
Chapter 2
The First Main Theorem

The value distribution theory with domains in several complex variables was pi-
oneered by Wilhelm Stoll [53a], [53b], [54]. While his presentation may not be
familiar or easy to us in modern terminologies, the works which he has contributed,
beginning with the integrations over singular analytic subvarieties and the extension
of Stokes’ theorem, were fundamental. In the 1960s there were many works on the
First Main Theorem; these were summarized by W. Stoll (see Stoll [70], in particular
its preface and the listed references). The relation to characteristic classes was
made explicit first by Bott–Chern [65].1 In the present chapter we follow Carlson–
Griffiths [72], Griffiths–King [73], Noguchi [03b] and Noguchi–Winkelmann–
Yamanoi [08] which may be most comprehensive.

2.1 Plurisubharmonic Functions

2.1.1 One Variable

We first investigate subharmonic functions. Let U be an open subset of C. Set

d(a; ∂U)= inf
{|a −w|;w ∈ ∂U}

.

Definition 2.1.1 A function ϕ : U → [−∞,∞) is said to be subharmonic if ϕ is
upper semicontinuous and has the submean property; that is,

(i) (upper semicontinuity) limz→aϕ(z)� ϕ(a), ∀a ∈U :
(ii) (submean property) On an arbitrary disk Δ(a; r)�U

ϕ(a)� 1

2π

∫ 2π

0
ϕ
(
a + reiθ

)
dθ.

1Readers may find a number of interesting papers on the theory of holomorphic mappings in Chern,
Selected Papers (Chern [78]).
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Remark 2.1.2 (i) If ϕ :U→[−∞,∞) is upper semicontinuous, ϕ is bounded from
above on every compact subset K �U .

(ii) The upper semicontinuity of ϕ :U→[−∞,∞) is equivalent to that for every
c ∈R the sublevel set {z ∈U ;ϕ(z) < c} is open.

(iii) The function ϕ : U → [−∞,∞) is upper semicontinuous if and only if
there is a monotone decreasing sequence of continuous functions ψν : U → R,
ν = 1,2, . . . , such that limν→∞ψν(z)= ϕ(z).

(iv) It follows from the above Definition 2.1.1 (ii) that

ϕ(a)� 1

πr2

∫ r

0
tdt

∫ 2π

0
ϕ
(
a + teiθ

)
dθ(2.1.3)

= 1

r2

∫

|ζ |<r
ϕ(a + ζ )

i

2π
dζ ∧ dζ̄ <∞.

Theorem 2.1.4 (i) Let ϕ be a subharmonic function on U . Let a ∈ U be a point
such that ϕ(a) > −∞. Then ϕ is locally integrable on the connected component
of U containing a.

(ii) Let ϕ be a subharmonic function on U . If ϕ takes the maximum value at
a ∈U , then ϕ is constant on the connected component of U containing a.

(iii) Assume that ϕ ∈ C2(U). Then ϕ is subharmonic if and only if ddcϕ =
(i/2π)∂∂̄ϕ � 0.

(iv) Let ϕ :U→[−∞,∞) be subharmonic, and let λ be a monotone increasing
convex function defined on R. Then λ ◦ ϕ is subharmonic. Here we put λ(−∞) =
limt→−∞ λ(t).

(v) Let ϕν : U → [−∞,∞), ν = 1,2, . . . , be a monotone decreasing sequence
of subharmonic functions. Then the limit function ϕ(z)= limν→∞ ϕν(z) is subhar-
monic, too.

(vi) Let ϕν :U→[−∞,∞), 1 � ν � l, be finitely many subharmonic functions.
Then ϕ(z)=max1�ν�l ϕν(z) is subharmonic.

Proof (i) Without loss of generality we may assume that U is connected. Notice that
if ϕ(a) > −∞, then ϕ is integrable on every relatively compact disk Δ(a; r) � U

by (2.1.3). Suppose that there is a point a ∈ U with ϕ(a) >−∞. Denote by U0 the
set of all points z ∈ U with a neighborhood W such that the restriction ϕ|W of ϕ to
W is integrable. Clearly, U0 is non-empty and open.

We show that U0 is closed in U . Let a ∈U be an accumulation point of U0. Take
a sequence of points zν ∈ U0, ν = 1,2, . . . , convergent to a. One may assume that
ϕ(zν) >−∞, ν = 1,2, . . . . There are some r > 0 and a sufficiently large ν such that
a ∈Δ(zν; r)�U . By the remark at the beginning, ϕ|Δ(zν ;r) is integrable. Therefore
a ∈U0. Since U is connected, U0 =U .

(ii) Assume that U is connected and ϕ(a) is the maximum. It follows from (2.1.3)
that for every Δ(a; r)�U

(2.1.5)
∫

Δ(a;r)
{
ϕ(ζ )− ϕ(a)

} i

2π
dζ ∧ dζ̄ = 0.
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By assumption ϕ(ζ ) − ϕ(a) � 0. Suppose that ϕ(b) − ϕ(a) = δ0 < 0 at a point
b ∈ Δ(a; r). The upper semicontinuity of ϕ implies that ϕ(ζ ) − ϕ(a) <

δ0
2 in a

neighborhood of b. Then (2.1.5) does not hold. Hence ϕ|Δ(a;r) ≡ ϕ(a). Denote by
U1 the set of all points z ∈ U with a neighborhood W such that ϕ|W ≡ ϕ(a). By a
similar argument to (i) U1 is open and closed in U . Therefore U1 =U .

(iii) About every point a ∈U we expand ϕ to a Taylor series up to degree two:

ϕ
(
a + εeiθ

)= ϕ(a)+ ∂ϕ

∂z
(a)εeiθ + ∂ϕ

∂z̄
(a)εe−iθ

+ ε2
(
∂2ϕ

∂z2
(a)e2iθ + 2

∂2ϕ

∂z∂z̄
(a)+ ∂2ϕ

∂z2
(a)e−2iθ

)(
1+ o(1)

)
.

Taking the integration in θ , we have

1

2π

∫ 2π

0
ϕ
(
a + εeiθ

)
dθ = ϕ(a)+ ε2(1+ o(1)

)
2
∂2ϕ

∂z∂z̄
(a).

The submean property implies that ∂2ϕ
∂z∂z̄

(a)� 0.

Conversely, assume that ∂2ϕ
∂z∂z̄

� 0. It follows from Jensen’s formula, Lemma 1.1.5
that about every point a ∈U

(2.1.6)
1

2π

∫

|ζ |=s
ϕ(a + ζ )dθ � 1

2π

∫

|ζ |=r
ϕ(a + ζ )dθ, 0 < s < r < d (a; ∂U).

Let s↘ 0. Then

ϕ(a)� 1

2π

∫

|ζ |=r
ϕ(a + ζ )dθ.

(iv) Note that λ is continuous. The remaining part is immediate, for λ is mono-
tone increasing and convex.

(v) The upper semicontinuity of ϕ follows immediately from the assumption.
Since upper semicontinuous functions are bounded from above on every relatively
compact subset, ϕν are uniformly bounded from above on every relatively compact
subset. Take an arbitrary disk Δ(a; r)�U . By Fatou’s lemma in integration theory
we have

ϕ(a)= lim
ν→∞ϕν(a)� lim

ν→∞
1

2π

∫ 2π

0
ϕν

(
a + reiθ

)
dθ

� 1

2π

∫ 2π

0
lim
ν→∞

ϕν
(
a + reiθ

)
dθ = 1

2π

∫ 2π

0
ϕ
(
a + reiθ

)
dθ.

(vi) Both the upper-semicontinuity and the submean property are immediate by
definition. �

Example 2.1.7 Let f : U → C be a holomorphic function. Then log |f | and |f |c
with c > 0 are subharmonic. Because a direct computation of partial derivatives of
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log(|f |2 + C) with C > 0 implies the subharmonicity log(|f |2 + C). Setting C =
1/ν, ν = 1,2, . . . , and taking the limit, we see by Theorem 2.1.4 (v) that log |f |2 =
2 log |f | is subharmonic, and so is log |f |. Since the exponential function ect , t ∈R
with c > 0 is monotone increasing and convex, Theorem 2.1.4 (iv) implies that |f |c
is subharmonic.

Let χ ∈ C∞0 (C) be a function such that Suppχ ⊂Δ(1),χ(z)= χ(|z|)� 0 and

∫
χ(z)

i

2
dz∧ dz̄= 1.

Set χε(z)= χ(ε−1z)ε−2, ε > 0. Then
∫

χε(z)
i

2
dz∧ dz̄= 1.

Consider a subharmonic function ϕ on U such that ϕ �≡ −∞ on every connected
component of U . Put

Uε =
{
z ∈U ;d(z; ∂U) > ε

}
.

The smoothing ϕε(z) (z ∈Uε) of ϕ is defined by

ϕε(z)= ϕ ∗ χε(z)=
∫

C
ϕ(w)χε(w− z)

i

2
dw ∧ dw̄(2.1.8)

=
∫

C
ϕ(z+w)χε(w)

i

2
dw ∧ dw̄

=
∫ 1

0
χ(t)tdt

∫ 2π

0
ϕ
(
z+ εteiθ

)
dθ

� ϕ(z)

∫ 1

0
2πχ(t)tdt = ϕ(z).

Note that ϕε(z) is C∞ on Uε , and subharmonic. Therefore Theorem 2.1.4 implies

∂2

∂z∂z̄
ϕε(z)� 0.

Taking ε1 > ε2 > 0, and δ > 0, we consider the double smoothing (ϕδ)εi = (ϕεi )δ ,
i = 1,2. Note that ϕδ is C∞ and subharmonic. Combining (2.1.6) applied to ϕδ
with (2.1.8) applied to ϕ = ϕδ , we deduce that (ϕδ)ε1 � (ϕδ)ε2 . Hence (ϕε1)δ �
(ϕε2)δ . Letting δ→ 0, we see that ϕε1 � ϕε2 . Thus as ε↘ 0, ϕε(z) monotonically
decreases, and it follows from (2.1.8) that

ϕ(z)� lim
ε→0

ϕε(z).

Here we show the equality by making use of the upper semicontinuity.
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Suppose that ϕ(z) = −∞. For every K < 0 there exists a disk neighborhood
Δ(z; r)⊂U such that ϕ|Δ(z;r) < K . By definition (2.1.8) ϕε(z) < K for ε < r , and
so limε→0 ϕε(z)=−∞.

Suppose that ϕ(z) >−∞. For every ε′ > 0 there is a disk Δ(z; r)⊂U such that
ϕ|Δ(z;r) < ϕ(z)+ ε′. By the same reasoning as above, ϕε(z) � ϕ(z)+ ε′ for ε < r .
Thus limε→0 ϕε(z)= ϕ(z).

Now we have the convergence, ϕε(z)↘ ϕ(z) (ε↘ 0). For η ∈ C∞0 (U)

(2.1.9)
∫

η(z)ddcϕε(z)=
∫

ϕε(z)dd
cη(z).

If η � 0, this integral is non-negative. We set

ddc[ϕ] = i

2π

∂2

∂z∂z̄
[ϕ]dz∧ dz̄

in the sense of the Schwartz distribution. As ε↘ 0, (2.1.9) implies
∫

η(z)ddc
[
ϕ(z)

]=
∫

ϕ(z)ddcη(z)� 0, η � 0.

We see that ddc[ϕ] is a positive Radon measure. We may also regard ddc[ϕ] as a
differential form with coefficients in Radon measures.

We apply (2.1.6) to the C∞ subharmonic function ϕε; for Δ(a; r)�U , 0 < s < r

and sufficiently small ε > 0 we obtain

1

2π

∫

|ζ |=s
ϕε(a + ζ )dθ � 1

2π

∫

|ζ |=r
ϕε(a + ζ )dθ.

As ε↘ 0, Lebesgue’s monotone convergence theorem implies that

(2.1.10)
1

2π

∫

|ζ |=s
ϕ(a + ζ )dθ � 1

2π

∫

|ζ |=r
ϕ(a + ζ )dθ.

By Theorem 2.1.4 (i) ϕ is locally integrable on U . Fubini’s theorem and (2.1.3)
imply that for almost all s ∈ (0, r) with respect to the Lebesgue measure

(2.1.11)
1

2π

∫

|ζ |=s
ϕ(a + ζ )dθ >−∞.

This with (2.1.10) implies (2.1.11) for all s ∈ (0, r].
Summarizing the above we have the next theorem.

Theorem 2.1.12 Let ϕ :U→[−∞,∞) be a subharmonic function on U such that
ϕ �≡ −∞ on every connected component of U .

(i) ddc[ϕ] is a positive Radon measure.
(ii) The smoothing ϕε(z) is subharmonic; as ε↘ 0 it is monotone decreasing and

converges to ϕ(z).
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(iii) For Δ(a; r)�U and any s ∈ (0, r)

−∞<
1

2π

∫

|ζ |=s
ϕ(a + ζ )dθ � 1

2π

∫

|ζ |=r
ϕ(a + ζ )dθ <∞.

Theorem 2.1.13 (i) The subharmonicity is a local property; i.e., if ϕ : U →
[−∞,∞) is subharmonic in a neighborhood of every point a ∈ U , then ϕ is sub-
harmonic in U .

(ii) If an upper semicontinuous function ϕ :U→[−∞,∞) satisfies

ϕ(a)� 1

r2

∫

Δ(a;r)
ϕ(z)

i

2π
dz∧ dz̄

for every disk Δ(a; r)⊂U , then ϕ is subharmonic.

Proof (i) Take the smoothing ϕε(z). Let ϕ be subharmonic in Δ(a; r) ⊂ U . Then
ϕε , 0 < ε < r/2 is subharmonic in Δ(a; r/2). Therefore ddcϕε(z) � 0, and hence
by Theorem 2.1.4 (iii) ϕε(z) is subharmonic in Uε .

For Definition 2.1.1 (ii), it suffices to show that ϕ is subharmonic in an arbi-
trarily fixed Uδ (δ > 0). As δ > ε↘ 0, ϕε(z)↘ ϕ(z) in Uδ . We infer from Theo-
rem 2.1.4 (v) that ϕ is subharmonic in Uδ .

(ii) We first assume that ϕ is of C2-class. By the same computation as in the
proof of Theorem 2.1.4 (iii) we get

∫ ε

0
tdt

1

2π

∫ 2π

0
ϕ
(
a + teiθ

)
dθ =

∫ ε

0

(
tϕ(a)+ t3

(
1+ o(1)

)
2
∂2ϕ

∂z∂z̄
(a)

)
dt.

It follows that

1

ε2

∫

Δ(ε)

ϕ(a + ζ )
i

2π
dζ ∧ dζ̄ = ϕ(a)+ ε2(1+ o(1)

) ∂2ϕ

∂z∂z̄
(a).

This combined with the assumption implies that ∂2ϕ
∂z∂z̄

(a) � 0. Thus ϕ(z) is subhar-
monic.

For the general case we may assume that U is connected, and ϕ �≡ −∞. By the
proof of Theorem 2.1.4 (i) ϕ is locally integrable in U .

We take the smoothing ϕε(z) z ∈ Uε . Since ϕ(z) is upper semicontinuous, by
Remark 2.1.2 (iii) there is a monotone decreasing sequence of continuous functions
ψν(z), ν = 1,2, . . . , such that

lim
ν→∞ψν(z)= ϕ(z), z ∈U.

We are going to show that for every compact subset K ⊂U

(2.1.14) lim
ε→0

∫

K

∣∣ϕε(z)− ϕ(z)
∣∣ i

2π
dz∧ dz̄= 0.
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Take W �U be an open subset such that W �K . Set

d(K,∂W)= inf
{
d(z, ∂W); z ∈K}

,

and

δ0 =min
{
d(K,∂W), d(W̄ , ∂U)

}
> 0.

Take any ε′ > 0. By Lebesgue’s monotone convergence theorem there is a number
ν0 such that for ‖w‖< δ0

0 �
∫

K

(
ψν0(z+w)− ϕ(z+w)

) i

2π
dz∧ dz̄(2.1.15)

�
∫

W̄

(
ψν0(z)− ϕ(z)

) i

2π
dz∧ dz̄ < ε′.

Let 0 < ε < δ0. Then (ψν0)ε(z)� ϕε(z) (z ∈ W̄ ), and

0 �
∫

K

(
(ψν0)ε(z)− ϕε(z)

) i

2π
dz∧ dz̄

(2.1.16)

=
∫

z∈K

(∫

w∈Cm

(
(ψν0)(z+w)− ϕ(z+w)

)
χε(w)

i

2π
dw ∧ dw̄

)
i

2π
dz∧ dz̄

=
∫

w∈Cm

(∫

z∈K
(
(ψν0)(z+w)− ϕ(z+w)

) i

2π
dz∧ dz̄

)
χε(w)

i

2π
dw ∧ dw̄

� ε′.

Since ψν0 is uniformly continuous on W̄ , (ψν0)ε uniformly approximates ψν0 on K

as ε→ 0. Thus there is some 0 < ε0 < δ0 such that for every 0 < ε < ε0

(2.1.17)
∫

K

∣∣(ψν0)ε(z)−ψν0(z)
∣∣ i

2π
dz∧ dz̄ < ε′.

It follows from (2.1.15)–(2.1.17) that for every 0 < ε < ε0
∫

K

|ϕε − ϕ| i
2π

dz∧ dz̄�
∫

K

(
(ψν0)ε − ϕε

) i

2π
dz∧ dz̄

+
∫

K

∣∣(ψν0)ε −ψν0

∣∣ i

2π
dz∧ dz̄+

∫

K

(ψν0 − ϕ)
i

2π
dz∧ dz̄

< 3ε′.

Thus (2.1.14) is deduced.
We see by the assumption and Fubini’s theorem that for Δ(z; r)⊂Uδ

ϕδ(z)� 1

r2

∫

Δ(r)

ϕδ(z+ ζ )
i

2π
dζ ∧ dζ̄ .
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Therefore ϕδ is subharmonic in Uδ . Take δ > ε1 > ε2 > 0, arbitrarily. For z ∈Uδ+ε1

(ϕε1)δ(z)= (ϕδ)ε1(z)� (ϕδ)ε2(z)= (ϕε2)δ(z).

As δ→ 0, ϕε1(z) � ϕε2(z). Put ψ(z) = limε→0 ϕε(z). Since ψ is the limit of a
monotone decreasing sequence of subharmonic functions, it is subharmonic. It fol-
lows from the upper semicontinuity that for every z ∈U and ε′ > 0 there is a neigh-
borhood Δ(z; r)⊂U satisfying

ϕ(ζ ) < ϕ(z)+ ε′, ζ ∈Δ(z; r).
Hence, for 0 < ε < r , ϕε(z)� ϕ(z)+ ε′. We have

ϕ(z)−ψ(z)� 0, z ∈U.
This combined with (2.1.14) implies that for any compact subset K ⊂U

0 �
∫

K

(
ϕ(z)−ψ(z)

) i

2π
dz∧ dz̄

= lim
ε→0

∫

K

(
ϕ(z)− ϕε(z)

) i

2π
dz∧ dz̄

� lim
ε→0

∫

K

∣∣ϕ(z)− ϕε(z)
∣∣ i

2π
dz∧ dz̄= 0.

Therefore ψ(z)= ϕ(z) for almost all z ∈ U with respect to the Lebesgue measure.
For every Δ(a; r)⊂U ,

ϕ(a)� 1

r2

∫

Δ(a;r)
ϕ(z)

i

2π
dz∧ dz̄

= 1

r2

∫

Δ(a;r)
ψ(z)

i

2π
dz∧ dz̄

→ψ(a) (r→ 0).

