Chapter 2
The Photon

Theoretical analyses toward building up a semiconductor laser theory are start
from this chapter. This book is aimed not require to read other books for under-
standing basis of the theory. When the readers wish to refer other books to
compare our treatments with them, bibliographies are listed in the end of the last
chapter.

2.1 Analytical Approaches

Laser operation is based on the interaction between an optical wave and the
semiconducting material, or more specifically between an electromagnetic (EM)
wave and electron-hole pairs in the semiconductor as depicted in Fig. 2.1. As
already discussed in Sect. 1.1, these interactions are classified according to whe-
ther they give rise to optical absorption, stimulated emission, or spontaneous
emission. The accompanying noise is understood as a summed effect of fluctua-
tions occurring from these interactions.

Nonetheless, the analytical method of any branch of physics is grounded in
classical mechanics and quantum mechanics. The analytical approaches to these
interactions are classified into three types as listed in Table 2.1. The first, called
full quantization, treats both the optical wave and the material using quantum
mechanics. The second, called semi-classical, continues to treat the material
quantum mechanically but treats the optical wave using classical mechanics. The
third, called fully classical, treats both optical wave and material using classical
mechanics.

If we use classical mechanics to analyze the electron dynamics in the material,
we can describe optical absorption by the material, but cannot explain stimulated
emission. Spontaneous emission can be theoretically described only using a full
quantization approach. The term photon is given to the massless particle repre-
senting a quantum of light following the quantization of the optical wave. How-
ever, results using quantized optical fields do not always match those from
conventional treatments in electronics originally founded on classical mechanics,
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Table 2.1 Relationships between the analytical approach and phenomenological treatment

Analytical Mechanics Phenomena
approach Optical  Material Optical Stimulated ~ Spontaneous  Noise
wave absorption  emission emission
Full Quantum Quantum Theoretical Theoretical  Theoretical Theoretical
quantization

Semi-classical ~ Classical Quantum Theoretical Theoretical Phenomeno-  Phenomeno-
logical logical

Fully classical ~Classical Classical Theoretical Invalid Phenomeno-  Phenomeno-
logical logical

such as EM theory, circuit theory, control theory, and signal processing theory.
The classical mechanics require us simultaneous representation of the energy and
the vibrating phase. From a quantum mechanical viewpoint, there exists an
uncertainty between the energy and vibrational phase of an optical wave as will be
shown in later. The word of temporal coherency originates from classical
mechanics not from the quantum mechanics. Therefore, in many cases, we apply a
semi-classical approach in which the optical wave is analyzed using the classical
EM equations of Maxwell. Spontaneous emission and noise are introduced via
phenomenological equations aided by results obtained from quantizing the optical
wave.

2.2 Principles of Classical Mechanics

Many people find quantum mechanics is challenging to understand and to envis-
age. This stems from the different logical framework of quantum mechanics from
that of Newtonian mechanics. Classical and quantum mechanics are compared in
Table 2.2. There are two types of mathematical equations used to describe
dynamics. One is a theory based on differential equations corresponding to causal
relationships. The other is a theory with integral equations corresponding to a
variational principle. Even in classical mechanics, Newtonian and analytical
mechanics are founded on completely different logical frameworks. Let us review
these frames of classical mechanics, before moving onto quantum mechanics.

In Newtonian mechanics, it is postulated that the rate of change of momentum
is given by a force; force is the “cause” resulting in a momentum change, the



2.2 Principles of Classical Mechanics 19

Table 2.2 Logical frameworks and classification of mechanics

Theory with differential equation Theory with integral equation Reproducibility

(causal relationship) (variational principle)
Classical Newtonian mechanics Analytical mechanics Assumed
Quantum ? Quantum mechanics Uncertain

“effect”. This postulate can be described mathematically using a differential
equation

d
P_F

T, 2.1)

where p is the momentum of a material object and F the force applied to that
object. In Newtonian mechanics, the relation p = m dx/dt is presupposed, where
x and m are the position and mass of the object, respectively. The Maxwell EM
equations are also described in classical theory using differential equations.

