every ball B(R) (R > 0) is sufficient.) It follows from Lemma 2.1.31
that the function
1
n(t, ffo)= po T ” frfonam!

is monotone increasing in ¢ > 0; this monotonicity is trivial without the assump-
tion dw = 0 if m = 1. The constancy of f is equivalent to f*w A &”~! =0 and
so to n(t, f*w) = 0. Assume that f is not constant. Then there is a g > 0 with
n(ty, f*w) > 0. For r >ty

= [ ML [0S,
1

0
(continued)
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r
zn(to,f*a))/ ?:n(to,f*a))(logr—logto).
0]

Hence lim Ty(r,w)/logr 2 n(ty, f*w) > 0.

=r—o00

Assume that Ty (r, w) = Sy (r, ). Then for every § > 0 we have

—  logr 1
lim -.
r—0o0 Tf (r, a)) )

v

It follows that lim, , . Ty (r, w)/logr =0, and that f is constant. O

Let f be a meromorphic function on C™. Following after (1.1.10) and (1.1.12),
we set
m(r, f)=/” ” log" [ f(2)]y (@),
zl|l=r

(2.5.5)
T(r, f)=m(r, )+ N(r,(f)oc)-

We call T(r, f) Nevanlinna’s order function. This is convenient in calculating
estimates. There are co-prime holomorphic functions fo and f; on C™ (i.e.,
codim{ fo = f1 = 0} = 2) such that f = f/fo. Let [wp, w1] be the natural homoge-
neous coordinate system of P!(C), and identify f with a meromorphic mapping

fi2eC" > [fo. fi(2)] eP'(C).

By taking the Fubini—Study metric form @ on Pl(C), we compare T¢(r,w) and
T (r, f). The following is the Shimizu—Ahlfors theorem and the First Main Theo-
rem.

Theorem 2.5.6 For a meromorphic function f on C"
TG, f)—Tr(r,w)=0(1).

In particular, for any a € C

T<r, ! ):T(r, H+o).
f—a

Proof Noting that for every s = 0
0 <log(l +s) —log"s <log2,

we get

1
T(r. f)=5/| N 1og(1+ 28

1
= 5/| o Joe(oF +1AF)y + 0.

2 1
Jro3 [ teeiniy+om
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By making use of Lemma 2.1.33 (Jensen’s formula), we have

T(r, f)=/1ri frona™ !+ 0(1)

t2m—l B(l)
=T¢(r,0) + O(1).

For the latter half, we notice that Ty (r_q)(r, @) = T(f—a)(r, ®). It follows from
what was shown that

T(r, ! ):T(r,f—a)—i—O(l)
f—a

=m(r, f —a)+ N(r. (f —a)oo) + O(1)

=m(r, )+ N(r. (o) + O (1)

=T H+00). O
Theorem 2.5.7 Let f: C" — N be a meromorphic mapping and let L — N be
a hermitian line bundle. Assume that L 2 0 or that N is projective algebraic. Let

00,01 € HY(N, L) be linearly independent sections such that f(C™) ¢ {og = 0}.
Then the meromorphic function g(z) = o1 o f(2)/og o f(2) satisfies

T(r,g) STy¢(r,L)+ O(1).

Proof Let || - || be a hermitian metric in L. Then
o o
10g+ 91 _ + ol
llooll

1
<log" —— +log™ [lo1].
looll

Since ||o1]| is bounded on N, there is a constant C such that

o] 1
oo =12 four + €

log*t

00
By definition (g)oo < f*(09). Thus
N(r, (8)e0) = N(r, £*(00)).

It follows that
T(r,g) Smy(r, (00)) + N(r, f*(c0)) + C
=T(r, L)+ O(1). O
Corollary 2.5.8 (Noguchi [76b]) If o9 and o1 have no common zero,

T(r,g)=Tr(r,L)+ O(1).
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Proof By the assumption there is a constant C > 0 such that

1
logt |2 —1ogt —|<C
00 llooll
Furthermore, N (r, (g)s0) = N (r, f*(00)), so that the claim holds. O

If dim N = 1, then the assumption of Corollary 2.5.8 is always satisfied. Let
N =PY(C) and L — P!(C) be the hyperplane bundle. Then the above corollary
is the Shimizu—Ahlfors Theorem 1.1.19. For the composition of a rational function
with f we have

Corollary 2.5.9 Let Q o f be the composition of a meromorphic function f(z)

on C™ with a rational function Q in one variable. Assume that f and Q are non-
constant. Denoting the degree of Q by d, we have

T(r,Qo f)=dT(r, f)+ O(D).