Hence, ϕ(a)�ψ(a), and ψ = ϕ, by which ϕ is subharmonic. �

Proposition 2.1.18 A function φ on U is subharmonic if and only if there exists a
decreasing sequence of C2 subharmonic functions φn with limφn = φ.

Proof If there is such a sequence, subharmonicity of φ follows from Theo-
rem 2.1.4 (v). The converse is obtained by making use of the smoothing (Theo-
rem 2.1.12 (ii)). �

Proposition 2.1.18 together with Theorem 2.1.4 (iii) implies the following.

Theorem 2.1.19 Let U,V be open in C.

(i) If φ is subharmonic on U and f : V → U is holomorphic, then φ ◦ f is sub-
harmonic.
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(ii) If φ is a function on U and f : V →U is biholomorphic, then φ is subharmonic
if and only if φ ◦ f is subharmonic.

Proof (i) Due to Proposition 2.1.18 there is a decreasing sequence of C2 sub-
harmonic functions φn (n = 1,2, . . . ) with limφn = φ. Subharmonicity of the
φn is equivalent to ddcϕn � 0 (Theorem 2.1.4 (iii)). Hence the functions φn ◦ f
(n= 1,2, . . .) form a decreasing sequence of subharmonic functions converging to
φ ◦ f . Now the subharmonicity of φ ◦ f follows from Theorem 2.1.4 (v).

Statement (ii) is a direct consequence of (i). �

2.1.2 Several Variables

We deal with the case of several complex variables. The notion of plurisubharmonic
functions was first introduced by K. Oka [42] VI. We let U ⊂ Cm be an open set.
Let z= (z1, . . . , zm) be the standard coordinate system of Cm. As usual we set

‖z‖ =
√∑

|zj |2,

d(z; ∂U)= inf
{‖z−w‖;w ∈ ∂U}

, z ∈U,
Uε =

{
z ∈U ;d(z; ∂U) > ε

}
, ε > 0.

We write zj = xj + iyj (1 � j � m). As in (1.1.1), we define the following
differential operators:

∂ϕ

∂zj
= 1

2

(
∂ϕ

∂xj
+ 1

i

∂ϕ

∂yj

)
,

∂ϕ

∂z̄j
= 1

2

(
∂ϕ

∂xj
− 1

i

∂ϕ

∂yj

)
,

dzj = dxj + idyj , dz̄j = dxj − idyj ,

∂ϕ =
m∑

j=1

∂ϕ

∂zj
dzj , ∂̄ϕ =

m∑

j=1

∂ϕ

∂z̄j
dz̄j ,

dcϕ = i

4π
(∂̄ϕ − ∂ϕ)= 1

4π

m∑

j=1

(
∂ϕ

∂xj
dyj − ∂ϕ

∂yj
dxj

)
.

(2.1.20)

With this notation we have

dϕ = ∂ϕ + ∂̄ϕ, ddcϕ = i

2π
∂∂̄ϕ,

∂∂̄ϕ =
m∑

j,k=1

∂2ϕ

∂zj ∂z̄k
dzj ∧ dz̄k.
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We further introduce the following notation:

B(a; r)= {
z ∈Cm; ‖z− a‖< r

}
, a ∈Cm, r > 0,

B(r)= B(0; r),
α = ddc‖z‖2, β = ddc log‖z‖2,

γ = dc log‖z‖2 ∧ βm−1.

(2.1.21)

Let φ be a differential form on Cm and let ι : {‖z‖ = r} ↪→ Cm be the inclusion
of the sphere {‖z‖ = r} into Cm. Associated to the map ι there is the “pull-back”
of differential forms. In this way ι∗φ is the differential form induced from φ on the
sphere {‖z‖ = r}. In the present case, ι∗(d‖z‖2)= 0, and so as differential forms in-
duced over {‖z‖ = r}, d‖z‖2 = ∂‖z‖2 + ∂̄‖z‖2 = 0. Therefore as differential forms
induced over {‖z‖ = r},

d‖z‖2 ∧ dc‖z‖2 = 0, ∂‖z‖2 ∧ ∂̄‖z‖2 = 0.

Hence we have, as induced forms on {‖z‖ = r},

(2.1.22) β = 1

r2
α.

It follows that
∫

B(r)

αm = r2m,

∫

‖z‖=r
γ = 1.

Definition 2.1.23 A function ϕ :U→[−∞,∞) is said to be plurisubharmonic if
the following conditions are satisfied:

(i) ϕ is upper semicontinuous.
(ii) For every point z ∈U and every vector v ∈Cm the function

ζ ∈C→ ϕ(z+ ζv) ∈ [−∞,∞)

is subharmonic where it is defined.

We have the following examples by Example 2.1.7.

Example 2.1.24 If f : U → C is a holomorphic function, log |f | and |f |c (c > 0)
are both plurisubharmonic.

Let ϕ be a plurisubharmonic function on U , and let B(a; r)�U . By making use
of the invariance of α with respect to the rotation z �→ eiθ z (θ ∈ [0,2π]) we have by
Definition 2.1.1 (ii) that

∫

z∈B(r)
ϕ(a + z)αm(z)=

∫

z∈B(r)
ϕ
(
a + eiθ z

)
αm(z)

(continued)
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= 1

2π

∫ 2π

0
dθ

∫

z∈B(r)
ϕ
(
a + eiθ z

)
αm(z)

=
∫

z∈B(r)

(
1

2π

∫ 2π

0
ϕ
(
a + eiθ z

)
dθ

)
αm(z)

�
∫

z∈B(r)
ϕ(a)αm(z)= r2mϕ(a).

Thus as in (2.1.3) the following is obtained:

ϕ(a)� 1

r2m

∫ r

0
2mt2m−1dt

∫

‖z‖=t
ϕ(a + z)γ (z)(2.1.25)

= 1

r2m

∫

B(a;r)
ϕ(z)αm

(
B(a; r)�U

)
.

Identifying Cm ∼=R2m, we see that ϕ is a subharmonic function2 on U ⊂R2m.
When ϕ is of C2-class, we have by definition

ddcϕ =
∑

1�j,k�m

∂2ϕ

∂zj ∂z̄k

i

2π
dzj ∧ dz̄k.

We write ddcϕ � 0 if the hermitian matrix (
∂2ϕ

∂zj ∂z̄k
) is semi-positive definite.

The next theorem follows from the above and the same arguments as used in the
proof of Theorem 2.1.4:

Theorem 2.1.26 (i) A plurisubharmonic function is subharmonic with identifica-
tion Cm ∼=R2m.

(ii) If ϕ is a plurisubharmonic function on U and ϕ(a) >−∞ at a point a ∈ U ,
then ϕ is locally integrable in the connected component U ′ of U containing a.

(iii) Let ϕ be a plurisubharmonic function on U . If ϕ admits the maximum value
at a ∈U , then it is constant on the connected component of U containing a.

(iv) Let ϕ be of C2-class. Then ϕ is plurisubharmonic if and only if ddcϕ � 0.
(v) Let ϕ : U → [−∞,∞) be plurisubharmonic and let λ be a monotone in-

creasing convex function defined on R. Then λ ◦ ϕ is plurisubharmonic. Here,
λ(−∞)= limt→−∞ λ(t).

(vi) Let ϕν :U→[−∞,∞), ν = 1,2, . . . , be monotone decreasing plurisubhar-
monic functions. Then the limit function ϕ(z)= limν→∞ ϕν(z) is plurisubharmonic.

(vii) For finitely many plurisubharmonic functions ϕν : U → [−∞,∞), 1 �
ν � l, ϕ(z)=max1�ν�l ϕν(z) is plurisubharmonic, too.

2In general, a function ψ :W → [−∞,∞) defined on an open subset W of Rn is said to be sub-
harmonic if ψ is upper semicontinuous and satisfies the submean property in the sense of (2.1.25).
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Here we explain the notion of currents, limited to what we will need. Cf.
Noguchi–Ochiai [90] (Ochiai–Noguchi [84]) for more detailed treatment. In gen-
eral a differential form with coefficients in distributions in the sense of Schwartz
is called a current. We introduce only (1,1) currents that will be needed. We con-
sider only the case where the domain is an open subset U of Cm. A complex-valued
measure of the form μ = μ′ + iμ′′ with real-valued Radon measures μ′ and μ′′
on U is called a complex Radon measure on U . Its complex conjugate is defined by
μ̄= μ′ − iμ′′. We consider a (1,1) current T =∑

Tjk̄
i
2dzj ∧ dz̄k with coefficients

of complex-valued Radon measures Tjk̄ , 1 � j , k �m. The complex conjugate of T
is defined by

T̄ =
∑

T̄j k̄
−i
2
dz̄j ∧ dzk =

∑
T̄j k̄

i

2
dzk ∧ dz̄j .

If T = T̄ , i.e., T̄j k̄ = Tkj̄ (hermitian), T is called a real current. If for every vector
(ξj ) ∈Cm

∑

j,k

Tj k̄ξj ξ̄k

is a positive Radon measure, T is called a (1,1) positive current, and we write
T � 0.

For two real (1,1) currents T ,S on U we write T � S (S � T ) if T − S � 0.
Take χ(z)= χ(‖z‖) ∈ C∞0 (Cm) so that χ(z)� 0, Suppχ ⊂ B(1), and

∫
χ(z)αm = 1.

Set χε(z)= χ(ε−1z)ε−2m, ε > 0. Let ϕ be a plurisubharmonic function on U . The
smoothing ϕε(z) of ϕ is defined by

ϕε(z)= ϕ ∗ χε(z)=
∫

Cm

ϕ(w)χε(w− z)αm(w)

=
∫

Cm

ϕ(z+w)χε(w)α
m(w), z ∈Uε.

Then ϕε(z) ∈ C∞(Uε) and it is plurisubharmonic. Since χ(w)= χ(‖w‖), one gets

ϕε(z)=
∫

Cm

ϕ(z+ εw)χ(w)αm(w)

=
∫

Cm

αm(w)
1

2π

∫ 2π

0
dθ ϕ

(
z+ εeiθw

)
χ(w)

� ϕ(z)

∫

Cm

χ(w)αm = ϕ(z).

Therefore by Theorem 2.1.12 (iii) ϕε is monotone decreasing as ε↘ 0. Since ϕ is
upper semicontinuous, in the same way as in the proof of Theorem 2.1.12 (ii), one
verifies that ϕε(z)↘ ϕ(z).
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Since
∑ ∂2ϕε

∂zj ∂z̄k
ξj ξ̄k � 0 for every vector (ξ1, . . . , ξm) ∈Cm,

∑ ∂2[ϕ]
∂zj ∂z̄k

ξj ξ̄k,

where the notation ∂2[ϕ]
∂zj ∂z̄k

is used in the sense of Schwartz distributions, defines a
positive Radon measure, so that

ddc[ϕ] =
∑ ∂2[ϕ]

∂zj ∂z̄k

i

2π
dzj ∧ dz̄k � 0.

Hence we have the following.

Theorem 2.1.27 Let ϕ :U→[−∞,∞) be a plurisubharmonic function such that
ϕ �≡ −∞ on each connected component of U .

(i) ddc[ϕ]� 0 and the coefficients ∂2[ϕ]
∂zj ∂z̄k

are complex Radon measures which are

absolutely continuous with respect to the trace
∑m

j=1
∂2[ϕ]
∂zj ∂z̄j

.
(ii) The smoothing ϕε(z) converges monotone decreasingly to ϕ(z) as ε↘ 0.

(iii) For every B(a;R)⊂U with 0 < s < r < R,

(2.1.28) −∞<

∫

‖z‖=s
ϕ(a + z)γ (z)�

∫

‖z‖=r
ϕ(a + z)γ (z) <∞.

Proof The absolute continuity of (i) follows from the positivity ddc[ϕ]� 0. (ii) was
already shown. Only (iii) remains.

First note that by Theorem 2.1.26 (ii) ϕ is locally integrable. We infer from
(2.1.25) and Fubini’s theorem that there is a subset E ⊂ (0,R) of Lebesgue measure
zero with finite

∫
‖z‖=t ϕ(a + z)γ (z) for t ∈ (0,R) \E. On the other hand, for every

t ∈ (0,R) and ϑ ∈ [0,2π] the C∗-invariance γ (teiϑz)= γ (z) implies
∫

‖z‖=t
ϕ(a + z)γ (z)=

∫

‖z‖=1
ϕ
(
a + teiϑz

)
γ (z)

=
∫

‖z‖=1

∫ 2π

0
ϕ
(
a + teiθ z

) dθ
2π

γ (z).

It follows from this and Theorem 2.1.12 (iii) that for every 0 < s < r < R
∫

‖z‖=s
ϕ(a + z)γ (z)�

∫

‖z‖=r
ϕ(a + z)γ (z) <∞.

Applying this to 0 < t < s, t /∈E, we see that

−∞<

∫

‖z‖=t
ϕ(a + z)γ (z)�

∫

‖z‖=s
ϕ(a + z)γ (z).

Thus (2.1.28) is shown. �
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As in Theorem 2.1.13 (i) the following holds.

Theorem 2.1.29 The plurisubharmonicity is a local property.

Let ϕ �≡ −∞ be a plurisubharmonic function on Cm. In the sense of currents

ddc[ϕ] =
∑ ∂2[ϕ]

∂zj ∂z̄k

i

2π
dzj ∧ dz̄k � 0.

Then

ddc[ϕ] ∧ αm−1 =
(

(m− 1)!
m∑

j=1

∂2[ϕ]
∂zj ∂z̄j

)
m∧

j=1

i

2π
dzj ∧ dz̄j

is a volume form with a positive Radon measure as coefficient. Therefore, for a
Borel measurable subset E ⊂Cm and a Borel measurable function ψ the integral

∫

E

ψddc[ϕ] ∧ αm−1

is defined; in particular, we set

(2.1.30) n
(
t, ddc[ϕ])= 1

t2m−2

∫

B(t)

ddc[ϕ] ∧ αm−1, t > 0.

Lemma 2.1.31 The function n(t, ddc[ϕ]) is left-continuous in t > 0 and monotone
increasing.

Proof By the inner regularity of Radon measure,
∫
B(t)

ddc[ϕ] ∧ αm−1 is left-
continuous in t > 0, and so is n(t, ddc[ϕ]).

Let ϕε , ε > 0 be the smoothing of ϕ. By making use of (2.1.22) one gets for
t > s > 0

1

t2m−2

∫

B(t)

ddcϕε ∧ αm−1 − 1

s2m−2

∫

B(s)

ddcϕε ∧ αm−1

= 1

t2m−2

∫

‖z‖=t
dcϕε ∧ αm−1 − 1

s2m−2

∫

‖z‖=s
dcϕε ∧ αm−1

=
∫

‖z‖=t
dcϕε ∧ βm−1 −

∫

‖z‖=s
dcϕε ∧ βm−1

=
∫

s<‖z‖<t
ddcϕε ∧ βm−1.

Since β � 0 (semi-positive), the integral is non-negative. Now we let ε→ 0. Then
there is a subset E ⊂ (0,∞) of Lebesgue measure zero such that for 0 < s < t
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outside E

(2.1.32) n
(
t, ddc[ϕ])− n

(
s, ddc[ϕ])=

∫

s<‖z‖<t
ddc[ϕ] ∧ βm−1 � 0.

For every 0 < s < t we take sequences sν ↗ s and s < tν ↗ t with sν /∈ E, tν /∈ E,
ν = 1,2, . . . . Then n(sν, dd

c[ϕ]) � n(tν, dd
c[ϕ]). As ν→∞, the left-continuity

implies

n
(
s, ddc[ϕ]) � n

(
t, ddc[ϕ]). �

It follows from Lemma 2.1.31 that at every point a ∈ Cm the following limit
exists:

L
(
a;ddc[ϕ])= lim

t→0

1

t2m−2

∫

B(a;t)
ddc[ϕ] ∧ αm−1.

The limit L (a;ddc[ϕ]) is called the Lelong number of the current ddc[ϕ] at a,
and plays an important role in various aspects of complex analysis. For example,
for a given δ > 0 the set {a ∈ Cm;L (a;ddc[ϕ]) � δ} forms an analytic subset
(Y.-T. Siu’s Theorem; cf. Siu [74]; Ohsawa [98]; Hörmander [89]).

Lemma 2.1.33 (Jensen’s formula) Let ϕ �≡ −∞ be a plurisubharmonic function
on Cm. Then for every 0 < s < r

∫

‖z‖=r
ϕγ −

∫

‖z‖=s
ϕγ = 2

∫ r

s

dt

t2m−1

∫

B(t)

ddc[ϕ] ∧ αm−1(2.1.34)

= 2
∫ r

s

dt

t

∫

B(t)\{0}
ddc[ϕ] ∧ βm−1

+ 2L
(
0;ddc[ϕ]) log

r

s
.

Proof Take the smoothing ϕε of ϕ. Since dγ = 0,

∫

‖z‖=r
ϕεγ −

∫

‖z‖=s
ϕεγ =

∫

{s<‖z‖<r}
dϕε ∧ γ

(2.1.35)

=
∫

{s<‖z‖<r}
d log‖z‖2 ∧ dcϕε ∧

(
ddc log‖z‖2)m−1

= 2
∫ r

s

dt

t

∫

‖z‖=t
dcϕε ∧

(
ddc log‖z‖2)m−1

= 2
∫ r

s

dt

t

∫

‖z‖=t
dcϕε ∧ αm−1

t2(m−1)

(continued)
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= 2
∫ r

s

dt

t2m−1

∫

‖z‖=t
dcϕε ∧ αm−1

= 2
∫ r

s

dt

t2m−1

∫

B(t)

ddcϕε ∧ αm−1.

As ε ↘ 0, ϕε ↘ ϕ. By the monotone convergence theorem of Lebesgue the first
integral of (2.1.35) converges to the integral of ϕ.

On the other hand, for almost all t with respect to the Lebesgue measure
∫

B(t)

ddcϕε ∧ αm−1 →
∫

B(t)

ddcϕ ∧ αm−1 (ε→ 0).

It follows from the definition that for 0 < ε < 1 and t � r

0 �
∫

B(t)

ddcϕε ∧ αm−1 �
∫

B(r+1)
ddc[ϕ] ∧ αm−1 <∞.

By Lebesgue’s bounded convergence theorem we have

(2.1.36) 2
∫ r

s

dt

t2m−1

∫

B(t)

ddcϕε ∧ αm−1 → 2
∫ r

s

dt

t2m−1

∫

B(t)

ddc[ϕ] ∧ αm−1

as ε→ 0. Therefore the first equality of (2.1.34) is inferred.
Letting s→ 0 (s /∈E) in (2.1.32), we have

1

t2m−2

∫

B(t)

ddc[ϕ] ∧ αm−1 =
∫

B(t)\{0}
ddc[ϕ] ∧ βm−1 +L

(
0;ddc[ϕ]).

This implies the second equality of (2.1.34). �

Corollary 2.1.37 Jensen’s formula (2.1.34) holds for Borel measurable functions
ϕ on Cm if for every a ∈ Cm there exist plurisubharmonic functions ϕ1, ϕ2 in a
neighborhood U of a such that ϕ is written as ϕ = ϕ1 − ϕ2 on U .