In classical analytical mechanics, the relation between x and p is supposed o be
unknown initially. The postulate of this mechanics is that the relation between
x and x is determined by the principle of least action, i.e., the minimization of the
value of the action J defined as

= / ® Lx i, e, (2.2)

1
with the Lagrangian
L(x,x,t) = T(x,x,t) — U(x, 1), (2.3)

where T'(x, x,1) is the kinetic energy, U(x, ) the potential energy, and

Ox

k= (2.4)

is the velocity. In classical analytical mechanics, the relation between x and x is
also unknown initially. To find this relation through (2.2) is the fundamental
objective of classical analytical mechanics. The momentum p is defined as

OL(x, %, 1)

p=—F (2.5)

With p called the conjugate of x. The classical Hamiltonian H(x, p, t) is defined
using x, p, and L(x, &, ) as

H(x,p,t) =xp — L(x,x,t) = T(x,x,1) + U(x,1). (2.6)

The Hamiltonian determines the total energy of the mechanical system.
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The Lagrangian L(x,x,t) and Hamiltonian H(x, p, f) are called generating
functions. Physical quantities such as x and p are obtained by differentiating the
classical Hamiltonian:

. OH(x,p,1)
p= - , (2.7)
. OH(x,p,t)

Note that in classical analytical mechanics the physical quantities x and p have
been introduced as independent parameters. The relation p = m dx/dt is obtained
as a derived result of classical analytical mechanics.

As given in the above discussion, the basic postulate and the logical framework
of classical analytical mechanics differ completely from those of Newtonian
mechanics.

Here, we find a situation in (2.2) that is strange. The lower limit #; of the
integration corresponds to the starting time of the dynamics which is in the past,
whereas the upper limit #, corresponds to the finishing time of the dynamics which
must be in the future. Can we know the future? The answer to this question in
classical mechanics is “Yes”. The common assumption in classical mechanics is
that any dynamics is reproducible for temporal variation. Hence, both Newtonian
mechanics and classical analytical mechanics are consistent and compatible with
each other. However, we know through personal experiences that nature and
human life are never reproducible.

Because the fundamental equation (2.1) in Newtonian mechanics is given for
the instantaneous time now, everyone can readily accept its outcomes. However,
everyone might not accept the outcomes from classical analytical mechanics
because (2.2) requires us to suppose that our future is reproducible.

Even in Newtonian mechanics, we can predict our future by integrating (2.1)
into the future, if that is what we wish to know. The key concept underlying
classical mechanics is the assumption of reproducibility.

Here, we present an example illustrating the logical difficulty in classical
mechanics without the assumption of reproducibility. We consider an experiment
to measure position and velocity of an electron moving in a vacuum using metal
slits, as depicted in Fig. 2.2. When an electron passes a slit set at position x, the
induced electric current in the slit rises to a peak and falls way. We can then fix a
time ¢ when the electron passes this slit, as sketched in Fig. 2.2a. Here, we also
suppose that the sensitivity and resolution of the measuring system are sufficient
enough to register sharp measurements.

Meanwhile, the instantaneous velocity v of the moving electron as specified
within Newtonian mechanics is
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Fig. 2.2 Example to show (a)

the relationship between |
reproducibility and
uncertainty. a Position
measurment. b Velocity X
measurment. ¢ Variation of t
measured data

Ax

y= lim —. 2.9

At—0 At (29)

Thus, we need to prepare two slits, as shown in Fig. 2.2b, to measure the
difference in position and the interval of time

Ax = xp — xy, (2.10)
At =1 — 1. (2.11)

We can then plot point (x, — x;)/(#, — #;) on the graph of Ax/At versus x, — x1,
as illustrated in Fig. 2.2c. Another requirement in determining the velocity is that
we need to repeat the measurement to be able to obtain the extrapolated point
J}Lno Ax/At = Al;icglo Ax/ At by reducing the distance x, — x; between the two slits, as

shown in Fig. 2.2c. Here, we pose the following questions:

Is the experiment reproducible? If we repeat the experiment, can we get exactly
the same result? Is there any proof that the extrapolated point jtiI—I}O Ax/At =
Al)icTO Ax/ At converges to a unique point?

