
Chapter 2

Linear Systems Analysis Methods

Abstract In this chapter, linear systems analysis is described in detail using a

representative example. We consider a semi-infinite soil thermal field whose

fundamental equation is an unsteady-state heat transfer equation. First, we discuss

the physical implications of the fundamental equation, the concept of discretization,

and how continuum space is discretized. Next, system state equations based on

vector matrix notation are derived. This book describing time discretization for

system state equations will help the readers understand the processes of numerical

analysis. In the second half, giving examples of changes in single room temperature

and thermal load computation, specific programming methods are described in

detail. We also discuss the stability of discretized numerical solutions, and intro-

duce the finite element method (FEM) commonly used for space discretization.

Keywords Control volume method • Discretization • System state equation •

Unsteady-state heat transfer equation • von Neumann stability analysis

2.1 Unsteady-State Heat Transfer Equation

The one-dimensional unsteady-state heat transfer equation, describing the temporal

and spatial evolution of θ [�C] in terms of time t[s] and position x[m], is as follows:

Cpρ
∂θ
∂t

¼ λ
∂2θ

∂x2
, ð2:1Þ

where Cp is specific heat [J/(K kg)], ρ is density [kg/m3], and λ is thermal

conductivity [W/(m K)]. The thermal conductivity indicates the ease of heat

transfer through the material. Cpρ [J/(K m3)] is the volumetric specific heat.
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The ratio of thermal conductivity to volumetric specific heat is the thermal diffu-

sivity1 [m2/s], which may be expressed as

a ¼ λ

Cpρ
: ð2:2Þ

Equation (2.1) is analogous to Newton’s equation of motion mα ¼ f(m dv/dt ¼
f ). In the heat equation, the temporal velocity change is replaced with a temperature

change and the volumetric specific heat represents thermal mass. As mentioned

below, the right side of Eq. (2.1) is the net heat flux acting on an element. This

quantity is equivalent to the force acting on an object in Newton’s law. In other

words, the conductive heat induces a temperature change dθ within time dt in an

element with heat mass Cpρ per unit volume. This is analogous to force f producing
a velocity change dv within time dt for a particle of mass m.

Here we restrict our discussion to the one-dimensional problem, but the three-

dimensional version of Eq. (2.1) is solved similarly:

Cpρ
∂θ
∂t

¼ λ
∂2θ

∂x2
þ ∂2θ

∂y2
þ ∂2θ

∂z2

 !
: ð2:3Þ

Using Nabla

∇ ¼ ∂
∂x

;
∂
∂y

;
∂
∂z

� �
¼ i

∂
∂x

þ j
∂
∂y

þ k
∂
∂z

,

and the Laplacian

Δ ¼ ∂2

∂x21
,
∂2

∂x21
þ � � � þ ∂2

∂x2n
,

we can obtain the following:

Cpρ
∂θ
∂t

¼ λ∇2θ ð2:4Þ

Cpρ
∂θ
∂t

¼ λ∇θ: ð2:5Þ

In the derivation of Eqs. (2.1) and (2.3), a few empirical facts should be assumed.

Let us consider two separated points within a material of thermal conductivity λ
and assume that a temperature difference occurs, as shown in Fig. 2.1. Note that the

1 The diffusivity or diffusion coefficient has the same unit [m2/s] as for other transport phenomena

other than heat (e.g., the molecular diffusivity coefficient). In any phenomenon, the diffusivity

coefficient (diffusivity) essentially represents the transport efficiency, which is the constant of

proportionality in terms of the relationship between the transferred flux and the concentration

gradient imposed by a potential difference (described later). This universal relationship is referred

to as Fick’s law.
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origin of the position coordinate system is to the left. Heat flows from the higher

temperature point 1 to the lower temperature point 2. Intuitively, it may be under-

stood that the larger the temperature difference between the points, the greater the

heat flow. To the end, the heat flux is proportional to the first power of the temper-

ature difference. It is considered that the heat flux reaching point 2 decreases with

increasing separation from point 1. Mathematically, this fact can be expressed that

heat flux is inversely proportional to distance. Finally, it may be considered that the

heat flux depends on the type of material. In fact, a large amount of heat flows through

materials such as metals, but less heat flows through insulation materials. Thus, the

constant of proportionality is referred to as the heat conductivity λ. As inferred from
the above descriptions, the amount of heat flowing by conduction, or the conductive

heat flux q [W/m2], is expressed by the equation shown in Fig. 2.1. Fourier’s law is

derived assuming that distance and temperature difference are infinitesimal.

q ¼ �λ
dθ

dx
: ð2:6Þ

It should be noted that the prefix negative sign of the thermal conductivity can be

attributed to the fact that the subscript in the equation of Fig. 2.1 is reversed in the

denominator and the numerator.

Now consider a three-dimensional micro-hexahedron buried within the material,

as shown in Fig. 2.2.

Fig. 2.1 Fourier’s law

Fig. 2.2 Heat flux flowing

in and out of a micro-

hexahedron
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First, the heat flux flowing from the left interface to the micro-hexahedron within

time dt is estimated. This means that only the component of heat flow in the

x direction is included. Because the heat flux is expressed by Fourier’s equation,

we just need to multiply the area and time to find the value of heat inflow into the left

face of the box shown in the figure. Similarly, the heat flux flowing out of the right

interface is estimated. The question we ask is as follows: Given that the temperature

at x is θ, what is the temperature at x + Δx? Take a look at the temperature gradient in

the x direction drawn directly under the micro-hexahedron at the bottom of Fig. 2.2.

Because the temperature gradient is approximately linear, the temperature at the

outflow interface at an infinitesimal distance Δx can be written as θ þ dθ
dx dx (where

Δx ¼ dx).This expression is exactly y ¼ (intercept) + (gradient) · x, which you

might be familiar since primary school days. Substituting this expression into the

term of temperature of a Fourier equation gives the outflow of heat shown in the

figure. The difference between the heat outflow and inflow is the heat accumulated in

the x-direction in the micro-hexahedron, that is,

�λ
dθ

dx
dydzdt� �λ

d

dx
θ þ dθ

dx
dx

� �
dydzdt

� �
¼ λ

d2θ

dx2
dxdydzdt:

The differential operators may be treated as ordinary fractions in calculations. This

may be applicable to the y and z directions. In other words, the heat flux may be

estimated in each of the three directions. How is the micro-hexahedron physically

affected by this? The temperature change dθ occurs in the micro-hexahedron. The

degree of this change depends on the material of the hexahedron; in short, it depends

on whether the material is thermally heavy or light when the temperature is increased

by means of thermal energy accumulated in the hexahedron. In terms of Newton’s

equations of motion, if the same force is applied to large and small material points,

the point of large mass accelerates less than that of small mass, while the point of

small mass is relatively easy to move. Such a property is represented by the heat

capacity obtained bymultiplying the volumetric specific heat by volume. Substituting

this quantity into both sides of the above equation, we get

Cpρ � dxdydz � dθ ¼ λ
d2θ

dx2
þ d2θ

dy2
þ d2θ

dz2

� �
dxdydzdt:

Rearrangement yields the three-dimensional unsteady-state heat transfer Eq. (2.3).

The unsteady-state heat transfer equation describes the physical phenomenon

where heat flows by means of temperature difference. This temperature difference,

which creates a driving force, is referred to as the potential difference. This

equation may be principally applicable to a range of physical phenomena even if

the potential difference and transferred object are different. For example, as

discussed in Sect. 2.11, in moisture transfer, the potential difference is the differ-

ence in water vapour concentration. The unsteady-state heat transfer equations are
often referred to as diffusion equations, because they describe physical phenomena

where the potential difference is the driving force of heat or water vapour diffusion.
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As mentioned in the footnote of page 4, the universal diffusion formulae are

referred to as Fick’s laws (the first law is equivalent to Fourier’s law of heat

diffusion and the second is the one-dimensional heat conduction equation).

A differential equation of the form (2.1), in which the first-order time derivative

equals a second-order space derivative expressed by a Laplacian (and perhaps other

constant coefficient advection terms) is classified as parabolic. Other classes of

partial differential equations are hyperbolic and elliptic. An example of the former

is the equation of vibration for a shearing stick, given by

∂2
x

∂t2
¼ G

ρ

∂2
x

∂z2
, ð2:7Þ

where x and z are displacement [m] and height [m], respectively, in the coordinate

system of Fig. 2.3; G [N/m2] is the modulus of elasticity; and ρ [kg/m3] is the density

of shear stick. Note that the time derivative is second-order. Leading elliptic exam-

ples are the Poisson equation ∂2ϕ
∂x2 þ ∂2ϕ

∂y2 þ ∂2ϕ
∂z2 þ g ¼ 0 and the Laplace equation

∂2ϕ
∂x2 þ ∂2ϕ

∂y2 þ ∂2ϕ
∂z2 ¼ 0. These are equivalent to three-dimensional steady-state heat

conduction Eq. (2.3) (in which the time differential on the left side of the equation

is set to zero).

2.2 What is Discretization

The one-dimensional unsteady-state heat transfer equation, Eq. (2.1), can be defined

if the initial conditions and boundary conditions are known, but may not be analyt-

ically solvable. Solutions must then be sought numerically, which is the main theme

of this book. As already described above, continuous differential equations must

have been discretized before they can be solved by a computer. Put simply,

discretization is the replacement of infinitesimal time dt and distance dxwith a finite
timeΔt and distanceΔx, respectively. These operations are known as time and space
discretizations, respectively. Of course, appropriate procedures must be followed in

the discretization process. Three basic methods for space discretization are

• Finite Difference Method, FDM

• Control Volume Method, CDM

• Finite Element Method, FEM

Fig. 2.3 Vibration of a

shearing stick
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The finite difference and CVMs give the same discretization equations. However,

in the former approach, a Taylor expansion is applied to the original differential

equation, while the latter builds the balance between flux inputs and outputs into the

control volume in order to satisfy the original differential equation. The latter, which is

much more physically intuitive and easier to understand, is used as the basis of space

discretization throughout this book. On the other hand, time discretization methods

depend on the order of the time derivative in the original differential equation. In

hyperbolic equations containing second order time differentials, Runge–Kuttamethod

or similar methods, which enable multi-level integration, are used. First-order time

derivatives are usually solved by one of the following methods:

• Forward FDM

• Crank–Nicolson method (central differences)

• Backward FDM

In principle, the difference scheme for time discretization is not limited to these

methods and an infinite number of difference schemes can be created. This topic

will be discussed later.

We emphasize that space and time discretization is inherently different and the

two should be treated separately.

In practice, space discretization is applied to the original continuous system,

followed by time discretization.

2.3 Space Discretization Based on Control Volume Method

As a representative example, let us consider a thermal field of semi-infinite soil, as

shown in Fig. 2.4. The x-coordinate axis in the underground direction takes ground

surface as its origin. Underground heat propagates only by conduction, but con-

vective heat transfer occurs on the ground surface, which is exposed to external

temperature θo [�C]. The convective heat transfer coefficient is αo [W/(m2 K)]. If

the surface temperature is θ1 [�C], the acquired heat is αo(θ0�θ1) [W/m2]. On the

ground surface, such phenomena occurs: a heat flux I [W/m2] from known solar

radiation (shortwave radiation), a loss due to latent heat of vaporization lE [W/m2],

a heat loss due to known long wave radiation flux R [W/m2], and a latent heat of

vaporization IE [W/m2] that is the product of a latent heat of vaporization of water

[J/kg] and a known evaporation [kg/(m2 s)]. In summary, the problem amounts to

analyze the evolution of the semi-infinite ground thermal field when thermal impact

was applied only on the ground surface.

First, control-volume space discretization allocates the system to control vol-

umes of limited size. The heat capacities of these control volumes CpρΔx [J/K] are
represented by temperature nodes (since this is a one-dimensional problem, the area

is implicitly assumed to be 1 m2). As implied by this description, the temperature

nodes are placed at the centers of the control volumes. This is referred to as lumped

parameterization. Figure 2.4 illustrates five control volumes extending from the
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ground surface. To simplify the discussion, these volumes have the same thickness,

Δx. Ordinarily, near the ground where boundary conditions have a strong effect, the
allocated widths are small, making the intervals nonuniform. Another important

point of the problem is the degree of depth to be considered. Because thermal

impact is applied only to the semi-infinite one side of the boundary, the impact

qualitatively exerts from the ground surface downward a valid depth, suggesting

that the temperature beyond the depth is expected to stabilize. At this depth, the

temperature should be the average value for the thermal field determined by the

surface thermal impact, because no other thermal generation or absorption occurs

throughout the system. Indeed, if underground temperature is measured at depths

exceeding some critical depth, a constant temperature is reached, known as the

isothermal layer temperature. Therefore in this example, analysis must be

conducted until the depth reaches the point with the isothermal layer temperature.

This required degree of depth depends on the thermophysical properties of the

ground, i.e., the ease of heat transfer and the thermal mass Cpρ, but approximately

10 m is sufficient. The temperatures at the lumped parameterized nodes in the

control volume are denoted from θ2 to θ6[�C]. These are unknown values to be

solved. An unknown temperature node is also placed on the ground surface; this

node is expressed as θ1[�C]. Note that this node has no heat capacity.Nodes with

and without heat capacity are denoted as � and �, respectively. Moreover, the

temperatures at nodes designated (in this case the external temperature) are

predefined; these nodes determine the boundary conditions stipulated by the heat

flux through convective heat transfer. Hence, they are referred to as (temperature)

stipulation nodes. We are now ready to program the simulation.

Fig. 2.4 Space

discretization model based

on CVM in which the

surface layers of the semi-

infinite soil are lumped

parameterized
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Heat balance equations will be formulated for temperature nodes 1–6. The right

side of a heat balance equation should account for all heat flux elements flowing

into and out of the control volume. The left side describes the resulting physical

changes. Physical phenomena, as you already known, will occur (A temperature

difference occurs in the control volume. Strictly speaking, it is balanced with the

temperature change over time for the control volume with heat capacity.). The

surface temperature nodes are subject not only to conductive heat but also to other

various heat flows permitted by the boundary conditions.

At node 1, we have

0 ¼ C12 θ2 � θ1ð Þ þ αo θo � θ1ð Þ þ I � R� lE: ð2:8Þ

The first term on the right is the flux entering node 1 from node 2, and C12 is the

heat conductance [W/(m2 K)], defined as

C12 ¼ λ

Δx=2
: ð2:9Þ

The denominator is divided by the distance between nodes 1 and 2. The second

term on the right of Eq. (2.8) indicates the flux flowing into node 1 through

convection. Note that C12 and convection thermal conductivity have the same

dimension of conductance. Moreover, in both terms, θ1 is deducted from the

adjoining temperature, because the inflow has a positive number. Similarly, the

quantities R and lE are assumed to have positive influx. Moreover, because this

problem is set up in one dimension, the area (1 m2) is disregarded in both sides.

Strictly, the equations should account for all the heat flux flowing into an element

(as seen in the case where the heat flux entering the micro-hexahedron in the

unsteady-heat conduction equation); multiplication by the area is required, but

this is omitted for simplification. Finally, the left side of Eq. (2.8) is evaluated to

be zero because the surface temperature nodes have no heat capacity (and no

volume). In the system schematic shown in Fig. 2.4, the right side of the heat

balance equation is always evaluated to be zero at the nodes indicated as �.
Node 2 satisfies the following equations:

CpρΔx
dθ2
dt

¼ C21 θ1 � θ2ð Þ þ C23 θ3 � θ2ð Þ, ð2:10Þ

C21 ¼ λ

Δx=2
, ð2:11Þ

C23 ¼ λ

Δx
, ð2:12Þ

where C21 ¼ C12. As should be physically understood, the conductance is sym-

metric and Cij ¼ Cji. Here we describe the configuration of C21 assuming that node
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1 and node 2 have different heat conductivities and discretization widths. Let us

consider that the ground comprises multiple layers such as clay and gravel, as

shown in Fig. 2.5. In this case, the composite conductance is

C21 ¼ 1
Δx1=2
λ1

þ Δx2=2
λ2

: ð2:13Þ

If the thermal conductivity equals the discretization width, (2.13) reduces to

(2.12). Equation (2.13) is similar to the thermal transmittance, so-called U-value, an

important quantity in architectural environmental engineering. When the ground is

assumed to compose two layers of different conductance, it may behave like

tandem resistors in an electric circuit. For any materials with resistance, addition

might be performed. Whereas, conductivity ([W/(m K)] ¼ [J/(s m K)]) of any

materials has thermal energy [J] in the numerator of its physical unit, implying

“ease of heat transfer.” In this case, addition cannot be performed. First, the thermal

conductivity is divided by the thickness to obtain the conductance. Then, addition is

performed on the reciprocals of the values for conductance. After addition, the

reciprocal for the resulting sum is used for conductance. This general rule is

applicable not only to heat diffusion problems but also to the diffusion problems

involved with all types of potential fields.

The heat balance equations for nodes 3, 4, and 5 are as shown below. (The

conductance is obvious and not described explicitly.)

