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Alternative Social Welfare Definitions
for Multiparty Negotiation Protocols
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Abstract Multiagent negotiation protocols, understood as a group decision making
process, try to reach an agreement among all the negotiating agents. Traditionally,
this agreement is an unanimous agreement. This consensus as unanimity may
be quite difficult to achieve in practice or even undesirable in some situations.
We propose a framework to incorporate alternate consensus definitions to multiagent
negotiations in terms of utility sharing among the agents. The consensus definition
is enforced by a mediator, which implements a linguistic-expressed mediation
rule based on Ordered Weighted Averaging Operators (OWA). In each step of
the mediation process, agents send offers to the mediator. To avoid zones of
no agreement, the mediator applies Hierarchical Clustering (HC) to the offers
to form group of agents. Then, the mediator computes a social contract, taking
into account the desired consensus and the distance from an ideal consensus. The
social contract is submitted as a feedback to the agents that explore locally the
negotiation space using of a variation of the Generalized Pattern Search (GPS) non-
linear optimization technique to generate new offers that into account the social
contract. Finally, We show how these mechanisms are able to reach agreements
according to different consensus policies while avoiding zones of no agreement.
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2.1 Introduction

Multi-attribute negotiation may be seen as an interaction between two or more
agents with the goal of reaching an agreement about a range of issues which usually
involves solving a conflict of interests between the agents. Although, this should
constitute an incentive for them to cooperate and search for possible joint gains, self-
interested agents often fail to reach consensus or end up with inefficient agreements.

On one hand, self-interested agents would like to reach an agreement that is as
favourable to them as possible. On the hands, final decision is jointly made and
needs to be agreed to by both the agents. As a result of this, negotiation agents
have to consider how much they could gain individually if they cooperate and in
which way of cooperation they could gain more, or at least receive a fair deal.
Negotiation protocols should include techniques for dealing fairly with rational
agents that also are able to lead them to mutually beneficial agreements. Because of
this, a fundamental objective of any negotiation protocol should be to optimize some
type of social welfare measurement [1]. There are many different social welfare
measurements like the sum or product of utilities, the min utility, etc. [2–4].

In spite of that, social welfare has not been taken into account as an integral part
of the negotiation process. There are some works that incorporate a social welfare
criterion within the search process, though. In [5], the mediator generate jointly
preferred proposals for agreements. By iteratively moving along jointly improving
directions from the tentative agreements produced by the method, negotiating
parties can achieve joint gains and finally reach a Pareto-optimal agreement.
The procedure is repeated until no further joint improvements can be found. In [6]
a mediator assists decision makers in finding Pareto-optimal solutions. Decision
makers have to indicate their most preferred points on different sets of linear
constraints. The method can be used to generate either one Pareto-optimal solution
dominating the status quo solution of the negotiation or an approximation to the
Pareto frontier. In [7], a non-biased mediator agent searches for the compromise
directions based on a E-DD (Equal Directional Derivative) approach and supports
negotiation agents in reaching an agreement. At each stage of negotiation, the
mediator searches for the compromise direction based on a new E-DD (Equal
Directional Derivative) approach and computes the new tentative agreement.

These solutions have some important restrictions. First, the utility functions have
to be derivable and quasiconcave. Second, the absolute value of gradient is not
considered, so that the marginal utility obtained by the agents may not be fair. Third,
the protocol is prone to untruthful revelations of information to bias the direction
generated by the mediator. Finally, the protocols do not allow to specify the desired
consensus on the final agreement.

The traditional or strict notion of consensus in multi-agent negotiation protocols,
commonly known as unanimity, assumes that consensus exists only if all agents
agree on a contract. Unanimous agreements may be quite difficult or even
impossible to achieve in practice and, in some cases, undesirable. Alternate
definitions of consensus, as soft-consensus [8] have been proposed that consider
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different degrees of partial agreement among agents to decide about the existence
of consensus on an contract. Consensus measures based on soft consensus are more
can be used to reflect linguistic expressions of mediation rules by using linguistic
quantifiers.