Most people might respond to these questions using a statistical treatment, for
example, to repeat the experiment many times and to take an averaged value.
However, statistical treatments are only supported on the assumption of
reproducibility.

If we suppose that we can do the experiment only once and repeating the
experiment is not permitted, what sorts of logical differences will be generated.
The aim of the experiment is to measure the position and the velocity
simultaneously.

We need to use two slits, because the velocity cannot be measured by one slit
only. We might set the slit distance x, — x; as small as possible to obtain (x, — x;)
/(t, — t;). However, this value is not exactly the value v = BEIO Ax/ At

= Alimo Ax/At, because 1, — t; is still nonzero albeit small. The next question is
| X—
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whether we can ascertain the position x of the electron exactly when the electron
has velocity v. We can only say that the electron is present in the space between x;
and x; during the time interval #; — #,. Thus, we cannot measure precisely the
position x and velocity v simultaneously from only a single measurement. An
accurate measurement of the position requires an instantaneous time ?, while in
principle the measurement of velocity requires two instantaneous times #; and #,.
Such incompatible requirements are at the root of uncertainty in quantum
mechanics as we shall explain in the following sections.

The reader should bear in mind that classical mechanics is established under the
assumption of reproducibility.

2.3 Principles of Quantum Mechanics

The basic philosophy of quantum mechanics is different from that of classical
mechanics. Quantum mechanics does not suppose reproducibility for the temporal
variation of physical quantities but permits uncertainty in the dynamics. The rules
and postulates of quantum mechanics are summarized in four axioms:

(1) Any physical quantity is expressed as an expectation value of an operator
A and a state |V) as (A) = (V|A|¥), where (A) is said to be the expectation
value of the physical quantity.

(2) The temporal variation of any physical quantity is not given directly by the
dynamics of the physical quantity itself, but is given by the dynamics of the
quantum mechanical operator or state.

(3) The temporal variation of the quantum mechanical operator or state is deter-
mined from one of the following equations:

e the Schrodinger equation for arbitrary state |¥),

d|¥)
ih——-=H|¥), 2.12
WL =) 212)
where j is the imaginary unit and H is the quantum mechanical Hamiltonian.
e the Heisenberg equation for arbitrary operator A,

dA 1 1
—=—-[AH|=—(AH - HA 2.1

where [, ] denotes the commutator of the two arguments.
e the commutation relation for canonical conjugate operators,

la,r] = gp — pq = jh. (2.14)
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The applications of these three equations are different in mathematics. How-
ever, their intrinsic characteristics are the same. We are able to develop
quantum mechanical properties by applying any one of these equations.

(4) Any observable physical quantity is represented by a real number. Introducing
the imaginary unit into quantum mechanics aids the handling of the mathe-
matics more simply. The imaginary unit j (sometimes denoted i) merely
indicates m/2 preceding a phase variation for periodically vibrating
phenomena.

Let us recall some of the mathematical structure of quantum mechanics:

We introduce (V| and |¥), called the bra vector and ket vector respectively, to
denote the states of a quantum mechanical system. For each operator A acting on
the ket vector, A|¥), a conjugate operation A* is defined that acts on the bra
vector, (¥Y]AT, where the symbol * is read as dagger. When the relation
A" = A holds, this operator is called a Hermite operator or Hermitian. The
expectation value (A) = (AT) of a Hermite operator is always a real number.

2.4 Procedure for Quantization

Because any dynamic behavior can be derived from the quantum mechanical
Hamiltonian H, quantum mechanics is categorized as a theory with an integral
equation, as stated in Table 2.2. Even though the Schrodinger equation and the
Heisenberg equation are given in the form of differential equations, these equa-
tions do not imply a causal relationship. These equations describe the dynamics of
states and operators, and not of physical quantities. Indeed, theories based on
causal relations, such as Newton’s dynamical equation and Maxwell’s equations,
are easy to understand. Unfortunately, there is no direct theory to treat the quantum
mechanical properties based on causal relationships. As we shall show in Chaps. 5
and 6, the density matrix equation and the rate equations are methods to enable
causal relations to be treated by taking into account the quantum mechanical
properties in the form of differential equations. However, these are skillfully
modified equations to cover the weaknesses of quantum mechanics by allowing
one to step out of the exact quantum mechanical framework. Therefore, the col-
umn of “Theory with differential equation” and “Quantum” in Table 2.2 is noted
with “ ? ” mark.