Proof Let {Uj }∞j=1 be a locally finite open covering of Cm such that there are
plurisubharmonic functions ϕj1, ϕj2 on Uj satisfying ϕ = ϕj1 − ϕj2. Let {ηj }
be a partition of unity subordinated to {Uj }. It suffices to show the first equality
of (2.1.34). Take a number j0 so that Uj ∩B(r)= ∅, j � j0. Put δ =min{d(Suppηj ,
∂Uj );1 � j � j0}. For 0 < ε < δ and z ∈ B(r)∩ Suppηj

ϕε(z)= ϕj1ε(z)− ϕj2ε(z).

Thus

ϕε(z)=
j0∑

j=1

ηj (z)
(
ϕj1ε(z)− ϕj2ε(z)

)
, z ∈ B(r).
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By the same computation as in (2.1.35) we have

j0∑

j=1

∫

‖z‖=r
ηjϕj1εγ −

j0∑

j=1

∫

‖z‖=s
ηjϕj2εγ

= 2
∫ r

s

dt

t2m−1

∫

B(t)

ddcϕε ∧ αm−1.

The monotone convergence theorem of Lebesgue implies that

∫

{‖z‖=r}
ηjϕjiεγ →

∫

{‖z‖=r}
ηjϕjiγ (ε→ 0, i = 1,2).

Since the coefficients of ddc[ϕ] are complex Radon measures, the convergence
of (2.1.36) holds. Thus the required formula follows. �

Supplement (Currents) In general, on a differentiable manifold M satisfying the
second countability axiom a differential form with coefficients in Schwartz’ distri-
butions is called a current. In the space of currents, the exterior differential opera-
tor d is defined in the sense of derivations of Schwartz’ distributions. If M is a com-
plex manifold, the operators ∂, ∂̄, dc are defined similarly (cf., e.g., Lelong [68];
Noguchi–Ochiai [90] (Ochiai–Noguchi [84])). Let (z1, . . . , zm) be a holomorphic
local coordinate system of M (m= dimM). If a current T on M is written as

T =
∑

|I |=p,|J |=q
TI J̄ dz

I ∧ dz̄J ,

dzI =
∧

i∈I
dzi, dz̄J =

∧

j∈J
dz̄j

with multi-index sets I, J ⊂ {1, . . . ,m}, T is said to be of type (p, q), or called a
(p, q) current. The complex conjugate T̄ is defined by

T̄I J̄ (φ)= TIJ̄ (φ̄),

T̄ =
∑

|I |=p,|J |=q
T̄I J̄ dz̄

I ∧ dzJ ,

where φ is a test function. A current T of type (p,p) is called a positive current if
T is real, i.e., T̄ = T , and for every C∞ (1,0) form ηj , 1 � j �m− p

T ∧ iη1 ∧ η̄1 ∧ · · · ∧ iηm−p ∧ η̄m−p

is a positive Radon measure. In this case, we write T � 0. For two real (p,p) cur-
rents T , T ′, we write T � T ′ for T − T ′ � 0.
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2.2 Poincaré–Lelong Formula

Let U ⊂Cm be an open subset.

Definition 2.2.1 A closed subset A ⊂ U is said to be analytic, if for every point
a ∈ A there are a neighborhood W ⊂ U of a and holomorphic functions g1, . . . , gl
on W (l <∞) satisfying

A∩W = {g1 = · · · = gl = 0}.
When the closedness of A is not assumed, A is called a locally closed analytic

subset. In particular, if the above gj , 1 � j � l, can be taken so that their differentials
at a ∈A

dg1(a), . . . , dgl(a)

are linearly independent, a is called a regular or non-singular point of A; in this
case, if W is chosen sufficiently small, A ∩W is a closed complex submanifold
of W . A point of A which is not non-singular is called a singular point; the subset
of all singular points of A is denoted by S(A). Set R(A)= A \ S(A). If S(A)= ∅,
A is said to be non-singular.

We describe elementary and useful properties of analytic subsets and of plurisub-
harmonic functions without proofs, for which cf. Oka [Iw] VII, [50], [51], Grauert–
Remmert [84], Gunning–Rossi [65], Hervé [63], Narasimhan [66], Noguchi–Ochiai
[90] (Ochiai–Noguchi [84]), Nishino [96], Ohsawa [98], Noguchi [13].

Theorem 2.2.2 An analytic subset A⊂U satisfies the following:

(i) S(A) is an analytic subset and nowhere dense in A.
(ii) Let R(A)=⋃

λ A
′
λ be the decomposition into the connected components. Then

the closure Aλ = Ā′λ is analytic, and A=⋃
λ Aλ is a locally finite covering.

(iii) If Aλ ⊂ U , λ ∈ Λ are analytic subsets of U , then so is the intersection⋂
λ∈ΛAλ.

An analytic subset B is said to be irreducible if there are no analytic subsets
Bi � B , i = 1,2, with B = B1 ∪ B2. The above Aλ are known to be irreducible.
Each Aλ is called an irreducible component of A. Since A′λ is a locally closed
submanifold, its (complex) dimension is denoted by dimA′λ, and one sets

dimAλ = dimA′λ, dima A =maxa∈Aλ dimAλ,

codima A =m− dima A, dimA =maxa dima A,

codimA =m− dimA.

In particular, the following holds:

dimS(A) < dimA.

If dima A= dimA at all points a ∈A, A is said to be of pure dimension dimA.
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Let a ∈A. Then there is a linear subspace L∼=Cl passing through a such that a is
isolated in L∩A. Moreover, there is a direct decomposition Cm ∼=Cm−l ×L � a =
(a1, a2) by linear subspaces, and there are neighborhoods U1 ⊂Cm−l of a1, U2 ⊂ L

of a2 such that the projection p :A∩ (U1 ×U2)→U1 satisfies the following.

Theorem 2.2.3 Let the notation be as above.

(i) p :A∩ (U1 ×U2)→U1 is surjective, proper, finite, and p−1a1 = {a}.
(ii) There is a proper analytic subset S ⊂U1 such that the restriction of p

p|A∩(U1×U2)\p−1S :A∩ (U1 ×U2) \ p−1S→U1 \ S
is a finite unramified covering.

(iii) The collection of such l-dimensional linear subspaces L of Cm satisfying the
above (i) and (ii) forms an open dense subset in the Grassmann space of
l-dimensional linear subspaces of Cm.

If there is one holomorphic function φ �≡ 0 in a neighborhood W of every point
a ∈A satisfying

A∩W = {φ = 0},
A is called a complex hypersurface or simply hypersurface. A hypersurface is an
analytic subset of pure dimension m− 1.

Let Ui ⊂ Cni , i = 1,2, be open sets, and let Xi ⊂ Ui , i = 1,2, be analytic sub-
sets. A map ϕ :X1 →X2 is said to be holomorphic if for every point a ∈X1 there
are a neighborhood W of a in U1 and holomorphic functions ϕj , 1 � j � n2, on W

satisfying

ϕ(x)= (
ϕ1(x), . . . , ϕn2(x)

)
, x ∈W ∩X1.

In particular, when X2 = C, ϕ is called a holomorphic function. If the inverse
ϕ−1 : X2 → X1 exists and is holomorphic, ϕ is called a biholomorphic map or a
biholomorphism, and X1 is said to be biholomorphic to X2.

Let X be a Hausdorff topological space. Let X carry an open covering {Xλ}λ∈Λ
such that there exist analytic subsets Zλ ⊂Uλ with open subsets Uλ ⊂Cnλ , homeo-
morphisms ϕλ :Xλ→ Zλ, λ ∈Λ, and the restrictions

ϕμ ◦ ϕ−1
λ |Zλ∩ϕλ(Xλ∩Xμ) : Zλ ∩ ϕλ(Xλ ∩Xμ)→Zμ ∩ ϕμ(Xλ ∩Xμ)

are biholomorphisms for all λ,μ ∈Λ. Then X is called a complex space.
If we can take Zλ =Uλ, then X is called a complex manifold.
Holomorphic functions on a complex space, holomorphic maps between com-

plex spaces, and analytic subsets are defined using the coordinate charts φλ; e.g.,
a function f :X→C is holomorphic, if all the functions f |Xλ ◦ φ−1

λ : Zλ→C are
holomorphic.

Similarly, a function f :X→C on a complex manifold X is called plurisubhar-
monic if all the functions f |Xλ ◦ φ−1

λ : Zλ → C are plurisubharmonic. (Note that
given a biholomorphic map α : Z→ Z′ a function f on Z′ is plurisubharmonic if
and only if f ◦ α is plurisubharmonic; this is proven as in Theorem 2.1.19.)
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Theorem 2.2.4 (Remmert) Let φ :X→ Y be a proper holomorphic map between
complex spaces, and let A ⊂ X be an analytic subset. Then φ(A) is an analytic
subset of Y and dimφ(A)� dimA.

Theorem 2.2.5 (Remmert) Let X be a complex space, and let E ⊂X be an analytic
subset. Let A⊂X \E be an analytic subset such that min{dima A;a ∈A}> dimE.
Then the closure Ā of A in X is an analytic subset of X.

For the analytic continuation of holomorphic functions we have the following.

Theorem 2.2.6 Let U ⊂ Cm be a domain, and let E � U be a proper analytic
subset. Let f :U \E→C be a holomorphic function.

(i) (Riemann extension) If there is a neighborhood V ⊂ U of every point x ∈ E

such that f |V \E is bounded, then f is uniquely extended to a holomorphic
function on U .

(ii) (Hartogs extension) If codimE � 2, f is necessarily extended uniquely to a
holomorphic function on U .

We know similar theorems for plurisubharmonic functions (cf. Grauert–Remmert
[56]; Noguchi–Ochiai [90] (Ochiai–Noguchi [84])).

Theorem 2.2.7 Let U ⊂ Cm be a domain, and let E ⊂ U be a proper analytic
subset. Let ψ :U \E→[−∞,∞) be a plurisubharmonic function.

(i) (Riemann type) If there is a neighborhood V ⊂U of every point x ∈E such that
ψ |V \E is bounded from above, then ψ extends uniquely to a plurisubharmonic
function on U .

(ii) (Hartogs type) If codimE � 2, then ψ necessarily extends uniquely to a
plurisubharmonic function on U .

Since the above two extension theorems are local in nature, the analogous state-
ments hold for arbitrary complex manifolds.

Take a homogeneous coordinate system [w0, . . . ,wn] of the n-dimensional com-
plex projective space Pn(C). A subset X ⊂ Pn(C) is said to be algebraic if there are
finitely many homogeneous polynomials Pα(w0, . . . ,wn) satisfying

X =
⋂

α

{
Pα(w0, . . . ,wn)= 0

}
.

If a complex space Z is biholomorphic to an algebraic subset of Pn(C), Z is
called a (complex) projective algebraic variety. Then an algebraic subset of Z is
naturally defined.

Theorem 2.2.8 (Chow) Every analytic subset of Pn(C) is algebraic.

The Zariski topology is defined on Pn(C) by taking the algebraic subsets as
closed subsets. Similarly, the Zariski topology on a complex space Z (resp. its sub-
set Y ) is defined so that analytic subsets X of Z (resp. X ∩ Y ) are closed subsets.
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Let U be an open subset of Cm. Let A ⊂ U be an analytic subset of pure di-
mension l, and let ιR(A) : R(A)→ Cm be the inclusion map. For a compact subset
K ⊂U the integral

∫

K∩R(A)
αl =

∫

K∩R(A)
ι∗R(A)α

l

is considered as a measure of K ∩A. We show that this is finite.

Lemma 2.2.9 Let the notation be as above.

(i) If l = dimA<m, the Lebesgue measure of A in Cm is zero.
(ii)

∫
K∩R(A) α

l <∞.

Proof (i) We use induction on l. When l = 0, A is a discrete subset, and so the
measure is zero. Suppose that the statement holds for dimA < l. We decompose
A = R(A) ∪ S(A). The induction hypothesis implies that the measure of S(A) is
zero. Since R(A) is a locally closed submanifold of dimension l (<m), its measure
is zero, and hence so is the measure of A.

(ii) It suffices to show the claim in a neighborhood W of every point a ∈ A. By
making use of a translation and a unitary transformation of coordinates combined
with Theorem 2.2.3, we may assume that a = 0 and for arbitrary 1 � i1 < · · · <
il �m there is a neighborhood W of 0 with projection W =U1 ×U2 ⊂Cl ×Cm−l
satisfying the following properties:

p : (z1, . . . , zm) ∈A∩W → (zi1, . . . , zil ) ∈U1

is a proper finite map, and there is an analytic subset S ⊂U1 of dimS < l such that

p|A∩W\p−1S : (z1, . . . , zm) ∈A∩W \ p−1S→ (zi1 , . . . , zil ) ∈U1 \ S
is a unramified covering. Denote by k its covering number. Note that

αl = n · · · (n− l + 1)
∑

i1<···<il

(
i

2π

)l

dzi1 ∧ dz̄i1 ∧ · · · ∧ dzil ∧ dz̄il .

It is sufficient to show that for every i1 < · · ·< il

∫

R(A)∩W

(
i

2π

)l

dzi1 ∧ dz̄i1 ∧ · · · ∧ dzil ∧ dz̄il <∞.

By (i) the Lebesgue measure of R(A)∩W ∩ p−1S is zero in R(A)∩W . Therefore

∫

R(A)∩W

(
i

2π

)l

dzi1 ∧ dz̄i1 ∧ · · · ∧ dzil ∧ dz̄il

=
∫

R(A)∩W\p−1S

(
i

2π

)l

dzi1 ∧ dz̄i1 ∧ · · · ∧ dzil ∧ dz̄il

(continued)
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= k

∫

U1\S

(
i

2π

)l

dzi1 ∧ dz̄i1 ∧ · · · ∧ dzil ∧ dz̄il

= k

∫

U1

(
i

2π

)l

dzi1 ∧ dz̄i1 ∧ · · · ∧ dzil ∧ dz̄il <∞. �

From now on we write
∫

K∩A
αl =

∫

K∩R(A)
αl.

The following is immediate.

Corollary 2.2.10 Let B ⊂A be an analytic subset of dimB < dimA. Then
∫

B

αl = 0.

The following is deduced from the above.

Theorem 2.2.11 Let A ⊂ U be an analytic subset of pure dimension l. Let η be
a 2l form with coefficients which are bounded Borel functions on U with compact
supports. Then

∫

A

η=
∫

R(A)

ι∗R(A)η

is defined. Let B ⊂ A be an analytic subset of dimB < dimA and let χB be the
characteristic function of the set B . Then

∫

A

χBη= 0.

Lemma 2.2.12 Let A⊂ U be an analytic subset of dimension at most m− 2. Let
ϕ be a plurisubharmonic function on U such that ϕ �≡ −∞ on every connected
component of U , and set ddc[ϕ] =∑

Tjk̄
i

2π dzj ∧ dz̄k . Then A is of measure zero
with respect to Radon measures Tjk̄ .

Proof One may assume that 0 ∈A, and it suffices to show the lemma in a neighbor-
hood of 0 ∈A. Suppose that dim0 A= l. It follows from Theorem 2.2.3 (iii) that the
coordinate system (z1, . . . , zm) is chosen to satisfy the property: For arbitrary l coor-
dinates zν1, . . . , zνl and the others zνl+1 , . . . , zνm there are neighborhoods U1 and U2
of the origins of the (zν1 , . . . , zνl )-space and the (zνl+1 , . . . , zνm)-space, respectively
such that the projection

p : (zj ) ∈
{
(zj ) ∈A; (zν1 , . . . , zνl ) ∈U1, (zνl+1 , . . . , zνm) ∈U2

}

→ (zν1 , . . . , zνl ) ∈U1
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satisfies Theorem 2.2.3 (i), (ii). By Theorem 2.1.27 (i) Tjk̄ is absolutely continu-
ous with respect to

∑
j Tj j̄ . Therefore it is sufficient to prove that Tjj̄ (A ∩ (U1 ×

U2))= 0, 1 � j � m. For instance, let j =m. Then there are neighborhoods V1 of
0 ∈Cm−1 and V2 of 0 ∈C such that

q : (z1, . . . , zm−1, zm) ∈ (V1 × V2)∩A→ (z1, . . . , zm−1) ∈ V1

is proper and finite. By ϕ being plurisubharmonic and the definition we have

Tmm̄
(
(V1 × V2)∩A

)
(2.2.13)

=
∫

(V1×V2)∩A
∂2[ϕ]
∂zm∂z̄m

m∧

j=1

i

2
dzj ∧ dz̄j

=
∫

q(A)

m−1∧

j=1

i

2
dzj ∧ dz̄j

∫

V2

∂2[ϕ(·, zm)]
∂zm∂z̄m

i

2
dzm ∧ dz̄m.

It follows from Fubini’s theorem that for z′ = (z1, . . . , zm−1)

z′ ∈ V1 →
∫

V2

∂2[ϕ(z′, zm)]
∂zm∂z̄m

� 0

is an integrable function on V1. By Theorem 2.2.4 q(A) is an analytic subset of V1

of dimension at most l (�m− 1). Lemma 2.2.9 (i) implies that q(A) is of Lebesgue
measure zero in V1. Thus (2.2.13) implies that Tmm̄((V1 × V2)∩A)= 0. �

Let M be a complex manifold of dimension m. It is clear that Theorem 2.2.11
and Lemma 2.2.12 hold generally on M .

Let {Aλ} be a locally finite family of hypersurfaces of M . The formal sum

∑

λ

kλAλ

with integral coefficients kλ ∈ Z is called a divisor, and the Z-module generated by
them is called the divisor group. For a given divisor D on M there are uniquely
distinct irreducible hypersurfaces Dλ of M and kλ ∈ Z \ {0} such that D =∑

kλDλ

(the irreducible decomposition). Each Dλ is called an irreducible component of D.
The hypersurface SuppD = ⋃

Dλ is called the support of D. If D = ∑
λ kλAλ

with kλ � 0, D is called an effective divisor, and written as D � 0. If there is no
confusion, the notation D may be used for SuppD. For two divisors D,D′ we write
D �D′ if D −D′ � 0.

Let D =∑
kλDλ be the irreducible decomposition of a divisor D. If all kλ = 1,

then D is called a reduced divisor.
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Let f be a holomorphic function on M . Then a hypersurface A = {f = 0} is
defined. Let A =⋃

λ Aλ be the irreducible decomposition. The zero degree mλ of
f at a point x of every R(Aλ) \ S(A) is naturally defined, independently from the
choice of x because R(Aλ) \ S(A) is connected. Thus a divisor

(f )=
∑

mλAλ

is determined by f .
A meromorphic function f on M is a function locally expressed by the ratio

f = g/h of two holomorphic functions g,h with h �≡ 0. Then the divisor (f ) lo-
cally expressed by (g)− (h) is defined globally on M . Let (f )=∑

λ mλDλ be the
irreducible decomposition and set

(f )0 =
∑

mλ>0

mλDλ, (f )∞ =
∑

mλ<0

−mλDλ.

Then (f )0 is called the zero divisor of f and (f )∞ is called the polar divisor of f .
Every divisor is locally expressed by the divisor of a meromorphic function; for

some special M there exists a global expression.

Theorem 2.2.14 If M is biholomorphic to Cm or B(r), then for a divisor D on M ,
there exists a meromorphic function (f ) on M such that (f )=D.

As for Hartogs extension (cf. Theorem 2.2.7 (ii)) we have the following.

Theorem 2.2.15 Let E ⊂M be an analytic subset which has a codimension of at
least two everywhere. Then every meromorphic function on M \ E extends mero-
morphically over M .