In this work, we propose a framework to incorporate the type of consensus
desired to reach and agreement as an integral part of multiparty negotiation
protocols. We propose HCPMF, a Hierarchical Consensus Policy based Mediation
Framework for Multi-Agent Negotiation. HCPMF implements a mediation protocol
that is based on the Generalized Pattern Search (GPS) non-linear optimization
technique [9], the use of Ordered Weighted Averaging (OWA) operators [10,11], and
the use of Hierarchical Clustering (HC) [12]. GPS is used by the agents to perform
local exploration of the negotiation space, HC lets the mediator to form clusters
of agents to avoid zones of no agreement, and OWA operators are used to apply
the consensus policies, which are captured using linguistic quantifiers. Globally,
HCMPF allows to efficiently search for agreements following predefined consensus
policies, which may take the form of linguistic expressions. The protocol is designed
to minimize the revelation of private information. Agents only propagate offers to
the mediator, not their preferences for the offers. Furthermore, agents’ offers need
not to be known by their opponents.

Next section presents the basic operation of the negotiation protocol. Then
we present a variation of the GPS algorithm to perform local exploration of the
negotiation space and the mediation mechanisms. Two last sections describe the
experimental evaluation and present our conclusions.

2.2 The Negotiation Protocol

We shall assume a set of n agents A D fA1; : : : ; Ang and a finite set of issues
X D fx1; : : : ; xmg in a continuous or discrete domain. A contract is a vector
x D fx0

1; : : : ; x0
mg defined by an instance of issue values. Each agent Ai has a real

mapping Ui W X ! R function that associates with each contract x a value Ui .x/

that gives the payoff the agent assigns to a contract. The preference function can be
described as any mapping function between the negotiation space contracts and the
set of real numbers, and it can be non-monotonic and non-differentiable. The aim of
the agents will be to reach an agreement on a contract x maximizing their individual
payoff while minimizing the revelation of private information.

2.2.1 Basic Operation of the Negotiation Protocol

The basic protocol of the negotiation process is as follows:

1. Each agent sends the mediator an initial contract offer. This offer may be the
result of a local utility maximization process, or a contract generated at random.
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2. Based on the received offers, the mediator applies the HC algorithm to form
clusters of agents. The cluster with the highest number of agents is selected.

3. The mediator applies the OWA operator to the offers in the selected cluster to
obtain a feedback contract. The OWA operator synthesizes the consensus policy
to apply. Finally, the mediator verifies if the deadline has been reached. If so,
negotiation ends with an agreement on the feedback contract. Otherwise, go
to step 4.

4. The mediator computes the group distance, which is a distance estimate to the
current feedback contract from the offers in the cluster. If the group distance
is below a threshold the negotiation ends with an agreement on the feedback
contract. Otherwise go to step 5.

5. The mediator proposes the feedback contract to the agents.
6. Each agent performs a local exploration of the negotiation space using GPS to

generate a new offer. The agent’s exploration considers the feedback contract and
utility. Go to step 2.

In the next section we will present the GPS non-linear optimization algorithm that
will be used by agents to explore the contract space.

2.3 Agents’ Local Exploration (GPS)

Each agent privately explores the negotiation space using a variation of the GPS
[9] non-linear optimization algorithm. GPS belongs to the family of Direct Search
Based optimization algorithms. Formally, the optimization problem can be defined
as max f .x/, where f W Rm ! R, x 2 R

m represents the evaluation of the contracts
in terms of distance, utility or both. At an iteration k of the protocol, we have an
iterate x.k/ 2 R

m and a step-length parameter 4k > 0. We will use the notation
xCo.k/ to designate the mesh at round k plus the current point x.k/ (see Fig. 2.1.