Proof There are sections oy, 01 € H OPl(0), Ld) without common zero such that
Q = o01/0¢. Therefore

T(r,Qo f)=dT¢(r,L)+ O(1)=dT(r, f)+ O(1). O

2.5.2 Cartan’s Order Function

Here we set N = P"(C). Let w be the Fubini—Study metric form on P*(C). Let w =

[wo, ..., w,] be a homogeneous coordinate system of P"(C). Take a meromorphic
mapping f : C"* — P"(C). Then there are holomorphic functions fy, ..., f, on C"
such that codim{ fo =--- = f, =0} = 2 and

f@=[fo@,.... @]

Let f(z) =[go(2), ..., g (z)] be another such representation. Then there is a holo-
morphic function 4(z) on C" without zero such that

(2.5.10) fi@=h()gj), 0<j=n, zeC™

H. Cartan [33] defined the order function T¢(r) of f : C" — P"(C) by

’

(2.5.11) Tr(r) = /| . logorgn,,-a; | fi@]y () — 1°go§,-a§n | f7(0)

which is called Cartan’s order function; in fact, he dealt with the case of m = 1. It
follows from (2.5.10) that T'¢(r) is independent of the representation of f.
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Theorem 2.5.12 Let the notation be as above. Then we have

12
Tf(r)=/| - 10g< Z \fj(z)|2> y(z) +0()

0= j<n
=Tr(r,w) + O(1).

This is immediate by (2.3.35).

A linear form F; = chkwk in the homogeneous coordinates [wo, ..., wy,] is
identified with a holomorphic section of the hyperplane bundle on P"(C). For
two linearly independent linear forms F; and F> we consider the compositions

Fi(f(2) =Y cjkfi(z) with f(z) = [fo(2),.... fu(@]. If Fi(f(2)#0, g(z) =
F>(f(2))/F1(f(2)) is defined independently of the representation of f. The next
theorem is due to Toda [70a], Lemma 1 in the case of m = 1 and the case of m = 2
is similarly proved.

Theorem 2.5.13 Let f(z) =[fo0(2),..., fu(2)] and g(z) be as above. The follow-
ing hold:

(i) T(r,g) =Tr(r,w)+ O(D).
(i) If fi #0,

Ly fj) ; < fj)
- T\r, — O()STy(r,w) < T\r, = o).
n;) (r 7)roms f(rw)_jgo r)+om

Proof (i) is a special case of Theorem 2.5.7. The first inequality in (ii) is clear by (i).
The latter is deduced as follows. We may assume fp % 0 without loss of generality.
Then

|fj(Z)|} )
T (r, = I 1, . . . o(1
£ (r, w) /”Z”:r °g<151f‘i‘n{ e |fo@| )y @+ o)

| fi(2)| }
= logt J
[, e s {5 o

+ [ relpolyo+om

. S
< +
- Z/m:r log fi

JI
Jj=1 0

Y + N(r. (fo)o) + 0(1)
ST
lzll=r

o))
o 0/

= T(r, &) + 0(1).
s fo

fi

fo
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2.5.3 A Family of Rational Functions

First note that w;/wyg, 0 < j(#k) £ n, form a transcendental base of the field

extension of the rational function field of P*(C) over C. It follows from Theo-

rem 2.5.13 (ii) that up to a positive constant multiple, 7r (v, w) and Z'J’.:O T, fi/fe)
Jj#k

are equivalent. We generalize this to a general projective algebraic manifold.

Lemma 2.5.14 For an arbitrary point a € C

2 .
— 10g|e’9 —ald® =log™ |al.
2w 0

The proof is left to the reader.