CpρΔx
dθ3
dt

¼ C32 θ2 � θ3ð Þ þ C34 θ4 � θ3ð Þ, ð2:14Þ

CpρΔx
dθ4
dt

¼ C43 θ3 � θ4ð Þ þ C45 θ5 � θ4ð Þ, ð2:15Þ

CpρΔx
dθ5
dt

¼ C54 θ4 � θ5ð Þ þ C56 θ6 � θ5ð Þ: ð2:16Þ

The temperature evolution for the final node (node 6) is

CpρΔx
dθ6
dt

¼ C65 θ5 � θ6ð Þ: ð2:17Þ

The right side contains a single term because all elements deeper than node

6 have the same temperature (namely, θ6), and the conductive heat flux is zero.

Fig. 2.5 Composite

conductance
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Such a condition is referred to as an adiabatic boundary. Our thermal field of semi-

infinite soil should ensure that the control volume lies at sufficient depth to assume

the isothermal layer. The adiabatic boundary should be constructed at the bottom of

this layer.

2.4 System State Equations

The heat balance equations for temperature nodes 1–6 are collectively expressed in

a vector matrix Eq. (2.18). The matrixM contains the heat capacities m1, � � �, m6 on

the left side of the heat balance equation. In this example,m1 ¼ 0; for the remaining

node i, mi ¼ CpρΔx.

M
dθ
dt

¼ Cθþ Coθo þ f: ð2:18Þ

Equation (2.18) is known as a system state equation. The system state equation

collectively describes the balance equations. The matrix and vector elements are

explicitly written below, but the reader must first substitute them into Eq. (2.18) for

expansion and confirm that the elements match those in the heat balance equation

for each node; Eqs. (2.8)–(2.10) and (2.14)–(2.17). This exercise is fundamental to

understand numerical solutions of partial differential equations; hence, surely work

on this exercise by yourself.

θ ¼

θ1
θ2
θ3
θ4
θ5
θ6

26666664

37777775 ¼ T θ1 � � � θ6½ �: ð2:19Þ

θ is a vector of unknown variables. The symbol T at the upper left of the

vector (or matrix) indicates the transpose.2 The transpose operator changes a

horizontal (vertical) vector to a vertical (horizontal) one, and interchanges the

row and column elements for matrices. We will encounter the transpose frequently

in later chapters.

2Many textbooks show the transpose symbol at the upper right of the vector or matrix, but this

convention may be easily confused with powers; hence, in this book, it is shown at the upper left.
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f ¼

I � R� lE
26666664

37777775, ð2:20Þ

M ¼

m1

m2

m3

m4

m5

m6

26666664

37777775: ð2:21Þ

Blank entries imply zero elements.

C¼

�C12�αo C12

C21 �C21�C23 C23

C32 �C32�C34 C34

C43 �C43�C45 C45

C54 �C54�C56 C56

C65 �C65

26666664

37777775, ð2:22Þ

Co ¼

αo
26666664

37777775, ð2:23Þ

θo ¼ θo
o

� �
: ð2:24Þ

No doubt the reader has been surprised by the graceful quality of the system state

equations.

For any parabolic diffusion equations, their system state equations are always

expressed in the form of Eq. (2.18) after discretization. This means the state equations

are universal formulation. In this example, the control volume method (CVM) is used

for discretization. As known from the example, the system state equation takes the

same formulation independent of the method of space discretization.

M is referred to as the heat capacitance (capacity) matrix. It has a regular

structure and the heat capacities at the discretized elements are contained in its

diagonal elements. The element (1,1) representing the ground surface is m1 ¼ 0.

The values are also contained in diagonal elements in the case where the space finite

difference method (FDM) is used for space discretization. There is a slight differ-

ence when calculus of finite element method (FEM) is used. Values are also

contained in the non-diagonal elements. This interesting point will be explained

in detail in later sections. For now, M can be assumed to be a diagonal matrix.
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The vector matrix product Coθo indicates the boundary conditions of convective
heat transfer as well as those determined by the stipulated temperature nodes. The

vector θo is a column vector of known temperature nodes; the stipulated tempera-

ture nodes. In this example, only the external temperature is treated; thus, the

column vector θo contains a single element. Co, where the number of rows is the

number of unknown nodes and the number of columns is the number of aforemen-

tioned stipulated nodes, is a non-square matrix. If a heat relationship exists between

the ith unknown number and the jth stipulated temperature node, the transport

efficiency is contained in the (i,j)th element. In this example, because a convective

heat flux occurs between the ground surface and the external environment, the

convective heat transmittance αo (its efficiency) is contained in element (1,1).

C is referred to as the heat conductance matrix. This matrix has a regular

structure, and if a heat relationship exists between the ith and jth unknown temper-

ature nodes, its transport efficiency is contained in the (i,j)th element. In this

example, conductance C12 ¼ λ
Δx=2 is contained in the element (1,2). Furthermore,

this matrix has a fine symmetric structure. Only by treating the upper triangular

elements, the lower triangle may be populated with the transposed values. This is an

extremely useful characteristic in computer coding, but the symmetry is broken if a

directional stipulation is imposed on the system, as happens with diodes in electri-

cal circuits. This is applicable to the case where air is forcibly moved by a fan to

transport heat together with an advection (see Sect. 2.9). At this point, it is assumed

that C has a symmetric structure. The diagonal elements ofC are sophisticated. The

diagonal elements contain the row sums of the non-diagonal elements in the matrix

C and the elements in Co, which is multiplied by �1. For example, element (1,1) in

C contains a negative value of (C12 + αo), which is the sum of the non-diagonal

element in C and the element in the first row in C0. This relationship is again very

useful in computer coding.

Once the system state equations are well known, it may be recognized that the

heat balance equations, as have been described, do not need to be re-derived. This is

the greatest advantage of system state equations. In other words, space

discretization equations can be mechanically obtained without knowledge of the

individual heat balance equations. This may present as a surprising fact.

The discretization procedure is summarized below:

• A vector of unknown variables is automatically determined when the block

diagram (as in Fig. 2.4) is constructed.

• If space discretization is to be conducted via control volume or finite difference

method, the heat capacitance matrixM contains the discretized heat capacities in

its diagonal elements.

• Vector θo of stipulated node temperatures is automatically determined.

• Matrix Co containing the boundary conditions at the stipulated temperature

nodes is constructed according to the following rules. If a heat relationship

exists between the ith unknown temperature node and the jth stipulated temper-

ature node, the conductance is contained in the element (i,j).
• The heat conductance matrixC is constructed according to the following rules. If

a heat relationship exists between the ith and jth unknown temperature modes,
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their conductance is contained in element (i,j). However, this operation is

conducted solely on the upper triangular elements. The transposes may be

copied into the lower triangular parts. The diagonal elements contain the row

sums of the non-diagonal elements in C and the elements in Co, which is

multiplied by �1.

Provided that the rules of the basic matrix structure are known, a given problem

can always be turned into a system state equation similar to Eq. (2.18), and

individual heat balance equations need not be solved. Standard matrix operations

such as row summation and transpose are ideally suited to computer programs and

are extremely valuable in creating a general-purpose program.

2.5 Time Discretization

The beauty and universality of system state equations has been widely appreciated,

but Eq. (2.18) cannot yet be programmed into a computer. First, we must discretize

the time derivative.

The left side of Eq. (2.18) is easily discretized as

M
dθ
dt

¼ 1

Δt
M θiþ1 � θi
� 	

: ð2:25Þ

The superscripted indices in the above equation are not exponentials, but

represent the discretised time steps i and i + 1.

The right side of Eq. (2.18) is slightly problematic because we must decide at

what point in time the vectors θ, θo, and f should be discretized; more specifically,

whether they should be computed at the i th or (i + 1) th time step. The former is a

forward-difference computation; the latter constitutes backward difference. If the

discretization is performed at the mid-points of both schemes, it becomes a

Crank–Nicolson difference. In principle, any time point between the i th and

(i + 1) th steps is permitted, as already mentioned, an unlimited number of differ-

ence schemes is possible.

Let us consider the forward difference scheme in detail. If the state vector on the

right side of (2.18) is computed at the i th step, the discretized equation is given as

below:

1

Δt
M θiþ1 � θi
� 	 ¼ Cθi þ Coθoi þ f i

, θiþ1 ¼ 1
ΔtM

� ��1
1

Δt
Mþ C

24 35θi þ Coθoi þ f i

8<:
9=; ð2:26Þ

Similarly, if the state vector on the right side of (2.18) is computed at the (i + 1)

th step (backward-difference scheme), the equation becomes
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θiþ1 ¼ 1

Δt
M� C

� ��1
1

Δt
M

� �
θi þ Coθoiþ1 þ f iþ1


 �
: ð2:27Þ

The one-dimensional unsteady-state heat transfer Eq. (2.1) will generate

complete numerical solutions. In Eqs. (2.26) and (2.27), all the known variables

are contained on the right side. Note that the vectors θo and f are referenced from

archived data such as climate data, and so are independent of time step. Thus, the

unknown variable vector θ can be determined. In the first time step, θ1 is computed

from a vector of initial conditions. θ1 is then substituted on the right side of the

equation to obtain θ2, and the procedure iterates. The initial condition vector must

be specifically and appropriately declared; for example, the temperatures of all

nodes can be set to 0 �C. In this manner, time integration is conducted through

sequential calculation and a time series of unknown variable vectors is generated.

We have mentioned the need for care in deciding the initial conditions. If

the initial conditions stray far from the solution, their effect will diminish only

after numerous computations. To “appropriately declare” does not mean to arbi-

trarily declare, but means to precisely declare. When the heat capacity is extremely

large, as in our example, particular attention is required. If the initial temperature is

set to 100 �C at all nodes, for instance, and we wish to obtain the underground

temperature profile for the period from December 31st, 12 a.m. to January 1st, 1 a.

m., then the node temperatures will be discontinuous across this time-boundary.

This situation does not allow us to stop the numerical calculation at the end of that

particular year, thus we must continue one more year (or much more years) so as to

obtain a smooth profile. In this manner, extremely inappropriate initial conditions

exert a drastic, irreversible effect on the thermal system. Ground thermal conduc-

tion calculations are often performed annually on the basis of the same climate

conditions. Ideally, the calculation time can be drastically reduced by making

preliminary temperature estimates of the isothermal layer, which can be used as

initial conditions. The above process is referred to as annual steady calculations.
Now let us revisit Eqs. (2.26) and (2.27). The index �1 at the upper right of the

first term in both equations is the matrix inverse operator, which inverts the matrix.

The inverse of a scalar is the reciprocal.3 At this point, an intelligent reader would

realize that by comparing Eqs. (2.26) and (2.27), the former calculation requires

less effort. In the forward-difference scheme, the inverse of a diagonal matrix,

namely 1
ΔtM
� �

, is computed. The inverse of a diagonal matrix is the reciprocal of

the diagonal elements (if a matrix is multiplied by its inverse, the identity matrix is

produced),4 precluding the need for sweep-out methods and other call routines

that consume computational time. On the downside, the forward-difference scheme

3An inverse is any quantity that when multiplied by its original quantity, yields an identity. In

scalars, the unit element is 1; in matrices, it is the unit matrix E. If a unit is multiplied by a quantity,

it yields the same quantity.
4 No reverse can be defined for the element (1,1) at the Earth’s surface temperature node because

they are zero. For this reason, here explanation is made in general terms.
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is unstable unless a special condition is satisfied; more specifically, Δt cannot be
set very large. This phenomenon can be heuristically understood as follows.

The finite difference approximation is essentially a linear extrapolation from the

current point. Hence, future predictions are likely to become unreliable if the time

step Δt is large.
In contrast, in the backward-difference formulation, 1

ΔtM� C
� �

becomes a band

matrix with entries on both sides of the diagonal. In this case, the inverse matrix

must be properly obtained through methods such as the sweep-out method, which

are tedious to implement. However, unlike the forward difference formulation, a

minimum Δt is not required to obtain a stable numerical solution. In the numerical

analysis, although the size of the discretization error in the numerical solutions is of

interest, far more important is whether the solutions diverge or stabilize. With

respect to stability, even if the calculation requires effort, the backward difference

formulation is recommended. The matrix M is diagonal when space discretization

is performed using the control volume or finite difference methods. When the finite

elements method is used, non-diagonal elements appear in M and the advantage of

not requiring an inverse matrix calculation is lost.

We now introduce the concepts of explicit and implicit in classifying numerical

methods. These concepts primarily define whether the inverse matrix must be

solved when progressing from time steps i to i + 1. In this sense, although

forward-difference schemes have been called explicit, any scheme may be explicit

or implicit depending on the space discretization method. To reiterate, if the FEM is

used for space discretization, even if a forward-difference time discretization is

adopted, the scheme is implicit rather than explicit.

Finally, we derive the Crank–Nicolson difference scheme. The Crank–Nicolson

scheme is a central difference applied to spatial discretization, as shown in Fig. 2.6.

The differential approximation at a discrete point j can be considered as the average
spatial gradient between discrete points j and j � 1, and j and j + 1. The central

difference gradient is the same between discrete points j � 1 and j + 1 because the

space discretization is uniform; thus, the gradient at point j is the average of both

gradients, as shown in the figure.

Fig. 2.6 Meaning of spatial

Crank–Nicolson method
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Applying the above ideas to the right side of Eq. (2.18), we obtain

1

Δt
M θiþ1 � θi
� 	 ¼ C

1

2
θi þ 1

2
θiþ1

8<:
9=;þ Co

1

2
θoi þ 1

2
θoiþ1

8<:
9=;þ 1

2
f i þ 1

2
f iþ1

8<:
9=;

, θiþ1 ¼ 1
ΔtM� 1

2
C

� ��1

1

Δt
Mþ 1

2
C

24 35θi þ Co

1

2
θoi þ 1

2
θoiþ1

8<:
9=;þ 1

2
f i þ 1

2
f iþ1

8<:
9=;

8<:
9=;:

ð2:28Þ

Note that the Crank–Nicolson difference is also an implicit method.

Equations (2.26)–(2.28) can be summarized and the forward, backward, and

Crank–Nicolson differences are simultaneously expressed as

, θiþ1 ¼ A�1 Bθi þ C0 1� kð Þθoi þ kθoiþ1
� 
þ 1� kð Þf i þ kf iþ1

� 
� 

, θiþ1 ¼ A�1Bθi þ A�1 Co 1� kð Þθoi þ kθoiþ1

� 
þ 1� kð Þf i þ kf iþ1
� 
� 


, θiþ1 ¼ Tθi þ heat impact on the system based on boundary conditionsð Þ:
ð2:29Þ

Forward, backward, and Crank–Nicolson differences are specified by k ¼ 0,

k ¼ 1/2, and k ¼ 1, respectively, although k can be assigned any arbitrary number

k ∈ [0,1].

2.6 Stability of Numerical Solutions

Observe the final Eq. (2.29) after time discretization of the system state equation. As

already mentioned, the unknown variable vector in the next time step is influenced

by both the variable vector of the current time step (that is not unknown anymore),

and the boundary conditions, which is obtained through successive calculations

(vector summation inside {} on the right side of Eq. (2.29)). Here we discuss the

stability of this discretized system, ignoring the effect of the boundary conditions.

Because the boundary conditions influence the discrete system from the outside,

they are not relevant to the inherent stability of the system itself, i.e.,

Hence, the true impact of the aforementioned system is expressed as

T ¼ 1
ΔtM� kC
� ��1 1

ΔtMþ 1� kð ÞC� � � A�1B. This matrix T � A� 1B is a

transition matrix, so-called because it embodies the characteristics of the time

transition. If the second term on the right side in row 3 of the above equations is

ignored, θi + 1 ¼ Tθi, equivalent to geometric progression in scalar recursions. We

now ask: what is the necessary and sufficient condition for convergence and

stability of the general terms in the following geometric progression?
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a1; a2; a3; . . . ; anf g ¼ a, ar, ar2, . . . , arn�1
� 
, an ¼ r � an�1

Here knowledge from junior high school may be useful, that is, a series

converges if its geometric ratio r satisfies |r| � 1. The same idea applies to vector

matrix recurrence formulae. However, the problem of how to measure the size of

the transition matrix T arises. The answer lies in the eigenvalues of T. Generally,
an n 	 n square matrix has n eigenvalues. For convergence, it could be argued that
the absolute value for the maximum eigenvalue should not exceed 1. In other

words,5

Max eigen T½ �½ �j j � 1: ð2:30Þ

We now apply forward-difference time discretization to the one-dimensional

unsteady heat transfer system contained inside walls, as shown in Fig. 2.7. In this

system, the temperatures inside the walls on both sides are specified at temperature

nodes θL and θR. The wall between the boundary nodes is divided into n partitions.

