
Chapter 2
Stress Concentration Problems

Abstract Stress concentration in an elastic body may be caused mainly by
the two-mechanisms i.e., concentrated forces acting to a body and geometrical
discontinuities of a body such as holes or abrupt change of its surface geometry.
The local stress increase induced by stress concentration sometimes causes the
initiation of a fatigue crack in a structure, which must be carefully examined for
engineering design. We shall first discuss the stress concentration by a concentrated
applied force. Then, stress concentrations due to a circular hole and an elliptic hole
are calculated by using the Airy’s stress function. The general solution in a polar
coordinate system derived in the previous chapter and the complex potential method
discussed in Appendix A will be utilized to obtain the solutions, where the latter is
essential for the analysis of elliptic hole problem, which is closely related to a crack
problem to be explained in the next chapter.

Keywords Concentrated force • Elliptic hole • Stress concentration • Stress
concentration factor

2.1 Mechanisms and Solution Methods of Stress
Concentration

Stress concentration problems are investigated, where the stress concentration due
to an external force, as well as due to structural discontinuities such as circular
and elliptic holes are solved by using the Airy’s stress function and the complex
potentials, Timoshenko and Goodier (1970). Stress concentration in an elastic body
may be caused mainly by the two mechanisms, i.e., concentrated forces acting
to a body and geometrical discontinuities of a body such as holes or abrupt
change of its surface geometry, Neuber (1937), Raven (1946), Peterson (1953).
The local stress increase induced by stress concentration may sometimes cause the
initiation of a fatigue crack in a structure, which must be carefully examined for
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engineering design. We shall first discuss the stress concentration by a concentrated
applied force. Then, stress concentrations due to a circular hole and an elliptic hole
are investigated. The general solution in a polar coordinate system derived in the
previous chapter and the complex potential method discussed in Appendix A will
be utilized to obtain the solutions, where the latter is essential for the analysis of
elliptic hole problem, which is closely related to a crack problem as the length of its
minor axis approaches zero.

2.2 A Concentrated Force Acting at the Tip of a Wedge

We shall consider a symmetric wedge subjected to a concentrated force at the tip,
where the components of the force in the x1- and x2-directions are P1 and P2,
respectively (see Fig. 2.1). The boundary conditions are expressed by

�� D �r� D 0 on � D �

2
˙ ˛: (2.1)

Using the Airy’s stress function, these conditions can be rewritten as
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2
˙ ˛: (2.2)

In order to satisfy the above conditions, F.r; �/ should be proportional to r , leading
to a solution of the following form:

F .r; �/ D c1r� cos � C c2r� sin �; (2.3)

where c1and c2 are the unknown constants to be determined. Substitution of
Eq. (2.3) into Eq. (1.41) leads to the stress components

�r D 2

r
.�c1 sin � C c2 cos �/ ;

�� D �r� D 0: (2.4)

Fig. 2.1 A concentrated
force acting at the tip
of a wedge
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Fig. 2.2 A concentrated
force acting on the surface
of a semi-infinite plate

One may observe that the stress-free boundary conditions are satisfied by this
expression. The equilibrium conditions for the concentrated force are represented by

P1 C
Z �=2C˛

�=2�˛
�r .r/ cos � rd� D 0; (2.5)

P2 C
Z �=2C˛

�=2�˛
�r .r/ sin � rd� D 0; (2.6)

with which the unknown constants are determined, and the stress distribution is
obtained as

�r D �2
r

�
P1 cos �

2˛ � sin 2˛
C P2 sin �

2˛ C sin 2˛

�
: (2.7)

One may observe the stress concentration with a stress singularity of O.r�1/ near
the tip of the wedge.