Fig. 2.1 An illustration of a
mesh for m D 2 at round k.
The reference point is x.k/
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This set of points or mesh is an instance of what we call a pattern. One important
feature of pattern search that plays a significant role in a global convergence analysis
is that we do not need to have an estimate of the derivative of f at x.k/ so
long as included in the search is a sufficient set of directions to form a positive
spanning set for the cone of feasible directions, which in the unconstrained case is all
of Rm. The set e is defined by the number of independent variables in the objective
function m and the positive standard basis set. A commonly used positive basis
is the maximal basis, with 2m vectors. For example, if there are two independent
variables in the optimization problem, the default for a 2m positive basis consists
of the following pattern vectors: e1 D f1; 0g, e2 D f0; 1g and �e1 D f�1; 0g,
�e2 D f0; �1g.

The exploration begins at the first negotiation round with the generation of an
initial random contract (reference contract) and a set of contracts (mesh) around the
reference contract at a predefined distance. The reference contract will be the offer
to be submitted to the mediator that will compute a feedback contract, taking into
account the reference contracts received from all the agents and will send it back.
Then, we successively evaluate the points in the mesh xC.k/ D x.k/ ˙ 4kej ,
j 2 f1; : : : ; mg, in terms both of utility and of distance to the feedback contract
provided by the mediator (evaluations will be better for higher utilities and shorter
distances). This set of points or mesh is an instance of what we call a pattern. If one
or more contracts x0.k/ in xC.k/ in the mesh improve the reference contract both in
utility and distance, the contract with the highest improvement becomes the current
reference contract (x.k C 1/ D x0.k/), and a new mesh is generated increasing by a
factor of 2 the step-length factor, 4kC1 D 2 �4k . Otherwise, the agent has to decide
if to behave as a utility maximizer, considering only the contracts’ utility in the
evaluation, or as a utility conceder, considering only the distance to the feedback
contract. We model the agents’ attitude using a random variable. In any of these
cases, if the improvement is in the mesh, that is, at least there exists a x0.k/ that
improves x.k/ either in terms of utility or distance but not in both, the contract
with the highest improvement (x0.k/) becomes the current reference contract, and
a new mesh xC.k C 1/ is generated increasing by a factor of 2 the current step-
length factor,4kC1 D 2 � 4k . If there is no point x0.k/ in the mesh xC.k/ that
improves the current reference contract x.k/, the reference contract remains the
same (x.k C 1/ D x.k/) and a new mesh xC.k C 1/ is generated at half the current
step-length, 4kC1 D 0:5 � 4k .

2.4 The Mediation Mechanisms

The goal of the mediation process is to provide a useful feedback to the agents
to guide the joint exploration of the negotiation space implementing the desired
consensus while avoiding zones of no agreement. This feedback is represented by
the feedback contract or social contract. The mediation process takes into account
not only the utility of the offers but also their distance to the social contract.
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This mediation process, at any round k, can be described as follows:

1. The HC algorithm is applied to the agents’ offers Ok D fok1; : : : ; okng in order
to form clusters of agents

2. For the contracts in the highest sized cluster Okc D fokc1; : : : ; okclg, the centroid
ck, the distances Dkc D fdkc1; : : : ; dkclg from the contracts to the centroid and
the set of direction vectors Rkc D frkc1; : : : ; rkcng from the centroid to the
contracts are computed.

3. The sets Okc , Dkc and Rkc are ordered from lower to higher distances (distances
in Dkc). The set Dkc is normalized in the range Œmin.Dkc/; 0�, min.Dkc/

representing the lower distance and 0 the higher distance.
4. The OWA operator that represents the desired consensus policy will be applied

to these values in order to obtain the feedback contract.
5. To assess the convergence to a solution the mediator also computes the group

distance as the OWA-weighted distances to the feedback contract.

Next we will go into detail in each of the steps performed by the mediator at each
round k. First, we will describe the clustering mechanism, second, the procedure
to obtain the feedback contract, which includes the description of the aggregation
procedures used to model the consensus policy, and finally, the computation of the
group distance.