Lemma 2.5.15 Let g(z) and A1(2), ..., A;(2) be meromorphic functions on C"
satisfying
1 -1
(@) +A1@)(e@) +--+Ai(2) =0.

Then
l

T, g = ZT(r, Aj)+log(l +1).
j=I

Proof Introducing a variable ¢, we set

Bz,t)=t'+ A1 @'+ 4+ A(2).
For z € C" \ U/Supp(Aj)O<> we let #1(z) = g(2),12(2),...,t(z) be roots of
B(z,1) =0. Then

l

Bz.t)=[](t - ().

j=1

Therefore we have

1 2 0 ! 1 27 i0
i _ W _ 4.
o [l oo =37 5 [ togle” ~ 1ol

(by Lemma 2.5.14)

l

=log" [g()| + > _log* |t;(2)]
=2

> log" [g(2)|.
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On the other hand,

1 2 0
E/o log |B(z,€'")|d6

1

2
= logle™ +A1@e" TV 4+ A()]ab
s

I
< ZlogJr |Aj(@)|+1og + D).
=1

It follows that

1
(2.5.16) m(r.g) <Y m(r,Aj) +log(l + 1).
j=1

By making use of co-prime holomorphic functions go, g1 on C”, we repre-
sent g = g1/g0. Let (Ag) be the minimum common divisor of the polar divisors
of Ay, ..., A;, where Ag is a holomorphic function on C”. Then

Ao(gD) = —go@{A0A1(gn)' ™"+ + AoAi(g0) '}
Therefore (gg) < (Ag) as divisors, and
l
(2.5.17) N(r, (8)oo) S N(r, (Ag)o) < ZN L (Aj)oo)-
j=1
It follows from (2.5.16) and (2.5.17) that

l
T(r,g) gz m(r, Aj) + N(r, (Aj)oc) } +log( + 1)

l
D T Aj) +log(l +1).
j=1 O

In general, let N be an n-dimensional complex projective algebraic variety and
let {¢ ]} | be a finite subset of the rational function field C(N) of N. Assume that

a meromorphlc mapping f : C" — N satisfies f(C") ¢ U]:l Supp(@j)oc. We
define the order function of f with respect to {¢;} by

(. 16,}) ZT(r i o f).

j=1
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In what follows, it is the essential case when {¢; }?Zl contains a transcendental base
of C(N) over C.

Let N < P/(C) be an embedding and let L be the restriction of the hyperplane
bundle over P/(C) to N.

Theorem 2.5.18 (i) Assume that {¢; }§'=1 contains a transcendental base of C(N)
over C and that f is algebraically non-degenerate. Then there is a constant C > 0
independent of f such that

C™'Tr(r, L) + O(1) £ Ty (r, {¢;}) < CTy(r, L) + O(1).

@ii) Let f : C™ — N be an algebraically non-degenerate meromorphic mapping
and let ® : N — M be a birational mapping onto another complex projective al-
gebraic variety M. Let H — M be a positive line bundle. Then there is a constant
Ci=Ci(L, H) > 0 such that

Cr'Ty(r, L)+ 0(1) £ Toos(r, H) S C7' Ty (r, L) 4+ O(1).

Proof (i) Let [wy, ..., w;] be a homogeneous coordinate system of P/(C) and let
f@) =1fo,..., fi] be a reduced representation of f as a meromorphic mapping
into P/(C). We may assume f = 0 without loss of generality. The restrictions v
of wy/wop to N give a transcendental base of C(V) and then ¢; are represented as
rational functions in v,

¢;j=Q;Wi,....,¥).
Substituting f(z), we have
$jof@=0;W10f@).... Y10 f(2)).

Therefore there is a constant C > 0 determined by Q, 1 < j < n, such that

1
T(r,Qi(Wio /) SCY T(ryxof)+0()

k=1
SICTy(r, L)+ 0O(1).
‘We deduce that
T(r, {¢j}) S InCTy(r, L) + O(1).