A way of applying quantum mechanics is to trace and convert categories given
in Table 2.2 using the following four steps:

1. Formulate classical differential equations, and analyze them.
2. Calculate the energy associated with the classical Hamiltonian as an integral
equation.
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3. Regard the dynamic variables as quantum mechanical operators as well as the
energy as the quantum mechanical Hamiltonian.

4. Analyze the quantum mechanical features using one of the equations (2.12)—
(2.14).

These four steps embody the notion of quantizing a general classical system.
Let us now quantize the optical wave by following these steps.

2.5 Classical Form of Maxwell’s Equations

The first step towards quantization is to formulate classical differential equations
and analyze them. Optical waves in the semiconductor laser propagate along the
active region and are reflected back by a facet mirror at either end, thereby forming
a standing wave in the laser cavity, as sketched in Fig. 1.14. In this chapter, we
assume that reflectivities Ryand R;, of the two facet mirrors are 100 %, and there is
neither gain nor loss in the laser cavity. That is, the entire optical wave is confined
within the laser cavity in a steady state.
For EM waves without sources, Maxwell’s equations are given as

OE
H=¢— 2.1
V x £3, (2.15)
OH
V-E =0, (2.17)
V-H=0, (2.18)

where E is the electric field vector, H the magnetic field vector, ¢ the dielectric
constant, and p the magnetic permeability. Here, we introduce a vector poten-
tial A subject to the Coulomb gauge condition

V-A=0. (2.19)
Both E and H are derived from the vector potential:

0A
E=—— 2.20
=3 (220)

pH =V x A. (2.21)
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Equations (2.20) and (2.21) automatically satisfy (2.17) and (2.18), respec-
tively. By substituting (2.20) and (2.21) into (2.15) and (2.16) and using the well-
known formula from vector calculus

V x(VxA)=V(V-A) - V4, (2.22)

we obtain the wave equation for the vector potential,
°A
VA = e —. 2.23
e 33 (2.23)

We propose trial solutions of (2.23) of the form

A= \/%q(t)¢(x,y,z), (2.24)

where D(x, v, ) is a field distribution function describing the standing wave in the
laser cavity. The distribution function actually consists of three spatial components
given by the vector

D(x,y,z) = exPx(x,y,2) + €Dy (x,y,2) + €. P(x,,2), (2.25)

where e,, e,, and e, are independent unit vectors indicating the spatial directions.
The distribution function is normalized to unity over the whole volume of the

cavity, that is,
/// |®(x,y,z)|*dxdydz = 1. (2.26)
cav

The variable ¢(¢) in (2.24) is the temporal-varying amplitude of the vector
potential.

By substituting (2.24) into (2.23), the terms involving the spatial distribution
and the temporal variation can be separated into two equations:

V2®(x,y,2) = —pea’ (x,y,2), (2.27)
o’q(1) 2
) (2.28)

Here, we should keep in mind that the parameter w is defined as an eigenvalue
that connects these two equations. The mathematical solution to (2.28) is

q(t) = c®' +cte 7, (2.29)
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where ¢ is an amplitude given with a complex number. The second term on the
right-hand side of (2.29) is the complex conjugate of the first term, because
q(?) itself should be a real number.

Any observable physical quantity should be a real number both in classical and
quantum mechanics. Representations with complex numbers such as in (2.29) stem
from the mathematical benefits of using imaginary numbers in the treatment of
periodically vibrating phenomena. We find that the eigenvalue @ can be inter-
preted as an angular frequency of the temporal variation.

The second step towards quantization is to calculate the energy corresponding
to the classical Hamiltonian. The stored energy W of the optical wave in the laser
cavity as obtained from (2.20), (2.21), and (2.24) is

W= % /// (¢E* + pH?) dxdydz = % (&% + %), (2.30)

where ¢ is the first derivative of ¢ with respect to time ¢, that is, § = 0¢/0r in
classical mechanics. Equation (2.30) describes the stored energy of the optical
wave and can be expressed in the same form as for a harmonic oscillator. If we
suppose ¢(7) = g(0) cos(wt), which gives §(t) = —wq(0)sin(wt), the time-
averaged value of the energy W = w2¢(0)*/2 is obtained. In deriving (2.30), we
used the formula

[//(V x @) dxdydz = ///‘D{V x (V x @) }dxdydz, (2.31)

together with (2.19), (2.22), (2.26), and (2.27).