2.4.1 Forming Clusters of Agents (HC)

Here we look at the process whereby the mediator obtains the highest sized cluster
of agents at each negotiation round. We have used an Hierarchical Clustering (HC)
algorithm [12] to perform this task. HC groups data over a variety of scales by
creating a cluster tree or dendrogram. The tree is not a single set of clusters, but
rather a multilevel hierarchy, where clusters at one level are joined as clusters at the
next level. This allows us to decide the level or scale of clustering that is most
appropriate at each step of the negotiation process.

In our case, we assume that the mediator has defined an upper bounded number
of rounds as a deadline. This number of rounds nr in divided into stages. Thus,
we have ns stages with nr/ns rounds per stage. At each stage, a predefined scale
of clustering is applied. In our case, the mediator applies the scales of clustering in
descending order. It means that as negotiation progresses the clustering process is
more prone to generate clusters. The rationale behind this is that we first try to reach
agreements with as many agents as possible, and if we are not able to reach a global
agreement we progressively form smaller groups where the negotiation process is
focused on agents with closer preferences. In order to vary the scale of clustering
a cutoff level is varied which specifies the level at which the hierarchy of clusters
is cut.
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2.4.2 Computing the Feedback Contract

Our point of departure here is the collection of l contracts corresponding to the
highest sized cluster. For this set of contracts, the mediator computes the centroid
ck , the distances Dkc and the set of direction vectors Rkc . The mediator’s objective
is to obtain a feedback contract that better represents a predefined consensus policy.

If the consensus policy is to keep as many agents satisfied as possible, under
complete uncertainty, the mediator could propose the centroid as a compromise
solution. On the other hand, if the consensus policy is to have for instance at
least one agent satisfied with a high utility, the feedback contract should be biased
towards the contracts closer to the centroid. To develop these ideas we use the
quantifier guided aggregation technique which is implemented through the use of
OWA operators. This mechanism is a refinement with respect to the clustering
mechanisms. While the purpose of HC is to avoid zones of no agreement, the aim
of using OWA operators is to apply a predefined consensus policy.

2.4.2.1 OWA Operators

Our goal is to elicit a function M which takes ck , Dkc and Rkc in order to
obtain a feedback contract following a consensus policy. The form of M is called
the mediation rule, it describes the process of combining the individual agents’
preferences. The form of M can be used to reflect a desired mediation imperative or
consensus policy for aggregating the preferences of the individual agents to get the
feedback contract. The most widespread consensus policy found in the automated
negotiation literature suggests using as an aggregation imperative a desire to satisfy
all the agents. We propose to use application dependent mediation rules to manage
the negotiation processes. The idea is to use a quantifier guided aggregation, which
allows a natural language expression of the quantity of agents that need to agree on
an acceptable solution. As we shall see, the OWA operators [11] will provide a tool
to model this kind of softer mediation rule.

We define two types of aggregation operators, scalar and vectorial.

Definition 2.1. An scalar OWA operator of dimension l is a mapping M W Sl !
G; .S; G 2 Œ0; 1�/ such that, M.S1; : : : ; Sl / D Pl

tD1 wt bt , where bt is the t th largest
element of the aggregates fS1; : : : ; Slg and the wj are weights such that wt 2 Œ0; 1�

and
Pl

tD1 wt D 1

Definition 2.2. An vectorial OWA operator of dimension l is a mapping M W Sl !
G; .S; G 2 R

m/, such that, M.S1; : : : ; Sl / D Pl
tD1 wt bt , where bt is the t th largest

element of the vectorial aggregates fS1; : : : ; Slg and the wj are weights such that
wt 2 Œ0; 1� and

Pl
tD1 wt D 1
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It can be shown [11] shows that OWA aggregation has the following properties:

1. Commutativity: The indexing of the arguments is irrelevant
2. Monotonicity: If Si � OSi for all i then M.Si ; : : : ; Sn/ � M. OSi ; : : : ; OSn/