Conversely, the rational functions i are algebraic over the field generated by
{¢;} over C. Thus there are algebraic relations

W% + A @) W%+ 4+ Ay (9) =0, 1Zk=1

Substituting f, we obtain algebraic relations of meromorphic functions on C™:

Wk o )% + A (@) o )W o H% 4o 4 Agg (o £)=0, 1Zk=I
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Lemma 2.5.15 implies that

di
T(r, Yo f)S Y T (r, Aun(@) o f)) +log(di + 1)

h=1

SCY T g0 f)+ 0.

j=1

Here C’ > 0 is a constant depending only on {y} and {¢;}. It follows from Theo-
rem 2.5.13 that

l n
Tr(r L)Y T(ryro f)SIC'Y T(r.gjo f)+ 0.

k=1 j=l

(ii) Since @* : C(M) — C(N) is a field isomorphism over C, the claim is clear
by (1). O

In general let N be a compact complex space and let w be a hermitian metric
form on it. For a meromorphic mapping f : C" — N we define the order ps by

— log Ts(r,
(2.5.19) py = Tim 22T @)
r—00 1ogr

By Lemma 2.5.2 p is independent of the choice of w. If N is projective algebraic
and f is algebraically non-degenerate, T¢(r, ) in (2.5.19) may be replaced with

Ty(r,{¢;}) by Theorem 2.5.18 to define the same p.
The next three propositions are easily deduced from Theorem 2.5.18.

Proposition 2.5.20 Let n: V — W be a rational mapping between quasi-
projective algebraic varieties V and W. Then for an algebraically non-degenerate
meromorphic mapping f : C" — V

Tyor(r) = O(T¢(r)).
Moreover, if i is generically finite, then
Tr(r) = O(T,,Of (r)).

Let V be a quasi-projective algebraic variety, and let f : C" — V be a mero-
morphic mapping. Taking a projective compactification V O V, and regarding
f:C" — V, we may define the order py of f, which is independent of the choice
of the compactification V.

Corollary 2.5.21 The above order py of f is independent of the choice of the com-
pactification V of V.



2.5 Order Functions 83

This is immediate from Proposition 2.5.20.

Proposition 2.5.22 Let f : C" — N be a meromorphic mapping into a complex
projective variety N and let H be a line bundle on N. Assume that H is big, and
that f is algebraically non-degenerate. Then

T¢(r,L)=O(Tf(r, H))

for every line bundle L on M.

If f:C" — N is algebraically degenerate, we may consider the Zariski clo-

sure X of f(C) and a desingularization 7 : X — X. Then f lifts to a map to X and

T*(H|x) is big on X for every ample line bundle H on N. As a consequence we
obtain

Proposition 2.5.23 Let f : C" — N be a meromorphic mapping into a complex
projective variety N. Let h(r) be a non-negative valued function in r > 1. Then
h(r) =Sy (r, H) holds for every ample line bundle if and only if it holds for at least
one ample line bundle.

Similarly, the statement “h(r) < eTy(r, H)|le, Ve > 07, respectively “h(r) =
O(T¢(r, H))” holds for every ample line bundle H if and only if it holds for at
least one ample line bundle.

If f is algebraically non-degenerate, the same statements as above hold for big
line bundles.

2.5.4 Characterization of Rationality

Let g #£ 0 be a holomorphic function on C™. Then log|g(z)| is a plurisub-
harmonic function and hence a subharmonic function on C” = R?" (Theo-
rem 2.1.26 (i)). Taking the Poisson integral over the sphere {||z|| = R} of C™ we
have that for ||z|| < R

RZ_ 2 R2m—2
togle @] < [ togleo)| LIy
lzl=R ¢ —zll

(R* — ||z R?™2
g — z||2m

é/ log™ | ()| Y (0)
Igll=R

(R* — ||z|HR?m~2
(R — ||zl

A

/ log™ |g(O) |y (©).
[l¢lI=R

Therefore we obtain
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Lemma 2.5.24° Let g be a holomorphic function on C™. Then for 0 <r < R,

 1=/R)?

T, g) <log’ max |g(z)| < ———L ~—
(r, ) <log nzn=r|g()‘*(1—r/R)2m

T(R, Q).

Lemma 2.5.25 A holomorphic function g on C" is polynomial if and only if
T(r,g)=0(ogr).