As before, space is discretized via the CVM. Following the basic rules of vectors

and matrices described earlier, the state equations of this system (2.18) contains the

following elements:

θ ¼
θ1
⋮
θn

24 35, ð2:31:1Þ

f ¼ 0, ð2:31:2Þ

Fig. 2.7 Heat conduction

inside walls

5 This argument derives from the fact that the time evolution of the error between the numerical

solution and the explicit solution obeys the original equation.
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M ¼
Cpρ � Δx

⋱
Cpρ � Δx

24 35, ð2:31:3Þ

C ¼

� 2λ

Δx
λ

Δx
λ

Δx
� 2λ

Δx
λ

Δx
⋱ ⋱ ⋱

λ

Δx
� 2λ

Δx
λ

Δx
λ

Δx
� 2λ

Δx

2666666666666664

3777777777777775
, ð2:31:4Þ

Co ¼

λ

Δx
0

0 0

⋮ ⋮
0 0

0
λ

Δx

26666666664

37777777775
, ð2:31:5Þ

θo ¼ θL
θR

� �
: ð2:31:6Þ

In this situation, no heat sources (source; generation) or sinks (intake) exist in the

walls, and so the vector f vanishes. The stipulated node temperature vector θo is a
column vector of length 2.

Explicitly writing the aforementioned matrix elements, the transition matrix of

forward difference time discretization is obtained as
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T¼A�1B¼

Cpρ�Δx
Δt

⋱
Cpρ�Δx

Δt

2666664

3777775
�1

Cpρ�Δx
Δt

�2λ

Δx
λ

Δx

λ

Δx
Cpρ�Δx
Δt

� 2λ

Δx
λ

Δx

⋱ ⋱ ⋱
λ

Δx
Cpρ�Δx
Δt

� 2λ

Δx
λ

Δx

λ

Δx
Cpρ�Δx
Δt

� 2λ

Δx

266666666666666666664

377777777777777777775

¼

1� 2λΔt
CpρΔx2

λΔt
CpρΔx2

λΔt
CpρΔx2

1� 2λΔt
CpρΔx2

λΔt
CpρΔx2

⋱ ⋱ ⋱
λΔt

CpρΔx2
1 � 2λΔt

CpρΔx2
λΔt

CpρΔx2

λΔt
CpρΔx2

1 � 2λΔt
CpρΔx2

266666666666666666664

377777777777777777775

¼

1�2r r

r 1�2r r

⋱ ⋱ ⋱

r 1�2r r

r 1�2r

26666666664

37777777775
¼

1

⋱

1

2664
3775þr

�2 1

1 �2 1

⋱ ⋱⋱

1 �2 1

1 �2

26666666664

37777777775
¼ Eþ rF,

ð2:32Þ

where r ¼ λΔt
CpρΔx2 and E is the identity matrix. The eigenvalues of F, which constitute

an n 	 n square band matrix, are �4sin2 tπ
2n

� �
(where t ¼ 1, 2, ..., n). Given that

when the eigenvalues for a matrix D are λD, the eigenvalues for a function of D,

f(D), are f(λD), the eigenvalues for the transition matrix are

λt ¼ 1� 4r sin 2 tπ

2n

24 35 where t ¼ 1, 2, � � �, n : ð2:33Þ

If Eq. (2.30) is satisfied, 1� 4r sin 2 tπ
2n

� ��� �� � 1 is also satisfied. Hence, the stability

condition for the forward-difference time discretization of this problem is obtained as
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Δt � CpρΔx2

2λ
: ð2:34Þ

We now establish the stability condition of the backward-difference time

discretization and the Crank–Nicolson scheme using.

First, the backward-difference formulation is given as

T ¼ A�1B ¼ 1

Δt
M

� ��1
1

Δt
M� C

� �" #�1

¼ E� rF½ ��1
, ð2:35Þ

and the eigenvalues for the transition matrix is written as

λt ¼ 1

1þ 4r sin 2 tπ
2n

� � : ð2:36Þ

Recall that the inverse of a matrix is equivalent to the reciprocal of a scalar (see

page 14 footnote). Equation (2.36) always satisfies 0 � λt � 1. In other words, if

backward difference is applied to time discretization, the numerical solutions are

unconditionally stable and Δt can be arbitrarily large. Furthermore, this result, i.e.,

that the eigenvalues are always positive and less than one, means that their absolute

values never exceed 1. Matrix eigenvalues are generally expressed as complex

numbers, such that if Eq. (2.36) is drawn on a Gaussian complex plane, Fig. 2.8 is

obtained. If none of the eigenvalues for a transition matrix exceed 1, they are

contained within the unit circle on the complex plane. In the backward-difference

formulation, the eigenvalues for the transition matrix lie along the positive real

number axis as shown in the figure. The lack of negative eigenvalues is the main

difference between this scheme and the Crank–Nicolson scheme. The next section

will elaborate on this fact, but here we mention that because Crank–Nicholson

difference permits negative eigenvalues, it induces “fluctuating numerical solu-

tions,” which are not physically possible, while not diverging. Therefore, the

preferred difference scheme is backward difference. This scheme guarantees

unconditional stability without numerical fluctuations.

Fig. 2.8 Transition matrix

eigenvalues for backward

difference

24 2 Linear Systems Analysis Methods



In the Crank–Nicolson difference scheme, we have

T ¼ A�1B ¼ 1

Δt
M� 1

2
C

24 35�1

1

Δt
Mþ 1

2
C

24 35
¼ 2

Δt
M� C

24 35�1

2

Δt
Mþ C

24 35

¼ 1

Δt
M

24 35�1

2

Δt
M� C

24 3524 35�1

1

Δt
M

24 35�1

2

Δt
Mþ C

24 35
¼ 2E� rF½ ��1

2Eþ rF½ �, ð2:37Þ

with the following eigenvalues for the transition matrix:

λt ¼
2� 4r sin 2 tπ

2n

� �
2þ 4r sin 2 tπ

2n

� � : ð2:38Þ

Equation (2.38) always satisfies� 1 � λt � 1. In other words, as with backward

difference, the Crank–Nicolson is stable, regardless of the value of Δt, and the

numerical solution always converges. If Eq. (2.38) is drawn in a Gaussian complex

plane, Fig. 2.9 is obtained, in which the eigenvalues for the transition matrix lie

within the range [�1, 1]. The presence of negative eigenvalues causes temporal and

spatial fluctuations in the numerical solutions, as discussed in the next section.

2.7 Fluctuations in the Numerical Solutions

Basically, if k in the time-discretized system state equation (expression (2.29)

exceeds 1/2, Eq. (2.30) is satisfied, i.e., convergence of the numerical solutions is

guaranteed.

However, as mentioned above, the negative eigenvalues for the transition matrix

T introduce unwanted oscillations in the numerical solutions.

Fig. 2.9 Transition matrix

eigenvalues for

Crank–Nicolson difference
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In the Crank–Nicolson difference scheme, we proved that the convergence

condition (2.30) is always satisfied. Therefore, if we desire to less space-discretized

error as discussed in Fig. 2.6, we may think the Crank–Nicolson difference scheme

is better than the backward-difference scheme. However, this is not always the case.

The author’s experience teaches that the backward-difference scheme is best.

Consider one-dimensional unsteady heat transfer in which the temperature of a

single layer wall is maintained at 0 �C at the left wall, but where the right wall is

restricted to 100 �C (see Fig. 2.10). The upper and lower panels in the figure show the

initial condition and the steady state temperature distribution after the passage of

unlimited time, respectively. What happens if the Crank–Nicolson difference scheme

is applied to time discretization? Of course, as explained in the previous section,

stability is guaranteed, and so the numerical solutions will never diverge at any time.

However, because negative eigenvalues for the transition matrix T exist, a slightly

inconvenient situation may arise. For example, in Fig. 2.10, the temperature at a given

point should always exceed that of its left neighbor. Physically, because the left wall is

retained at 0 �C from t ¼ 0, heat flows from the right side, where the temperature is

restricted to 100 �C; thus, the temperature distribution should unambiguously increase

from left to right. However if Crank–Nicolson difference is used, fluctuations such as

those shown in the upper panel of Fig. 2.11 may occur. This situation is termed

numerical fluctuation in space direction. Moreover, in the temporal direction, the

temperature at any given point must increase from the temperature at the same point in

Fig. 2.10 Example of

temperature distribution

analysis in single wall;

(above) is initial state,
(bottom) is the steady-state

Fig. 2.11 Fluctuation

of numerical solutions
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the previous time. However, the Crank–Nicolson formulation permits the fluctuations

shown in the lower panel in Fig. 2.11, termed numerical fluctuation in time direction.
Again, negative eigenvalues for the transition matrix are responsible for these fluctu-

ations, but no divergence occurs unless the absolute value for the maximum eigen-

value exceeds 1. That is, the numerical fluctuations are transient and as the system

reaches steady-state, the numerical solutions approach the steady-state temperature

distribution. Therefore, while not severely problematic, this situation should be

avoided as the numerical solutions are transiently physically impossible.

When obtaining numerical solutions, the magnitude of errors in space and time

discretization is a significant issue. Within the permitted discretization errors, it is

natural to desire that time discretization width Δt is as large as possible and that

time integration is maximally efficient. While the error magnitudes are certainly

important, much more important is whether the numerical solutions stabilize and

are physically plausible. Numerical inaccuracies in large jobs worth more than

dozens thousands yen are especially undesirable, when you use a super-computer

system, for example. From this viewpoint, the discretization method should be

explored cautiously and time discretization should be formulated as backward

difference, which is both stable and robust against fluctuations.

2.8 von Neumann Stability Analysis

The above analysis on the convergence and stability of numerical solutions is

equivalent to the geometric progression of a scalar time-discretized equation, and

builds on an intuitive understanding of the convergence conditions. Less intuitive but

more mathematically rigorous is von Neumann stability analysis, discussed next.

The steps involved in this top-down approach are shown below.We suppose that the

discretization equations in space and time directions are provided. The variable is ϕ.

1. Variable ϕ is time- and space-indexed by a right superscript n and a right

subscript i, respectively, and is represented as ϕn
i .

2. All discretization variables are discrete Fourier transformed in the space direc-

tion as follows:

ϕn
i ¼ Vnexp Ik i � Δxð Þ½ � ¼ Vnexp Iiˆ½ �, ð2:39Þ

where I is imaginary unit (expressed in uppercase to distinguish it from index i),
k is the frequency, and ˆ is the phase angle (k � Δx).

For your reference, the discrete Fourier transform in the time and space

directions is,

ϕn
i ¼ Vnexp I kspaceiΔx� ktimenΔt

� 	� �
: ð2:40Þ

3. The discrete Fourier-transformed discretized equation is algebraically solved

and rearranged as Vn + 1 ¼ G � Vn. Here G is called the amplification coefficient.
4. The stability condition of the discretized equation for a selected phase angle is
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Gj j � 1 or G � G � 1, ð2:41Þ

where G is the complex conjugate of G.

Example Establish the stability of the numerical solutions of the advection

equation ∂ϕ
∂t þ u ∂ϕ

∂x ¼ 0. Assume that the equation is space-discretized by the

Crank–Nicolson method and time-discretized by backward difference.

Solution The scheme in which Crank–Nicolson and backward difference are

applied to space and time discretization, respectively, is termed Backward Euler

in Time Centered Space (BTSC).

The Crank–Nicolson spatial discretization of the advection equation is given as

below (refer to Fig. 2.6 for a visual interpretation):

ϕnþ1
i � ϕn

i

Δt
þ u

ϕnþ1
iþ1 � ϕnþ1

i�1

2Δx
¼ 0:

The discrete Fourier transforms of the φ variables in this equation are ϕn
i ¼ Vn

exp[Iiˆ], ϕnþ1
i ¼ Vn + 1 exp[Iiˆ], φnþ1

iþ1 ¼ Vn + 1 exp[I(i + 1)ˆ], and ϕnþ1
i�1 ¼ Vn +

1 exp[I(i � 1)ˆ].

Substituting these into the discretized equation, we obtain

Vnþ1exp Iiˆ½ ��Vnexp Iiˆ½ �þuΔt
2Δx

Vnþ1exp I iþ1ð Þˆ½ ��Vnþ1exp I i�1ð Þˆ½ �� �¼0:
In terms of the Courant number, C ¼ uΔt

Δx . After some rearrangement, this

expression becomes

1þ C

2
exp Iˆ½ � � exp �Iˆ½ �ð Þ

� �
Vnþ1 ¼ Vn , G ¼ 1

1þ IC sinˆ
¼ 1� IC sinˆ

1þ C2 sin 2ˆ
:

In converting the expression left of the second equals sign to that on the right, the

denominator is made real via the trigonometric relationships:

sin θ � exp Iθð Þ � exp �Iθð Þ
2I

, cosθ � exp Iθð Þ þ exp �Iθð Þ
2

, sin 2θ þ cos 2θ ¼ 1:

At this point, it is useful to recall the corresponding hyperbolic functions:

sinhθ � exp θð Þ � exp �θð Þ
2

, coshθ � exp θð Þ þ exp �θð Þ
2

, cos h2θ � sinh2θ ¼ 1:

Hence, the following relationship is obtained:

Gj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2 sin 2ˆ

p
1þ C2 sin 2ˆ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2 sin 2ˆ

p � 1:
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If the magnitude of the amplification coefficient G is drawn on a Gaussian

complex plane, Fig. 2.12 is obtained.

The above analysis demonstrates that the BTSC discretization of the advection

equation is unconditionally stable.

We now apply von Neumann stability analysis to the one-dimensional unsteady-

state heat conduction Eq. (2.1). We assume that space is discretized by the CVM.

We first consider forward-difference time discretization. The discretization

equation is

θnþ1
i � θ n

i

Δt
¼ λ

Cpρ

θ n
iþ1 � θ n

i

Δx
� θ n

i � θ n
i�1

Δx

Δx

, θnþ1
i � θ n

i

Δt
¼ λ

Cpρ

θ n
iþ1 � 2θ n

i þ θ n
i�1

Δx2
:

ð2:42Þ

This formulation should be familiar to readers who have carefully studied

Sect. 2.5. Applying the discrete Fourier transformation to (2.42) gives

1

Δt
Vnþ1exp Iiˆð Þ � Vnexp Iiˆð Þ� �
¼ λ

CpρΔx2
Vnexp I iþ 1ð Þˆð Þ � 2Vnexp Iiˆð Þ þ Vnexp I i� 1ð Þˆð Þ½ �

, Vnþ1 ¼ 1þ λΔt
CpρΔx2

�2þ exp Iˆð Þ þ exp �Iˆð Þ½ �
� �

Vn, ð2:43Þ

with amplification coefficient

G ¼ 1� 2
λΔt

CpρΔx2
1� cosˆð Þ: ð2:44Þ

The stability condition that satisfies |G| � 1 is

λΔt
CpρΔx2

� 1

2
, ð2:45Þ

Fig. 2.12 G in a complex

plane as per example
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which clearly matches Eq. (2.34). To obtain a stable numerical solution, Δt cannot
be arbitrarily large.

Next, we consider the case of backward-difference time discretization. The

discretized equation is

θnþ1
i � θ n

i

Δt
¼ λ

Cpρ

θnþ1
iþ1 � 2θnþ1

i þ θnþ1
i�1

Δx2
: ð2:46Þ

Applying the discrete Fourier transform to (2.46) yields

1

Δt
Vnþ1exp Iiˆð Þ � Vnexp Iiˆð Þ� �
¼ λ

CpρΔx2
Vnþ1exp I iþ 1ð Þˆð Þ � 2Vnþ1exp Iiˆð Þ þ Vnþ1exp I i� 1ð Þˆð Þ� �

, 1� λΔt
CpρΔx2

�2þ exp Iˆð Þ þ exp �Iˆð Þ½ �
� �

Vnþ1 ¼ Vn:

ð2:47Þ

Rearranging (2.47) as Vn + 1 ¼ G � Vn, the amplification coefficient is obtained as

G ¼ 1

1þ 2 λΔt
CpρΔx2 1� cosˆð Þ : ð2:48Þ

Because the denominator clearly exceeds 1, |G| � 1 is always satisfied, and

(2.42) is unconditionally stable.

Finally, let us apply the Crank–Nicolson difference scheme to time

discretization. The discretization equation is

θnþ1
i � θ n

i

Δt
¼ λ

2CpρΔx2
θnþ1
iþ1 þ θnþ1

i�1θ � 2θnþ1
i þ θ n

iþ1 þ θ n
i�1 � 2θ n

i

� �
: ð2:49Þ

Applying the discrete Fourier transform to (2.49) we get

1

Δt
Vnþ1exp Iiˆð Þ � Vnexp Iiˆð Þ� � ¼ λ

2CpρΔx2
Vnþ1exp I iþ 1ð Þˆð Þ � 2Vnþ1exp Iiˆð Þ�

þVnþ1exp I i� 1ð Þˆð Þ þ Vnexp I iþ 1ð Þˆð Þ � 2Vnexp Iiˆð Þ þ Vnexp I i� 1ð Þˆð Þ�
, 1� λΔt

2CpρΔx2
�2þ exp Iˆð Þ þ exp �Iˆð Þ½ �

24 35Vnþ1

¼ Vn 1þ λΔt
2CpρΔx2

�2þ exp Iˆð Þ þ exp �Iˆð Þ½ �
24 35:

ð2:50Þ
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Rearranging (2.50) and expressing asVn + 1 ¼ G�Vn, the amplification coefficient is

G ¼
1� λΔt

CpρΔx2 1� cosˆð Þ
1þ λΔt

CpρΔx2 1� cosˆð Þ : ð2:51Þ

Evidently, the absolute value for the denominator exceeds that of the numerator

and so jGj � 1 is always satisfied. Although this system guarantees permanent

stability, the amplification coefficient allows Re < 0; thus, fluctuations may

develop, as discussed in the previous section.