Proof This is a local property, so that M is assumed to be an open ball of Cm.
Let f be a meromorphic function on M \E. Then the support of the polar divisor
(f )∞ of f extends uniquely to an analytic subset of M by Theorem 2.2.5. There-
fore, (f )∞ is an effective divisor on M . By Theorem 2.2.14 there is a holomorphic
function g on M such that (g)= (f )∞, so that gf is holomorphic in M \E. Then
Theorem 2.2.7 (ii) implies that gf extends holomorphically to a holomorphic func-
tion h on M . Thus, f = h/g is meromorphic on M . �

Let D =∑
kλAλ be a divisor on M . For a 2m− 2 form η on M whose coeffi-

cients are locally bounded Borel-measurable functions and whose support is com-
pact, a current by integration

D(η)=
∫

D

η=
∑

λ

kλ

∫

Aλ

η

is defined.
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Theorem 2.2.16 (Poincaré–Lelong formula) Let f �≡ 0 be a meromorphic function
on M and let η be a 2m− 2 form of C2-class on M with compact support. Then,

∫

(f )

η=
∫

M

log |f |2ddcη=
∫

M

ddc
[
log |f |2]∧ η.

Here ddc is taken in the sense of currents. That is, as currents,

ddc
[
log |f |2]= (f ).

Proof The given formula trivially holds outside Supp(f ). It suffices to show it lo-
cally in a neighborhood of every point of Supp(f ). Hence one may assume that f
is holomorphic. Note that log |f |2 (�≡−∞) is a plurisubharmonic function. The di-
mension of the set S of singular points of Supp(f ) is at most m− 2. It follows from
Theorem 2.2.11 and Lemma 2.2.12 that S is a measure-zero set with respect to the
currents of both sides of the formula. Therefore it is sufficient to show

∫

(f )\S
η=

∫

M\S
log |f |2ddcη (S ∩ Suppη= ∅).

Take an arbitrary point a ∈ Supp(f ) \ S. Choosing a sufficiently small neighbor-
hood W of a, we have W ∩ S = ∅ and a coordinate system (w1, . . . ,wm) in W such
that

(i) Supp(f )∩W = {w1 = 0},
(ii) f (w)= (w1)

kh(w) and h(w) �= 0, ∀w ∈W ,
(iii) Suppη⊂W .

It is immediate that
∫
M

log |h|2ddcη= ∫
M
ddc log |h|2 ∧ η= 0. We get

∫

M

log |f |2ddcη=
∫

M

log |w1|2kddcη
(2.2.17)

= lim
ε→0

(
−2k log ε

∫

|w1|=ε
dcη− k

∫

|w1|�ε

d log |w1|2 ∧ dcη

)
.

Since
∫
|w1|=ε d

cη=O(ε), the first term of the right-hand side of (2.2.17) converges
to 0. We calculate the second term:

−k
∫

|w1|�ε

d log |w1|2 ∧ dcη= k

∫

{|w1|�ε}
dc log |w1|2 ∧ dη

=−k
∫

{|w1|�ε}
d
(
dc log |w1|2 ∧ η

)

= k

∫

{|w1|=ε}
dc log |w1|2 ∧ η

= k

∫

{|w1|=ε}
1

2π
d(argw1)∧ η

(continued)
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→ k

∫

{w1=0}
η (ε→ 0).

Hence, this combined with (2.2.17) implies the required identity. �

It follows from Theorem 2.2.16 that the integration over D defines naturally a
current with coefficients in Radon measures (Lelong [68]; Noguchi–Ochiai [90]
(Ochiai–Noguchi [84])).

Let M = Cm. Let D be an effective divisor on Cm with the irreducible decom-
position D =∑

λ kλDλ. For 1 � k �∞ the truncated counting functions to level k
are defined by

nk(t,D)= 1

t2m−2

∫

B(t)∩(∑λ min{k,kλ}Dλ)

αm−1,

Nk(r,D)=
∫ r

1

nk(t,D)

t
dt, r > 1,(2.2.18)

n(t,D)= n∞(t,D), N(r,D)=N∞(r,D).

In particular, n(t,D) and N(r,D) are simply called the counting functions.

Theorem 2.2.19 Let D be an effective divisor on Cm. Then nk(t,D) is increasing
in t > 0.

Proof If we reconsider D to be
∑

λ min{k, kλ}Dλ in (2.2.18), we may take k =∞.
By Theorem 2.2.14 there is a holomorphic function f on Cm such that (f )=D and
ddc[log |f |2] =D. Therefore we see by Lemma 2.1.31 that n(t,D) is increasing in
t > 0. �

2.3 The First Main Theorem

2.3.1 Meromorphic Mappings, Divisors and Line Bundles

Let M and N be complex spaces (cf. Convention (xvi)). A meromorphic mapping
f :M→N from M into N is a correspondence such that for a point x ∈M a subset
f (x) ⊂ N is assigned and the graph Γ (f ) = {(x, f (x));x ∈M} ⊂M × N forms
an irreducible analytic subset and satisfies the following:

(i) The first projection p : Γ (f )→M is proper.
(ii) There is a nowhere dense analytic subset S ⊂ M such that the restriction

p|Γ (f )\p−1S : Γ (f ) \ p−1S→M \ S is biholomorphic.

Therefore the restriction f |M\S :M \ S→ N is a holomorphic mapping. The
set I (f ) of points x ∈M with f (x) containing more than one point is called the
indeterminacy locus of f .
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Theorem 2.3.1 Let f :M → N be a meromorphic mapping. Assume that M is
non-singular. Then I (f ) is an analytic subset of codimension � 2 and f is holo-
morphic on M \ I (f ).

Proof Note that for every x ∈M , p−1x is connected. Set

Z = {
z ∈ Γ (f );dimz p

−1p(x)� 1
}
.

Then Z is an analytic subset, dimZ < dimΓ (f ) = dimM , and p(Z) = I (f ).
By definition p(Z) < dimZ, and hence codim I (f ) � 2. Let x /∈ I (f ). Then
p−1(x) = {(x, y)} ∈ Γ (f ) is a point set. By Theorem 2.2.3 there are a holomor-
phic local coordinate neighborhood (V , (y1, . . . , yn)), |yj | < 1 of y ∈ N , a neigh-
borhood U of x ∈ M , and a proper analytic subset S ⊂ U such that f (U) ⊂ V ,
f |(U \ S) is represented by holomorphic functions fj (x) ∈ Δ(1). It follows from
Theorem 2.2.6 (i) that fj (x) are holomorphic functions on U . Thus f |U is a holo-
morphic mapping. �

Remark 2.3.2 The above theorem holds if M is a normal complex space. For a
holomorphic function which is defined outside an analytic subset Z of codimension
� 2 in a normal complex space extends holomorphically over Z; the same exten-
sion holds for plurisubharmonic functions in a normal complex space (Grauert–
Remmert [56]).

Corollary 2.3.3 If M is a Riemann surface, then a meromorphic mapping
f :M→N is necessarily holomorphic.

Remark 2.3.4 There is a one-to-one correspondence between non-constant mero-
morphic functions and non-constant meromorphic mappings to P1(C).

Definition 2.3.5 A meromorphic mapping f :M → N is said to be analytically
degenerate, if the image f (M) is contained in a proper analytic subset of N ; other-
wise, f is said to be analytically non-degenerate. When N is contained in an projec-
tive algebraic manifold, we similarly define f to be algebraically (non-)degenerate
by using algebraic subsets in place of analytic subsets.

Remark 2.3.6 If N is projective algebraic, by Theorem 2.2.8 the analytic degener-
acy is the same as the algebraic degeneracy. If N is an open subset of a projective
algebraic variety, the two notions are different.

Let f :M→N be a meromorphic mapping. Let A⊂N be a hypersurface which
is Cartier; that is, it is locally defined as zero locus of a single holomorphic function.
Assume that f (M) �⊂ A. Unless (f |M\I (f ))−1A is empty, it is a hypersurface of
M \ I (f ). By Theorem 2.2.5 the closure of (f |M\I (f ))−1A is a hypersurface, and is
denoted by f−1A, which is called the pull-back of A by f . Therefore the pull-back
(f |M\I (f ))∗A as divisor, extends uniquely to a divisor f ∗A on M .
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On singular N we only deal with Cartier divisors defined as follows. Let N =⋃
α Uα be an open covering and let φα be a meromorphic function on each Uα .

We assume that φα/φβ restricted to Uα ∩ Uβ is a holomorphic function without
zero for every α and β . Let N =⋃

Vλ and {ψλ} be another such family. We say
that {φα} and {ψλ} are equivalent if there is a refinement {Wν} of {Uα} and {Vλ}
such that φα(ν)/ψλ(ν) restricted to Wν is holomorphic and zero free for every ν. The
equivalence class D = [{φα}] is called a Cartier divisor on N . The restriction D|U
to an open subset U ⊂N is naturally defined.

Let M be non-singular. Let f :M→ N be a meromorphic mapping, and let D
be a Cartier divisor on N . Assume that D has a representation φα = φ1α/φ2α
such that φ2α ◦ f |M\I (f ) does not vanish identically on any open subset where
they are defined. Then the pull-back (f |M\I (f ))∗D by f |M\I (f ) is defined as a
divisor on M \ I (f ). Then the support Supp(f |M\I (f ))∗D is a hypersurface of
M \ I (f ). Since codim I (f ) � 2, it follows from Theorem 2.2.5 that the clo-
sure of Supp(f |M\I (f ))∗D in M is a hypersurface of M , and hence the divisor
(f |M\I (f ))∗D has a unique extension as divisor over M , which is denoted by f ∗D.

For a holomorphic function ψ on N (f |M\I (f ))∗ψ is a holomorphic function on
M \ I (f ). Since codim I (f ) � 2, Theorem 2.2.6 (ii) implies that it uniquely ex-
tends to a holomorphic function on M denoted by f ∗ψ . Let φ be a meromorphic
function on N with local representations φ|Uα = φ1α/φ2α , with an open covering
N =⋃

α Uα . Assume that φ2α ◦ f |N\I (f ) does not vanish identically on any open
subset where they are defined. Then (f |M\I (f ))∗φ is a meromorphic function on
M \ I (f ). Then we have a divisor f ∗(ψ) on M as above and so there is a holo-
morphic function g in a neighborhood U of an arbitrary point x ∈ M such that
(g) + f ∗(ψ)|U is effective. Thus g · (f |U\I (f ))∗ψ is holomorphic and by The-
orem 2.2.6 (ii) extends to a holomorphic function h on U . Hence the pull-back
meromorphic function f ∗ψ is defined locally by h

g
on U . For a plurisubharmonic

function on N its pull-back by f is defined as well by Theorem 2.2.7.

Example 2.3.7 Let M =Cm, N = Pn(C), and let f :Cm→ Pn(C) be a meromor-
phic mapping. Let [w0, . . . ,wn] be a homogeneous coordinate system of Pn(C).
The hyperplane {wj = 0} is itself an effective divisor. There is an index j with
f (Cm) �⊂ {wj = 0}. Changing the indices, we may assume without loss of generality
that f (Cm) �⊂ {w0 = 0}. For the pull-back f ∗{w0 = 0} as divisor, Theorem 2.2.14
implies the existence of an entire function f0 on Cm such that (f0)= f ∗{w0 = 0}.
As wj/w0 is a meromorphic function on Pn(C), the pull-back f ∗(wj/w0) is a
meromorphic function on Cm, and fj = f0 · f ∗(wj/w0) is holomorphic. By the
construction we have

codim{f0 = · · · = fn = 0}� 2, I (f )= {f0 = · · · = fn = 0}.
We represent f = [f0, . . . , fn], which is called the reduced representation.

Let L be a complex space and let π : L→ N be a surjective holomorphic map-
ping. If the following three conditions are satisfied, the triple (L,π,N) or simply L

is called a holomorphic line bundle (or simply a line bundle) over N :



2.3 The First Main Theorem 53

Condition 2.3.8 (i) There is an open covering {Vλ}λ∈Λ of N such that the restric-
tion L|Vλ = π−1(Vλ) admits a biholomorphic mapping φλ : L|V λ→ Vλ ×C.

(ii) Whenever Vλ ∩Vμ �= ∅, there is a holomorphic function φλμ without zero on
Vλ ∩ Vμ such that

φλ ◦ φ−1
μ |(Vλ∩Vμ)×C : (x, ξμ) ∈ (Vλ ∩ Vμ)×C

−→(
x,φλμ(x)ξμ

) ∈ (Vμ ∩ Vλ)×C.

(iii) If λ= μ, φλλ = 1.

In this case {Vλ} is called a local trivialization covering of L and {φλμ} is called
the transition function system.

At every x ∈ N the inverse image Lx = π−1(x) is a one-dimensional complex
vector space. For yi ∈ Lx , ci ∈C, i = 1,2 the natural operation as vector space

c1y1 + c2y2 ∈ Lx

is defined by Condition 2.3.8 (ii).
A mapping σ :W → L from a subset W ⊂N into L satisfying π ◦ σ = idW , is

called a section of L over W . In particular, when W is open, we denote the set of
holomorphic sections of L over W by H 0(W,L), which naturally forms a complex
vector space. We denote by O(L) the sheaf of germs of holomorphic sections of L.

The transition function system {φλμ} in Condition 2.3.8 (ii) satisfies the so-called
cocycle condition:

φλλ = 1,

φλμφμλ = 1 (on Vλ ∩ Vμ),(2.3.9)

φλμφμνφνλ = 1 (on Vλ ∩ Vμ ∩ Vν).
On the other hand, suppose that we are given a system {φλμ} of holomorphic

functions satisfying the cocycle condition (2.3.9). Then we may construct as follows
a holomorphic line bundle over N whose transition function system is {φλμ}. First
we consider the disjoint union �λ∈ΛVλ ×C of topological spaces. We introduce an
equivalence relation ∼ for two elements (xλ, ξλ), (xμ, ξμ) by

xλ = xμ ∈N, ξλ = φλμ(xμ)ξμ.

The quotient space L= (�λ∈ΛVλ ×C)/∼ constitutes a complex space, as is easily
checked, and the mapping π : L→ N projecting an equivalence class [(xλ, ξλ)] to
xλ ∈N is a holomorphic surjection. It is easily checked that this is what was desired.

Let W ⊂ N be an open subset and let S ⊂ W be an analytic subset which is
nowhere dense in W . Let σ :W \ S→ L be a holomorphic section. On an arbitrary
Vλ ∩W we represent φλ(σ (x))= (x, σλ(x)) ∈ Vλ × C. If σλ(x) is a meromorphic
function on Vλ ∩W , then σ is called a meromorphic section of L on W . Since the
transition functions have no zero, a meromorphic section σ :W → L (we write it in
this way) defines a Cartier divisor (σ ) on W . In particular, when W =N , a Cartier
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divisor (σ ) on N is obtained. It is equivalent for σ to be a holomorphic section that
(σ )� 0.

Conversely, let a Cartier divisor D on N be given. We take an open covering
{Vλ} of N such that there exist meromorphic functions σλ on Vλ defining D|Vλ .
Then σλ/σμ has no zero on Vλ ∩ Vμ. Put φλμ = σλ/σμ. Then these are holomor-
phic functions on Vλ ∩Vμ without zero, which satisfy the cocycle condition (2.3.9).
Thus a holomorphic line bundle L(D) is obtained as above. By the construction
L(D)|Vλ = Vλ × C and {φλμ} is the transition function system. Setting locally
x ∈ Vλ→ (x, σλ(x)), we obtain a meromorphic section σ on N satisfying (σ )=D.

In the present book we deal only with holomorphic line bundles, which we call
simply line bundles.

Let πi : Li →N , i = 1,2 be two line bundles over N . If there is a biholomorphic
mapping ψ : L1 → L2 such that π1 = π2 ◦ ψ and ψ |L1x : L1x → L2x (x ∈ N ) is
a linear isomorphism, ψ : L1 → L2 is called an isomorphism, and L1 is said to be
isomorphic to L2. We identify isomorphic line bundles with each other. The line
bundle 1N =N ×C is called a trivial line bundle. A line bundle L→N is trivial if
and only if there exists a holomorphic section on N without zero.

Take a local trivialization covering of both L1 and L2. Let {φiλμ} be the transition
function system of Li . The product {φ1λμ ·φ2λμ} yields a line bundle L3 →N . This
is called the tensor product of L1 and L2 and is denoted by L1⊗L2.

The line bundle given by {φ−1
1λμ} is denoted by L−1

1 . Then L1⊗L−1
1 = 1N . We set

Lk
1 = L1⊗· · ·⊗L1 (k-times, k � 0),

Lk
1 = L−1

1 ⊗· · ·⊗L−1
1

(|k|-times, k < 0
)
.

For two given divisors Di , i = 1,2 on N ,

L(D1 +D2)= L(D1)⊗L(D2).

Assume for a moment that N is non-singular. Let {Vλ(xλ1, . . . , xλn)}λ∈Λ be
a covering of holomorphic local coordinate neighborhood system of N . For
Vλ ∩ Vμ �= ∅ we consider the following transition of holomorphic forms:

dxλ1 ∧ · · · ∧ dxλn = κμλ(x)dxμ1 ∧ · · · ∧ dxμn,

κμλ = ∂(xλ1, . . . , xλn)

∂(xμ1, . . . , xμn)
(Jacobian).

Since {κλμ} satisfies the cocycle condition (2.3.9), a line bundle KN over N is ob-
tained from it, and KN is called the canonical bundle over N . Meromorphic sections
of KN are identified with meromorphic n-forms.

2.3.2 Differentiable Functions on Complex Spaces

Here we have to be precise on the definition of C∞ functions on a singular com-
plex space N . There have been more than one such definitions, but here we follow
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Fujiki [78a]. Since it is a local notion, we restrict ourselves for a moment to the
case where N is an analytic subset of an open set Ω ⊂ Cn. Let I 〈N〉 be the ideal
sheaf of N in the structure sheaf OΩ of holomorphic functions over Ω . The quotient
ON = OΩ/I 〈N〉 is called the structure sheaf (of holomorphic functions) over N .
Since I 〈N〉 is coherent3 and we are concerned here only with a local property, we
may assume that there are finitely many holomorphic functions,

2.3.10 τ1, . . . , τl ∈ Γ (Ω,I 〈N〉) over Ω , generating I 〈N〉x at every point x ∈Ω .

Let EΩ denote the sheaf of germs of complex-valued C∞ functions over Ω . We
denote by E I 〈N〉 the sheaf of ideals of EΩ generated by τj and τ̄j , 1 � j � l,
over EΩ ; that is,

(2.3.11) E I 〈N〉 =
l∑

j=1

(EΩτj + EΩτ̄j )=
l∑

j=1

(EΩ�τj + EΩ�τj ).

Then we have that I 〈N〉 ⊂ E I 〈N〉 ⊂ EΩ . We define the sheaf of germs of C∞
functions over N by the quotient

(2.3.12) EN = EΩ/E I 〈N〉.
Because of the definition, EN is well-defined for a complex space N . It is clear

that EN is a sheaf of rings with unit 1. A section φ of EN over an open subset U ⊂N

is called a differentiable or C∞ function on U , and it uniquely defines a continuous
function

φ :U→C.

If φ(x0) �= 0, then in a neighborhood of x0, φ is invertible; this is seen as follows.
Since it is a local problem, we let N ⊂ Ω ⊂ Cn and τj be as in 2.3.10. Let φ be
represented by φ̃, φ̃′ ∈ Γ (Ω,EΩ) satisfying

φ̃ = φ̃′ +
l∑

j=1

(aj τj + bj τ̄j ).