Proof 1If g(z) is a polynomial function, an easy computation yields that 7'(r, g) =
O(logr). Conversely we assume that 7'(r, g) < dlogr + C. Putting R=1tr,7 > 1,
we get by Lemma 2.5.24

('L' + 1)T2m—2

lo + max Z S e ——
£ ||z||=r|g( = (r — 2t

(dlogr +dlogt + C).

Setd(t) = Gtlen2 and C(t) =d(r)(dlogt 4+ C). We expand g(z) to a Taylor

o =t
series with multi-indices «,

00
g(Z) = Z aaza-
)

From this we obtain

1 \™ 2 2 ' ' )
(Z) / / ’g(elg'zh...,elemzm” doy ---db,
0 0

o0
2,2 2 2
= 3 laa Izt 222 < max [¢(2)]
P leli=r

é r2dd(r) .eZd(r)C(r).

Hence erl>dd(r) |aa|2|zl |20[l e |Zm|2a’” =0 and so
dd(t)
gR)= ) auz”.
la|=0
Since dd(t) — d as T — 00, g(z) is a polynomial of degree at most d. (|

Theorem 2.5.26 (Stoll [64a], [64b]) Let E be an effective divisor on C". Then E
is a divisor determined by a polynomial of degree at most d if and only if

N(r, E) < dlogr + O(1).

5 An estimate of this type in several complex variables is found in Kneser [38] without an explicit
formula; cf. Noguchi [75].
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This is shown by the Weierstrass—Stoll canonical product which generalizes
Weierstrass’ canonical product. Cf. Noguchi—Ochiai [90] (Ochiai-Noguchi [84])
for a proof simplified by Lelong. Here we omit the proof.

Theorem 2.5.27 A meromorphic function g(z) on C™ is a rational function if and
only if

T(r,g)=0(ogr).
Proof If g is a rational function, we write g(z) = % with co-prime polynomials
P(2), O(2). By the Shimizu—Ahlfors Theorem 1.1.19 and Theorem 2.5.12 we have

TG, g)=/”Z”:r10g\/|P(z)|2+}Q(z)lzy+0(l)
= O(logr).
For the converse, we first note that
N(r. (8)es) £ T(r, §) = Ologr).

By Stoll’s Theorem 2.5.26 there is a polynomial g such that (gg) = (g)co- If wWe set
g1 = 880, g1 1s a holomorphic function and satisfies

T(r,g1) =T(r,g)+T(r,go)=0(ogr).

By Lemma 2.5.25 g; is a polynomial. Thus g is a rational function. g

Theorem 2.5.28 Let N be a projective algebraic variety and let w be a hermitian
metric form on it. A meromorphic mapping f : C" — N is a rational mapping if
and only if

Tr(r,w) = 0O(logr).

Proof Taking an embedding N < P/(C), we may assume N = P!(C) with w the
Fubini-Study metric form. The “only if” part is immediate from Theorems 2.5.27
and 2.5.13.

Assume that T¢(r, w) = O(logr). Let w = [wy, ..., w;] be a homogeneous co-
ordinate system of P!/(C) such that f(C™) ¢ {wo = 0}. It follows from Theo-
rem 2.5.13 that

x Wj
T(r, ff*— )= 0(ogr).
wo
Therefore f*(w;/wo) are rational, and hence f is rational. O

Remark By Lemma 1.1.22 we see that T¢(r,w) = O(logr) if and only if

. Ty(r,w)
h—mf—> o0 logr
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2.6 Nevanlinna’s Inequality

We generalize Theorem 1.1.18 to meromorphic functions on C™ and moreover to
the case of meromorphic mappings. This plays an essential role in the proof of the
lemma on logarithmic derivatives in the next chapter.

Let fi, ..., fu be entire functions on C™ which are linearly independent over C.
For a vector w = (w;) € C" we set

v (2).

1(w)=/| Ym0
zll= =1

Lemma 2.6.1 The function I (w) is bounded on {||w| = 1}.