2.9 Heat System Applications

In this section, we describe three specific examples of heat transfer systems. In each

case, the vectors and matrices of the spatially discretized system state equation are

explicitly expressed.

Exercise 1 Consider a wall heat transfer problem in which convection heat transfer

boundaries exist on both sides. Each wall is split into two sections and nodes with

no heat capacity are set up on both surfaces.

Solution Recall the system state equation M dθ
dt ¼ Cθþ Coθo þ f.

On the basis of Fig. 2.13, the vector of unknown temperature nodes is
Tθ ¼ θ1 θ2 θ3 θ4½ �, and the heat capacitance matrix is

M ¼

0
Cpρ � ‘

2

Cpρ � ‘
2

0

26666664

37777775.
The vector–matrix product includes the boundary conditions imposed at the

stipulated temperature nodes;

Co ¼
αo

αr

2664
3775 θo ¼ θo

θr

� �
:

The heat flux boundary condition vectors are f ¼ 0.
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The heat conductance matrix is

C ¼

� λ

‘=4
� αo

λ

‘=4

λ

‘=4
� 6λ

‘

λ

‘=2

λ

‘=2
� 6λ

‘

λ

‘=4

λ

‘=4
� λ

‘=4
� αr

266666666666664

377777777777775
:

Exercise 2 Now consider a single-room model in which external air is introduced

by a fan. The airflow (i.e., ventilation) causes the air inside the room to be affected

by the external air temperature. The ventilation isQ [m3/s]. The volume of the room

and the area of the wall are as shown in Fig. 2.14, along with the physical properties

of the wall. The volumetric specific heat is (Cpρ)air [J/(m
3 K)].

(Hint) Construct separate heat balance equations for the room temperature (θr) at
node 6.

Solution The vector of unknown temperatures is Tθ ¼ θ1 θ2 θ3 θ4 θ5½ θr�,
and the vector of heat flux boundary conditions is f ¼ 0.

The heat capacitance matrix is

Fig. 2.13 Heat system of

Exercise 1 (see text for

details)
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M ¼

0
Cpρ‘A

3

Cpρ‘A

3

Cpρ‘A

3

0

V Cpρ
� 	

air

2666666666666664

3777777777777775
:

This problem deals simultaneously with the one-dimensional heat transfer in the

wall and the heat balance of the room; hence, the volume in the heat capacitance

matrix cannot be represented by the wall thickness alone (assuming a surface area

of 1 m2) as before. Note that the discretized wall element and room volume are

clearly distinguished in the matrix.

The vectors C0 and θ0 expressing the boundary conditions at the stipulated

temperature nodes are

Co ¼

αoA
0

0

0

0

Q Cpρ
� 	

air

26666664

37777775, θo ¼ θo½ �:

Q(Cpρ)air is the heat conductance due to the ventilation of the external air and room
temperature gradients. The unit is [m3/s][J/(m3 K)] ¼ [W/K]. Note that each

element in the heat conductance matrix has the same dimensions (those of the

heat transfer coefficient multiplied by the surface area).

Fig. 2.14 Heat system

of Exercise 2 (see text

for details)
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The heat conductance matrix is

C ¼

� λA

‘=6
�αoA

λA

‘=6

λA

‘=6
�9λA

‘

λA

‘=3

λA

‘=3
�6λA

‘

λA

‘=3

λA

‘=3
�9λA

‘

λA

‘=6

λA

‘=6
� λA

‘=6
�αrA αrA

αrA �αrA�Q Cpρ
� 	

air

2666666666666666666664

3777777777777777777775

:

Again, the one-dimensional assumptions no longer apply, and the equations

must account for the wall surface area. The reader should confirm that the dimen-

sions of λA
‘=6 are those of Q(Cpρ)air, i.e., [W/(m K)][m2]/[m] ¼ [W/K]. The uncertain

reader should substitute the aforementioned vector and matrix into the system state

equation and rearrange to obtain the heat balance equation at each temperature

node. In particular, it should be confirmed that the right side of the room’s heat

balance equation, which describes the change in room temperature, is driven by

both ventilation from external air and heat convection with wall.

Exercise 3 Finally, consider two rooms connected in series (“Kamakura”;

Japanese snow dome), as shown in Fig. 2.15. External air forced from a fan into

room 1 enters room 2.

Solution Unknown temperature nodes are assigned in the following order: wall of

room 1, room 1, wall of room 2, and room 2, as follows:

Tθ ¼ θ1 � � � θ5 θ6 θ7 � � � θ11 θ12½ �:

Fig. 2.15 Heat system of

Exercise 3 (see text for

details)
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The vector of heat flux boundary conditions is f ¼ 0.

The heat capacitance matrix is

M¼

0

Cpρ
p

� �
1
‘1A1

3

Cpρ
p

� �
1
‘1A1

3

Cpρ
p

� �
1
‘1A1

3

0

V1 Cpρ
� 	

air
0

Cpρ
p

� �
2
‘2A2

3

Cpρ
p

� �
2
‘2A2

3

Cpρ
p

� �
2
‘2A2

3

0

V2 Cpρ
� 	

air

266666666666666666666666666666666666666666664

377777777777777777777777777777777777777777775
and the vectors C0 and θ0 expressing the boundary conditions at the stipulated

temperature nodes are

TCo ¼ αoA1 0 0 0 0 Q Cpρ
� 	

air
αoA2 0 0 0 0 0

� �
, θo ¼ θo½ �,

whose meaning should be clear from Example 2. However, the heat conductance

matrix is more complicated than the previous example and is expressed as below

(please see the following page).
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Because this is a large matrix (containing 12 	 12 elements), it is expressed as a

figure rather than as a numerical equation. The sub-matrices describing heat

conductance in rooms 1 and 2 are shaded orange and yellow, respectively, consis-

tent with Fig. 2.15, in which the respective walls are indicated by the same colors.

Rows 6 and 12 couple the heat balances between the two rooms. The most

important contribution comes from element (12, 6). The 12th node (in room 2) is

coupled to the 6th node (in room 1) via the ventilation conductance Q(Cpρ)air, but
its symmetrical element (6,12), i.e., the heat conducted to the 6th node from node

12, is zero. This is understandable in terms of the heat balance equations of both

rooms; room 2 receives ventilated air from room 1 blown in by the fan, whereas

room 1 receives no equivalent airflow from room 2. This physical asymmetry

renders the heat conductance matrix C non-symmetric. In this manner, when heat

transfer is unidirectional (another example is a diode in an electrical circuit), Cmay

be upper or lower triangular rather than symmetric.

2.10 Linearization of Radiant Heat Transfer

The linearization of radiant heat transfer covered in this section, while slightly

off-topic, is important to understanding the symmetry of the conductance matrix

and should thus be perused carefully.

Besides conduction and convection, heat transfer may occur by long-wave

radiation (in contrast to visible light, which is a form of short-wave radiation;

here the term “radiation” is restricted to long-wave radiation). Radiant heat transfer

is considerably different from the conduction and convection previously discussed.

Conductive and convective heat fluxes are proportional to the temperature differ-

ence between two points (conduction is described by the Fourier equation, while in

convection, the heat transfer coefficient is multiplied by the temperature differ-

ence). Thermal radiation, on the other hand, is the propagation of electromagnetic

waves that exert heat-like effects. The heat flux from environmental radiation

[W/m2] is expressed as

qrad ¼ ε � σ � T4, ð2:52Þ

where ε is the emissivity, a dimensionless quantity equal to 1 for a perfectly black

body and 0 for an ideal mirror. As implied by Eq. (2.52), ε is the efficiency of

emission. It also denotes the absorption efficiency of arriving radiation, i.e., the

absorptivity (Kirchhoff’s law). σ is the Stephan–Boltzmann constant, equal to

5.67 	 10�8 [W/(m2 K4)], T is the surface temperature of the object [K]. The

Stephan–Bolzmann constant can also be expressed in terms of the constant

Cb ¼ 5.67 [10�8 	 W/(m2 K4)] to yield

qrad ¼ ε � Cb � T

100

� �4

: ð2:53Þ
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To obtain the net volume of radiant heat exchange between two surfaces (see

Fig. 2.16), we denote the temperature, emissivity, and area of surfaces 1 and 2 by T,
ε, and A, respectively. The surface to surface configuration factors when looking at

surface 2 from surface 1 and surface 1 from surface 2 are denoted as F12 and F21,

respectively. The surface configuration factor Fab is the proportion of the target

surface b visible from the full field of vision seen by an “eye” placed at surface

a (if the “observing” surface is flat, the full field of vision is the hemisphere

covering the surface). In other words, lines of visions are projected from infinites-

imal surface elements on the surface a on the basis of some rule (forming equi-solid

angles, not dissimilar to the spines on a hedgehog). The surface to surface form

factor is computed as the number of rays reaching surface b as a proportion of those
emitted from surface a, integrated over surface a. A detailed explanation of the

form factor is beyond the scope of this book; readers should refer to a standard

textbook of building physics or building environmental engineering. Readers

should also be familiar with reciprocity theorem and the important properties of

the form factor, introduced next.

Returning to our original theme, the net radiant heat exchange between surfaces

1 and 2, H1 ! 2 [W], is expressed as

H1!2 ¼ ε2F12A1ε1σT1
4 � ε1F21A2ε2σT2

4

¼ ε1ε2A1F12Cb
T1

100

� �4

� ε1ε2A2F21Cb
T2

100

� �4

: ð2:54Þ

In the first term on the right side; emitted radiation, expressed as (ε1Cb
T1

100

� 	4
A1),

eventually reaches surface 2 as (ε1Cb
T1

100

� 	4
A1F12). The amount of heat absorbed by

surface 2 is (ε1Cb
T1

100

� 	4
A1F12ε2). The second term in (2.54) is the heat emitted from

surface 2, some of which is absorbed by surface 1. The difference between the two

transfers is the net amount of radiant heat exchange between the surfaces (from the

perspective of surface 1).

The reciprocity theorem of the surface to surface form factor (see Fig. 2.17)

states that

A1F12 ¼ A2F21: ð2:55Þ

Fig. 2.16 Radiative

exchange between two

surfaces
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Applying (2.55) to Eq. (2.54), we get

H1!2 ¼ ε1ε2CbA1F12
T1

100

� �4

� T2

100

� �4
" #

¼ A1F12 � ε1ε2Cb

T1

100

� �4

� T2

100

� �4

T1 � T2

26664
37775 � θ1 � θ2ð Þ: ð2:56Þ

Note that the absolute temperature difference is equal to the change in Celsius

temperature. The term within the square brackets is known as the temperature

coefficient. Provided that temperature differences are typical of ambient environ-

ments and do not exceed a few hundred �C, the temperature coefficient can be

assumed as 1.

T1

100

� 	4 � T2

100

� 	4
T1 � T2

ffi 0:04
T1 þ T2ð Þ=2

100

� �3
ffi 1 ð2:57Þ

Excluding lustrous surfaces such as metals and glasses, the emissivity is also

close to 1 (typically 0.9).6 Thus, the term ε1ε2Cb
T1

100

� 	4 � T2

100

� 	4h i
= T1 � T2½ � in

Eq. (2.56) can be treated as a constant. Substituting reasonable values into this term,

we obtain 0.9 	 0.9 	 5.67 	 1 ¼ 4.6. This value, which has units of conduc-

tance [W/(m2 K)], is known as the radiant heat transfer rate, αrad, defined as

αrad � ε1ε2Cb

T1

100

� 	4 � T2

100

� 	4
T1 � T2

" #
ffi 4:6 W= m2K

� 	� �
: ð2:59Þ

Fig. 2.17 Reciprocity

theorem applied to surfaces

1 and 2

6 Solar radiation absorption varies greatly with color of the wall surfaces. Perfectly black bodies

absorb all radiation (absorption ¼ 1), while white surfaces can absorb as little as 0.5 of incoming

radiation. However, emissivity is insensitive to surface color and is typically around 0.9.
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In terms of the above linearized radiant transfer, Eq. (2.56) becomes

H1!2 ¼ A1F12 � αrad θ1 � θ2ð Þ
¼ �A2F21 � αrad θ2 � θ1ð Þ ¼ �H2!1: ð2:60Þ

The format of this equation is similar to that of convective heat transfer flux

αconvection(θsurface � θair) and is compatible with a system state equation expressing

the time evolution of a linear system. Thus, Eq. (2.18) can readily accommodate

radiant heat transfer, as demonstrated in the following examples.

Consider the rectangular room outlined in Fig. 2.18. The outside left wall

encloses a glazing surface, and each surface is labeled 1–7. Without loss of

generality, we assume that the room is air-conditioned and the temperature is

retained at 26 �C. If the heat system enclosed by the seven surfaces is space

discretized using the CVM or the finite difference method, its system state equation

can be expressed by Eq. (2.18), as previously explained. The heat conductance

matrix in this case includes the linear radiant heat transfer derived in this section,

the convective heat transfer between the wall surfaces and the room, and the heat

conduction within the surfaces (i.e., the heat conduction between neighbouring

nodes in a wall). Delineating conductive/convective and radiant heat transfer by

shading and points, respectively, the matrix C is dissected as follows:

C =

0

aradA3F31

aradA1F13

aradA1F12 = 0

#5

#2

#3

#4

#7

#6

#1

symmetry

reciprocity theoremsymmetry

ð2:61Þ

The elements representing the temperature nodes at each inside-room facing

surface are the products of the radiant heat transfer rate, area, and form factor. For

example, as shown in (2.61), αradA1F13 is incorporated in the internal room surface

nodes (i, j) between surfaces 1 and 3, and its transpose αradA3F31 appears in the

element ( j, i). Furthermore, assuming that the reciprocity theorem of the form

factor holds, radiant heat transfer can be included in the heat conductance matrix

without destroying its symmetry (alternatively, if the heat conductance matrix is
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assumed to be symmetric, the reciprocity theorem of the form factor holds). In

addition, because the glasing surface 1 and the outside wall of surface 2 reside in the

same plane, the form factor between these surfaces is zero. Therefore, their

corresponding matrix elements are zero.

2.11 Linear Heat Moisture Transfer Equation

We expect that an analogy exists between heat transfer and humidity propagation

through a solid. The latter is driven by water vapour density; thus, if the absolute

humidity [g/g0]7 is taken as the potential, a governing equation analogous to the

unsteady-state heat transfer Eq. (2.1) is expected. However, steam (gas; vapour) and

water (liquid) coexist at normal temperatures, so their transfers require separate

treatments (Fig. 2.19). For example, if the temperature within a material increases,

some of the water evaporates from the material and the mass of vapour phase

increases (assuming that liquid and gaseous phases exist in a state of local equilib-

rium; the so-called state of local balance); however, because this process involves

the latent heat of vaporization L [J/g], it will impact on the heat balance in the

region. In such a situation, moisture and heat propagation are inextricably linked,

and we must consider heat moisture transfer.
In this book, we assume relatively low moisture density inside the material

(Fig. 2.20). Such a state is called hygroscopic. In a hygroscopic region, the absorbed
water is trapped in the interfaces between the material substance and the opening,

and is thought to be not easily dislodged (however, under the local equilibrium

Fig. 2.18 The seven surfaces of a rectangular room

7Humid air is a mixture of dry air (DA) and humidity (moisture). In physical terms, the most

appropriate humidity parameter for moisture concentration is the specific humidity[g/g]or mass

ratio of water vapour to humid air. In contrast, the absolute humidity [g/g(DA)](or [g/g0]) is the
mass ratio of water vapour to dry air. Although inconsistent with the true definition of concentra-

tion, specific humidity is a standard thermodynamic function. In this book, we also introduce the

hygroscopic equation, whose potential function is absolute humidity.
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assumption, it can balance the local atmospheric temperature or humidity and can

be lost by evaporation or gained by condensation). Hence, diffusive moisture

propagation can be considered to occur in the vapour phase only, which radically

simplifies the mathematics. However, when considering moisture propagation in

the ground or surface condensation, the diffusion of liquid water cannot be ignored;

thus, the aforementioned vapour diffusion model is not applicable to situations of

high moisture density. However, when dealing with moisture transfer within the

walls of a room, it is perfectly appropriate.