3. Idempotency: M.S; : : : ; S/ D S

4. Boundedness: Maxi ŒSi � � M.Si ; : : : ; Sn/ � Mini ŒSi �

In the OWA aggregation the weights are not directly associated with a particular
argument but with the ordered position of the arguments. If ind is an index function
such that ind.t/ is the index of the t th largest argument, then we can express M as:

M.S1; : : : ; Sl / D
lX

tD1

wt Sind.t/ (2.1)

The form of the aggregation is dependent upon the associated weighting vector.
We have a number of special cases of weighting vectors. The vector W � defined
such that w1 D 1 and wt D 0 for all t ¤ 1 gives us the aggregation Maxi ŒSi �.
Thus, it provides the largest possible aggregation. The vector W� defined such that
wl D 1 and wt D 0 for all t ¤ n gives the aggregation Mini ŒSi �. An interesting
family of OWA operators are the E-Z OWA operators [13]. There are two families.
In the first family we have wt D 1=q for t D 1 to q, and wt D 0 for t D q C 1

to l . Here we are taking the average of the q largest arguments. The other family
defines wt D 0 for t D 1 to q, and wt D 1

l�q
for t D q C 1 to l . We can see that

this operator can provide a softening of the original min and max mediation rules
by modifying q.

2.4.2.2 Quantifier Guided Aggregation

There are several approaches to perform OWA weights identification [14], including
methods based on maximum entropy, on previous observations of decision makers
performance [15]. In this work, we will derive OWA weights from linguistic
quantifiers [11]. Our final objective is to define consensus policies in the form of
a linguistic agenda. For example, the mediator should make decisions regarding the
generation of the feedback contract following mediation rules like “Most agents
must be satisfied by the contract”, “at least ˛ agents must be satisfied by the
contract”, “many agents must be satisfied”, : : :

The previous examples are examples of quantifier guided aggregations, which
are aligned with the notion of soft-consensus, which we discussed earlier. Linguistic
quantifiers [16] can be used to semantically express aggregation policies and
actually capture Kacprzyk’s notion of soft consensus.

OWA weights identification based on linguistic quantifiers is possible thanks
to fuzzy set theory. There are two types of linguistic quantifiers: absolute and
relative [16]. Any relative linguistic quantifier can be expressed as a fuzzy subset
Q of the unit interval I D Œ0; 1� [10]. In this representation for any proportion
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y 2 I , Q.y/ indicates the degree to which y satisfies the concept expressed by
the term Q. Relative linguistic quantifiers can be classified into three categories:
Regular Increasing Monotone (RIM) quantifier, Regular Decreasing Monotone
(RDM) quantifier and Regular UniModal (RUM) quantifier[11]. RIM quantifiers
allow us to model the notion of soft consensus[17]. Formally, these quantifiers are
characterized in the following way:

1. Q.0/ D 0

2. Q.1/ D 1

3. Q.x/ � Q.y/ if x > y.

Examples of this kind of quantifier are all, most, many, at least ˛. According to this
representation, the quantifier all can be represented by Q� where Q�.1/ D 1 and
Q�.x/ D 0 for all x ¤ 1, and any which is defined as Q�.0/ D 0 and Q�.x/ D 1

for all x ¤ 0. It has been shown [11] that the OWA weights can be parametrized
using this kind of functions.

Under the quantifier guided mediation approach a group mediation protocol is
expressed in terms of a linguistic quantifier Q indicating the proportion of agents
whose agreement if necessary for a solution to be acceptable. The basic form of
the mediation rule in this approach is “Q agents must be satisfied by the contract”,
where Q is a quantifier. The formal procedure used to implement the mediation rule
is as follows:

1. Use Q to generate a set of OWA weights W D w1; : : : ; wl .
2. Use the weights W to calculate the feedback contract.

The procedure used for generating the weights from the quantifier is to divide the
unit interval into n equally spaced intervals and then to compute the length of the
mapped intervals using Q

wt D Q

�
t

l

�

� Q

�
t � 1

l

�

for t D 1; : : : ; l : (2.2)