A concentrated force acting on the surface of a semi-infinite plate can be
investigated, by simply choosing the wedge angle ˛ D �=2 (see Fig. 2.2). The
corresponding solution is given by

�r D � 2

�r
.P1 cos � C P2 sin �/; �� D �r� D 0: (2.8)

The stress components in the linear orthogonal coordinate system O � x1x2 are
calculated as

�11 D � 2P1
�x1

; �22 D �12 D 0; (2.9)

on the plate surface, so that the stress distribution exhibits a stress singularity as
illustrated in Fig. 2.3.
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Fig. 2.3 Stress singularity on
the surface near the
concentrated force

2.3 Axisymmetric Solution

The axisymmetric parts of the solution of a two-dimensional problem can be derived
from Eq. (1.68), and obtained as

F .r/ D r2 .a0 C b0 ln r/C a00 C b00 ln r: (2.10)

The corresponding stress distribution is calculated as

�r D 1

r

dF

dr
D 2a0 C b0 .2 ln r C 1/C b00

r2

�� D d2F

dr2
D 2a0 C b0 .2 ln r C 3/ � b00

r2

�r� D 0: (2.11)

The displacement field is represented by the radial component ur ; and the
corresponding strain components are calculated as

"r D dur
dr

; "� D ur
r
; �r� D 0; (2.12)

where an additional compatibility condition

"r D "� C r
d"�

dr
; (2.13)

should hold. Using the stress–strain relation in plane stress condition, the compati-
bility condition is expressed in terms of stress

.1C �/ .�r � ��/ D r

�
d��

dr
� � d�r

dr

�
: (2.14)
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Fig. 2.4 Thick cylinder
subjected to internal pressure

Substituting Eq. (2.11) into Eq. (2.14), one can obtain

b0 D 0; (2.15)

so that the stress distribution is given by

�r D 2a0 C b00
r2
; �� D 2a0 � b00

r2
; �r� D 0: (2.16)

If the origin exists inside the body, the singular term of O.r�2/ vanishes and a
constant stress distribution is attained.

Suppose a thick cylinder with its inner radius, R1 and outer radius, R2 subjected
to internal pressure p1 and external pressure p2, respectively. Having substituted
Eq. (2.16) into the boundary conditions,

�r .r D R1/ D �p1; �r .r D R2/ D �p2; (2.17)

the stress distribution is obtained as

�r D � .p1 � p2/R
2
1R

2
2

R22 �R21
1

r2
C p1R

2
1 � p2R22

R22 �R21
;

�� D .p1 � p2/R21R22
R22 �R21

1

r2
C p1R

2
1 � p2R22

R22 �R21
;

�r� D 0; (2.18)

where one can observe the stress concentration of the circumferential (hoop) stress
near the internal surface of the cylinder. Figure 2.4 shows the results of stress
distribution for the cylinder (R2=R1 D 2) subjected to only the internal pressure
p1, in which one can clearly see the stress concentration on the internal surface of
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the cylinder. In case of R1 D 0, we have a solid cylinder with a hydrostatic stress
equal to the external pressure. A circular hole in an infinite medium is obtained as
the limit of R2 ! 1, and the solution becomes

�r D �p1 .R1=r/2
�� D p1 .R1=r/

2 : (2.19)

If we superimpose a biaxial uniform stress �0 D p1, to the above solution, the
stress-free condition is attained on the circular hole and the solution becomes

�r D �0

n
1 � .R1=r/2

o

�� D �0

n
1C .R1=r/

2
o
: (2.20)

The hoop stress is maximized on the hole surface with its magnitude twice as high
as the biaxial remote stress.

2.4 Stress Concentration Caused by a Circular Hole

In this section, we shall consider the stress distribution near a circular hole of
diameter, R, in an infinite plate subjected to uniaxial tensile stress, �0; as illustrated
in Fig. 2.5. The boundary conditions far away from the hole are given by

�11 D �0
�22 D �12 D 0

�
at jx1j �! 1; (2.21)

Fig. 2.5 Stress distribution near a circular hole
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and the corresponding stress function, F0; is

F0 D 1

2
�0x

2
2 ; (2.22)

while the boundary conditions on the circular hole are

�r D �r� D 0: (2.23)

The stress function, F , can be expressed by

F D F0 C F1 D 1

4
�0r

2 .1 � cos 2�/C F1 .r; �/; (2.24)

by adding the correctional term, F1, due to the hole, and the stress components on
the hole are given by
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on r D R: (2.25)