Proof® Set M = sup{| >_, w; fi(@); [w] = 1, |zl = 1} (<00). Setting I" =
{w e C"; |lw|| = 1}, we see that I(w) < logM on I'. Now we show the bound-
edness of I (w) from below. The function log | Z;l'=1 w;fi(@)]ingeC"= R is
subharmonic by Theorem 2.1.26 (i). By taking the Poisson integral we have

log

. 1— )2
Yowfi@] )y @, el <.
j=1

< lo
—/”z”:l< e lz =l

For an arbitrary a = (a;) € I" we take ¢y € B(1)(C C™) so that

Y owifi©)
j=1

Zajfj(é“o)#o-

j=1

There is a neighborhood W of a in I" such that for every w € W

1
> — > 0.
-2

> w;ifi (o)

j=1

n
> aj fi(o)
j=1
Thus forw e W

1125 aj fi (%)l I wi Fi O 1 — ol
log L 2i=14i G0l / (1 ; )
" M ~ Jhai=t o8 M TEENED Y (2)

2

1— [lgoll? / 12w fi @
< — log =/=> /-7
= (L + 150> Jyz=1 ° M 2
< 1—lzol?

o (I (w) —logM).

6 A discussion on the proof of this lemma with Professors Phong and Demailly at Hayama Sympo-
sium on Complex Analysis in Several Variables 2002 was very helpful.
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Hence I (w) (w € W) is bounded from below. Since I" is compact, I (w) is bounded
from below on I". O

Remark 2.6.2 1In fact, it is shown that 7 (w) is continuous in w € C" \ {0}. Since the
convergence theorem of Lebesgue integrals cannot be used, some more contrivance
is necessitated to the proof.

Theorem 2.6.3 (Nevanlinna’s inequality) Let f be a non-constant meromorphic
Sfunction on C™. Then there is a constant C such that for every a € C U {00}

N(r,(f —a)) <T(r, /)+C, rzl.

Proof We write f = f»/f1 with co-prime entire functions f1, f>. We regard f to be
a meromorphic mapping f :z € C" — [ f1(z), 2(2)] € PL(C). Leta = [a2, —aj] €
P!(C) = C U {00}. We may assume that |a;|> + |a2|> = 1. By Example 2.3.34 we
have

(f —a)o= (a1 fi+arfr)o= f"a,

_/ VIARPEP+1AG)1P
my(r,a) = log
lzll=r la1 f1(z) + a2 f2(2)|

y(2) 20.

Let w be the Fubini—Study metric form on P!(C). The First Main Theorem 2.3.31
implies that

N(r, f*a) S Tp(r,w) +mys(1,a),

VAP + /@2
1,a) = 1
(@) \/‘|z|_l o8 lai f1(z) + a2 f2(2)] v

(2)

=/| l_llog\/|f1(z)]2+!fz(z)\zy(z)

- /” - log|ai f1(z) + a2 f2(2) |y (2).

By Lemma 2.6.1 there is a constant C such that
me(l,a) <C, YaePY(C).

By Theorem 2.5.6 T¢(r,w) = T(r, f) + O(1). Thus the required formula is ob-
tained. O

The above Nevanlinna inequality will suffice for the application in the next chap-
ter, but we extend it to a meromorphic mapping f : C" — N into a projective alge-
braic variety N. Let L — N be a hermitian line bundle and take an arbitrary linear
subspace E C HO(N, L).
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Theorem 2.6.4 Let the notation be as above. Assume that f(C™) ¢ Supp(o) for
every o € E\ {0}. Then there is a constant C such that for all o € E \ {0}

N(r, f*(0)) <Tf(r,L)+C, rzl.

Proof Let | - || be the hermitian metric in L. The pull-back f*L is a line bundle
on C™. On C™ every line bundle is globally trivial. We fix an isomorphism, f*L =
C™ x C. Take bases o1, ..., 0, of E. Because of the isomorphism f*L = C™ x C,
there are entire functions f;(z) = (f*0;)(2), 1 < j < n,on C" and a C* positive-
valued function %(z) such that

ffor =ddlogh(z),

o SIGEP

A
A

~.
IN
S

Write 0 = ) w;o; with |[(w;)|| = 1. Then by the First Main Theorem 2.3.31 we
have

N(r, f5(0)) =Tr(r, L) + m¢(1, (0)) —my(r, (o)),

Vh(z)
1, (0)) = log —Y"*2 (7).
my (1. (@) fnz||=1 ogIZw/'fj(ZNY(Z)