Taking a′j = aj /φ̃
′ and b′j = bj /φ̃

′, one gets

φ̃ = φ̃′
(

1+
l∑

j=1

(
a′j τj + b′j τ̄j

)
)

.

3K. Oka, in [Iw] VII, [50] and [51], proved three fundamental coherence theorems for (i) OΩ ,
(ii) I 〈N〉, and (iii) the normalization of ON . Cf. H. Cartan [50] for another proof of the coherence
of I 〈N〉, and Grauert–Remmert [84]. K. Oka called I 〈N〉 the geometric ideal sheaf (l’idéal
géométrique de domaines indéterminés). It is interesting to see the comments in Oka [Sp] and
Cartan [79].
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We may assume that

l∑

j=1

∣∣a′j τj
∣∣<

1

2
,

l∑

j=1

∣∣b′j τj
∣∣<

1

2
.

Then |∑l
j=1(a

′
j τj + b′j τ̄j )|< 1, and we have

1

φ̃
= 1

φ̃′
· 1

1+∑l
j=1(a

′
j τj + b′j τ̄j )

= 1

φ̃′
+

∞∑

k=1

(−1)k
(

l∑

j=1

(
a′j τj + b′j τ̄j

)
)k

= 1

φ̃′
+

∞∑

k=1

(−1)k
(

l∑

j=1

(
a′j τj + b′j τ̄j

)
)k

.

The second term above is written as an absolute convergent power series in a′j τj ,
b′j τ̄j without constant term. Therefore there are C∞ functions a′′j , b′′j in Ω such that

(2.3.13)
1

φ̃
= 1

φ̃′
+

l∑

j=1

(
a′′j τj + b′′j τ̄j

)
.

Thus 1
φ̃

and 1
φ̃′ define the same section 1

φ
∈ Γ (N,EN) such that φ · 1

φ
= 1.

We then define the tangent space over N . This is again a local object, so that
we let N ⊂Ω ⊂Cn and τj be as above (cf. 2.3.10). Let (x1, . . . , xn) be the natural
coordinate system of Cn. Let X =∑n

i=1 X
i ∂
∂xi

be a holomorphic tangent vector of
T(Ω) at x ∈N . We define

(2.3.14) T(N)x =
{

(x,X);X(τj )=
n∑

i=1

Xi ∂τj

∂xi
(x)= 0,1 � j � lλ

}

.

This yields an analytic subset

T(N)=
⋃

x∈N
T(N)x ⊂N ×Cn

with the natural projection π : T(N)→ N , the fibers of which are vector spaces.
We call T(N) the holomorphic tangent space over N . Because of the coherence
of I 〈N〉 it is easy to see that the definition of T(N) is compatible with the
change of coordinates (i.e., the embedding into Ω), so that for a general complex
space N the holomorphic tangent space T(N) is defined with the natural projection
π : T(N)→N , the fibers of which are vector spaces.
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In terms of (2.3.14) we set

T̄(N)=
{

Y =
n∑

j=1

Y j ∂

∂x̄j
;Y j ∈C, Ȳ =

n∑

j=1

Ȳ j ∂

∂xj
∈ T(N)

}

,

T (N)= T(N)⊕ T̄(N).

(2.3.15)

We call T̄(N) the anti-holomorphic tangent space over N , and T (N) the tangent
space over N .

Let φ ∈ Γ (U,EN) be a C∞ function over an open subset U of a complex
space N . We want to define the differential dφ(X) for a tangent vector X ∈ T(N)|U .
There is locally a C∞ function φ̃ ∈ Γ (Ω,EΩ) which represents φ on U . If we take
another φ̃′ ∈ Γ (Ω,EΩ), then there are C∞ functions aj , bj on Ω such that

(2.3.16) φ̃ = φ̃′ +
l∑

j=1

(aj τj + bj τ̄j ).

For the differentials we get

∂φ̃ = ∂φ̃′ +
l∑

j=1

(τj ∂aj + aj ∂τj + τ̄j ∂bj ),

∂̄φ̃ = ∂̄ φ̃′ +
l∑

j=1

(τj ∂̄aj + bj ∂̄τ̄j + τ̄j ∂̄bj ).

(2.3.17)

It follows from (2.3.14) that for X ∈ T(N)x (x ∈N),

∂φ̃(X)= ∂φ̃′(X), ∂̄φ̃(X̄)= ∂̄ φ̃′(X̄).

Thus ∂φ : T(N)→C and ∂̄φ : T̄(N)→C are well-defined, and we have the differ-
ential of φ:

dφ = ∂φ ⊕ ∂̄φ : T (N)= T(N)⊕ T̄(N)→C.

From the second equation of (2.3.17) it follows that

∂∂̄φ̃ = ∂∂̄φ̃′ +
l∑

j=1

(∂τj ∧ ∂̄aj + τj ∂∂̄aj + ∂bj ∧ ∂̄ τ̄j + τ̄j ∂∂̄bj ).

Therefore we can define the Levi-form of ∂∂̄φ along with the real form i
2∂∂̄φ by

(2.3.18) ∂∂̄φ(X, Ȳ )= ∂∂̄φ̃(X, Ȳ )= ∂∂̄φ̃′(X, Ȳ ), X,Y ∈ T(N).
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2.3.3 Metrics and Curvature Forms of Line Bundles

Let L→ N be a line bundle over a complex space N . Let N =⋃
λ Vλ be an open

covering such that there is a transition function system {φλμ} of L. A hermitian met-
ric in L is a family h= {hλ} of positive real-valued C∞ functions hλ ∈ Γ (Vλ,EN)
satisfying

(2.3.19) hλ(x)=
∣∣φλμ(x)

∣∣2
hμ(x), x ∈ Vλ ∩ Vμ.

The line bundle L endowed with h is called a hermitian line bundle and is denoted
by the pair (L,h); we sometimes write simply L for a hermitian line bundle when
there is no confusion. We take a local trivialization

L|Vλ ∼= Vλ ×C.

For v = (x, ξλ) ∈ Vλ ×C⊂ L we set the norm of v with respect to h by

‖v‖ = |ξλ|√
hλ(x)

.

Then this is independent of the choice of Vλ. The norm function ‖v‖ is also called
a hermitian metric in L.

If N is paracompact, we may construct such a hermitian metric in every line
bundle L over N . In fact, let {Vλ} and {φλμ} be as above. We may assume that {Vλ}
is locally finite. Taking a partition {cλ} of unity subordinated to {Vλ}, we set C∞
functions on Vλ by cν(x) log |φλν(x)|2 extending as 0 on Vλ \ Vν , and set

hλ(x)= exp

{∑

ν

cν(x) log
∣∣φλν(x)

∣∣2
}
, x ∈ Vλ.

It follows from the cocycle condition (2.3.9) that

(2.3.20) hλ = |φλμ|2hμ (on Vλ ∩ Vμ �= ∅).
Going back to (2.3.19), we want to define the Levi-form ∂∂̄ loghλ. As in (2.3.16),

let hλ and h′λ be C∞ functions such that

h̃λ = h̃′λ +
l∑

j=1

(aλj τλj + bλj τ̄λj ),

where aλj and bλj are C∞ functions on Ωλ into which Vλ is embedded, and τλj are
generators of I 〈N〉|Vλ . Since h′λ is positive valued, we have

h̃λ = h̃′λ ·
(

1+
l∑

j=1

(
a′λj τλj + b′λj τ̄λj

)
)

,
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where a′λj = aλj /h
′
λ and b′λj = bλj /h

′
λ. Since τλj vanish on Vλ, we may assume that

∑l
j=1 |a′λj τλj |< 1

2 and
∑l

j=1 |b′λj τ̄λj |< 1
2 . By making use of the power expansion

log(1+ t)=∑∞
k=1

(−1)k−1

k
tk (|t |< 1), we deduce in the same way as in (2.3.13) that

log h̃λ = log h̃′λ +
l∑

j=1

(
a′′λj τλj + b′′λj τ̄λj

)
,

where a′′λj and b′′λj are C∞ functions. Hence the Levi-form Θλ = ∂∂̄ loghλ of loghλ
is well-defined, and (2.3.19) implies

Θλ(x)=Θμ(x), x ∈ Vλ ∩ Vμ.
The curvature form Θ(L,h) of the hermitian line bundle (L,h) is globally defined by

Θ(V,h)|Vλ(X, Ȳ )=Θλ(X, Ȳ ), X,Y ∈ T(N)|Vλ,
and the real form

ω(L,h) = i

2π
Θ(L,h) = ddc loghλ in Vλ

is called the Chern form of (L,h); here we recall

dc = i

4π
(∂̄ − ∂).

When it is not necessary to specify the hermitian metric h, we write ωL for ω(L,h).
Let ĥ be another hermitian metric in L. After taking a refinement {Vλ} of open cover-
ings of N , we have h= {hλ} and ĥ= {ĥλ}, so that hλ(x)/ĥλ(x) is globally defined,
independently from the choice Vλ � x. Thus there is a C∞ function b on N such that

(2.3.21) ω(L,h) = ω
(L,ĥ)

+ ddcb.

If N is non-singular, the Chern form ω(L,h) defines a cohomology class c1(L)=
[ωL] ∈ H 2(N,R), which is independent of the choice of the hermitian metric
by (2.3.21) and is called the Chern class of L.

If ω(L,h) is positive (resp. semi-)definite at all points of N , we write ω(L,h) > 0
(resp. ω(L,h) � 0). We write L> 0 (resp. L� 0) if there exists a hermitian metric h
in L with Chern form ω(L,h) > 0 (resp. ω(L,h) � 0); in this case we say that L is
positive (resp. semi-positive). If N is non-singular and L > 0, ωL defines a Kähler
metric on N .

Let σi (1 � i � p) and σ ′j (1 � j � q) be holomorphic sections of L overN (may
be singular) and let {Vλ} be as above. On each Vλ they are given by holomorphic
functions σiλ (1 � i � p) and σ ′jλ (1 � j � q). Assume that

∑
j |σ ′jλ|2 �≡ 0. For

x ∈N we take Vλ � x and set

(2.3.22)

∑
i |σi(x)|2∑
j |σ ′j (x)|2

=
∑

i |σiλ(x)|2∑
j |σ ′jλ(x)|2

.
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This is independent of the choice of Vλ � x, and defines a function on N outside
where the denominator vanishes.

Assume that dimH 0(N,L)�2 and take linearly independent elements σ0, . . . , σn
of H 0(N,L). Then we get a meromorphic mapping

Φ : x ∈N→ [
σ0(x), . . . , σn(x)

] ∈ Pn(C).

Note that this is not necessarily reduced representation. If dimH 0(N,L) <∞ and
{σi} is a base of H 0(N,L), we write for the above Φ

(2.3.23) ΦL :N→ Pn(C).

Let S(N) denote the set of singular points of N . Then S(N) is a nowhere dense
analytic subset of N . Let N be compact. If the meromorphic mapping ΦLl : N →
Pnl (C) (nl = dimH 0(N,Kl

N)− 1) for some l has the differential dΦKl
Nx

of rank
equal to dimN at some point x ∈ N \ I (ΦKl

N
) ∪ S(N), L is said to be big. If N is

non-singular and KN is big, N is said to be of general type.
If ΦL gives rise to a holomorphic embedding, L is said to be very ample. If there

is a number k ∈N with very ample Lk , L is said to be ample.
Going back to Example 2.3.7, we denote by H → Pn(C) the line bundle deter-

mined by the transition function system {φjk = wk

wj
} associated to the affine open

covering, Pn(C)=⋃n
j=0 Uj with Uj = {wj �= 0}. We call H the hyperplane bundle

over Pn(C). Then the functions

(2.3.24) ρj = 1+
∑

i �=j

|wi |2
|wj |2

on Ui define a hermitian metric in H with the curvature form ωH > 0. That is,
H > 0. The Kähler metric hH is called the Fubini–Study metric. The associated
Kähler form ωH is called the Fubini–Study metric form on Pn(C).

Let f : Cm → Pn(C) be a meromorphic mapping with reduced representation
f = [f0, . . . , fn]. The pull-back of ωH by f is written as

(2.3.25) f ∗ωH = i

2π
f ∗∂∂̄ logρj = i

2π
∂∂̄ log

(
n∑

i=0

|fi |2
)

.

The function log(
∑n

i=0 |fi |2) is a plurisubharmonic function on Cm.
Let N be a complex projective algebraic variety with a holomorphic embedding

Ψ :N ↪→ Pn(C). The pull-back Ψ ∗H is a positive line bundle and a meromorphic
mapping into Pn(C) given by n+ 1 linearly independent sections of H 0(N,Ψ ∗H)

coincides with Φ . The next theorem gives the converse for it; the non-singular case
is due to Kodaira [54], [74] (cf. Nakano [81] for a further generalization).

Theorem 2.3.26 (Grauert [62]) Let N be a compact complex space and let L→N

be a positive line bundle over N .
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(i) Let I →N be a coherent sheaf over a compact complex space N . Then there
is a number l0 such that Hq(N,I⊗O(Ll))= 0, l � l0, q � 1.

(ii) Let E → N be a line bundle over N . Then there is a number l0 such that
for every l � l0 the meromorphic mapping ΦLl⊗E : N → Pnl−1(C) with nl =
dimH 0(N,Ll⊗E) is a holomorphic embedding, and hence N is projective al-
gebraic.

A divisor D on N defines a line bundle L(D). If L(D) satisfies the above prop-
erty (ii), D is said to be ample; hence, D is ample iff L(D) is positive. If the holo-
morphic sections of L(D) over N give a holomorphic embedding into a projective
space, D is said to be very ample.

Let N be a compact complex space. Take a vector subspace E ⊂ H 0(N,L),
dimE = l + 1 � 2. For the divisor (σ ) given by σ ∈ E \ {0} and for c ∈ C∗
(cσ )= (σ ) holds clearly. Conversely, if σ, τ ∈E\{0} satisfy (σ )= (τ ), then σ = cτ

for some c ∈C∗. Therefore we have the following isomorphism:

{
(σ );σ ∈E \ {0}}∼= (

E \ {0})/C∗ = P(E)∼= Pl (C).

The space P(E) is called a linear system of D, and in particular, when E =
H 0(N,L), it is called the complete linear system of L denoted by |L|. The ana-
lytic subset B(E)= {x ∈N;σ(x)= 0, ∀σ ∈E} is called the base locus of E.

In what follows we assume N to be projective algebraic unless otherwise men-
tioned. For any line bundle L over N there are by Theorem 2.3.26 very ample line
bundles Li , i = 1,2, such that L = L1⊗L−1

2 . By making use of the Chern forms
ωLi

> 0 of Li we obtain

ωL = ωL1 −ωL2 .

Noting (2.3.25), we see the following.

Lemma 2.3.27 Let N,L be as above. Let f : Cm → N be a meromorphic map-
ping. Then there are plurisubharmonic functions ξi , i = 1,2 on Cm such that

f ∗ωL = ddcξ1 − ddcξ2.

Let L→N be a line bundle with a hermitian metric ‖ ·‖. For an element D ∈ |L|
we take and fix a holomorphic section σ ∈ H 0(N,L) \ {0} such that (σ ) =D and
‖σ‖� 1. The next follows from the Poincaré–Lelong Theorem 2.2.16.

Lemma 2.3.28 Let ‖σ‖ and ωL be as above. Let U ⊂ Cm be an open subset and
let f :Cm→N be a meromorphic mapping such that the pull-back f ∗D is defined.
Then we have a current equation on U :

ddc
[

log
1

‖σ ◦ f (z)‖2

]
= f ∗ωL − f ∗D.
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Theorem 2.3.29 (Poincaré duality) Let N be a compact complex manifold of di-
mension n. Let L→N be a hermitian line bundle and let D ∈ |L|. Then

∫

D

η=
∫

N

ωL ∧ η

for all d-closed (n− 1, n− 1) forms η on N .

Proof Let U ⊂ N be a holomorphic local coordinate neighborhood of N and let
ι :U→N be the inclusion. Suppose that Suppη⊂U . By Lemma 2.3.28 we have

∫

U

ωL ∧ η−
∫

D

η=
∫

U

(
log

1

‖σ‖2

)
ddcι∗η= 0.

By making use of the partition of unity, we get the required formula. �

Let f : Cm → N be a meromorphic mapping such that the pull-back f ∗D is
defined. We apply Lemma 2.3.28 for U = B(r) and η = αm−1 = (ddc‖z‖2)m−1.
Then the equality such as in Theorem 2.3.29 does not hold, and a boundary integral
appears:

∫

B(r)

f ∗ωL ∧ αm−1 −
∫

f ∗D∩B(r)
αm−1

=
∫

∂B(r)

dc log
1

‖σ ◦ f (z)‖ ∧ αm−1.

The first term of the above equation should be the order function, the second should
be the counting function, and the third might be some remainder. Since the boundary
integral contains a differentiation, it is inconvenient to handle this formula directly,
and we need some more modifications as follows.

The counting function N(r,f ∗D) is already defined by (2.2.18). By Lem-
ma 2.3.27 and the result in Sect. 2.1, in particular, by Corollary 2.1.37, we may
define the following two quantities:

mf (r,D)=
∫

‖z‖=r
log

1

‖σ ◦ f (z)‖γ (z),
(2.3.30)

Tf (r,ωL)=
∫ r

1

dt

t2m−1

∫

B(t)

f ∗ωL ∧ αn−1, r � 1.

We call mf (r,D) the proximity function or the approximate function of f for D. We
call Tf (r,ωL)

4 the order function of f with respect to ωL. If ωL � 0, it follows from

4In S. Lang [87] the notation Tf,D is used, but this is not proper and mises an essential point: the
order function is not dependent on each D, but determined solely by the complete linear system or
by its cohomology class, and this is where the First Main Theorem 2.3.31 makes sense.
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Lemma 2.1.31 that Tf (r,ωL) is a monotone increasing convex function in log r . Let
ω′L be the Chern form of another hermitian metric in L. By (2.3.21) we see that

Tf (r,ωL)− Tf
(
r,ω′L

)= 1

2

∫

‖z‖=r
b ◦ f (z)γ (z)− 1

2

∫

‖z‖=1
b ◦ f (z)γ (z)

=O(1) (r→∞).

Thus the order function of f with respect to L is defined by

Tf (r,L)= Tf (r,ωL)

modulo up to addition with a bounded term in r � 1. In the same sense the prox-
imity function mf (r,D) is determined modulo up to addition with a bounded term
in r � 1.

We obtain the following important formula from Corollary 2.1.37.

Theorem 2.3.31 (The First Main Theorem) Let L→ N be a line bundle and let
f :Cm→N be a meromorphic mapping. For D ∈ |L| with SuppD �⊃ f (Cm),

Tf (r,ωL)=N
(
r, f ∗D

)+mf (r,D)−mf (1,D),

Tf (r,L)=N
(
r, f ∗D

)+mf (r,D)+O(1).

Corollary 2.3.32 With the conditions in Theorem 2.3.31 we suppose one of the
following:

(i) f ∗D �= 0.
(ii) f ∗ωL � 0 and f ∗ωL(z0) > 0 at some point z0 ∈Cm.

Then there is a constant C > 0 such that

C log r � Tf (r,ωL)+O(1).