2.6 Obtaining Quantum Mechanical Operators
from Classical Physical Quantities

The third step towards quantization is to regard the dynamic variables as quantum
mechanical operators. In particular, energy becomes the quantum mechanical
Hamiltonian. As mentioned previously, the notion of a time derivative for any
physical quantity is not allowed in quantum mechanics. We suppose that g must
correspond to the operator p which must satisfy (2.14) in relation to its canonical
conjugate operator g:

q-q. (2.32)

q— p. (2.33)
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Operators g and p must be Hermitian because the expectation values of these
operator should be real numbers. The stored energy W associated with the optical
wave corresponds to the quantum mechanical Hamiltonian H

W — H. (2.34)

Substitution of (2.32) and (2.33) into (2.30) yields the quantum mechanical
Hamiltonian in the form

H=<(p*+oq). (2.35)

N —

2.7 Quantization of the Optical Wave

The final step to quantization is to analyze the quantum mechanical behavior by
applying one of (2.12)—(2.14). Here, we introduce two new operators a and a*

defined using ¢ and p:
= \/L( +.jp) (2.36)
a=\|5—(wg +jp), .

@ = \[5p=(w4 ~ ip). (2.37)

Although ¢ and p are Hermitian, the new operators a and a* are not. Inverting
the above relations, g and p can be expressed in terms of a and a:

2ha+a’
=\/— 2.38
9=\ (2.38)

p =V2how a

(2.39)

By substituting (2.38) and (2.39) into (2.14), the commutation relation for a and
a’ is found to be

[a,a| =aa” —ata=1. (2.40)

By substituting (2.38), (2.39), and (2.40) into (2.35), the Hamiltonian is
rewritten with a and a* in the form

1
H:hw<a+a+§). (2.41)
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Based on a more detailed analysis of the operators a and a*, which is given in
Appendix 1, it is known that the operator a acts on the states |s) to reduce the
number s by one and a* acts to increase this number by one:

alsy = /s|s — 1), (2.42)
atls) = Vs+1ls+1), (2.43)

where |s) is an eigenstate of operator a'a corresponding to eigenvalue s, a positive
integer. For this reason a is called an annihilation operator and a* a creation
operator. Derivations of (2.42) and (2.43) are rather tedious and are given in
Appendix 1. From (2.42) and (2.43), we verify the relation

a‘tals) = s|s). (2.44)

Hence, the eigenequation of the Hamiltonian is written as

Hls) = m(w%)p). (2.45)

This states that the eigenvalue W of the stored energy of the optical wave in the
laser cavity is given by

W= (s + %) ho. (2.46)

Because the energy is characterized by a nonnegative integer s, s is called the
photon number. The constant fiw/2 remains even if s = 0, and is called the zero-
point energy. Spontaneous emission is induced by this zero-point energy as already
explained in Chap. 1 and is proved in Appendix 5.

2.8 Remark on the Photon

It is worthwhile to recapitulate the manner in which the photon number was
obtained. The vector potential A of the optical wave is represented by the
amplitude g(#) and spatial distribution @(x, y, z). Quantum mechanics is applied
only to the temporal-varying terms. In particular, the stored energy or Hamiltonian
of the optical wave in a laser cavity is represented by such terms. The photon
number is derived via the eigenvalue for the stored energy in the whole cavity.
Meanwhile, the spatial distribution of the optical wave ®(x, y, z) is defined over
the entire volume of the laser cavity and is characterized by the eigenfunctions
determined by (2.27). That means (2.27) is common to both classical mechanics
and quantum mechanics, because the spatial distribution is time-independent.
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Because the photon refers to a particle-like object, most people imagine that it
is a spatially localized particle even in free space, and the output light emitted from
a laser is like a volley from a machine gun. This image is wrong. When we obtain
discrete eigenvalues for any physical quantity, we can associate this basic quantum
unit to a physical characteristic of a particle for the respective phenomenon. The
spatial distribution of the photon needs to be determined subject to the spatial
boundary conditions as performed for any classical wave.