Therefore, the stress function, F1, should be composed of the axisymmetric part and
the term proportional to cos 2� in Eq. (1.68), whose stress components diminish at
infinity. The result is

F1 .r; �/ D b00 ln r C b2 cos 2� C b02r�2 cos 2�: (2.26)

From Eq. (2.25), one can determine the unknown coefficients b00, b2, and b02, and the
stress distribution is obtained as

�r D �0

2

�n
1 � .R=r/2

o
C

n
1 � 4 .R=r/2 C 3 .R=r/4

o
cos 2�

�
;

�� D �0

2

�n
1C .R=r/2

o
�
n
1C 3 .R=r/4

o
cos 2�

�
;

�r� D ��0
2

�
1C 2 .R=r/2 � 3 .R=r/4

�
sin 2�: (2.27)

Figure 2.6 illustrates the stress distribution near the hole, in which the maximum
stress �11 D 3�0 is attained at the edge of the hole.
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Fig. 2.6 Stress distribution near a circular hole

2.5 Stress Concentration Factor

In order to quantify the magnitude of stress concentration, a stress concentration
factor, ˛, is often employed in engineering design, which is defined by

˛ � .local maximum stress/ =.nominal stress/: (2.28)

In the case of a circular hole in uniaxial tension, the stress concentration factor
˛ D 3, while the same hole in biaxial tension as illustrated in Fig. 2.7a exhibits less
stress concentration, ˛ D 2: In the case of pure shear loading, it may be decomposed
to the biaxial tension and compression of the same magnitude, so that the stress
concentration is higher, i.e., ˛ D 4 (see Fig. 2.7b).

As will be discussed in detail in the next section, the stress concentration factor
of an elliptic hole in uniaxial tension is expressed by

˛ D 1C 2 .a=b/; (2.29)

where the lengths of the major and minor axes of the ellipse are denoted by a and
b, respectively (Inglis 1913). The lengths of major and minor axes, and the radius
of curvature at the root of the hole are related by

� D b2=a; (2.30)

so that one can rewrite Eq. (2.29) into

˛ D 1C 2
p
a=�: (2.31)
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a

b

Fig. 2.7 Stress concentration under (a) biaxial tension and (b) pure shear

Fig. 2.8 Stress concentration
due to a defect under uniaxial
tension

This expression is known to be applicable to the estimation of the stress concen-
tration factor of a wider range of internal defects whose projected length on the
plane perpendicular to the principal loading direction is 2a and its tip radius is �
(see Fig. 2.8).

2.6 Elliptic Hole in Tension

We shall consider an elliptic hole in tension as illustrated in Fig. 2.9, where the major
and minor axes of the ellipse are a and b, respectively, and the major axis is at angle
ˇ to the loading direction, Inglis (1913), Stevenson (1945). We shall introduce the
two linear Cartesian coordinate systems, i.e., theO�x1x2 coordinate system, whose
directions coincide with the major and minor axes of the ellipse, and the O � x01x02
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Fig. 2.9 An inclined elliptic hole under uniaxial tension

Fig. 2.10 Elliptic coordinate
system

coordinate system being at angle ˇ to the O � x1x2 coordinate system. The elliptic
coordinate system .	; 
/ illustrated in Fig. 2.10 can be defined by

z D f .&/ D c cosh &; � D 	 C i
: (2.32)

Its real and imaginary parts are calculated as

x1 D c cosh 	 cos 
 and x2 D c sinh 	 sin 
; (2.33)

and its derivative is

d z

d�
D c sinh � � Jei˛; (2.34)

where

J 2 D 1

2
c2 .cosh 2	 � cos 2
/; (2.35)
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and

e2i˛ D sinh �

sinh N� ; tan˛ D coth 	 tan 
: (2.36)

Assuming that the elliptic hole corresponds to 	 D 	0, we have

a D c cosh 	0 , b D c sinh 	0; (2.37)

so that

c D a

q
1 � .b=a/2 , 	0 D arctanh .b=a/: (2.38)

In order to avoid the multiple-valueness of the displacement and stresses, periodic
analytic functions such as sinhn� and coshn� may be selected as the possible
candidates of the solution.