Notice that m ¢(r, (¢)) 2 0. By the choice, the functions f;, 1 < j < n, are lin-
early independent over C. By Lemma 2.6.1 m (1, (0)) is bounded in 0 = > w;oj,
[(w;)|| = 1. Therefore there is a constant C such that

N(r,f*(a))<Tf(r,L)+C, r=1. O

2.7 Ramified Covers over C™

Let X be an irreducible normal complex space. We call X X C™ a finite ramified
cover over C™ if 7 is a proper finite surjective holomorphic mapping. For example,
if X is a normal affine algebraic variety, then there exists suchax : X — C” due to
the “Noether Normalization Lemma”.

In this section we summarize known facts on meromorphic mappings f : X — N
from such X into a compact complex space N.

The case where m = 1 and N = P!(C) is classical and was studied by Rémoun-
dos [27], A. Valiron [29], [31], H.L. Selberg [30], [34], and Ullrich [32], etc. It is an
essential case when X > C is not algebraic but transcendental.

Let p be the covering number of 7 : X — C™. We denote by S(X) the set of
all singular points of X. Since X is assumed to be normal, codim S(X) = 2. Let
R(X) =X\ S(X) be the set of regular (non-singular) points of X. The zero divisor
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of detdm|g(x) naturally extends to a divisor on X by Theorem 2.2.5. It is called the
ramification divisor of w : X — C™ and is denoted by &'. Set

X(r):{xeX;

T <r}, IX(r)={xeX;|

(x) || =r }
Let w be a hermitian metric form on N. We define the order function T7 (7, )
of f with respect to w by

t21’}’l71

1 [ dt
(2.7.1) Ty (r, a)):—/ —/ Fronrta™ L
’ P J1 X (1)

For a line bundle L over N we define T (r, L) as done previously.
Let E be a Weil divisor on X and let E =), k, E; be the irreducible decompo-
sition. As in (2.2.18) the counting functions are similarly defined:

1 m—1
ni(t,E)y=— o ,
P JX ()N, min{k,k; }E)
" ni(t, E)
2.7.2) Ni(r,E) = | T dt,

n(t,E)=nx(t, E), N(r,E) = Ny (r, E).

Asin (2.3.30) we define a proximity function for an effective Cartier divisor D on N
by

T
P lloo fl
For the proofs of the following results, cf. Noguchi [76a], [76b].

1 1
(2.7.3) my(r, D)= —/ log *y.
X ()

Theorem 2.7.4 (The First Main Theorem) Assume that f(X) ¢ Supp D. Then
T¢(r,L(D)) = N(r, f*D) +my(r, D) + O(1).

We say that a meromorphic mapping f : X — N separates the fiber of w if there
is a point z € C™ satisfying that 7' (z) N (8 U I(f)) =¥ and f takes distinct
values on 7 ().

Lemma 2.7.5 (Noguchi [76a]) For every meromorphic mapping f : X — N there
exist a finite ramified cover w’ : X' — C™, a proper finite holomorphic mapping
n: X — X' and a meromorphic mapping f': X' — N satisfying the following:

() m=n'on, f=fon.
(ii) f' separates the fiber of ’.
(iii) Ty (r,w) =Tyr(r,w), N(r, f*D)=N(r, f*D), m g (r, D) =mg(r, D).

Lemma 2.7.6 (Characterization of algebraicity I; Noguchi [76a]) The complex
space X is affine algebraic and w : X — C™ is rational if and only if

N(r, B) = O(logr).
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In this case we say that X Somis algebraic.

Theorem 2.7.7 (Characterization of algebraicity II; Noguchi [76a]) Let L be the

hyperplane bundle on P"(C). If a meromorphic mapping f : X — P"(C) separates

the fiber of m, then the following holds:

i) Nr,B)SQ2p—2)Ts(r,L)+ O(1).

(i) It is necessary and sufficient for X to be algebraic and for f : X — P*(C) to
be rational that

T(r, L) = O(logr).

H.L. Selberg [30] proved the above (i) in the case of m =n = 1.
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