In Fig. 2.2 we show an example of a linguistic quantifier and illustrate the process
of determining the weights from the quantifier. The weights depend on the number
of agents as well as the form of Q. In Fig. 2.3 we show the functional form for the
quantifiers all, any, Q�, Q�, at least ˛ percent, linear quantifier, piecewise QZˇ

and piecewise QZ˛ .
The quantifiers all, any and at least ˛ describe the consensus policy using a

natural language verbal description. For example, given Q =at least ˛ , if x >

˛ Q.X/ D 1, this means that a proportion of X fulfils the concept conveyed by
the quantifier most, where if X < ˛ Q.X/ D 0 because the proportion X is not
compatible with the concept (the minimum proportion ˛ is not reached) expressed
by the quantifier.

However, more generally any function Q W Œ0; 1� ! Œ0; 1� such that meets the
requirements previously stated for the quantifiers, can be seen to be an appropriate
form for generating mediation rules or consensus policies.
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Fig. 2.2 Example of how to obtain the weights from the quantifier for n D 5 agents
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Fig. 2.3 Functional form of typical quantifiers: all, any, at least, linear, piecewise linear QZˇ and
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Table 2.1 VOID values for
different quantifiers

Quantifier VOID

All 1
Any 0
At least ˛ ˛

linear 0.5
QZ˛

˛
2

QZˇ

1
2

C ˇ

2

Qp
p

pC1

One feature which distinguishes the different types of mediation rules is the
power of an individual agent to eliminate an alternative. For example, in the case
of all this power is complete, and any agent could force an alternative to be rejected
by voting zero. In order to capture this idea, we introduce the Value Of Individual
Disapproval (VOID) [10], which is defined as:

VOID.Q/ D 1 �
Z 1

0

Q.y/dy (2.3)

VOID measures this power of an individual agent to eliminate an alternative. For the
all, any, at least ˛ and linear quantifiers the VOID measures are respectively 1, 0, ˛

and 0:5. For the QZˇ
quantifier VOID.QZˇ

/ D 1
2
C ˇ

2
and therefore VOID.QZˇ

/ 2
Œ0:5; 1�. The QZ˛ quantifier gets VOID.QZ˛ / D ˛

2
and VOID.QZ˛ / 2 Œ0; 0:5�.

Another family of quantifiers are those defined by Qp.y/ D yp for p > 0. In this

case VOID.Qp/ D 1 � R 1

0
rpdr D p

pC1
. For Qp we see that as p increases we get

closer to the min and that as p gets closer to zero we get the max (Table 2.1).

2.4.2.3 Computation of the Feedback Contract

Finally, once W has been obtained, the feedback contract at round k is computed as

fc.k/ D ck C v
kvk �

lX

iD1

wi � dkci ; (2.4)

where

v D
lX

iD1

wi � rkci : (2.5)

Vector v results from applying the vectorial OWA operator to the direction
vectors. The feedback contract is generated in the direction pointed by v from the
origin ck . The distance at which the feedback contract is generated is obtained
by applying the scalar OWA operator to the distances to the centroid. Now, for
instance, let us assume a quantifier Qp.y/ D yp and p D 20, which means that
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VOID D 0:95 (i.e. we want many agents satisfied) and that we have four contracts
in the selected cluster. In this case wl will approach 1 and vector v will approximate
rkcl pointing to the farther contract from the centroid. However, the feedback
contract will be the centroid ck because

Pl
iD1 wi � dkci D dkcl D 0. For a very low

VOID, w1 will approximate 1, which means than v D rkc1 pointing to one of the
contracts. In addition, the second summand in fc.k/ will be v

kvk � dkc1 D min.Dkc/,
which means that the feedback contract will be very close to one of the contracts (the
closer one). These are only two examples of the effect that W has in the generation
of the feedback offer. For high VOID values the feedback contract approaches
the centroid to satisfy many agents. For low VOID values the feedback contract
approaches the closer contracts to the centroid.