2.9 The Uncertainty Principle

One important feature of quantum mechanics is the uncertainty principle, which is
given in the following theorem.

Theorem
Given the commutation relation [A,B] = jC, the relation AA - AB> L|(¥|C|¥)]|
then holds.

Here, A and B are Hermite operators and C can be a real number or another
Hermite operator. 4A and AB are the uncertainty values corresponding to the
respective operators and are defined as the “root mean square” of the expectation
value:

AA = <‘I’|(A —A)2|W>, (2.47)
with A = <P/A|¥ >, (2.48)
AB:\/<‘P|(B—B)2|SV>, (2.49)
with B = (¥|B|P). (2.50)

Proof of this theorem is presented in Appendix 2. Here, we apply this theorem
to several examples.

The first example concerns the relation between the electric and magnetic
fields. The electric field E is given in classical mechanics by the time derivative of
the vector potential as stated in (2.20) and (2.24). The time derivative of the
amplitude g should be replaced with another operator p as supposed in (2.33).
Then, the electric field E in quantum mechanics is written as

Ez—\épcb(x,y,z). (2.51)
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The magnetic field H is given by the rotation (or curl) of the vector potential as
formulated in (2.21). This operation is not a temporal variation but a spatial
distribution. Hence, the magnetic field H in quantum mechanics is written as

H = 'u\/_qv X D(x,y,z2). (2.52)

Therefore, the commutation relation between the electric and magnetic fields is
jh
[E,H] = ——<15 V x @(pqg — qp) = <D V x ®P. (2.53)
ue
By applying the above theorem to (2.53), we obtain the uncertainty relation
h
AE - AH > ﬂdi(x,y,z) -V X ®(x,y,2). (2.54)

Because the right-hand side is nonzero, this uncertainty relation implies that a
simultaneous representation for both electric and magnetic fields is not allowed in
quantum mechanics, although a simultaneous representation is essential in the
classical mechanics. Therefore, the quantum mechanical treatment of the optical
wave does not match with its conventional treatment in electronics which is based
on classical mechanics.

The second example concerns the relation between energy and time. The
Heisenberg equation has been given in (2.13). If we regard the operator A in (2.13)
as time ¢, the commutation relation on the right-hand side is

1 1

I —[A,H] = I [, H). (2.55)

The left-hand side of (2.13) is the time derivative of ¢, giving the simple relation

dt

o= (2.56)

With the expectation value of the Hamiltonian denoted by W, we obtain the
uncertainty relation

AW - At > (2.57)

NSt

which means that the expectation value of an energy should be evaluated over a
sufficiently broad time interval Az.
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A third example results by substituting (2.46) into (2.57) yielding
1 h
AW-At:h{Aw((s—&—E) —i—a)As}AtZE (2.58)

which means that, for very short time intervals At, neither frequency w nor photon
number s can be evaluated exactly.

2.10 Coherent State

In (2.46), the photon number s is introduced as an eigenvalue associated with the
eigenstate of the number operator a*a to characterize the optical energy. Mean-
while, the operators corresponding to the electric field E and magnetic field H can
be expressed in terms of a* and a as derived from (2.38), (2.39), (2.51), and (2.52):

E :j\/%(a —a’) d(x,y,z), (2.59)
H:l—ll\/%(a—i—a*')v X D(x,,7). (2.60)

We need now to find the eigenstates of a and a to obtain the expectation
values of the electric and magnetic fields. As also found in classical mechanics,
energy is a time-independent quantity, whereas the electric and magnetic fields are
time dependent quantities. Therefore, the representation of both these fields with
finite photon number is in principle not simple.