Absorbed water w [g] exists in local equilibrium with the temperature θ and the

absolute humidity X of the ambient environment. Thus, it can be expressed as

w � w θ;Xð Þ: ð2:62Þ

The rate of water absorption is then represented by the following total

differential:

∂w
∂t

¼ ∂w
∂θ

� ∂θ
∂t

þ ∂w
∂X

� ∂X
∂t

� �ν � ∂θ
∂t

þ κ � ∂X
∂t

: ð2:63Þ

In the rightmost terms of (2.63), we define ∂w
∂θ � �ν and ∂w

∂X � κ. These are

physical parameters; the moisture desorption coefficient when a unit volume of the

material is exposed to unit temperature change in the local environment [g/(m3 K)]

and the hygroscopic coefficient when a unit volume of the material is exposed to

unit absolute humidity change [g/(m3(g/g0))]. These κ and ν are obtained from the

gradient of the water content ratio curve g(θ,X) of the material at equilibrium.

Liquid Phase
= 

Water

Gas Phase
= Humidity

Latent heat of
vaporization of water =
Energy of phase change
between gas and liquid

Fig. 2.19 The relationship

between gas phase, liquid

phase

Fig. 2.20 Moisture and

humidity inside materials

with gaps
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As shown in Fig. 2.21, the equilibrium water content ratio curve plots equilibrium

moisture content as a function of relative humidity at constant temperature. These

curves can be constructed for representative materials from handbooks listing the

physical properties of materials. The experimental apparatus and technique for

determining κ and ν is shown in Fig. 2.22. The material is placed on a gravimeter

inside a chamber and left as it is at the initial temperature and humidity for the

prolonged time period. This “prolonged period” ensures that no further weight

change occurs and that the moisture in the material has equilibrated. At this point,

the atmospheric absolute humidity is incrementally increased and the weight

change is measured. The experiment is terminated once the weight increase has

reached sufficient equilibrium. κ is then obtained by dividing the incrementally

increased weight (volume) change by the incremental increases in absolute humid-

ity and experimental volume. Similarly, ν is obtained from the weight loss induced

by the stepwise temperature increase.

Now, we derive the one-dimensional unsteady-state vapour diffusion heat mois-

ture transfer equation, which is equivalent to the one-dimensional unsteady-state

heat transfer Eq. (2.1). As already discussed, the propagation of water vapour

should be described by a diffusion equation governed by absolute humidity. The

vapour dynamics are then expressed as

C
0
ρair

∂X
∂t

¼ λ
0 ∂2

X

∂x2
:

Fig. 2.21 Representative

water content radio curve

for a material at equilibrium
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where C0 is porosity [m3/m3], ρair is the density of humid air [kg/m3], and λ0 is
moisture conductivity [g/(ms(g/g0))]. These quantities are analogous to the specific

heat, density, and thermal conductivity, respectively, in the heat conduction equa-

tion. However, the above expression is incomplete because as explained earlier, the

moisture transfer and heat conduction have not been coupled through the latent heat

of vaporization. The effect of latent heat is shown schematically in Fig. 2.23. What

happens when the weight of absorbed water in the left panel of that figure (which

exists in local equilibrium) reduces in an infinitesimal time to that in the right

panel? Because water has been lost to evaporate, the concentration of water vapour

in the atmosphere, i.e., the absolute humidity, increases. Simultaneously, latent heat

of vaporization is removed from the surroundings and the temperature falls. If these

physical processes are incorporated into the diffusion equations of heat and mois-

ture conduction, we obtain

Cpρ
∂θ
∂t

¼ λ
∂2θ

∂x2
þ L

∂w
∂t

ð2:64:1Þ

Fig. 2.22 Experimental method for determining κ and ν
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C
0
ρair

∂X
∂t

¼ λ
0 ∂2

X

∂x2
� ∂w

∂t
: ð2:64:2Þ

Note the sign of the second term on the right-hand side of each equation. In the

heat transfer equation (2.64.1), water is absorbed from the release of latent heat.

In the moisture transfer Eq. (2.64.2), water absorption causes reduction in vapour

concentration (absolute humidity). By substituting Eq. (2.63) into Eqs. (2.64.1) and

(2.64.2), the hygroscopic one-dimensional heat moisture simultaneous transfer

Eqs. (2.65.1) and (2.65.2) are obtained as

Cpρþ Lν
� 	∂θ

∂t
¼ λ

∂2θ

∂x2
þ Lκ

∂X
∂t

ð2:65:1Þ

C
0
ρair þ κ

� �∂X
∂t

¼ λ
0 ∂2

X

∂x2
þ ν

∂θ
∂t

: ð2:65:2Þ

Please take another careful look at Fig. 2.21. κ and ν in the above equation are

the differentials (with respect to temperature) of absolute humidity and equilibrium

moisture content, respectively. In the medium humidity regions of Fig. 2.21, the

relationship between equilibrium moisture and relative humidity is reasonably

linear, and so κ and ν may be approximated as constants at moderate humidity.

If such an approximation is valid in reality, the simultaneous Eqs. (2.65.1) and

(2.65.2) become linear, which vastly simplifies the computations. We can now

establish the system state equations.

To this end, (2.18) is restated in a slightly different format:

M
dx

dt
¼ Cxþ Coxo þ f: ð2:66Þ

Here x is an unknown variable vector containing the nodes of temperature and

absolute humidity, while xo is a vector of temperature and absolute humidity at the

stipulated nodes. The matrix Co holds the heat and moisture flux boundary condi-

tions at the stipulated nodes. The matrices M and C are called the expansion
capacitance matrix and the expansion conductance matrix, respectively. The ele-

ments of these vectors and matrices are explained in the following example.

Fig. 2.23 Coupling of heat

and moisture
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Consider a single room, as shown in Fig. 2.24. Suppose that the temperature and

humidity of the room are restrained at the stipulated nodes. In other words, the heat

conductance and moisture transfer equations at each surface node are given by

(2.65.1) and (2.65.2). The surfaces are numbered as shown in the figure, but those at

which heat conductance alone is relevant are numbered as a support. For example,

heat transfer through glass and metal surfaces is more appropriately modelled by

Eq. (2.1) than by (2.65.1) and (2.65.2).

When space is discretized by the control volume element method in the finite

difference formulation, the vectors and matrices of Eq. (2.66) contain the following

elements. In particular, note the elements of M.

ð2:67Þ

Surface element
considering only
the heat
movement (heat
conductance eq)

Consider transfer of
heat and moisture (heat

moisture simultaneous
transfer eq)

Fig. 2.24 Room model solved by hygrothermal equations
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ð2:68Þ

ð2:69Þ

ð2:70Þ

ð2:71Þ
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Hence, the spatially discretized system state equation has the same format as

Eq. (2.29), and

xiþ1 ¼ 1
ΔtM� kC

� ��1

1

Δt
Mþ 1� kð ÞC

24 35xi þ Co 1� kð Þx i
o þ kxiþ1

o

� 
þ 1� kð Þf i þ kf iþ1
� 
8<:

9=;,

ð2:72Þ

where k is an arbitrary real number in k ∈ [0,1], which takes values 0, 1/2, and 1 for

forward difference, Crank–Nicolson, and backward difference schemes,

respectively.

2.12 Calculations of Heat Load and Natural Room

Temperature

Here we apply the calculations of heat load and natural room temperature to the

system state equations. In fact, the latter has been already described, but for the

reader’s benefit, both are described to emphasize the difference between them.

In Sect. 2.1, heat conduction was shown to be analogous to the equation of

motion in particle dynamics. Take a look at Fig. 2.25, demonstrating a ball flicked

on a desk. The calculation of natural room temperature is equivalent to the situation

in the upper panel of the figure. In other words, we seek the change in the room

temperature in response to various heat inputs. The unknown quantities are the

room temperature and the initial speed of the flicked ball. (Although the dimensions

are different, the distance over which the ball rolls by inertia is relevant to our

analogy.) Conversely, for the load calculation, the room temperature is known and

is retained constant at 26 �C (or 28 �C if cooling). In this case, we solve for the

thermal requirement to meet the set room air temperature; namely heat extraction

(cooling load) or heat supply (heat load). The equivalent mechanical problem in the

lower panel calculates the force required to completely halt the ball when the ball is

flicked with the same force f as in the upper panel.

More specifically, we compute the changes of natural room temperature and heat

load within a single room, as in Fig. 2.26. The room is identical to that of Fig. 2.18,

but here we consider that fresh external air is introduced at a circulation rate of

n [1/s] and that h watts of heat are generated within the room. If the circulation rate

is multiplied by the room volume, the circulation volume (ventilation rate) [m3/s] is

obtained. Both circulation volume and heat generation are suitable parameters for

determining the heat load. The former is called the external air load due to

circulation (including draughts) and the latter is the internal generated heat load

introduced by human body heat or interior electrical equipment.
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The heat balance equation for the evolution of natural room temperature at room

temperature node θr becomes

VrðCpρÞair
∂θr
∂t

½m3�½Jm�3K�1�½K�
½s� ¼ ½W�

¼

X
i∈fwallg

Aiα
i
convðθ i

surf ace � θrÞ

½m2�½Wm�2K�1�½K� ¼ ½W� þ
nVrðCpρÞairðθout � θrÞ

½s�1�½m3�½Jm�3K�1�½K� ¼ ½W� þ
h

½W�

ð2:73:1Þ

Fig. 2.25 Analogy to classical mechanics: calculation of heat load and natural room temperature
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The reader should confirm that the dimension of all underlined terms in (2.73.1)

is [W]. The first, second, and third terms on the right-hand side describe the heat

gained by convective heat transfer between wall surfaces, the heat gained by

ventilation, and the internally generated heat, respectively.

In contrast, in the heat load formulation of the heat balance equation, the room

temperature is retained at θset, and the cooling load term Hex [W] becomes an

unknown variable in the following expression:

Vr Cpρ
� 	

air

∂θr
∂t

¼
X

i∈ wallf g
Aiα

i
conv θ i

surface � θset
� �

þ nVr Cpρ
� 	

air
θout � θsetð Þ þ h� Hex: ð2:73:2Þ

At the start of cooling, (2.73.2) reduces to

Vr Cpρ
� 	

air

∂θr
∂t

¼ Vr Cpρ
� 	

air

θr
j�1 � θset
Δt

: ð2:73:3Þ

Under continuous operation, (2.73.3) further reduces to

Vr Cpρ
� 	

air

∂θr
∂t

¼ 0: ð2:73:4Þ

If the heat capacitance of air is assumed sufficiently small relative to the wall

heat capacity, it can be ignored, and the left-hand side of Eq. (2.73.2) permanently

vanishes.8 In this case, the system state equation is that of Eq. (2.18) regardless of

whether the room temperature is calculated in a natural or air-conditioned

environmen. The vector and matrix elements in each case are elucidated below.

Fig. 2.26 Temperature and heat-load calculations applied to a natural room

8 The system state equation may also be computed by incorporating Eq. (2.73.2), without making

this approximation (more specifically, Coθo may be incorporated). This assumption was intro-

duced to simplify the explanation.
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First we consider the calculation of natural room temperature.

θ =

θr

Ntotal
Surface 1 room side
surface temperature node

Surface 7 back side
surface temperature node

ð2:74Þ

The Ntotal th row of the unknown vector holds the room temperature θr.

M =

Vr(Cpr)air

ð2:75Þ

The heat capacities Vr(Cpρ)air are entered into element (Ntotal, Ntotal) of the heat

capacitance matrix.

f =

h

ð2:76Þ

The heat input boundary condition vector f contains appropriate values. The heat

generated in the room is held in row Ntotal. The coloured dots* indicate heat sources

such as solar transmission through window surfaces distributed across the surface

temperature nodes*.

ð2:77Þ
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The wall surface components of the heat conductance matrix contain the heat

transfer conductance between neighbouring nodes (thick black diagonal line and

gray diagonal lines in (2.77)). The convective heat transfers Aiαiconv (blue points) of
each room-facing wall surface occupy the column Ntotal (where Ai is the surface

area of the i th surface and αiconv is the convection heat transfer rate of surface i).
These quantities also appear in the row Ntotal, rendering (2.77) a symmetric matrix.

Co =

Nconv

nVr(Cpr)air

ð2:78Þ

The number of columns in Co is the number of stipulated temperature nodes

Nconv. The first column expresses the heat conductance of the external air*. There-

fore, row Ntotal holds the conductance of ventilation* nVr(Cpρ)air.

qo =

θout

Other stipulated
temperature nodes 

Nconv

ð2:79Þ

The number of rows in θo is Nconv. The first row holds the external temperature

θout.
Next, we construct the matrix elements for the heat load calculation.

θ =

Ηex

Surface 1 room side
surface temperature
node

Surface 7 back side
surface temperature
node

Ntotal

ð2:80Þ

52 2 Linear Systems Analysis Methods



In this case, the Ntotal th row of the unknown vector holds the heat load Hex.

M =

0

ð2:81Þ

Because Eq. (2.73.4) is assumed, the element (Ntotal, Ntotal) in the heat

capacitance matrix is zero. The heat input boundary condition vector f is that of

Eq. (2.76).

C =

Surface node on wall i which has
convective heat transfer with room Aiαi

conv

Asymmetric
-1

ð2:82Þ

The Ntotal th column of the heat conductance matrix constructed for natural room

temperature is now shifted to the (Nconv + 1) th column of Co and the symmetry is

broken. Then �1 is substituted into element (Ntotal, Ntotal) of C so that the unknown

heat load Hex can appear on the left side of Eq. (2.18).

Co =

Nconv+1

...

nVr(Cpr)air −Σ Aia i
conv -nVr(Cpr)air

ð2:83Þ

Co’s (Ntotal, Nconv + 1) element, similarly to the usual C’s diagonal element,

values multiplying the row sum of Co and C by �1 is entered.
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θo =

θout
Stipulated
temperature node
such as neighboring
room temperature

Nconv +1

θset

ð2:84Þ

θo contains Nconv + 1 rows (recall that in the natural room temperature setup, θo
contains Nconv rows). Row Nconv + 1 holds θset.

From the above analysis, we should understand that whether calculating the

natural room temperature or the heat load, by manipulating the contents of the

component matrices and vectors, we can obtain a unified discretization equation in

the form of Eq. (2.18).

2.13 Numerical Simulation of a Single Room Model

In this section, to consolidate the items discussed so far, the system state equations,

formulated in terms of the natural room temperature and heat load, will be solved

numerically in Fortran.

The system is a single room as shown in Fig. 2.27. The room is intermittently

air-conditioned from 9 a.m. to 5 p.m. We seek the changes in the cooling load during

this period [W/m2] and the natural room temperature [�C] outside this time. The south

face of the room is external facing and contains a glazing window made of 3 mm

stratum glass. The dimensions of each section are shown in the figure and are

assigned variable names such as HEI and WID [m] in the program. Appropriate

parameter values should be selected by the reader. Above and below stairs, the north,

east, and west sides touch the neighbouring room. External air is introduced at a

circulation rate of RNV [1/s].

The external temperature θo and heat flux of solar radiation are given in Table 2.1.
Data in this table are weather data for air-conditioning design under presumed

conditions of a harsh summer.9 Solar radiation [kcal/(m2h)] is assumed incidental

to the south surface. Note the change from engineering units to the SI unit system

(only the relationship 1 [W] ¼ 0.86 [kcal/h] should be remembered). The blank cells

in the solar radiation data imply that solar irradiation was zero or not obtained.

9 These weather data consist of hourly temperature and hourly solar radiation applied with excess

frequency ratio 2.5 % (so-called TAC 2.5 [Technical Advisory Committee of ASHRAE]; meaning

top 2.5 % highest temperature and radiation rate in last 10 years as the statistical samples), which,

if used in cooling design, will overestimate the device capacity of refrigerators and

air-conditioning units. This occurs because the time-series constructed from the weather data

distorts the real-life events.
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Now the seven-surface room (including the glass window surface) is radically

deformed into that of Fig. 2.28. This snow-hut structure, called “Kamakura” in

Japan, is similar to the structure introduced in Sect. 2.9. The external walls and open

glass surface are modelled intact, while the ceiling, floor, and neighbouring divid-

ing walls are modelled as a single internal wall (preserving the total surface area).

The external wall is assumed 3-layered (from the external side, bricks, insulator,

concrete), while the inside walls are assumed single-layered (concrete). The heat

capacity of the glass is considerably smaller than that of the other wall elements and

is hence ignored; that is, like the surface temperature nodes, the glass surface nodes

are assigned no heat capacity, �. Unknown values are labelled with the following

node numbers:① external room side surface,⑦ external surface,⑧ glass surface,

⑨ internal room-facing surface,⑬ neighbouring side surface,⑭ room temperature

nodes. Furthermore, while air-conditioning is operating, the unknown value in⑭ is

the cooling load. The reader is encouraged to research (using appropriate resources)

the values of inside and outside heat transfer coefficient αo, αr [W/(m2 K)], solar

transmissibility of glass TAU_g, absorptivity ABS_g,solar absorptivity of the exter-
nal wall ABS_w, and solar absorptivity of the internal walls TAU_IW. In addition,

the reader should appreciate the thermophysical properties of the material and

gauge the values of other required constants. The solar radiation penetrating the

open glass surface is assumed to be fully incident on the internal wall surface

(ABS_IW ¼ 1).