The stress components in terms of the O � x01x02 coordinate system are trans-
formed from those in terms of the O � x1x2 coordinate system by Eq. (A.47) (see
Appendix A). Therefore, the boundary conditions at infinity can be expressed by

�11 C �22 D �0
�22 � �11 C 2i�12 D ��0e�2iˇ

�
at infinity, (2.39)

while those on the elliptic hole are given by

�	 � i�	
 D  0 .z/C  0 .z/ � e2i˛ �Nz 00 .z/C �0 .z/
	 D 0: (2.40)

Stevenson (1945) derived the complex potentials of the solution in the following
form:

4 .z/ D Ac cosh � C Bc sinh �;

4� .z/ D Cc2� CDc2 cosh 2� CEc2 sinh 2�; (2.41)

in which A and C are real, while B;D, and E are complex unknown constants,
respectively, given by

B D B1 C iB2; D D D1 C iD2; E D E1 C iE2: (2.42)

Substituting Eq. (2.42) into Eq. (2.41), the boundary condition at infinity (Eq. (2.39))
leads to

AC B1 D �0;

2 .D CE/ D ��0e�2iˇ: (2.43)
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The boundary conditions on the elliptic hole is calculated by Eq. (2.40) with
Eq. (2.41) where the stress-free condition on the hole edge 	 D 	0, is given by

4


�	 � i�	


� D cosech �
h
.2AC B/ coth � sinh �

C 

B C Bcosech2�

�
cosh � C .C C 2E/ cosech � coth �

�4D sinh � � 4E cosh �
i
D 0: (2.44)

This condition can be rewritten as

.2A sinh 2	0 � 2iB2 cosh 2	0 � 4E/ cosh �

� .2A cosh 2	0 � 2iB2 sinh 2	0 C 4D/ sinh �

C .C C 2E C B cosh 2	0/ coth � cosech � D 0: (2.45)

The five unknown constants are determined by the five independent conditions
represented by Eqs. (2.43) and (2.45), so that the complete form of the complex
potentials has been obtained as

4 .z/ D c�0

h
e2	0 cos 2ˇ cosh � C 


1 � e2	0C2iˇ� sinh �
i
;

4� .z/ D �c2�0
�
.cosh 2	0 � cos 2ˇ/ � C 1

2
e2	0 cosh 2 .� � 	0 � iˇ/

�
:

(2.46)

The normal stress along the hole edge is calculated by Eq. (A.46)

�
 .	 D 	0/ D �0
sinh 2	0 C cos 2ˇ � e2	0 cos 2 .ˇ � 
/

cosh 2	0 � cos 2

: (2.47)

In the case where the major axis is perpendicular to the loading direction, ˇ D �=2,
the above result is simplified as

�
 .	 D 	0/ D �0e
2	0

"
sinh 2	0



1C e�2	0

�
cosh 2	0 � cos 2


� 1
#
; (2.48)

and the maximum stress is attained at 
 D 0 and � by



�

�

max D �0
˚
1C 2 .a=b/

�
; (2.49)

as observed in Eq. (2.29). Similar to the consideration of the superposition of biaxial
tension and compression in Fig. 2.7b, the solution of the loading condition under
pure shear, � , is obtained by adding the two solutions of �0 D � with ˇ D �=4, and
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Fig. 2.11 Elliptic hole under
pure shear

�0 D �� with ˇ D 3�=4 for Eq. (2.46), and the normal stress acting along the hole
edge is calculated as

�
 .	 D 	0/ D �2� e2	0 sin 2


cosh 2	0 � cos 2

: (2.50)

The maximum stress is attained at the points shown in Fig. 2.11, where the condition

cos 
 D 1=
p
1C .b=a/2; (2.51)

is satisfied, and its value is calculated as

�




	 D 	0; cos 
 D 1=

p
1C .b=a/2

�
D ˙� .aC b/2

ab
: (2.52)
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