2.4.3 Measuring the Quality of the Agreement

Once a feedback contract has been generated, it is important to evaluate how the
degree in which this feedback contract satisfies the desired consensus policy. This
will serve as an signal to know when to stop the negotiation process. We use the
group distance as a measure of closeness to the desired agreement. To compute this
group distance, we employ again the OWA weights computed previously and using
them we calculate the weighted sum of the distances from the offers in the cluster
to the feedback contract. The formula is as follows:

Gdk D
lX

iD1

wi � kokci � fc.k/k : (2.6)

Notice that we use W to OWA-weight the distance estimate to take into account
the consensus policy. If the group distance falls below a threshold, the negotiation
ends with an agreement on the feedback contract.

2.5 Experimental Evaluation

In this section, we show that the proposed mechanisms provide the mediator the
tools to efficiently conduct multiagent negotiations following different consensus
policies. In the first experimental setup we have considered seven agents, two issues
and two different types of negotiation spaces: a negotiation space where agents’
utility functions are strategically built to define a proof of concept negotiation
scenario, and a complex negotiation scenario where utility functions exhibit a more
complex structure. In both cases utility functions are built using an aggregation
of Bell functions. This type of utility functions captures the intuition that agents’
utilities for a contract usually decline gradually with distance from their ideal
contract. Bell functions are ideally suited to model, for instance, spatial and
temporal preferences and to simulate different levels of complexity.
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Fig. 2.4 Utility Functions for the proof of concept Scenario

A Bell is defined by a center c, height h, and a radius r . Let k s � c k be
the Euclidean distance from the center c to a contract s, then the Bell function is
defined as

fbell.s; c; h; r/ D

8
ˆ̂
<

ˆ̂
:

h � 2h ks�ck2

r2 if k s � c k< r
2

2h
r2 .k s � c k �r/2 if r >k s � c k� r

2

0 k s � c k� r

(2.7)

and the Bell utility function as

Ub;s.s/ D
nbX

i

f bel l.s; ci ; hi ; ri / (2.8)

where nb is the number of generated bells. The complexity of the negotiation space
can be modulated by varying ci , hi , ri and nb.

In the proof of concept negotiation scenario each agent has a utility function with
a single optimum. Figure 2.4 shows in the same graph the agents’ utility functions
in the bidimensional negotiation space Œ0; 100�2. Four agents (Agent 1, 2, 3, 4) are in
weak opposition (i.e. their preferences are quite similar), Agents 6 and 7 are in weak
opposition and in very strong opposition with respect the other agents, and Agent
5 is in very strong opposition with respect the rest of the agents. In the complex
negotiation scenario (Fig. 2.5) each agent’s utility function is generated using two
randomly located bells. The radius and height of each bell are randomly distributed
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within the ranges ri 2 Œ20; 35� and hi D Œ0:1; 1�. The configuration of parameters
in the mediator is: nr D 50 rounds, ns D 10 stages and a group distance threshold
0:001. The cutoffs applied in HC go from 2 in the first stage to 0:1 in the last stage
following linear decrements. The probability for an agent to concede (i.e. to attend
exclusively the feedback contract) is modelled for each agent using a probability
value obtained from a uniform distribution between 0:25 and 0:5. For instance,
an agent with probability 0:5 will concede with a 50% probability whenever it
is not possible to improve both utility and distance from the feedback contract.
We tested the performance of the protocol for three different consensus policies with
VOID degrees: 0, 0:5 and 0:95, using the quantifier Qp.y/ D yp . Each experiment
consist of 100 negotiations where we capture the utilities achieved by each agent.
To analyze the results we first build a 7 agents�100 negotiations utility matrix where
each row provides each agent’s utilities and each column is a negotiation. The matrix
is then reorganized such that each column is individually sorted from higher to lower
utility values. Note that after this transformation the association row/particular-agent
disappears. Given the matrix, we form seven different utility groups: a first group
named group level 1 where we take the highest utility from each negotiation (i.e. the
first row), a second group named group level 2 with the two first rows and so on.
In order to show the performance of the protocol we have used the Kaplan-Meier
estimate of the cumulative distribution function (cdf ) [18] of agents’ utilities for
each group. Thus, we compute the cdf for the highest utilities, for the two highest
utilities and so on. The cdf estimates the probability of finding agent’s utilities below
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Fig. 2.6 Cumulative distributions of utilities for the proof of concept scenario