For the eigenstates of a* and a, the following equation for |¢) has been pro-
posed and is called the coherent state or Glauber state,

9= (st[N) e (seg)erra] e

Here, N is the average photon number for this state given by

sefN s—1
(pla*algy = S e Z(N— Y (2.62)

| —1)!
— 5! s—1)!
The expectation values of the operators a* and a are

(pla*|¢) = VN explj(wrt +0)], (2.63)
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(¢lalp) = VN exp[—j(wt + 0)]. (2.64)
The electric and magnetic fields are then represented in this coherent state as
2roN\ '
(0lEl) = (P2 sinfon +0)@(x.3.2), (2:65)
2N
(p|H|p) = (E) cos(wt + )V x @(x,y,2). (2.66)

These two expressions agree with the classical EM fields.
The energy of the optical wave calculated from these two expressions is

/ﬂ (BIE|§)+11(g|H|9)” ) dxdydz = hooN. (2.67)

By comparing this result with (2.46), we find that the energy derived from the
field expectation values of (2.65) and (2.66) gives the energy component Niw with
the average photon number N. However, calculations from these field expectation
values never produce the zero-point energy (1/2)fiw, which is derived by the
direct quantization of the optical wave resulting in (2.46).

The distribution of the photon number in the coherent state follows the Poisson
distribution

= |(slpyP= ", (2.68)

which are illustrated in Fig. 2.3. This equation is interpreted as meaning that Py is
the probability to measure the photon number of the existing optical wave to be
s. After repeating the measurement many times, the average value of the measured
photon number approaches N.

2.11 Interaction Between the Optical Wave and a Charged
Particle

The Hamiltonian of the optical wave has been derived from Maxwell’s classical
EM equations presented in (2.41). However, when a charged particle is present
along with the optical wave, the dynamics of the particle will be affected by the
optical wave. The motion of the charged particle is characterized by another
Hamiltonian. The Hamiltonian for the charged particle and wave is of the form
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Fig. 2.3 Poisson 0.10 — - ; - — .
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H— ﬁ (b — eA)? + eU(r), (2.69)

where m and p are the respective mass and momentum of the charged particle, e its
charge, and A and U are the respective vector and scalar potentials describing the
optical wave. Equation (2.69) is valid for both classical and quantum mechanics.
In quantum mechanics, p and A are treated as operators.

The validity of (2.69) is confirmed by applying Hamilton’s principle in classical
analytical mechanics to (2.69). We can derive a Newtonian dynamic equation for
the charged particle experiencing a Lorentz force as

mi = e[E + u(F x H)]. (2.70)

The derivation of this equation is given in Appendix 3.

In quantum mechanics, the observable physical quantities such as 7 and # should
be obtained as expectation values based on the appropriate quantum mechanical
expressions. Using (2.69) and the Schrodinger equation, we can also derive the
dynamic equation for the expectation value of the charged particle corresponding
to (2.70) as

d*(r)
e

— e[(E) + u((v) x (H))). 2.71)

The derivation of this equation is given in Appendix 4. Although we have
derived a classical Newtonian-like dynamic equation from the Schrédinger
equation, we should be careful in its application because it is given after the
determination of the expectation values of (r), (v),(E) and (H), under several
assumptions and approximations, as explained in Appendix 4.
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2.12 Analysis of Electron Transition Using a Fully
Quantized Treatment

As mentioned in Sect. 2.1, the analysis of the interaction between an optical wave
and a material (electron) is classified according to three different approaches: fully
classical, semi-classical and full quantized. For the fully classical and semi-
classical approaches, the dynamics of the electron is represented via polarization,
dielectric constant or conductivity, and is introduced into Maxwell’s classical EM
equations. An analysis of the laser is then performed by applying theories from
material science and electronics.

In contrast, for the fully quantized approach, the interaction is analyzed via
transition probabilities between energy states of the optical wave and the material.
Although an energy conservation rule for the interaction can be derived, the
representations of other physical quantities such as the vibrational phase or
coherency of the optical wave become complicated. It might be helpful to
emphasize that the concept of coherent light is founded in classical mechanics.

Therefore, the modus operandi of this book is that the development will be
based mainly on a semi-classical approach. The required modification resulting
from full quantization will be added when necessary.

An analysis of electron transition probability based on a fully quantized
treatment is presented in Appendix 5. Readers who are more interested in these
quantum mechanical aspects are encouraged to consult Appendix 5 for further
details.
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