Proof In the case of (i) there is a t0 > 0 with n(t0, f
∗D) > 0. It follows from The-

orem 2.2.19 that n(t, f ∗D) is a monotone increasing function in t . Therefore

N
(
r, f ∗D

)
�

∫ r

t0

n(t0, f
∗D)

t
dt = n

(
t0, f

∗D
)
(log r − log t0).

It follows from Theorem 2.3.31 that

Tf (r,ωL)�N
(
r, f ∗D

)+O(1).

Thus the claim is deduced.
To deal with the case of (ii) we may assume that (i) does not hold; that is,

f−1D = ∅. Then ddc log 1/‖σ ◦ f ‖2 = f ∗ωL � 0, and so log 1/‖σ ◦ f (z)‖2 is
a plurisubharmonic function. By Lemma 2.1.31

1

t2m−2

∫

B(t)

f ∗ωL ∧ αm−1
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is a monotone increasing function in t . By assumption we have for t0 = ‖z0‖ + 1

C0 = 1

t2m−2
0

∫

B(t0)

f ∗ωL ∧ αm−1 > 0.

By definition

Tf (r,ωL)�
∫ r

t0

dt

t2m−1

∫

B(t)

f ∗ωL ∧ αm−1 � C0(log r − log t0). �

Remark 2.3.33 In the above First Main Theorem N is assumed to be projective
algebraic, but in fact suffices to be a compact complex manifold. In that case we
consider the integral over Γ (f ) (cf. Theorem 2.2.11). To show Jensen’s formula on
Γ (f ) (Lemma 2.1.33) one needs Stokes’ Theorem on Γ (f ) with singularities in
general, or a desingularization.

Example 2.3.34 Let [w0, . . . ,wn] be a homogeneous coordinate system of Pn(C)
and let H → Pn(C) be the hyperplane bundle. Let f :Cm→ Pn(C) be a meromor-
phic mapping with reduced representation f = [f0, . . . , fn]. Then wj , 0 � j � n

form a base of H 0(Pn(C),H). We take a holomorphic section σ =∑n
j=0 cjwj ,

(cj ) ∈ Cn+1 \ {0} and the hyperplane D = (σ ) defined by it. The coefficients (cj )
may be normalized so as

n∑

j=0

|cj |2 = 1.

The length of σ with respect to the hermitian metric in H given by (2.3.24) is

‖σ‖ = |∑j cjwj |
√
(
∑

j |wj |2)
� 1.

Then the quantities appearing in the First Main Theorem 2.3.31 are as follows:

f ∗D =
(∑

j

cj fj

)
=

(∑

j

cjfj

)

0
,

mf (r,D)=
∫

‖z‖=1

√∑
j |fj (z)|2

|∑j cj fj (z)|
γ (z),

Tf (r,H)=
∫ r

1

dt

t2m−1

∫

B(t)

ddc log

(∑

j

|fj |2
)
∧ αm−1.

Here, Jensen’s formula (Lemma 2.1.33) applied to the above expression of Tf (r,H)

yields
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Tf (r,H)=
∫

‖z‖=r
log

(
n∑

j=0

∣∣fj (z)
∣∣2

)1/2

γ (z)(2.3.35)

−
∫

‖z‖=1
log

(
n∑

j=0

∣∣fj (z)
∣∣2

)1/2

γ (z).

We take a vector subspace E ⊂H 0(N,L) of dimE = l + 1 � 2 and introduce a
homogeneous coordinate system [u0, . . . , ul] of P(E). The volume element Ω = ωl

0
defined by the Fubini–Study metric form ω0 = ddc log

∑ |uj |2 satisfies

∫

|L|
Ω = 1.

The unitary transformation group of the homogeneous coordinate system u0, . . . , ul
naturally acts on |L| by

(
U,

[
(wj )

]) ∈U(l + 1)× |L|→ [
U(wj )

] ∈ |L|.
This action is transitive and leaves ω0 and Ω invariant. For an arbitrary D ∈ P(E)
we take σ =∑

cjuj so that (σ ) = D,
∑ |cj |2 = 1. While the vector (cj ) is not

uniquely determined,
(
∑ |uj |2)1/2

|∑ cj uj | depends only on D. In this sense the following

holds:

(2.3.36)
∫

D=(σ )∈P(E)
log

(
∑ |uj |2)1/2

|∑ cjuj | Ω(D)= C(l) > 0.

Here C(l) is a constant dependent only on l, and a computation yields (H. Weyl–
J. Weyl [38])

C(l)= 1

2

(
1+ 1

2
+ · · · + 1

l

)
.

Theorem 2.3.37 Let L→ N be a line bundle and let E ⊂ H 0(N,L) be a vector
subspace. Suppose that B(E) = ∅. Then for an arbitrary meromorphic mapping
f :Cm→N ,

Tf (r,L)=
∫

D∈P(E)
N

(
r, f ∗D

)
Ω(D)+O(1).

Proof We take bases σ0, . . . , σl of E. By assumption l � 1 and a hermitian metric
in L may be assumed to satisfy that for a section σ ∈E

(2.3.38)
∥∥σ(x)

∥∥2 = |σ(x)|2
∑ |σj (x)|2 .
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It follows from (2.3.36) and Fubini’s theorem that
∫

D∈P(E)
mf (r,D)Ω(D)=

∫

‖z‖=r

∫

D=(σ )∈P(E)
log

1

‖σ(f (z))‖Ω(D)γ (z)

= C(l).

By the First Main Theorem 2.3.31

Tf (r,ωL)=
∫

D∈P(E)
N

(
r, f ∗D

)
Ω(D)= Tf (r,L)+O(1). �

The properties of the order function Tf (r,L) will be summarized in the next
section, but here we assume that

Tf (r,L)→∞ (r→∞)

(cf. Corollary 2.3.32). In this case we define Nevanlinna’s defect

δ(f,D)= 1− lim
r→∞

N(r,f ∗D)

Tf (r,L)

of D ∈ |L|. This satisfies

0 � δ(f,D)� 1.

With k ∈N we define the k-defect δk(f,D) by

δk(f,D)= 1− lim
r→∞

Nk(r, f
∗D)

Tf (r,L)
.

In particular, when f (Cm)∩D = ∅, δ(f,D)= 1. A divisor D with δ(f,D) > 0
is called Nevanlinna’s exceptional divisor. Theorem 2.3.37 implies the following.

Theorem 2.3.39 (Casorati–Weierstrass) Let the assumption be the same as in The-
orem 2.3.37 and moreover Tf (r,ωL)→∞ (r→∞). Then almost all D ∈ P(E)
with respect to the measure Ω satisfy δ(f,D) = 0, i.e., they are not Nevanlinna’s
exceptional divisors.

2.4 The First Main Theorem for Coherent Ideal Sheaves

2.4.1 Proximity Functions for Coherent Ideal Sheaves

In Theorems 2.3.37 and 2.3.39 the assumption B(E)= ∅ is essential. To deal with
the case of B(E) �= ∅ it is necessary to define the proximity function mf (r,D)
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not only for divisors but also for cycles of higher codimension. W. Stoll [70]
and Bott–Chern [65] dealt with such a case. The First Main Theorem for coher-
ent ideal sheaves was dealt with by Noguchi [03b] and Noguchi–Winkelmann–
Yamanoi [08].

Because of a technical reason we assume in what follows that N is a projective
algebraic variety, possibly singular with reduced structure (cf. Hartshorne [77]).
Let I ⊂ ON be a coherent ideal sheaf of the structure sheaf ON . Then by defini-
tion there are a finite open covering N =⋃

Uλ of N and holomorphic functions
ζλ1, . . . , ζλlλ on Uλ such that their germs ζλ1x

, . . . , ζλlλx
generate the stalk Ix of I

at every point x ∈Uλ.

Lemma 2.4.1 Let I be a coherent ideal sheaf of ON . Then there is a very ample
line bundle over N such that Γ (N,I⊗O(L)) generates the stalk Ix⊗Ox(L) at
all x ∈N ; that is, there are bases φj (1 � j � l) of Γ (N,I⊗O(L)) such that the
germs φj

x
(1 � j � l) generate Ix⊗Ox(L) as ON,x module at all x ∈N .

Proof In the algebraic sense of coherence the proof is immediate, since Uλ of the
aforementioned open covering {Uλ} are affine varieties and ζλ are regular rational
functions on Uλ.

If the coherence is taken in the analytic sense, we then use Theorem 2.3.26. For
an every fixed point x ∈ N we denote by the same Ix the coherent sheaf over N
extending Ix to be a zero sheaf on N \ {x}. Then there is a natural morphism
κx :I →Ix whose kernel is denoted by Kx :

0→Kx →I →Ix → 0.

We fix a positive line bundle L0 over N . Then we have

0→Kx⊗O
(
Lν

)→I⊗O
(
Lν

)→Ix⊗O
(
Lν

)→ 0.

There is a number ν0 ∈N such that for ν � ν0 H
1(N,Kx⊗O(Lν))= 0. Therefore,

H 0(N,I⊗O
(
Lν

))→H 0(N,Ix⊗O
(
Lν

))→ 0.

By the coherence of I , H 0(N,I⊗O(Lν)) generates Iy in a neighborhood U(x)

of x. Since N is compact we can cover N by a finite number of such U(x)’s. If ν is
large enough, then Lν is very ample. �

We extend the bases φj (1 � j � l) of Γ (N,I⊗O(L)) in Lemma 2.4.1 to
bases φj (1 � j � l′) of Γ (N,O(L)). Then in the sense of (2.3.22) we set

(2.4.2) dI (x)=
√√√√

∑l
j=1 |φi(x)|2

∑l′
j=1 |φj (x)|2

, x ∈N.
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A different choice of L yields another d ′I (x), for which there is a constant C > 0
satisfying

(2.4.3) C−1dI (x)� d ′I (x)� CdI (x), ∀x ∈N.

Let Y = (SuppON/I ,ON/I ) be the subspace (subscheme), possibly non-
reduced of N defined by I and set dY (x)= dI (x). We call

φI (x)=− logdI (x), x ∈N, φY (x)=− logdY (x)

the proximity (approximation) potential of the coherent ideal sheaf I (resp. the
subspace Y ).

Let f : Cm→ N be a meromorphic mapping such that f (Cm) �⊂ SuppON/I .
Then as in (2.3.25) and Lemma 2.3.27 we see that f ∗φI is written as a difference
of two plurisubharmonic functions ξ1 and ξ2:

(2.4.4) f ∗φI (z)= φI ◦ f (z)= ξ1(z)− ξ2(z), z ∈Cm.

The proximity function (or approximation function) for I (or, Y ) is defined by

(2.4.5) mf (r,I )=mf (r,Y )=
∫

‖z‖=r
φI ◦ f (z)γ (z).

It follows from (2.4.4) that the integral is finite, and then from (2.4.3) that mf (r,I )

is well-defined up to addition of O(1)-term.
Moreover, because of (2.4.4) the current ddc[φI ◦ f (z)] is of degree 0; i.e.,

its coefficients are Radon measures, and the differential form ddcφI ◦ f (z) has
coefficients that are locally integrable. We set

ωI ,f = ωY,f =−2ddcφI ◦ f (z)=− i

π
∂∂̄φ ◦ f (z)(2.4.6)

= 2ddc log
1

dI ◦ f (z) , z ∈Cm.

The order function of f with respect to I or Y is defined by

(2.4.7) T (r,ωI ,f )= T (r,ωY,f )=
∫ r

1

dt

t

∫

B(t)

ωI ,f .

We have to be careful to consider f ∗I , or f ∗Y . Let Γ (f ) ⊂ Cm × N be the
graph of f , let p : Γ (f )→ Cm and q : Γ (f )→ N be respectively the natural
projections. Then we have an analytic cycle (a locally finite formal sum of analytic
subsets with integral coefficients) p∗(q∗Y), whose supports are of codimension one
or more in general. We denote by f ∗Y or f ∗I the sum of only those components of
p∗(q∗Y) whose supports are of codimension one. Then we have the current equation
by Theorem 2.2.11 and Lemma 2.2.12:

2ddc
[
f ∗φI ,f

]= ωI ,f − f ∗I ,

2ddc
[
f ∗φY,f

]= ωY,f − f ∗Y.
(2.4.8)
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The counting function for f ∗Y or for f ∗I is defined by

N
(
r, f ∗I

)=N
(
r, f ∗Y

)=
∫ r

1

dt

t2m−1

∫

f ∗Y∩B(t)
αm−1, r � 1.

We have also the truncated counting function Nk(r, f
∗I ) or Nk(r, f

∗Y) as in
(2.2.18). Then by Jensen’s formula (Corollary 2.1.37) and (2.4.8) we have the fol-
lowing.

Theorem 2.4.9 (The First Main Theorem) Let f :Cm→M and let I be as above.
Then we have

T (r,ωI ,f )=N
(
r, f ∗I

)+mf (r,I )−mf (1,I ).

Let Ii (i = 1,2) be two coherent ideal sheaves of OM and let Yi be the subspace
defined by Ii , which is possibly non-reduced. We write Y1 ⊃ Y2 if I1 ⊂I2.

Theorem 2.4.10 The proximity function for coherent ideal sheaves has the follow-
ing properties.

(i) If I ⊂J , mf (r,J ) � mf (r,I ) + O(1); if Y = ON/J ⊂ Z = ON/I ,
mf (r,Y )�mf (r,Z)+O(1).

(ii) mf (r,I1⊗I2)=mf (r,I1)+mf (r,I2)+O(1). In particular, mf (r,I k)=
kmf (r,I )+O(1), k ∈N.

(iii) mf (r,I1 +I2)� min{mf (r,I1),mf (r,I2)} +O(1).

Remark 2.4.11 Let D be an effective Cartier divisor on N . Let I be the ideal sheaf
determined by D, and let L(D) be the line bundle determined by D. Then we have

T (r,ωI ,f )= Tf
(
r,L(D)

)+O(1),

mf (r,I )=mf (r,D)+O(1),

N
(
r, f ∗I

)=N
(
r, f ∗D

)
.

These follow from
∣∣− log

∥∥σ(x)
∥∥− φI (x)

∣∣ � C, x ∈N,

where C is a positive constant.

Let E ⊂H 0(N,L) be a vector subspace and let I0 be the coherent ideal sheaf
generated by {σx;σ ∈ E} at every x ∈ N . Then I0 decomposes into the common
divisor part I1 and the remaining part I2, that is,

I0 =I1⊗I2, codim SuppON/I1 = 1, codim SuppON/I2 � 2.

It may happen that there is no I1-factor, that is, I0 =I2. Let D1 be the effective
divisor given by I1, if exists. Note that D − D1 is an effective divisor. The next
theorem is due to R. Kobayashi in the case of D1 = ∅.
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Theorem 2.4.12 Let the notation be as above. For a meromorphic mapping
f :Cm→N with f (Cm) �⊂ B(E) we have the following.

∫

D∈P(E)
mf (r,D)Ω(D)=mf (r,D1)+mf (r,I2)+O(1),

Tf (r,L)=
∫

D∈P(E)
N

(
r, f ∗D

)
Ω(D)+mf (r,D1)+mf (r,I2)+O(1).

Proof Take τ1 ∈H 0(N,L(D1)) so that (τ1)=D1. Let σ0, . . . , σl be the bases of E.
Every σj is written as

σj = τ1⊗τ2j , τ2j ∈H 0(N,L(D −D1)
)
, 0 � j � l.

For an arbitrary σ =∑
cjσj = τ1⊗(∑ cj τ2j ),

− log
∥∥σ(x)

∥∥=− log
∥∥τ1(x)

∥∥+ φI2 + log
(
∑ |τ2j (x)|2)1/2

|∑ cj τ2j (x)| + b(x),

where b(x) is a C∞ function on N . Therefore

mf

(
r, (σ )

)=mf (r,D1)+mf (r,I2)

+
∫

‖z‖=r
log

(
∑ |τ2j (f (z))|2)1/2

|∑ cj τ2j (f (z))| γ (z)+O(1).

We integrate this with respect to Ω([cj ]), [cj ] ∈ Pl (C); by (2.3.36)

∫

D∈P(E)
mf (r,D)Ω(D)=mf (r,D1)+mf (r,I2)+O(1).

The claimed second formula follows from this and the First Main Theo-
rem 2.3.31. �

Example 2.4.13 In general, even if D1 = 0, mf (r,I2) is not bounded. Consider the
following holomorphic map:

f : z ∈C→ [
1, ez, ecz

]= [w0,w1,w2] ∈ P2(C), c > 1.

Let H → P2(C) be the hyperplane bundle, and let E ⊂H 0(P2(C),H) be the sub-
space generated by holomorphic sections w1,w2. Then B(E) = {[1,0,0]} and I2

is the maximal ideal of OP2(C),[1,0,0]. Its proximity potential is

φI2 =
1

2
log
|w0|2 + |w1|2 + |w2|2

|w1|2 + |w2|2 .



2.4 The First Main Theorem for Coherent Ideal Sheaves 71

Following the definition, we calculate mf (r,I2):

mf (r,I2)= 1

4π

∫

|z|=r
log

1+ |ez|2 + |ecz|2
|ez|2 + |ecz|2 dθ

= 1

4π

∫

|z|=r
log

(
1+ 1

e2r cos θ + e2cr cos θ

)
dθ

= 1

4π

∫

cos θ<0
log

(
1+ 1

e2r cos θ + e2cr cos θ

)
dθ +O(1)

= 1

4π

∫ π/2

−π/2
log

(
1+ 1

e−2r cos θ + e−2cr cos θ

)
dθ +O(1)

= 1

4π

∫ π/2

−π/2
log

(
1+ e2r cos θ

1+ e(1−c)2r cos θ

)
dθ +O(1)

= 1

4π

∫ π/2

−π/2
2r cos θdθ +O(1)

= r

π
+O(1).

The order function Tf (r,H) is calculated by (2.3.35) as

Tf (r,H)= 1

4π

∫

|z|=r
log

(
1+ |ez|2 + |ecz|2)dθ +O(1)

= 1

4π

∫

|z|=r
log

(
1+ e2r cos θ + e2cr cos θ )dθ +O(1)

= 1

4π

∫

cos θ>0
log

(
1+ e2r cos θ + e2cr cos θ )dθ +O(1)

= 1

4π

∫ π/2

−π/2
2cr cos θdθ +O(1)

= cr

π
+O(1).

2.4.2 The Case of m = 1

In the preceding subsection the assumption for N to be projective algebraic was
used to deduce (2.4.4), which was used to apply Jensen’s formula, Corollary 2.1.37.
For Jensen’s formula it is sufficient to know that (2.4.4) holds locally in Cm.

In the case of m = 1 we give here another simpler way to define the proximity
potential function φI without the projective algebraic assumption for N such that
(2.4.4) holds in every disk Δ(r) (cf. Noguchi–Winkelmann–Yamanoi [08]).

Let N be a compact complex space in general, and let I be a coherent ideal
sheaf of ON . Take an open covering {Uj } of N such that
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(i) there is a partition of unity {cj } subordinate to {Uj },
(ii) there are finitely many sections σjk ∈ Γ (Uj ,I ), k = 1,2, . . . , generating every

fiber Ix over x ∈Uj .

We set

(2.4.14) ρI (x)= C

(∑

j

cj (x)
∑

k

∣∣σjk(x)
∣∣2

)1/2

.

Here a positive constant C is chosen so that

ρI (x)� 1, x ∈N.