a certain value. The rationale behind using grouping in the analysis is to evaluate the
ability of the protocol to find solutions which satisfy groups of agents.

In the proof of concept scenario (see Fig. 2.4) it can be seen that when an
unanimous is needed, the best alternative is to get satisfied agents 1, 2, 3 and 4.
If it is enough to have one agent satisfied, any of the utility peaks would be a good
solution. In Fig. 2.6 we show the results for the proof of concept scenario. Each
line shows the cdf for a VOID value, and each plot focuses on the results obtained
for each group level. For instance, in group level 1 (i.e. one Agent) there is a 75%
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Fig. 2.7 Cumulative distributions of utilities for the complex negotiation scenario

probability of having agents with utility 1 for VOID 0, a 40% of having one agent
with utility 1 for a VOID 0:5 and a 2% probability of having agents with utility 1
for a VOID approaching 1. We can see how as we evaluate the utility distribution
for more agents, if we want many agents satisfied the best we can do is to use a high
VOID value. In this case we will share utility in a more uniform way, maybe at the
cost of not having agents highly satisfied.

In Fig. 2.7 the results for the complex negotiation scenario are shown. The results
also show that as VOID increases, the mediator biases the search for agreements
where more agents are satisfied at the expense of the individual satisfaction level.
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In general, it is worth noting that the application of a consensus policy may incur in
a cost in terms of social welfare. In a second experimental setup we have considered
seven agents, two issues and four different types of negotiation spaces in increasing
complexity to evaluate this issue.

Figure 2.8 shows the social welfare measurements (sum of utilities) for different
VOID degrees. Social welfare is normalized to its optimal value. VOID ranges from
0 to 0.95. We can see how the application of consensus policies come at a cost in
terms of social welfare, both for low and for high VOID values. For example, in
scenarios where there exist a strong opposition among the agents, if we want to
have many agents satisfied, individual utilities cannot be simultaneously large for
all the agents, and therefore social welfare decreases. Also note that there exists a
VOID value which maximizes social welfare. For complex scenarios, there will be
a trade-off between VOID and social welfare.

2.6 Conclusion

We argue that there exist situations where an unanimous agreement is not possible or
simply the rules imposed by the system may not seek such unanimous agreement.
Thus, we developed a hierarchical consensus policy based mediation framework
(HCPMF) to perform multiparty negotiations. To perform the exploration of
the negotiation space agents use a variation of the GPS non-linear optimization
technique. The mediator guides the joint exploration of a solution by using
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aggregation rules which take the form of linguistic expressions. These rules are
applied over the agents’ offered contracts in order to generate a feedback contract
which is submitted to the agents in order to guide their exploration. To avoid
zones of no agreement the mediator uses Hierarchical Clustering to form clusters
of agents. We showed empirically that HCPMF efficiently manages negotiations
following predefined consensus policies, which has been modelled using OWA
operators.

The negotiation framework presented is one of the first proposals that incor-
porate alternate consensus definitions for the mediation rule as an integral part of
multiparty negotiation protocols. This framework can be extended to incorporate
more complex consensus rules that would take into consideration, for instance,
the different importance of the negotiating agents or their attitudes. There are also
open aspects that we expect to deal with in future works. It is expected that the
performance of the protocol deviates from the optimal if agents act strategically.
Alternatives ways of generating the feedback contract, based for instance on the
history of passed offers, and not only on their current position should be considered.
Finally, we plan to explore its possible application to domains as consortium
formation in brokering events.
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