Let us now construct the unknown variable vector and the stipulated temperature

node vector of the system state Eq. (2.18). First, in the natural room temperature

mode, the 14th unknown value is the room temperature θ14. The stipulated tem-

perature node vector contains the external temperature and the neighbouring room

temperature θo. The temperature of the room at time t � 1 becomes the

neighbouring room temperature θb at time t*.

θ =
q14

ð2:85Þ

ventilation

DIP

HEI

WID

WWID

WHEI

Vr=WID*DIP*HEI

Fig. 2.27 Room model of

programming example
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θo =
q14|previous time-step

qo

qb ð2:86Þ

In the load calculation mode, the 14th unknown value is the heat load Hex. The

3-row stipulated temperature node vector contains the external temperature θo, the
neighbouring temperature θb, and the air-conditioning set temperature θset.

θ =

Hex

ð2:87Þ

θo = q14|previous time-step

qset

qb

qo

ð2:88Þ

As previously explained, the weather data are collected over one day. In the

simulation, these data are applied repeatedly as the boundary conditions, and

Fig. 2.28 Deformed single room model
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calculations are repeated until the effect of the initial conditions diminishes and a

daily steady-state solution is obtained (see Fig. 2.29).

The Fortan source code is provided in the following pages. A subroutine is

merged immediately after the main section; then, if the code is collectively com-

piled, an executable file is created. The program outputs the 24-h series of the above

daily steady-state solution.

program AC_Load_Temp
parameter(nn¼14, mm¼2) ! nn; Total number of nodes/
mm; Number of stipulation nodes in natural room

c Temperature calculation mode (-> m+1 in heat load
calculation mode)

c 【Array declaration】
c Natural room temperature calculation mode [M],

[C], [Co]
real*4 M_Temp(nn,nn),C_Temp(nn,nn),Co_Temp(nn,mm),

c [A], [B], [A^-1]
* A_Temp(nn,nn),B_Temp(nn,nn),Ainv_Temp(nn,nn),

c {θo}
* theta_o_Temp(mm)

c Heat load calculation mode [M], [C], [Co]
real*4 M_Load(nn,nn),C_Load(nn,nn),Co_Load(nn,mm+1),

c [A], [B], [A^-1]
* A_Load(nn,nn),B_Load(nn,nn),Ainv_Load(nn,nn),

c {θo}
* theta_o_Load(mm+1)

c Vector of unknown variables θ,Vector of boundary
condition given by heat flux {f}

Initial condition

Number of calculation days

N-th day(N-1)-th daySome node
temperature

Fig. 2.29 Daily steady-state calculation
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dimension theta(nn),f(nn),
c Vector of unknown variables for daily steady-state

calculation; saving 24 hors data in the previous day
* theta_24h(nn)

c External air temperature, south-facing vertical
solar radiation
dimension air(24),solar(24)

c Vector for interim output in calculation process
{x1},{x2},{x3}
dimension x1(nn),x2(nn),x3(nn)

c 【Definition of output files】
open(10,file¼’result.csv’)

c 【Definition of assumed data】
c Thermo-physical properties
c In this program, all data is given in

Engineering Unit.
c Thus, all variables should be transferred to

SI unit when outputting.
c λ : thermal conductivity/ brick, insulation,

concrete, glass [kcal/(mh�C)]
data RAMM, RAMF, RAMC, RAMgla/ 0.55, 0.032, 1.2, 0.67/

c Cpρ : volumetric specific heat/ brick, insulation,
concrete, glass [kcal/(m^3�C)]
data GAMM, GAMF, GAMC/ 332., 8.4, 462./

c volumetric specific heat of humid air [kcal/(m^3�C)]
GAMA¼1.205*0.24
ALPI ¼ 10. ! convective heat transfer coefficient at
interior surface [kcal/(m^2h�C)]
ALPO ¼ 20. ! convective heat transfer coefficient at
exterior surface [kcal/(m^2h�C)]

c dimension of the room/ frontage, depth, height, window
width, window height [m]
dataDIP,WID,HEI,WWID,WHEI/3.6,2.13,2.6,3.0,1.0/

c wall thickness/ layer #3 of exterior wall(brick),
#2(insulation), #2(concrete), interior
wall(concrete), window(glass) [m]
data DEW3, DEW2, DEW1, DIW1, Dgla/0.010, 0.10, 0.30,
0.150, 0.003/

c exterior air temperature (24-hours variation)
data air /27.6, 27.4, 27.2, 26.9, 26.8, 27.0, 28.1,
29.4, 30.7,
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& 31.7, 32.5, 33.1, 33.4, 33.4, 33.1, 32.4,
31.6, 30.7,

& 30.0, 29.3, 28.8, 28.4, 28.1, 27.9/
c south-facing vertical solar radiation (24-hours

variation) [kcal/m^2]
data solar/0.0, 0.0, 0.0, 0.0, 8.0, 26.0, 35.0, 54.0,
137.0, 201.,

& 240.0, 248.0, 227.0, 176.0, 103.0, 38.0,
32.0, 21.0,

& 0.0, 0.0, 0.0, 0.0, 0.0, 0.0/
c air change rate [1/h]

RNV ¼ 0.3
c solar absorptance of exterior wall, transmittance of

glass, absorptance of glass, absorptance of interior
wall [ND]
data ABS_w, TAU_g, ABS_g, ABS_IW/ 0.8, 0.7, 0.1, 1.0/

c time discretization step Δt[h], threshold to evaluate
daily steady-state ε[�C], cooling set-point
temperature[�C]
data delt, Eps, theta_set/ 1. , 0.01, 28./

c space discretization step Δx [m]
dxE3¼ DEW3/1. ! layer #3 of external wall (brick) [m]
dxE2 ¼ DEW2/1. ! layer #2 (insulation)
dxE1 ¼ DEW1/3. ! layer #1 (concrete)
dxI1 ¼ DIW1/3. ! interior wall (concrete)

c other assumptions
Vr ¼ DIP*WID*HEI ! volume of the room[m^3]
AP ¼ 2*(DIP*WID+DIP*HEI)+WID*HEI

! area of interior wall [m^2]
AO ¼ WID*HEI-WHEI*WWID ! area of exterior wall [m^2]
AG¼ WHEI*WWID ! area of glazing window [m^2]
AF ¼ DIP*WID ! floor area [m^2]

c defnition of starting and terminating cooling
operation
j_on¼9 ! on; starting cooling operation
j_off¼17 ! off; terminating cooling operation

c 【Space discretization】
c Heat capacitance matrix [M]
c hhFor natural room temperature calculation modeii

call CLEAN(nn,nn,M_Temp) ! initializing M_Temp
do i¼2,4

M_Temp(i,i)¼GAMC*dxE1*AO
! layer #1 of exterior wall (concrete)
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enddo
M_Temp(5,5)¼GAMF*dxE2*AO ! layer #2 of exterior wall

(insulation)
M_Temp(6,6)¼GAMM*dxE3*AO ! layer #3 of exterior wall

(brick)
do i¼10,12

M_Temp(i,i)¼GAMC*dxI1*AP
! interior wall (concrete)

enddo
M_Temp(14,14)¼GAMA*Vr

! node of room air temperature*
c hhFor heat load calculation modeii

call CLEAN(nn,nn,M_Load) ! Initializing M_Load
call equal(nn,nn,nn,nn,M_Load,M_Temp)

! Copy M_Temp to M_Load as is
M_Load(14,14)¼0.

c Matrix Co representing boundary condition between
heat conductance matrix C and stipulated nodes

c hhFor natural room temperature calculation modeii
c [C]

call CLEAN(nn,nn,C_Temp)
C_Temp(1,2)¼RAMC/(dxE1/2.)*AO ! exterior wall
C_Temp(2,3)¼RAMC/dxE1*AO
C_Temp(3,4)¼RAMC/dxE1*AO
C_Temp(4,5)¼1./((0.5*dxE1/RAMC)+(0.5*dxE2/RAMF))*AO

! composite conductance*
C_Temp(5,6)¼1./((0.5*dxE2/RAMF)+(0.5*dxE3/RAMM))*AO

! composite conductance*
C_Temp(6,7)¼RAMM/(dxE3/2.)*AO
C_Temp(9,10)¼ RAMC/(dxI1/2.)*AP ! internal Wall
C_Temp(10,11)¼RAMC/dxI1*AP
C_Temp(11,12)¼RAMC/dxI1*AP
C_Temp(12,13)¼RAMC/(dxI1/2.)*AP
C_Temp(1,14)¼ALPI*AO ! convective heat transfer

between nodes of interior
surface of exterior wall and
room air

C_Temp(8,14)¼1./(1./ALPI+0.5*Dgla/RAMgla)*AG
! convective heat transfer
between nodes of interior
surface of window
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c and room air (composite
conductance)

C_Temp(9,14)¼ALPI*AP ! convective heat transfer
between nodes of interior
surface of interior wall and
room air

c Upper triangle->copy to
lower triangle

do i¼1,nn
do j¼1,nn

if(i.lt.j)C_Temp(j,i)¼C_Temp(i,j)
enddo

enddo
c [Co]

call CLEAN(nn,mm,Co_Temp)
Co_Temp(7,1) ¼ ALPO*AO ! convective heat transfer

between nodes of external
surface of exterior wall and
external air

Co_Temp(8,1) ¼ 1./(1./ALPO+0.5*Dgla/RAMgla)*AG
! convective heat transfer
between nodes of external
surface of

c window and external air
(composite conductance)

Co_Temp(14,1) ¼ RNV*Vr*GAMA ! Conductance through
ventilation

Co_Temp(13,2) ¼ ALPI*AP ! convective heat transfer
between nodes of another
surface of interior wall
and

c neighboring room air
c for diagonal elements of [C]

do i¼1,nn
C_Temp(i,i)¼0.
do j¼1,nn

if(i.ne.j)C_Temp(i,i)¼C_Temp(i,i)
+C_Temp(i,j)

enddo
do j¼1,mm

C_Temp(i,i)¼C_Temp(i,i)+Co_Temp(i,j)
enddo
C_Temp(i,i)¼-C_Temp(i,i)
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enddo
c hhFor heat load calculation modeii
c [C] & [Co]

call CLEAN(nn,nn,C_Load)
call equal(nn,nn,nn,nn,C_Load,C_Temp)
call CLEAN(nn,mm+1,Co_Load)
call equal(nn,mm,nn,mm,Co_Load,Co_Temp)
do i¼1,nn-1
Co_Load(i,mm+1)¼C_Temp(i,nn)

! IC(i,14) for natural room
temperature calculation mode
should be moved to

C_Load(i,nn)¼0. ! Co(i,3) for heat load
calculation mode.

! Thus, C(i,14) for heat load
calculation mode must be 0.

c See the text around Eq.(2.82).
enddo
Co_Load(nn,mm+1)¼C_Temp(nn,nn)

! Co(14,3) for heat load calcula-
tion mode should be moved to

c C(14,14) for natural room
temperature calculation mode.

c See Eq.(2.83).
C_Load(nn,nn)¼-1. ! C(14,14) for heat load

calculation mode is -1.
See Eq.(2.82).

c 【Time discretization】 CAUTION; This code is based on
backward difference
method.

call CLEAN(nn,nn,A_Temp)
call CLEAN(nn,nn,B_Temp)
call CLEAN(nn,nn,Ainv_Temp)
call CLEAN(nn,nn,A_Load)
call CLEAN(nn,nn,B_Load)
call CLEAN(nn,nn,Ainv_Load)
do i¼1,nn

do j¼1,nn
A_Temp(i,j)¼(1/delt)*M_Temp(i,j)-C_Temp(i,j)
Ainv_Temp(i,j)¼A_Temp(i,j)
B_Temp(i,j)¼M_Temp(i,j)/delt
A_Load(i,j)¼(1/delt)*M_Load(i,j)-C_Load(i,j)
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Ainv_Load(i,j)¼A_Load(i,j)
B_Load(i,j)¼M_Load(i,j)/delt

enddo
enddo
call MATINV(Ainv_Temp,nn,nn)
call MATINV(Ainv_Load,nn,nn)

c 【Initial temperature assignment*】
do i¼1,nn

theta(i)¼0.
theta_24h(i)¼theta(i)

enddo
theta_room¼theta(nn) ! Room temperature

c 【Time step-by-step calculation loop 】
do iday¼1,100 ! loop for daily steady-state
calculation; upper limit -> 100 days

do j¼0,23 ! time step loop; calculating (j+1) time
step because of backward difference method

if(j+1.lt.j_on.or.j+1.gt.j_off)then
! Natural room temperature calculation mode
call PROVEM(nn,nn,B_Temp,theta,x1,nn,nn)

c " {x1}¼{B}{θ}
theta_o_Temp(1) ¼ air(j+1)
theta_o_Temp(2) ¼ theta_room
call PROVEM(nn,mm,Co_Temp,theta_o_Temp,
x2,nn,mm)

c "{x2}¼{Co}{θo}
call CLEANV(nn,f) ! initializing {f} and fix
initial {f}
f(7)¼ABS_w*solar(j+1)*AO

! Solar radiation absorbed by external wall
f(8)¼ABS_g*solar(j+1)*AG

! Solar radiation absorbed by glass
f(9)¼TAU_g*ABS_IW*solar(j+1)*AG

! Transmitted radiation through glazing
window

c is absorbed by interior wall
do i¼1,nn ! {x3}¼{x1}+{x2}+{f}

x3(i)¼x1(i)+x2(i)+f(i)
enddo
call PROVEM(nn,nn,Ainv_Temp,x3,theta,nn,nn)

! {θ}¼{A^1}{x3}
theta_room¼theta(nn) ! Room temperature
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HEX¼0. ! Heat load
if(j+1.eq.j_on-1)theta(nn)¼HEX

! Specific disposition for variable switching
c when cooling operation turns on.

else ! Heat load calculation mode
call PROVEM(nn,nn,B_Load,theta,x1,nn,nn)

! {x1}¼{B}{θ}
theta_o_Load(1) ¼ air(j+1)
theta_o_Load(2) ¼ theta_room
theta_o_Load(3) ¼ theta_set
call PROVEM(nn,mm+1,Co_Load,theta_o_Load,
x2,nn,mm+1)

c " {x2}¼{Co}{θo}
call CLEANV(nn,f) ! initializing {f}, and
presuming each of elements of {f}
f(7)¼ABS_w*solar(j+1)*AO

! absorbed solar radiation at exterior wall
f(8)¼ABS_g*solar(j+1)*AG

! absorbed solar radiation at glazing window
f(9)¼TAU_g*ABS_IW*solar(j+1)*AG

! transmitted solar radiation through
window is absorbed

c at interior wall
do i¼1,nn ! {x3}¼{x1}+{x2}+{f}

x3(i)¼x1(i)+x2(i)+f(i)
enddo
call PROVEM(nn,nn,Ainv_Load,x3,theta,nn,nn)

! {θ}¼{A^1}{x3}
theta_room¼theta_set ! room temperature
HEX¼theta(nn)/0.86/AF

! heat load per floor area, expressed with SI
unit [W/m^2]

if(j+1.eq.j_off)theta(nn)¼theta_room
! Specific disposition for variable
switching

c when cooling operation turns off.
endif
write(10,100)iday,j+1,(theta(i),i¼1,nn-1),
theta_room,HEX ! output at each time step

enddo
c evaluation whether it attains to daily steady state

or not

2.13 Numerical Simulation of a Single Room Model 65



do i¼1,nn-1
if(abs(theta_24h(i)-theta(i)).gt.Eps)goto 51

enddo
goto 52

51 continue
do i¼1,nn-1

theta_24h(i)¼theta(i)
enddo

enddo
c This is the end of Time step-by-step calculation loop.
52 continue

close(10)
100 format(2(i2,’,’),100(f9.3,’,’))
101 format(100(f9.3,’,’))

stop
end

c Hereinafter, subroutines
c**************************************************

subroutine CLEAN(M,N,W)
c Initializing matrix W(M,N)

DIMENSION W (M,N)
DO 10 I¼1,M

DO 11 J¼1,N
W(I,J)¼0.0

11 CONTINUE
10 CONTINUE

RETURN
END

c**************************************************
SUBROUTINE MATINV(AI,NN,NNN2)

c Calculating inverse matrix of AI(nn,nn), and its
result is overwritten in same AI

c CAUTION; array declaration is AI(NN2,NN2),
irrespective to the size of your project; NN

DIMENSION AI(NNN2,NNN2),IND(1000)
DO 102 K¼1,NN

102 IND(K)¼K
DO 103 K¼1,NN
W¼0.
DO 104 I¼K,NN
IF(ABS(AI(I,1)).LE.W) GO TO 104
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W¼ABS(AI(I,1))
IR¼I