Using the compactness of N , one easily verifies that, up to addition by a bounded
function on N , logρI is independent of the choices of the open covering, the par-
tition of unity, the local generators of the ideal sheaf I , and the constant C.

Let f : C → N be a holomorphic mapping, which we will call an entire
curve, such that f (C) �⊂ SuppY . Then the function ρI ◦ f (z) is smooth over
C \ f−1(SuppY). For z0 ∈ f−1(SuppY) there is an open neighborhood U of z0
and a positive integer ν such that f ∗I = ((z− z0)

ν0), and then

logρI ◦ f (z)= ν0 log |z− z0| +ψ0(z), z ∈U
for some C∞ function ψ0(z) defined on U . Setting Δ̄(r)∩Suppf ∗Y = {zj }hj=1, we

have a finite sum
∑h

j=1 νj log |z− zj | with νj ∈N such that

ψ(z)= logρI ◦ f (z)−
h∑

j=1

νj log |z− zj |

is a C∞ function in a neighborhood of Δ̄(r). It is easy to see that a C∞ function in
a neighborhood of Δ̄(r) is written as a difference of two subharmonic functions in
a (possibly smaller) neighborhood of Δ̄(r). Therefore, at least in a neighborhood of
Δ̄(r), (2.4.4) holds for logρI ◦ f (z).

We then define the proximity function of f for I or for Y by

(2.4.15) mf (r,Y )=mf (r,I )=
∫

|z|=r
log

1

ρI (f (reiθ ))

dθ

2π
(�0).

We define the counting function N(r,f ∗I ) and Nl(r, f
∗I ) by using the divisor∑

νj {zj }. Moreover we define

ωI ,f = ωY,f =−2ddcψ(z)=− i

π
∂∂̄ψ(z)(2.4.16)

= ddc log
1

ρI ◦ f (z) (z ∈U),
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which is well-defined on C as a C∞ (1,1)-form. The order function of f for I or
Y is defined by

(2.4.17) T (r,ωI ,f )= T (r,ωY,f )=
∫ r

1

dt

t

∫

Δ(t)

ωI ,f .

If N is projective algebraic, the difference of the proximity potential functions
(cf. (2.4.2), (2.4.14))

logρI (x)− logdI (x) (x ∈N)

is a bounded function.
Therefore we see the following.

Proposition 2.4.18 (i) The proximity function mf (r,I ) (=mf (r,Y )) in the present
subsection differs from that defined in the previous subsection only by a bounded
function.

(ii) There is no change in the counting function for f ∗I (=f ∗Y ).
(iii) Thus the difference of the order functions T (r,ωI ,f ) (=T (r,ωY,f )) is

bounded, too.

2.5 Order Functions

Let N be an n-dimensional compact complex space and let f :Cm→N be a mero-
morphic mapping. We will define several order functions of f and will give their
comparison. Then we will give a characterization of rational f in terms of the order
function, when N is projective algebraic.

2.5.1 Metrics

Let

h=
∑

j,k

hjk̄dxj⊗dx̄k

be a hermitian metric on the holomorphic tangent space T(N) of N ; that is, the
coefficients of h are C∞ functions, the quadratic form h(X, Ȳ ) in X,Y ∈ T(N)x
(x ∈ N ) is hermitian and positive definite. Let ω = ∑

j,k
i
2hjk̄dxj ∧ dx̄k be the

associated (1,1)-form. If dω = 0, we call ω a Kähler form, h is called a Kähler
metric, and N is called a Kähler manifold if N is non-singular. As in (2.3.30), we
define the order function of f with respect to ω by

(2.5.1) Tf (r,ω)=
∫ r

1

dt

t2m−1

∫

B(t)

f ∗ω ∧ αm−1, r > 1.
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Lemma 2.5.2 Let ω and ω′ be two hermitian metrics on N . Then there is a constant
C > 0 such that for an arbitrary meromorphic mapping f :Cm→N

C−1Tf (r,ω)� Tf (r,ω)� CTf
(
r,ω′

)
.

Proof Since ω and ω′ are both positive definite and N is compact, there is a constant
C > 0 such that

Cω−ω′ � 0, Cω′ −ω � 0.

Therefore

Cf ∗ω ∧ αm−1 − f ∗ω′ ∧ αm−1 � 0,

f ∗ω′ ∧ αm−1 −Cf ∗ω ∧ αm−1 � 0.

Thus the required inequalities follow. �

We define the symbol Sf (r,ω) with respect to Tf (r,ω) as (1.2.4). That is,

(2.5.3) Sf (r,ω)=O
(
logTf (r,ω)

)+ δ log r‖E(δ).
The above definition is independent of the choice of ω by Lemma 2.5.2. When it is
not necessary to specify ω, we simply write

Sf (r)= Sf (r,ω).

Theorem 2.5.4 Let ω be a hermitian metric form on N . A meromorphic mapping
f :Cm→N is constant if and only if limr→∞Tf (r,ω)/ log r = 0. This condition is
equivalent to Tf (r,ω)= Sf (r,ω), provided that dω= 0, or m= 1.

Proof The “only if” part is trivial. Assume that ω is a Kähler form on N . Sup-
pose that dω = 0. Then f ∗ω is a d-closed positive semi-defined (1,1)-form. By
Poincaré’s Lemma for d and for ∂̄ on Cm there exists a plurisubharmonic function ϕ
on Cm such that ddcϕ = f ∗ω in the sense of currents. (For the present argument, the
existence on every ball B(R) (R > 0) is sufficient.) It follows from Lemma 2.1.31
that the function

n
(
t, f ∗ω

)= 1

t2m−2

∫

B(t)

f ∗ω ∧ αm−1

is monotone increasing in t > 0; this monotonicity is trivial without the assump-
tion dω = 0 if m = 1. The constancy of f is equivalent to f ∗ω ∧ αm−1 ≡ 0 and
so to n(t, f ∗ω) ≡ 0. Assume that f is not constant. Then there is a t0 > 0 with
n(t0, f

∗ω) > 0. For r > t0

Tf (r,ω)=
∫ r

1

n(t, f ∗ω)
t

dt �
∫ r

t0

n(t, f ∗ω)
t

dt

(continued)
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� n
(
t0, f

∗ω
)∫ r

t0

dt

t
= n

(
t0, f

∗ω
)
(log r − log t0).

Hence limr→∞Tf (r,ω)/ log r � n(t0, f
∗ω) > 0.

Assume that Tf (r,ω)= Sf (r,ω). Then for every δ > 0 we have

lim
r→∞

log r

Tf (r,ω)
� 1

δ
.

It follows that limr→∞Tf (r,ω)/ log r = 0, and that f is constant. �

Let f be a meromorphic function on Cm. Following after (1.1.10) and (1.1.12),
we set

m(r,f )=
∫

‖z‖=r
log+

∣∣f (z)
∣∣γ (z),

(2.5.5)
T (r, f )=m(r,f )+N

(
r, (f )∞

)
.

We call T (r, f ) Nevanlinna’s order function. This is convenient in calculating
estimates. There are co-prime holomorphic functions f0 and f1 on Cm (i.e.,
codim{f0 = f1 = 0}� 2) such that f = f1/f0. Let [w0,w1] be the natural homoge-
neous coordinate system of P1(C), and identify f with a meromorphic mapping

f : z ∈Cm→ [
f0(z), f1(z)

] ∈ P1(C).

By taking the Fubini–Study metric form ω on P1(C), we compare Tf (r,ω) and
T (r, f ). The following is the Shimizu–Ahlfors theorem and the First Main Theo-
rem.

Theorem 2.5.6 For a meromorphic function f on Cm

T (r, f )− Tf (r,ω)=O(1).

In particular, for any a ∈C

T

(
r,

1

f − a

)
= T (r, f )+O(1).

Proof Noting that for every s � 0

0 � log(1+ s)− log+ s � log 2,

we get

T (r, f )= 1

2

∫

‖z‖=r
log

(
1+

∣∣∣
∣
f1(z)

f0(z)

∣∣∣
∣

2)
γ (z)+ 1

2

∫

‖z‖=r
log |f0|2γ +O(1)

= 1

2

∫

‖z‖=r
log

(|f0|2 + |f1|2
)
γ +O(1).
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By making use of Lemma 2.1.33 (Jensen’s formula), we have

T (r, f )=
∫ r

1

dt

t2m−1

∫

B(t)

f ∗ω ∧ αm−1 +O(1)

= Tf (r,ω)+O(1).

For the latter half, we notice that T1/(f−a)(r,ω)= T(f−a)(r,ω). It follows from
what was shown that

T

(
r,

1

f − a

)
= T (r, f − a)+O(1)

=m(r,f − a)+N
(
r, (f − a)∞

)+O(1)

=m(r,f )+N
(
r, (f )∞

)+O(1)

= T (r, f )+O(1). �

Theorem 2.5.7 Let f : Cm→ N be a meromorphic mapping and let L→ N be
a hermitian line bundle. Assume that L � 0 or that N is projective algebraic. Let
σ0, σ1 ∈ H 0(N,L) be linearly independent sections such that f (Cm) �⊂ {σ0 = 0}.
Then the meromorphic function g(z)= σ1 ◦ f (z)/σ0 ◦ f (z) satisfies

T (r, g)� Tf (r,L)+O(1).

Proof Let ‖ · ‖ be a hermitian metric in L. Then

log+
∣∣∣∣
σ1

σ0

∣∣∣∣= log+ ‖σ1‖
‖σ0‖

� log+ 1

‖σ0‖ + log+ ‖σ1‖.

Since ‖σ1‖ is bounded on N , there is a constant C such that

log+
∣∣∣∣
σ1

σ0

∣∣∣∣ � log+ 1

‖σ0‖ +C.

By definition (g)∞ � f ∗(σ0). Thus

N
(
r, (g)∞

)
�N

(
r, f ∗(σ0)

)
.

It follows that

T (r, g)�mf

(
r, (σ0)

)+N
(
r, f ∗(σ0)

)+C

= Tf (r,L)+O(1). �

Corollary 2.5.8 (Noguchi [76b]) If σ0 and σ1 have no common zero,

T (r, g)= Tf (r,L)+O(1).
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Proof By the assumption there is a constant C > 0 such that
∣
∣∣∣log+

∣
∣∣∣
σ1

σ0

∣
∣∣∣− log+ 1

‖σ0‖
∣
∣∣∣ � C.

Furthermore, N(r, (g)∞)=N(r,f ∗(σ0)), so that the claim holds. �

If dimN = 1, then the assumption of Corollary 2.5.8 is always satisfied. Let
N = P1(C) and L→ P1(C) be the hyperplane bundle. Then the above corollary
is the Shimizu–Ahlfors Theorem 1.1.19. For the composition of a rational function
with f we have

Corollary 2.5.9 Let Q ◦ f be the composition of a meromorphic function f (z)

on Cm with a rational function Q in one variable. Assume that f and Q are non-
constant. Denoting the degree of Q by d , we have

T (r,Q ◦ f )= dT (r, f )+O(1).

Proof There are sections σ0, σ1 ∈ H 0(P1(C),Ld) without common zero such that
Q= σ1/σ0. Therefore

T (r,Q ◦ f )= dTf (r,L)+O(1)= dT (r, f )+O(1). �

2.5.2 Cartan’s Order Function

Here we set N = Pn(C). Let ω be the Fubini–Study metric form on Pn(C). Let w =
[w0, . . . ,wn] be a homogeneous coordinate system of Pn(C). Take a meromorphic
mapping f :Cm→ Pn(C). Then there are holomorphic functions f0, . . . , fn on Cm

such that codim{f0 = · · · = fn = 0}� 2 and

f (z)= [
f0(z), . . . , fn(z)

]
.

Let f (z)= [g0(z), . . . , gn(z)] be another such representation. Then there is a holo-
morphic function h(z) on Cm without zero such that

(2.5.10) fj (z)= h(z)gj (z), 0 � j � n, z ∈Cm.

H. Cartan [33] defined the order function Tf (r) of f :Cm→ Pn(C) by

(2.5.11) Tf (r)=
∫

‖z‖=r
log max

0�j�n

∣∣fj (z)
∣∣γ (z)− log max

0�j�n

∣∣fj (0)
∣∣,

which is called Cartan’s order function; in fact, he dealt with the case of m= 1. It
follows from (2.5.10) that Tf (r) is independent of the representation of f .
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Theorem 2.5.12 Let the notation be as above. Then we have

Tf (r)=
∫

‖z‖=r
log

( ∑

0�j�n

∣∣fj (z)
∣∣2

)1/2

γ (z)+O(1)

= Tf (r,ω)+O(1).

This is immediate by (2.3.35).
A linear form Fj =∑

cjkwk in the homogeneous coordinates [w0, . . . ,wn] is
identified with a holomorphic section of the hyperplane bundle on Pn(C). For
two linearly independent linear forms F1 and F2 we consider the compositions
Fj (f (z)) =∑

cjkfk(z) with f (z) = [f0(z), . . . , fn(z)]. If F1(f (z)) �≡ 0, g(z) =
F2(f (z))/F1(f (z)) is defined independently of the representation of f . The next
theorem is due to Toda [70a], Lemma 1 in the case of m= 1 and the case of m� 2
is similarly proved.

Theorem 2.5.13 Let f (z)= [f0(z), . . . , fn(z)] and g(z) be as above. The follow-
ing hold:

(i) T (r, g)� Tf (r,ω)+O(1).
(ii) If fk �≡ 0,

1

n

n∑

j=0

T

(
r,
fj

fk

)
+O(1)� Tf (r,ω)�

n∑

j=0

T

(
r,
fj

fk

)
+O(1).

Proof (i) is a special case of Theorem 2.5.7. The first inequality in (ii) is clear by (i).
The latter is deduced as follows. We may assume f0 �≡ 0 without loss of generality.
Then

Tf (r,ω)=
∫

‖z‖=r
log

(
max

1�j�n

{
1,
|fj (z)|
|f0(z)|

}
· ∣∣f0(z)

∣∣
)
γ (z)+O(1)

=
∫

‖z‖=r
log+ max

1�j�n

{ |fj (z)|
|f0(z)|

}
γ (z)

+
∫

‖z‖=r
log

∣
∣f0(z)

∣
∣γ (z)+O(1)

�
n∑

j=1

∫

‖z‖=r
log+

∣∣∣∣
fj

f0

∣∣∣∣γ +N
(
r, (f0)0

)+O(1)

�
n∑

j=1

{∫

‖z‖=r
log+

∣∣∣∣
fj

f0

∣∣∣∣γ +N

(
r,

(
fj

f0

)

∞

)}
+O(1)

=
n∑

j=1

T

(
r,
fj

f0

)
+O(1).

�
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2.5.3 A Family of Rational Functions

First note that wj/wk , 0 � j (�=k) � n, form a transcendental base of the field
extension of the rational function field of Pn(C) over C. It follows from Theo-
rem 2.5.13 (ii) that up to a positive constant multiple, Tf (r,ω) and

∑n
j=0
j �=k

T (r, fj /fk)

are equivalent. We generalize this to a general projective algebraic manifold.

Lemma 2.5.14 For an arbitrary point a ∈C

1

2π

∫ 2π

0
log

∣∣eiθ − a
∣∣dθ = log+ |a|.

The proof is left to the reader.

Lemma 2.5.15 Let g(z) and A1(z), . . . ,Al(z) be meromorphic functions on Cm

satisfying
(
g(z)

)l +A1(z)
(
g(z)

)l−1 + · · · +Al(z)= 0.

Then

T (r, g)�
l∑

j=1

T (r,Aj )+ log(l + 1).

Proof Introducing a variable t , we set

B(z, t)= t l +A1(z)t
l−1 + · · · +Al(z).

For z ∈ Cm \ ⋃
j Supp(Aj )∞ we let t1(z) = g(z), t2(z), . . . , tl(z) be roots of

B(z, t)= 0. Then

B(z, t)=
l∏

j=1

(
t − tj (z)

)
.

Therefore we have

1

2π

∫ 2π

0
log

∣∣B
(
z, eiθ

)∣∣dθ =
l∑

j=1

1

2π

∫ 2π

0
log

∣∣eiθ − tj (z)
∣∣dθ

(by Lemma 2.5.14)

= log+
∣∣g(z)

∣∣+
l∑

j=2

log+
∣∣tj (z)

∣∣

� log+
∣∣g(z)

∣∣.
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On the other hand,

1

2π

∫ 2π

0
log

∣∣B
(
z, eiθ

)∣∣dθ

= 1

2π

∫ 2π

0
log

∣
∣eilθ +A1(z)e

i(l−1)θ + · · · +Al(z)
∣
∣dθ

�
l∑

j=1

log+
∣∣Aj(z)

∣∣+ log(l + 1).

It follows that

(2.5.16) m(r,g)�
l∑

j=1

m(r,Aj )+ log(l + 1).

By making use of co-prime holomorphic functions g0, g1 on Cm, we repre-
sent g = g1/g0. Let (A0) be the minimum common divisor of the polar divisors
of A1, . . . ,Al , where A0 is a holomorphic function on Cm. Then

A0(g1)
l =−g0(z)

{
A0A1(g1)

l−1 + · · · +A0Al(g0)
l−1}.

Therefore (g0)� (A0) as divisors, and

(2.5.17) N
(
r, (g)∞

)
�N

(
r, (A0)0

)
�

l∑

j=1

N
(
r, (Aj )∞

)
.

It follows from (2.5.16) and (2.5.17) that

T (r, g)�
l∑

j=1

{
m(r,Aj )+N

(
r, (Aj )∞

)}+ log(l + 1)

=
l∑

j=1

T (r,Aj )+ log(l + 1).
�

In general, let N be an n-dimensional complex projective algebraic variety and
let {φj }sj=1 be a finite subset of the rational function field C(N) of N . Assume that
a meromorphic mapping f : Cm → N satisfies f (Cm) �⊂ ⋃s

j=1 Supp(φj )∞. We
define the order function of f with respect to {φj } by

Tf
(
r, {φj }

)=
l∑

j=1

T (r,φj ◦ f ).
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In what follows, it is the essential case when {φj }sj=1 contains a transcendental base
of C(N) over C.

Let N ↪→ Pl (C) be an embedding and let L be the restriction of the hyperplane
bundle over Pl (C) to N .

Theorem 2.5.18 (i) Assume that {φj }sj=1 contains a transcendental base of C(N)

over C and that f is algebraically non-degenerate. Then there is a constant C > 0
independent of f such that

C−1Tf (r,L)+O(1)� Tf
(
r, {φj }

)
� CTf (r,L)+O(1).

(ii) Let f :Cm→N be an algebraically non-degenerate meromorphic mapping
and let Φ : N →M be a birational mapping onto another complex projective al-
gebraic variety M . Let H →M be a positive line bundle. Then there is a constant
C1 = C1(L,H) > 0 such that

C−1
1 Tf (r,L)+O(1)� TΦ◦f (r,H)� C−1

1 Tf (r,L)+O(1).

Proof (i) Let [w0, . . . ,wl] be a homogeneous coordinate system of Pl(C) and let
f (z) = [f0, . . . , fl] be a reduced representation of f as a meromorphic mapping
into Pl (C). We may assume f0 �≡ 0 without loss of generality. The restrictions ψk

of wk/w0 to N give a transcendental base of C(N) and then φj are represented as
rational functions in ψk ,

φj =Qj(ψ1, . . . ,ψl).

Substituting f (z), we have

φj ◦ f (z)=Qj

(
ψ1 ◦ f (z), . . . ,ψl ◦ f (z)

)
.