104 CONTINUE
IF(IR.EQ.K) GO TO 106
DO 107 J¼1,NN
W¼AI(K,J)
AI(K,J)¼AI(IR,J)

107 AI(IR,J)¼W
M¼IND(K)
IND(K)¼IND(IR)
IND(IR)¼M

106 W¼AI(K,1)
NHK1¼NN-1
DO 108 J¼1,NHK1

108 AI(K,J)¼AI(K,J+1)/W
AI(K,NN)¼1.0/W
DO 109 I¼1,NN
IF(I.EQ.K) GO TO 109
W¼AI(I,1)
NHK2¼NN-1
DO 110 J¼1,NHK2

110 AI(I,J)¼AI(I,J+1)-W*AI(K,J)
AI(I,NN)¼-W*AI(K,NN)

109 CONTINUE
103 CONTINUE

NHK3¼NN-1
DO 111 K¼1,NHK3
IF(K.EQ.IND(K)) GO TO 111
NHK4¼K+1
DO 112 I¼NHK4,NN
IF(K.NE.IND(I)) GO TO 112
IR¼I
GO TO 114

112 CONTINUE
114 DO 115 J¼1,NN

W¼AI(J,K)
AI(J,K)¼AI(J,IR)

115 AI(J,IR)¼W
IND(IR)¼IND(K)
IND(K)¼K

111 CONTINUE
RETURN
END
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c**************************************************
subroutine CLEANV(M,V)

c Initializing the vector
DIMENSION V(M)
DO 10 I¼1,M

V(I)¼0.0
10 CONTINUE
RETURN
END

c**************************************************
SUBROUTINE PROVEM(M,N,AI,B,X,MS,NS)

c Obtain vector X(M) by
c taking product of matrix A(M,N) and B(N)
c However array declaration is AI(MS,NS),B(NS),X(MS)

DIMENSION AI(MS,NS),B(NS),X(MS)
DO 10 I¼1,M

X(I)¼0.0
DO 20 J¼1,N

X(I)¼AI(I,J)*B(J)+X(I)
20 CONTINUE
10 CONTINUE

RETURN
END

c**************************************************
subroutine equal(ms,ns,m,n,x,y)

c Copy matrix x(m,n)<-y(m,n)
c However array declaration is x(ms,ns),y(ms,ns)

dimension x(ms,ns),y(ms,ns)
do i¼1,m

do j¼1,n
x(i,j) ¼ y(i,j)

enddo
enddo
return
end

Certain aspects of the above program are noteworthy. The subroutines (exclud-

ing CLEAN and CLEANV) import integers n and m as well as the array

declaration variables at the beginning of the main section (integers ns and ms)
as separate arguments defining the array size of the vectors and matrices. In this

program, ns ¼ n ¼ 14, giving ms ¼ m ¼ 2. However, when designing a program

package for multiple problems, the array declarations (ns,ms) in the main section

should be kept the larger side and their size should be adapted to the problem of

interest.
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The calculated results are output to the file result.csv. Figure 2.30 shows the

output from the final day, i.e., the temporal changes of the daily steady-state

solutions of room temperature and heat load. The right panel in the figure shows

the effect of setting the initial temperature of all nodes to 0 �C. From the changes in

room temperature during days 1–11, we observe a periodic steady-state after about

3 days. This example is relevant to small buildings with much smaller heat capacity

than soil; thus, large series of calculations are not required to attain daily steady-

state solutions.

The reader should reproduce this program and conduct numerous simulations.

The following problems are provided as a guide.

{Task 1} How do changes in window size, room depth, and external wall length

affect heat load?

{Task 2} What happens to the cooling load if an appropriate level of internal heat

is generated?

{Task 3} Investigate the effect of ventilation rate on cooling load.

{Task 4} Obtain the cooling load under 24-h air-conditioning. Consider the obtained

cooling load as heat deducted from internal generation and calculate the

24-h natural room temperature to observe the resulting changes in room

temperature.

{Task 5} As explained in the footnote of page 38, the above program assumes

Eq. (2.73.4). In the time step in which the air-conditioning is switched

from off to on, Eq. (2.73.3) should ideally be applied.What changes to the

matrix will implement this correction? Moreover, implement these

changes in the code.

2.14 Finite Element Method

In this section, we introduce the FEM, a spatial discretization method that differs

from the CVM adopted so far.

First, we insist that FEM spatial discretization does not alter the system state

Eq. (2.18). As we have reiterated many times, the representation of Eq. (2.18) is
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Fig. 2.30 (Left) Daily steady-state solution; change over time of room temperature of heat load;

(right) movements of room temperature leading to daily steady-state solution
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universal. However, the vector and matrix constructs differ between CVM and

FEM. These differences are most clearly seen in the heat capacitance matrix. The

reader should not be put off by the frequent appearance of numerical equations in

this section; the content is not difficult and should be perused without fearing that

the mathematics will become intractable.

The concept of space discretization using the CVM is illustrated in the left panel

of Fig. 2.31.

Suppose that the exact solution of Eq. (2.1), given by the original continuous

system, is the solid line in Fig. 2.31. In CVM, the heat capacity within the control

volume is lumped parametrized on the central nodes, and the heat balance equation

at a node (2.1) is solved by first order integration in the control volume (for

example, Eqs. (2.8)–(2.17)). Solutions at all nodes are obtained by solving the

simultaneous equations for the whole system. The heat balance within the total

control volume satisfies the original mathematical model equation (2.1), but this

simply declares that the temperature everywhere within the volume element is that

at the node. Because the temperature distribution between the nodes is not consid-

ered within a volume, solutions may become discontinuous at the control volume

boundaries, as shown in the figure (although of course, if the discretization widths

are sufficiently small, a virtually continuous temperature distribution is obtained).

In fact, the distribution is frequently obtained by a line joining the node tempera-

tures dot-to-dot. Evidently, a finite control volume will always introduce an error

(space discretization error) in the numerical solution of Eq. (2.1).

FEMworks on a completely different principle. In amanner of speaking, one could

suggest that FEM ismuchmore sophisticated than CVM. First, the meaning of a node

in FEM is fundamentally different from that in other space discretization methods.

The implications of lumped parametrizing in the representation of heat capacity are

absent (hence, there are no distinctions between � and � in the FEM). Initially, the

region is divided into finite sized elements, Ve. In one dimension, the nodes are placed

on neighboring elements, implying that “the boundary points are specifically named.”

At this point, suppose we wish to obtain the temperature at an arbitrary position

between two nodes by somemethod (in reality, by approximate interpolation). Then it

Fig. 2.31 Conceptual difference in space discretization between control volume method and finite

element method
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should be possible to evaluate the error e between the analytical solution and the

interpolated temperature at the arbitrary point on the basis of FEM. Ideally, this error

should be zero, but zero error cannot be achieved in practice, because the numerical

and analytical solutions would then be identical. As the next best solution, the node

temperatures at both edges are set such that zero error is obtained by space integrating

within the finite element. This principle underlies theRayleigh-Ritz-GalerkinMethod,
the fundamental FEM approach. Assigning a weight function w to the error at the

arbitrary position e, the aforementioned idea is expressed asð
ve

w � eð Þdv ¼ 0, ð2:89Þ

where the error is

e ¼ Exact Solutionð Þ � Numerical Solutionð Þ½ �Arbitrary Position within Finite Element:

ð2:90Þ

If the numerical solution at time t at the optional position x within the limited

elements is given by θN(x,t) and the exact solution is θ, Eq. (2.90) becomes

e ¼ θ � θN x; tð Þ ¼ Cpρ
∂θN x; tð Þ

∂t
� λ

∂2θN x; tð Þ
∂x2

: ð2:91Þ

If θN(x,t) ¼ θ in the above equation, the error is e ¼ 0 from Eq. (2.1) and the

correctness of this expression can be appreciated.

Now we must estimate θN(x,t). The temperatures at the extreme nodes of the

finite elements are expressed numerically as Θ(t). The temperature within the

element θN(x,t) is obtained by interpolating between the two extreme node temper-

atures [Θ(t)]. Defining the interpolation function by [N(x)], we obtain

θN x; tð Þ ¼ N xð Þ½ � Θ tð Þð Þ: ð2:92Þ

In FEM, this interpolation function is referred to as the shape function. If [N(x)] is
adopted as the weight function of Eq. (2.89) (since the weight function can be

arbitrarily selected), Eqs. (2.91) and (2.92) can be substituted into Eq. (2.89) to yield

ð
ve

N � eð Þdv ¼
ð
ve

T N½ � Cpρ
∂θN x; tð Þ

∂t
� λ

∂2θN x; tð Þ
∂x2

 !
dv ¼ 0: ð2:93Þ

Here T[N] denotes the transposed matrix of [N(x)]. This completes the FEM grid

setup.

We now derive the discretization equation, assuming the setup of Fig. 2.32. This

example is similar to that of Fig. 2.13. The volume is discretized into four finite

elements [1]–[4] delineated by five nodes.
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First, we find an explicit form of the shape function. The simplest approximation

to the temperature between two edge nodes is a linear interpolation:

θN x; tð Þ � a1 þ a2 � x: ð2:94Þ

Smoother, more accurate interpolations are possible using isoparametric

elements10 but here the simplest functional interpolation will suffice. Consider

the finite element [e] in Fig. 2.33. The absolute coordinates for the right and left

edge nodes are given by xeL and x
e
R, respectively, with respective node temperatures

Θe
L and Θe

R. From Eq. (2.94), we have

Θ e
L ¼ a1 þ a2 � xeL

Θ e
R ¼ a1 þ a2 � xeR



: ð2:95Þ
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Fig. 2.32 Application of

FEM to the analysis of

single-layer wall with

convection heat transfer

boundaries on both sides

Fig. 2.33 Approximation

within element in the local

coordinate system based on

1-D function

10 Despite this, Eq. (2.92), as a general expression, interpolates using the highest linear function of

the temperature at the edge nodes in the finite element. “Smooth” is within that possible in a linear

approximation.
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Solving these for a1 and a2 and substituting into Eq. (2.94), the shape function is
obtained as

θN xð Þ ¼ xeR � x

xeR � xeL
Θ e

L þ
x� xeL
xeR � xeL

Θ e
R � N1 xð Þ � Θ e

L þ N2 xð Þ � Θ e
R: ð2:96Þ

We now introduce the local coordinate system ex shown in the Fig. 2.33. This

coordinate system ex is standardized (normalized) with the left edge 0 and the right

edge 1. In terms of the absolute coordinates, ex � x�x e
L

x e
R�x e

L
. In the local coordinate

system, the shape functions N1(x) and N2(x) are

N1 xð Þ ¼ 1� ex � N1 exð Þ
N2 xð Þ ¼ ex � N2 exð Þ



: ð2:97Þ

We now require the scale ratio between the absolute and local coordinates. From

the sizes of the finite element [e] in each coordinate system, we obtain

‘

4
: 1 ¼ dx : d ex , dx ¼ ‘

4
d ex : ð2:98Þ

Equation (2.98) expresses the length ratio between the absolute and local

coordinates, and thus plays the role of the Jacobian, familiar from concepts such

as change of variables in multiple integrals.

Equation (2.93) can be re-written as

Cpρ

ð
ve

T N½ � ∂θN x; tð Þ
∂t

dv� λ

ð
ve

T N½ � ∂
2θN x; tð Þ
∂x2

dv ¼ 0: ð2:99Þ

Each term on the left side of Eq. (2.99) will be further transformed as shown

below. First, we apply Gauss’ divergence theorem to the second term on the left

side to yield

¼ �λ

ð
ve

∂T N½ �
∂x

∂θN x; tð Þ
∂x

dv þ λ

ð
se

T N½ � ∂θN x; tð Þ
∂x

ds

¼ �λ

ð
ve

∂T N½ �
∂x

∂ N½ �
∂x

dv Θð Þ þ λ

ð
se

T N½ � ∂Θ
∂x

ds: ð2:100Þ
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Here Gauss’ divergence theorem11 is used to obtain the right side of the first

equals sign. The right side of the second equals sign is obtained from Eq. (2.92).

ve and se denote the finite element volume of element [e] and its boundary,

respectively. Now, in the boundary integral in Eq. (2.100) (the second term on

the right- most side), we need to only consider the elements touching the system

boundary (elements [1] and [4] in Fig. 2.32). The first term on the right-most side

involves the finite elements with no boundaries (elements [2] and [3]). The

boundary surface between elements [1] and [4] establishes the following bound-

ary condition:

(flux propagated by conduction) ¼ (flux propagated by convection).

Mathematically, this is expressed as

�λ ∂Θ
∂x

�����
s1

¼ α0 Θ1 � θoð Þ, �λ ∂Θ
∂x

�����
s4

¼ α0 Θ5 � θ‘ð Þ : ð2:101Þ

Figure 2.34 Gauss divergence theorem. Illustrating the above, the explicit forms

of the right side of Eq. (2.100) for each element are as follows:

11 Gauss Divergence Theorem

The divergence theorem states that the integration over volume V of the divergence of vector

u is equivalent to surface integration of the normal component of u over the boundary curve S

surrounding V (this should make sense physically). Figure 2.34 shows this. Mathematically, this is

expressed

ð
V

divudV ¼
ð
V

∇ � udV
0@ 1A ¼

ð
S

u � ndS

,
ð
V

∂ui
∂xi

dV ¼
ð
S

ui � nidS,

where divu ¼ ∂ux
∂x þ

∂uy
∂y þ ∂uz

∂z ¼ ∇ � u.
Substituting u � vw, Gauss’ divergence theorem is expressed asð

V

∂
∂xi

vwð ÞidV ¼
ð
S

vwð Þi � nidS

,
ð
V

∂vi
∂xi

widV ¼
ð
S

vwð Þi � nidS�
ð
V

vi
∂wi

∂xi
dV:

On the right side of the equivalence sign, the formula for the derivative of an integral, ( f � g)0
¼ f0 � g + f � g0 is used. The partial integration formula learned at senior high school,

R
( f � g)0

¼ R
( f0 � g + f � g0) , R

f � g0 ¼ f � g � R
f0 � g, is basically equivalent to Gauss’ divergence

theorem.
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Element 1½ � ¼ �λ

ð
v1

∂T N½ �
∂x

∂ N½ �
∂x

dx� αo

ð
s1

T N½ � N½ �dx
24 35 Θ1

Θ2

� �

þ αoθo

ð
s1

T N½ �dx, ð2:102Þ

Element 2½ � ¼ �λ

ð
v2

∂T N½ �
∂x

∂ N½ �
∂x

dx

24 35 Θ2

Θ3

� �
, ð2:103Þ

Element 3½ � ¼ �λ

ð
v3

∂T N½ �
∂x

∂ N½ �
∂x

dx

24 35 Θ3

Θ4

� �
, ð2:104Þ

Element 4½ � ¼ �λ

ð
v4

∂T
N½ �

∂x
∂ N½ �
∂x

dx� α‘

ðT
s4

N½ � N½ �dx
24 35 Θ4

Θ5

� �

þ α‘θ‘

ðT
s4

N½ �dx: ð2:105Þ

From Fig. 2.32, the term αo

ð
s1

T N½ � N½ �dx in Eq. (2.102) involves only a left

boundary; hence, N2 ¼ 0 in the shape function (2.97). Similarly α‘

ð
s4

T N½ � N½ �dx in

Eq. (2.105) involves only a right boundary, yielding N1 ¼ 0 in the shape function.

We now consider the first term on the left side of Eq. (2.99). Applying Eq. (2.92)

yet again, we obtain;

1st term on the left side of equation 2:99ð Þð Þ ¼ Cpρ

ð
ve

T N½ � N½ �dv ∂
∂t

Θð Þ: ð2:106Þ

dS

dV

Normal vector;
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Closed surface; volume V,
surface area S

Small volume
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Small surface
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Fig. 2.34 Gauss

divergence theorem
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Writing the first term on the left of Eq. (2.99) explicitly for each element, we get

Element 1½ � ¼ Cpρ

ðT
v1

N½ � N½ �dv ∂
∂t

Θ1

Θ2

� �
� m1½ � ∂

∂t
Θ1

Θ2

� �
, ð2:107Þ

Element 2½ � ¼ Cpρ

ðT
v2

N½ � N½ �dv ∂
∂t

Θ2

Θ3

� �
� m2½ � ∂

∂t
Θ2

Θ3

� �
, ð2:108Þ

Element 3½ � ¼ Cpρ

ðT
v3

N½ � N½ �dv ∂
∂t

Θ3

Θ4

� �
� m3½ � ∂

∂t
Θ3

Θ4

� �
, ð2:109Þ

Element 4½ � ¼ Cpρ

ðT
v4

N½ � N½ �dv ∂
∂t

Θ4

Θ5

� �
� m4½ � ∂

∂t
Θ4

Θ5

� �
: ð2:110Þ

The above step completes the FEM construction. Equation (2.99) has been

expressed as a function of each node temperature enclosing each finite element.

To express Eq. (2.99) as a system state equation, the above four equations are

combined into matrix form. In this example, because the boundary condition vector

f of the heat flux input contains all zeros, the system state equation becomes

M
dΘ
dt

¼ CΘþ CoΘo: ð2:111Þ

Here TΘ ¼ Θ1 Θ2 Θ3 Θ4 Θ5½ � is an unknown variable vector. In the

following analysis, Eqs. (2.102)–(2.105) and (2.107)–(2.110) are summarized and

each vector and matrix element in Eq. (2.111) is explicitly written.

First, the vector matrix product CoΘo describing the boundary condition of

convection is

ð2:112Þ

Thus, Eqs. (2.101) and (2.104), denoting the second term in Eq. (2.99), become

ð2:113:1Þ
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Θ ¼ �λ

ð
v1

∂T N½ �
∂x

∂ N½ �
∂x

dx� αo

ð
s1

T N½ � N½ �dx
24 35 Θ1

Θ2

� �

¼ λ
4

‘

�1 1

1 �1

� �
� αo

ð
s1

1

0

� �
1 0½ �dx

24 35 Θ1

Θ2

� �

¼ λ
4

‘

�1� αo
‘

4λ
1

1 �1

264
375 Θ1

Θ2

� �
, ð2:113:2Þ

Θ ¼ �λ

ð
v2

∂T N½ �
∂x

∂ N½ �
∂x

dx

24 35 Θ2

Θ3

� �
¼ �λ

ð1
0

dex
dx

∂T N½ �
∂ex dex

dx

∂ N½ �
∂ex ‘

4
dex Θ2

Θ3

� �

¼ �λ
4

‘

ð1
0

∂T N½ �
∂ex dex

dx

∂ N½ �
∂ex dex Θ2

Θ3

� �
¼ �λ

4

‘

ð1
0

∂N1

∂ex
∂N2

∂ex

266664
377775

∂N1

∂ex ∂N2

∂ex
" #

dex Θ2

Θ3

� �

¼ �λ
4

‘

ð1
0

�1

1

� �
�1 1½ �dex Θ2

Θ3

� �
¼ λ

4

‘

�1 1

1 �1

� �
Θ2

Θ3

� �
,

ð2:113:3Þ

Θ ¼ λ
4

‘

�1 1

1 �1

� �
Θ3

Θ4

� �
, ð2:113:4Þ

Θ ¼ λ
4

‘

�1 1

1 �1� α‘
‘

4λ

24 35 Θ4

Θ5

� �
, ð2:113:5Þ

ð2:114:1Þ

However, for element [i] we have

mI½ � dΘ
dt

¼ Cpρ

ðT
vi

N½ � N½ �dv ∂
∂t

Θi

Θiþ1

� �

¼ Cpρ

ð1
0

1� exex
� �

1� ex ex½ � ‘
4
dex ∂

∂t
Θi

Θiþ1

� �
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¼ Cpρ‘

4

ð1
0

1� 2ex þ ex 2 ex � ex 2ex � ex 2 ex 2

� �
dex ∂

∂t
Θi

Θiþ1

� �

¼ Cpρ‘

4

ð1
0

1� 2xþ x2
� 	

dx

ð1
0

x� x2
� 	

dx

ð1
0

x� x2
� 	

dx

ð1
0

x2dx

266666664

377777775
∂
∂t

Θi

Θiþ1

� �

¼ Cpρ‘

24

2 1

1 2

� �
∂
∂t

Θi

Θiþ1

� �
:

ð2:114:2Þ

Note that in Eq. (2.114.2), the sum of all elements of ‘
24

2 1

1 2

� �
is

‘
24

2þ 1þ 1þ 2ð Þ ¼ ‘
4
, the volume of the finite element. In other words, the matrix

M in the CVM includes the heat capacity of the entire control volume in its diagonal

elements. By contrast, in the FEM, heat capacity is distributed among the 2 	 2

elements around the adjacent two nodes.

Finally, we highlight the differences between the vectors and matrices of the

system state Eq. (2.110) formulated in CVM and FEM. As an illustrative example,

we consider space discretization using a 5-node CVM with no surface heat capacity

(as in Fig. 2.32; see Fig. 2.35). In this 5-node model, the C matrix of CVM differs

from that of FEM because CVM includes surface nodes with no heat capacity. On

the other hand, as discussed above, the M matrix is fundamentally different

between the two approaches. Although the CVM formulation imposes diagonal

elements because of lumped parameterization, FEM produces a band matrix with

non-diagonal elements. In this case, as mentioned in Sect. 2.6, because the time

discretization scheme is forward difference, the inverse matrix must be computed,

and FEM offers no explicit solution. Moreover, if the stability condition for the

numerical solution is imposed, the FEM solution confers no advantages.

2.15 End of Chapter Examples

This section will solidify (in the readers’ mind) the reasoning behind the system

state equations introduced so far, through a set of practical examples. Each example

involves the explicit expression of vectors and matrices in the system state

Eq. (2.18).
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Θo =

0

0 0

0 0

0 0

0

Co =

l0

l/3

1 2 3 4 5

αo
αoαl

αl

qo

ao

q�

a�

θo θoθl
θl

CVM
l0

l/4

1 2 3 4 5
[1]    [2]   [3]   [4]

FEM

TΘ = Θ1 Θ2 Θ3 Θ4 Θ5

− −

−

−

−

− −

6 6

6 9 3

3 6 3

3 9 6

6 6

λ α λ

λ λ λ

λ λ λ

λ λ λ

λ λ α

� �

� � �

� � �

� � �

� � �

o

C
− −

−

−

−

− −

4 4

4 8 4

4 8 4

4 8 4

4 4

λ α λ

λ λ λ

λ λ λ

λ λ λ

λ λ α

� �

� � �

� � �

� � �

� � �

o

0

3

3

3
0

C

C

C

p

p

p

ρ

ρ

ρ

�

�

�

M
C C

C C C

C C C

C C C

C C

p p

p p p

p p p

p p p

p p

ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ

� �

� � �

� � �

� � �

� �

12 24

24 6 24

24 6 24

24 6 24

24 12

No difference between CVM and FEM

Cp •ρ,, λ Cp •ρ,, λ

Fig. 2.35 Difference between matrices C and M in the CVM and FEM formulations of the same

system state equations
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Example 1 Consider a heat system comprising 5 rooms, as shown in Fig. 2.36.

Room 5 is enclosed by room 3 and is ventilated by the air from room 3 by a fan Q6

[m3/s]. At other openings, air is forcefully fan-ventilated in directions shown by the

arrows. Room 5 is heated by W [W]. The conductance between rooms 5 and 3 is

given by C35 [W/K] (note that this quantity already contains the surface area’s

influence). Other walls are assumed perfectly insulated (as shown in the figure) and

the heat transfer between the wall surfaces and the room temperature nodes can be

ignored. Moreover, the relationship Q1 + Q3 > Q5 holds.

Solution The unknown temperature node vector is defined byθ ¼ T θ1 � � � θ5½ �.
Because the total heat flow in each room is zero and Q1 + Q3 > Q5, the magnitude

and direction of heat flow at each opening surface is determined as shown in

Fig. 2.37.

In this situation, the vectors and matrices of Eq. (2.18) M dθ
dt ¼ Cθþ Coθo þ f

are expressed as

M ¼ Cpρ
� 	

air

V1

V2

V3

V4

V5

266664
377775

Fig. 2.36 Heat system in question 1
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C ¼ Cpρ
� 	

air

� Q3 þ Q4ð Þ Q4

Q3 þ Q4ð Þ � Q1 þ Q2 þ Q3 þ Q4ð Þ Q1

Q1 þ Q2 þ Q3 þ Q4ð Þ � Q1 þ Q2 þ Q3 þ Q4 þ Q6ð Þ Q6

Q1 þ Q3ð Þ � Q1 þ Q3ð Þ
Q6 �Q6

26666664

37777775

Co ¼
Q3 Cpρ
� 	

air

Q1 Cpρ
� 	

air

2664
3775 θo ¼ θo½ � f ¼

W

2664
3775

Example 2 Consider a heat system comprising four rooms plus an air conditioning

room, as shown in Fig. 2.38. The magnitudes and units of each variable are those

of Example 1. In this situation, the air-conditioning room resides upstream of

room 4. External air introduced to room 4 is adjusted to θa
�C by cooling and

heating coils*.

Solution The unknown temperature node vector is defined as

θ ¼ T θ1 θ2 θ3 θ4½ �. To maintain zero total heat flow into each room, the

magnitude and direction of heat flow at each opening is determined as shown in

Fig. 2.39. To model this situation, the vectors and matrices are given by

M ¼ Cpρ
� 	

air

V1

V2

V3

V4

2664
3775

C ¼
� Qa þ Qbð Þ Cpρ

� 	
air

Qb Cpρ
� 	

air

�Qb Cpρ
� 	

air
� AgC2o þˆ Qb Cpρ

� 	
air

�Qc Cpρ
� 	

air
Qc Cpρ
� 	

air

Qc � Qbð Þ Cpρ
� 	

air
�Qc Cpρ

� 	
air

26664
37775

Fig. 2.37 Heat flow at each opening in Example 1
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Co ¼
Qa Cpρ
� 	

air
AgC2o �ˆ

Qb Cpρ
� 	

air

24 35 θo ¼
θo
θa
θset

24 35 f ¼ W

24 35
Example 3 Consider a heat system structured from four rooms, as shown in

Fig. 2.40. Internal heats W1 � W3 are generated in rooms 1–3, while room 4 is

cooled to θset�C by air-conditioning. The heat load is Hex [W]. Furthermore, we

assume that Q3 + Q4 > Q1.

Solution The unknown temperature node vector is defined as

θ ¼ T θ1 θ2 θ3 Hex½ �. Because the total heat flow into each room is zero and

Q3 + Q4 > Q1, the magnitudes and directions of heat flow at each opening are

determined as shown in Fig. 2.41. The vector and matrix constructs are

shown below:

Qb

Qc

AHU (Air Handling Unit) room, here external air is
adjusted to qa by cooling & heating coils in order to
supply Room 4.

External air temperature; qo.

Glass opening surface area Ag [m
2], heat conductance including the

heat conduction on both sides of this surface is C2o [W m-2 K-1].

W [W]

Qa [m3s–1]

Heating coilCooling coil

v(qset – q2) [W] ← supply← removal

Perfect insulation

q1

q2

q3
q4 qa

Fig. 2.38 Heat system in Example 2

Qa
Qb

QbQa + Qb Qc – Qb Qb Qb

Qc

Fig. 2.39 Heat flow at each

opening in question 1
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M ¼ Cpρ
� 	

air

V1

V2

V3

0

2664
3775

C ¼

�Q1 Cpρ
� 	

air

Q1 Cpρ
� 	

air
� Q3 þ Q4ð Þ Cpρ

� 	
air

Q3 þ Q4ð Þ Cpρ
� 	

air
� Q3 þ Q4ð Þ Cpρ

� 	
air

Q4 Cpρ
� 	

air
�1

266664
377775

Co ¼
Q1 Cpρ
� 	

air

Q3 þ Q4 � Q1ð Þ Cpρ
� 	

air

�Q4 Cpρ
� 	

air

264
375 θo ¼

θo

θset

� �
f ¼

W1

W2

W3

26664
37775

Fig. 2.40 Heat system in

Example 3

Fig. 2.41 Flow amount at

each opening in question 3
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Example 4 Consider the heat system of Fig. 2.42. External air that enters the front

room is adjusted to θm�C and supplied to the downstream room. The front room

leaks heat, as shown in the figure. The downstream room comprises facing surfaces

a and b, for which the surface to surface form factor between a and b (b and a) is
Fab(Fba). In addition, surfaces a and b are space discretized and assigned temper-

atures at their nodes; #1–3 and #4–6. Node #7 indicates room air. Seven temper-

ature nodes are assumed. The physical heat properties of surfaces a and b, wall
thickness, and areas, are indicated in the figure. Each surface is backed by a

boundary that exchanges heat with external air. Furthermore, the room is supplied

with a quantity W [W] of heat.

Solution The unknown temperature node vector is defined by

θ ¼ T θ1 � � � θ7½ �. The vectors and matrices of this problem are constructed as

M ¼

0

Cpρ
� 	

a
‘aAa

0

0

Cpρ
� 	

b
‘bAb

0

Cpρ
� 	

air
Vr

2666666664

3777777775

Fig. 2.42 Heat system in Example 4
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C¼

�2λa
‘a

�αiAa�arAaFab
2λa
‘a

arAaFab αiAa

2λa
‘a

�4λa
‘a

2λa
‘a

2λa
‘a

�2λa
‘a

�αoAa

arAbFba �2λa
‘a

�αoAa�arAbFba
2λb
‘b

αiAb

2λb
‘b

�4λb
‘b

2λb
‘b

2λb
‘b

�2λb
‘b

�αoAb

αiAa αiAa �αiAa�αiAb� Cpρ
� 	

air
1�kð ÞQ

2666666666666666666666666666666664

3777777777777777777777777777777775

Co¼
αoAa

αoAa

Cpρ
� 	

air
1�kð ÞQ

2666666666664

3777777777775
θo¼

θo

θm

� �
f¼

W

2666666666664

3777777777775

Example 5 Consider a heat system comprising two rooms as shown in Fig. 2.43.

Room 1 contains an object of heat capacitymg [J/K] whose central temperatureθm is

an unknown quantity in the analysis. The conductance from the lumped parame-

terized object temperature node θm to temperature node θ1 in room 1 iscg [W/K]

(note that this quantity already contains the surface area’s influence). A heating and

cooling system is installed in room 2.

Solution The unknown temperature node vector is defined as θ ¼ T θ1 θ2 θm½ �.
Because the heat flow must balance (sum to zero) in each room, the magnitude and

Fig. 2.43 Heat system in

Example 5
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direction of flow at each opening surface is determined as shown in Fig. 2.44. The

corresponding vector and matrix constructs are

M ¼
Cpρ
� 	

air
V1

Cpρ
� 	

air
V2

mg

24 35

C ¼
�ðQa þ QbÞðCpρÞair � Cg QbðCpρÞair Cg

ðQa þ QbÞðCpρÞair �ðQa þ QbÞðCpρÞair �ˆ

Cg �Cg

264
375

Co ¼
Cpρ
� 	

air
Qa

ˆ

264
375 θo ¼

θo

θset

� �
f ¼ �W

264
375

Example 6 Consider the four-room heat system of Fig. 2.45. As in Example

1, room 4 is enclosed by room 2 and receives air from a fan operating in room

2. The wall separating rooms 2 and 4 comprises facing surfaces s1 and s2. These
surfaces are assumed fully insulated (i.e., transmit no heat). However, the temper-

ature nodes θs1 and θs2 mutually exchange radiant heat and convective heat with

room temperature node θ4. The areas and view factors of surfaces s1 and s2 are

indicated in the figure. In addition, W3 [W]of heat is generated in room 4. Internal

heat W1 [W] is generated in room 1, which is also air-conditioned to θ1�C. The
cooling load in this room (where the amount of heat extracted is taken as positive) is

Hex [W]. The wall separating rooms 2 and 3, unlike the walls considered so far,

allows heat entry via conduction and surface heat transfer. The thermophysical

properties, wall thickness, and surface area are indicated in the figure. In the space

discretization, the heat capacity of the entire wall is expressed in terms of the

internal temperature node θm. Internal heat W2 [W] is generated in room 3.

Solution The unknown temperature node vector is defined by

θ ¼ T Hex θ2 θ3 θ4 θs1 θs2 θm½ �. To ensure that the heat flow balances

in each room, the flow magnitude and direction at each open surface is determined

as shown in Fig. 2.46. In this situation, the vector and matrix constructs are

Fig. 2.44 Heat flow at each

opening in Example 5
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M ¼

0

Cpρ
� 	

air
V2

Cpρ
� 	

air
V3

Cpρ
� 	

air
V4

0

0

Cpρ
� 	

m
A‘

2666666664

3777777775
Because the heat conductance matrix does not fit on a portrait page, it is shown in

landscape configuration on the following page.

Fig. 2.45 Heat system in Example 6

Fig. 2.46 Heat flow at each opening in Example 6
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Co ¼

Q1 Cpρ
� 	

air
� Q1 þ Q2ð Þ Cpρ

� 	
air

Q1 þ Q2ð Þ Cpρ
� 	

air

2666666664

3777777775
θo ¼ θo

θset

� �
f ¼

W1

W2

W3

2666666664

3777777775

C¼

�1 Q2 Cpρ
� 	

air

� Q1þQ2þQ3þQ4ð Þ Cpρ
� 	

air
� A

1

αi
þ ‘=2

λm

Q3 Cpρ
� 	

air

Q3 Cpρ
� 	

air
�Q3 Cpρ

� 	
air

� A

1

αi
þ ‘=2

λm

Q4 Cpρ
� 	

air

A

1

αi
þ ‘=2

λm

A

1

αi
þ ‘=2

λm

2666666666666666666666664

Q2 Cpρ
� 	

air

A

1

αi
þ ‘=2

λm

A

1

αi
þ ‘=2

λm

�Q4 Cpρ
� 	

air
�αi A1þA2ð Þ αiA1 αiA2

αiA1 �αiA1�αrFs2�s1A2 αrFs2�s1A2

αiA2 αrFs1�s2A1 �αiA2�αrFs1�s2A1

� 2A

1

αi
þ ‘=2

λm

377777777777777777777777775
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