Therefore there is a constant C > 0 determined by Qj , 1 � j � n, such that

T
(
r,Qj (ψk ◦ f )

)
� C

l∑

k=1

T (r,ψk ◦ f )+O(1)

� lCTf (r,L)+O(1).

We deduce that

T
(
r, {φj }

)
� lnCTf (r,L)+O(1).

Conversely, the rational functions ψk are algebraic over the field generated by
{φj } over C. Thus there are algebraic relations

(ψk)
dk +Ak1(φj )(ψk)

dk−1 + · · · +Akdk (φj )= 0, 1 � k � l.

Substituting f , we obtain algebraic relations of meromorphic functions on Cm:

(ψk ◦ f )dk +Ak1(φj ◦ f )(ψk ◦ f )dk−1 + · · · +Akdk (φj ◦ f )= 0, 1 � k � l.
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Lemma 2.5.15 implies that

T (r,ψk ◦ f )�
dk∑

h=1

T
(
r,Akh(φj ◦ f )

)+ log(dk + 1)

� C′
n∑

j=1

T (r,φj ◦ f )+O(1).

Here C′ > 0 is a constant depending only on {ψk} and {φj }. It follows from Theo-
rem 2.5.13 that

Tf (r,L)�
l∑

k=1

T (r,ψk ◦ f )� lC′
n∑

j=1

T (r,φj ◦ f )+O(1).

(ii) Since Φ∗ : C(M)→ C(N) is a field isomorphism over C, the claim is clear
by (i). �

In general let N be a compact complex space and let ω be a hermitian metric
form on it. For a meromorphic mapping f :Cm→N we define the order ρf by

(2.5.19) ρf = lim
r→∞

logTf (r,ω)

log r
.

By Lemma 2.5.2 ρf is independent of the choice of ω. If N is projective algebraic
and f is algebraically non-degenerate, Tf (r,ω) in (2.5.19) may be replaced with
Tf (r, {φj }) by Theorem 2.5.18 to define the same ρf .

The next three propositions are easily deduced from Theorem 2.5.18.

Proposition 2.5.20 Let η : V → W be a rational mapping between quasi-
projective algebraic varieties V and W . Then for an algebraically non-degenerate
meromorphic mapping f :Cm→ V

Tη◦f (r)=O
(
Tf (r)

)
.

Moreover, if η is generically finite, then

Tf (r)=O
(
Tη◦f (r)

)
.

Let V be a quasi-projective algebraic variety, and let f : Cm → V be a mero-
morphic mapping. Taking a projective compactification V̄ ⊃ V , and regarding
f :Cm→ V̄ , we may define the order ρf of f , which is independent of the choice
of the compactification V̄ .

Corollary 2.5.21 The above order ρf of f is independent of the choice of the com-
pactification V̄ of V .
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This is immediate from Proposition 2.5.20.

Proposition 2.5.22 Let f : Cm→ N be a meromorphic mapping into a complex
projective variety N and let H be a line bundle on N . Assume that H is big, and
that f is algebraically non-degenerate. Then

Tf (r,L)=O
(
Tf (r,H)

)

for every line bundle L on M .

If f : Cm → N is algebraically degenerate, we may consider the Zariski clo-
sure X of f (C) and a desingularization τ : X̃→X. Then f lifts to a map to X̃ and
τ ∗(H |X) is big on X̃ for every ample line bundle H on N . As a consequence we
obtain

Proposition 2.5.23 Let f : Cm→ N be a meromorphic mapping into a complex
projective variety N . Let h(r) be a non-negative valued function in r > 1. Then
h(r)= Sf (r,H) holds for every ample line bundle if and only if it holds for at least
one ample line bundle.

Similarly, the statement “h(r) � εTf (r,H)‖ε , ∀ε > 0”, respectively “h(r) =
O(Tf (r,H))” holds for every ample line bundle H if and only if it holds for at
least one ample line bundle.

If f is algebraically non-degenerate, the same statements as above hold for big
line bundles.

2.5.4 Characterization of Rationality

Let g �≡ 0 be a holomorphic function on Cm. Then log |g(z)| is a plurisub-
harmonic function and hence a subharmonic function on Cm ∼= R2m (Theo-
rem 2.1.26 (i)). Taking the Poisson integral over the sphere {‖z‖ = R} of Cm we
have that for ‖z‖<R

log
∣∣g(z)

∣∣ �
∫

‖ζ‖=R
log

∣∣g(ζ )
∣∣ (R

2 − ‖z‖2)R2m−2

‖ζ − z‖2m
γ (ζ )

�
∫

‖ζ‖=R
log+

∣∣g(ζ )
∣∣ (R

2 − ‖z‖2)R2m−2

‖ζ − z‖2m
γ (ζ )

� (R2 − ‖z‖2)R2m−2

(R − ‖z‖)2m
∫

‖ζ‖=R
log+

∣∣g(ζ )
∣∣γ (ζ ).

Therefore we obtain
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Lemma 2.5.245 Let g be a holomorphic function on Cm. Then for 0 < r < R,

T (r, g)� log+ max‖z‖=r
∣∣g(z)

∣∣ � 1− (r/R)2

(1− r/R)2m
T (R,g).

Lemma 2.5.25 A holomorphic function g on Cm is polynomial if and only if
T (r, g)=O(log r).

Proof If g(z) is a polynomial function, an easy computation yields that T (r, g) =
O(log r). Conversely we assume that T (r, g)� d log r +C. Putting R = τr, τ > 1,
we get by Lemma 2.5.24

log+ max‖z‖=r
∣∣g(z)

∣∣ � (τ + 1)τ 2m−2

(τ − 1)2m−1
(d log r + d log τ +C).

Set d(τ)= (τ+1)τ2m−2

(τ−1)2m−1 and C(τ) = d(τ)(d log τ + C). We expand g(z) to a Taylor
series with multi-indices α,

g(z)=
∞∑

|α|=0

aαz
α.

From this we obtain
(

1

2π

)m ∫ 2π

0
· · ·

∫ 2π

0

∣∣g
(
eiθ1z1, . . . , e

iθmzm
)∣∣2

dθ1 · · ·dθm

=
∞∑

|α|=0

|aα|2|z1|2α1 · · · |zm|2αm � max‖z‖=r
∣∣g(z)

∣∣2

� r2dd(τ) · e2d(τ)C(τ).

Hence
∑∞
|α|>dd(τ) |aα|2|z1|2α1 · · · |zm|2αm = 0 and so

g(z)=
dd(τ)∑

|α|=0

aαz
α.

Since dd(τ)→ d as τ→∞, g(z) is a polynomial of degree at most d . �

Theorem 2.5.26 (Stoll [64a], [64b]) Let E be an effective divisor on Cm. Then E

is a divisor determined by a polynomial of degree at most d if and only if

N(r,E)� d log r +O(1).

5An estimate of this type in several complex variables is found in Kneser [38] without an explicit
formula; cf. Noguchi [75].
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This is shown by the Weierstrass–Stoll canonical product which generalizes
Weierstrass’ canonical product. Cf. Noguchi–Ochiai [90] (Ochiai–Noguchi [84])
for a proof simplified by Lelong. Here we omit the proof.

Theorem 2.5.27 A meromorphic function g(z) on Cm is a rational function if and
only if

T (r, g)=O(log r).

Proof If g is a rational function, we write g(z)= P(z)
Q(z)

with co-prime polynomials

P(z),Q(z). By the Shimizu–Ahlfors Theorem 1.1.19 and Theorem 2.5.12 we have

T (r, g)=
∫

‖z‖=r
log

√∣∣P(z)
∣∣2 + ∣∣Q(z)

∣∣2
γ +O(1)

=O(log r).

For the converse, we first note that

N
(
r, (g)∞

)
� T (r, g)=O(log r).

By Stoll’s Theorem 2.5.26 there is a polynomial g0 such that (g0)= (g)∞. If we set
g1 = gg0, g1 is a holomorphic function and satisfies

T (r, g1)� T (r, g)+ T (r, g0)=O(log r).

By Lemma 2.5.25 g1 is a polynomial. Thus g is a rational function. �

Theorem 2.5.28 Let N be a projective algebraic variety and let ω be a hermitian
metric form on it. A meromorphic mapping f : Cm→ N is a rational mapping if
and only if

Tf (r,ω)=O(log r).

Proof Taking an embedding N ↪→ Pl(C), we may assume N = Pl(C) with ω the
Fubini–Study metric form. The “only if” part is immediate from Theorems 2.5.27
and 2.5.13.

Assume that Tf (r,ω) =O(log r). Let w = [w0, . . . ,wl] be a homogeneous co-
ordinate system of Pl (C) such that f (Cm) �⊂ {w0 = 0}. It follows from Theo-
rem 2.5.13 that

T

(
r, f ∗

wj

w0

)
=O(log r).

Therefore f ∗(wj/w0) are rational, and hence f is rational. �

Remark By Lemma 1.1.22 we see that Tf (r,ω) = O(log r) if and only if

limr→∞
Tf (r,ω)

log r <∞.
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2.6 Nevanlinna’s Inequality

We generalize Theorem 1.1.18 to meromorphic functions on Cm and moreover to
the case of meromorphic mappings. This plays an essential role in the proof of the
lemma on logarithmic derivatives in the next chapter.

Let f1, . . . , fn be entire functions on Cm which are linearly independent over C.
For a vector w = (wj ) ∈Cn we set

I (w)=
∫

‖z‖=1
log

∣∣∣∣∣

n∑

j=1

wjfj (z)

∣∣∣∣∣
γ (z).

Lemma 2.6.1 The function I (w) is bounded on {‖w‖ = 1}.

Proof 6 Set M = sup{|∑n
j=1 wjfj (z)|; ‖w‖ = 1,‖z‖ = 1} (<∞). Setting Γ =

{w ∈ Cn; ‖w‖ = 1}, we see that I (w) � logM on Γ . Now we show the bound-
edness of I (w) from below. The function log |∑n

j=1 wjfj (ζ )| in ζ ∈Cm ∼=R2m is
subharmonic by Theorem 2.1.26 (i). By taking the Poisson integral we have

log

∣∣∣∣∣

n∑

j=1

wjfj (ζ )

∣∣∣∣∣
�

∫

‖z‖=1

(

log

∣∣∣∣∣

n∑

j=1

wjfj (z)

∣∣∣∣∣

)
1− ‖ζ‖2

‖z− ζ‖2m
γ (z), ‖ζ‖< 1.

For an arbitrary a = (aj ) ∈ Γ we take ζ0 ∈ B(1)(⊂Cm) so that

n∑

j=1

ajfj (ζ0) �= 0.

There is a neighborhood W of a in Γ such that for every w ∈W
∣∣∣
∣∣

n∑

j=1

wjfj (ζ0)

∣∣∣
∣∣
� 1

2

∣∣∣
∣∣

n∑

j=1

ajfj (ζ0)

∣∣∣
∣∣
> 0.

Thus for w ∈W

log
1

2

|∑n
j=1 ajfj (ζ0)|

M
�

∫

‖z‖=1

(
log
|∑n

j=1 wjfj (z)|
M

)
1− ‖ζ0‖2

‖z− ζ0‖2m
γ (z)

� 1− ‖ζ0‖2

(1+ ‖ζ0‖)2m
∫

‖z‖=1
log
|∑n

j=1 wjfj (z)|
M

γ(z)

� 1− ‖ζ0‖2

22m

(
I (w)− logM

)
.

6A discussion on the proof of this lemma with Professors Phong and Demailly at Hayama Sympo-
sium on Complex Analysis in Several Variables 2002 was very helpful.
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Hence I (w) (w ∈W ) is bounded from below. Since Γ is compact, I (w) is bounded
from below on Γ . �

Remark 2.6.2 In fact, it is shown that I (w) is continuous in w ∈Cn \ {0}. Since the
convergence theorem of Lebesgue integrals cannot be used, some more contrivance
is necessitated to the proof.

Theorem 2.6.3 (Nevanlinna’s inequality) Let f be a non-constant meromorphic
function on Cm. Then there is a constant C such that for every a ∈C∪ {∞}

N
(
r, (f − a)0

)
< T (r,f )+C, r � 1.

Proof We write f = f2/f1 with co-prime entire functions f1, f2. We regard f to be
a meromorphic mapping f : z ∈Cm→[f1(z), f2(z)] ∈ P1(C). Let a = [a2,−a1] ∈
P1(C) ∼= C ∪ {∞}. We may assume that |a1|2 + |a2|2 = 1. By Example 2.3.34 we
have

(f − a)0 = (a1f1 + a2f2)0 = f ∗a,

mf (r, a)=
∫

‖z‖=r
log

√|f1(z)|2 + |f2(z)|2
|a1f1(z)+ a2f2(z)| γ (z)� 0.

Let ω be the Fubini–Study metric form on P1(C). The First Main Theorem 2.3.31
implies that

N
(
r, f ∗a

)
� Tf (r,ω)+mf (1, a),

mf (1, a)=
∫

‖z‖=1
log

√|f1(z)|2 + |f2(z)|2
|a1f1(z)+ a2f2(z)| γ (z)

=
∫

‖z‖=1
log

√∣∣f1(z)
∣∣2 + ∣∣f2(z)

∣∣2
γ (z)

−
∫

‖z‖=1
log

∣
∣a1f1(z)+ a2f2(z)

∣
∣γ (z).

By Lemma 2.6.1 there is a constant C such that

mf (1, a) < C, ∀a ∈ P1(C).

By Theorem 2.5.6 Tf (r,ω) = T (r, f ) + O(1). Thus the required formula is ob-
tained. �

The above Nevanlinna inequality will suffice for the application in the next chap-
ter, but we extend it to a meromorphic mapping f :Cm→N into a projective alge-
braic variety N . Let L→N be a hermitian line bundle and take an arbitrary linear
subspace E ⊂H 0(N,L).
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Theorem 2.6.4 Let the notation be as above. Assume that f (Cm) �⊂ Supp(σ ) for
every σ ∈E \ {0}. Then there is a constant C such that for all σ ∈E \ {0}

N
(
r, f ∗(σ )

)
< Tf (r,L)+C, r � 1.

Proof Let ‖ · ‖ be the hermitian metric in L. The pull-back f ∗L is a line bundle
on Cm. On Cm every line bundle is globally trivial. We fix an isomorphism, f ∗L∼=
Cm ×C. Take bases σ1, . . . , σn of E. Because of the isomorphism f ∗L∼=Cm ×C,
there are entire functions fj (z)= (f ∗σj )(z), 1 � j � n, on Cm and a C∞ positive-
valued function h(z) such that

f ∗ωL = ddc logh(z),

n∑

j=1

∥∥σj
(
f (z)

)∥∥2 =
∑

j |fj (z)|2
h(z)

� 1, 1 � j � n.

Write σ =∑
wjσj with ‖(wj )‖ = 1. Then by the First Main Theorem 2.3.31 we

have

N
(
r, f ∗(σ )

)= Tf (r,L)+mf

(
1, (σ )

)−mf

(
r, (σ )

)
,

mf

(
1, (σ )

)=
∫

‖z‖=1
log

√
h(z)

|∑wjfj (z)|γ (z).

Notice that mf (r, (σ )) � 0. By the choice, the functions fj , 1 � j � n, are lin-
early independent over C. By Lemma 2.6.1 mf (1, (σ )) is bounded in σ =∑

wjσj ,
‖(wj )‖ = 1. Therefore there is a constant C such that

N
(
r, f ∗(σ )

)
< Tf (r,L)+C, r � 1. �

2.7 Ramified Covers over Cm

Let X be an irreducible normal complex space. We call X
π→ Cm a finite ramified

cover over Cm if π is a proper finite surjective holomorphic mapping. For example,
if X is a normal affine algebraic variety, then there exists such a π :X→Cm due to
the “Noether Normalization Lemma”.

In this section we summarize known facts on meromorphic mappings f :X→N

from such X into a compact complex space N .
The case where m= 1 and N = P1(C) is classical and was studied by Rémoun-

dos [27], A. Valiron [29], [31], H.L. Selberg [30], [34], and Ullrich [32], etc. It is an
essential case when X

π→Cm is not algebraic but transcendental.
Let p be the covering number of π : X→ Cm. We denote by S(X) the set of

all singular points of X. Since X is assumed to be normal, codimS(X) � 2. Let
R(X)=X \ S(X) be the set of regular (non-singular) points of X. The zero divisor
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of detdπ |R(X) naturally extends to a divisor on X by Theorem 2.2.5. It is called the
ramification divisor of π :X→Cm and is denoted by Ξ . Set

X(r)= {
x ∈X;∥∥π(x)∥∥< r

}
, ∂X(r)= {

x ∈X;∥∥π(x)∥∥= r
}
.

Let ω be a hermitian metric form on N . We define the order function Tf (r,ω)

of f with respect to ω by

(2.7.1) Tf (r,ω)= 1

p

∫ r

1

dt

t2m−1

∫

X(t)

f ∗ω ∧ π∗αm−1.

For a line bundle L over N we define Tf (r,L) as done previously.
Let E be a Weil divisor on X and let E =∑

λ kλEλ be the irreducible decompo-
sition. As in (2.2.18) the counting functions are similarly defined:

nk(t,E)= 1

p

∫

X(t)∩(∑λ min{k,kλ}Eλ)

αm−1,

Nk(r,E)=
∫ r

1

nk(t,E)

t2m−1
dt,(2.7.2)

n(t,E)= n∞(t,E), N(r,E)=N∞(r,E).

As in (2.3.30) we define a proximity function for an effective Cartier divisor D on N
by

(2.7.3) mf (r,D)= 1

p

∫

∂X(r)

log
1

‖σ ◦ f ‖π
∗γ.

For the proofs of the following results, cf. Noguchi [76a], [76b].

Theorem 2.7.4 (The First Main Theorem) Assume that f (X) �⊂ SuppD. Then

Tf
(
r,L(D)

)=N
(
r, f ∗D

)+mf (r,D)+O(1).

We say that a meromorphic mapping f :X→N separates the fiber of π if there
is a point z ∈ Cm satisfying that π−1(z) ∩ (Ξ ∪ I (f )) = ∅ and f takes distinct
values on π−1(z).

Lemma 2.7.5 (Noguchi [76a]) For every meromorphic mapping f :X→N there
exist a finite ramified cover π ′ : X′ → Cm, a proper finite holomorphic mapping
η :X→X′ and a meromorphic mapping f ′ :X′ →N satisfying the following:

(i) π = π ′ ◦ η, f = f ′ ◦ η.
(ii) f ′ separates the fiber of π ′.

(iii) Tf ′(r,ω)= Tf (r,ω), N(r,f ′∗D)=N(r,f ∗D), mf ′(r,D)=mf (r,D).

Lemma 2.7.6 (Characterization of algebraicity I; Noguchi [76a]) The complex
space X is affine algebraic and π :X→Cm is rational if and only if

N(r,Ξ)=O(log r).
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In this case we say that X
π→Cm is algebraic.

Theorem 2.7.7 (Characterization of algebraicity II; Noguchi [76a]) Let L be the
hyperplane bundle on Pn(C). If a meromorphic mapping f :X→ Pn(C) separates
the fiber of π , then the following holds:

(i) N(r,Ξ)� (2p− 2)Tf (r,L)+O(1).
(ii) It is necessary and sufficient for X to be algebraic and for f : X→ Pn(C) to

be rational that

Tf (r,L)=O(log r).

H.L. Selberg [30] proved the above (i) in the case of m= n= 1.
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