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    Abstract  

  Breast cancer is the leading cause of cancer-related deaths among women 
worldwide. Although advances in our understanding of this disease have 
been made in the last decade, the available treatments remain inadequate, 
particularly for the more intractable forms of breast cancer. Hereditary or 
familial breast cancer poses a particularly diffi cult challenge as only a few 
susceptibility genes with high penetrance have been identifi ed, namely, 
BRCA1 and BRCA2. It is now suspected that the majority of hereditary 
and familial breast cancers are caused by various combinations of several 
moderate- and/or low-penetrance genes. Recent developments in research 
methodologies and conceptual frameworks within biology have revolution-
ized the study of cancer. This systems approach, which emphasizes a holis-
tic understanding of biological systems, is referred to generally as “omics.” 
A decade of omics research has led to the identifi cation of many new thera-
peutic targets and biomarkers, allowing for more accurate and earlier diag-
nosis and treatment of the wide spectrum of diseases that are collectively 
referred to as breast cancer. Here we review the contributions of several 
omics fi elds to our understanding of hereditary and familial breast cancer, 
namely, genomics, transcriptomics, proteomics, and metabolomics.  
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        Introduction 

 With the sequencing of the human genome, 
the study of biological systems underwent a 
major transformation. Many researchers began 
to approach their work with a more global 
 perspective. New fi elds of study have  developed, 
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consisting of high-throughput data-rich meth-
ods aimed at understanding the intricacies of the 
biological systems around and within us. The 
development of automated high-throughput tech-
nologies able to carry out complicated experi-
mental procedures and acquire detailed imaging 
and other data in a fraction of the time compared 
to previous labor-intensive methods has led to the 
generation of an almost unmanageable amount of 
data (see Table  2.1  for a list of publically avail-
able microarray dataset databases). Along with 
the development of these new technologies in 
the lab have come advancements in computer 
science that allow researchers with little or no 
background in computer software engineering to 
sift through these mountains of data in the hopes 
of mining relevant patterns [ 1 ]. These new and 
exciting fi elds of study have come to be collec-
tively referred to as “omics” [ 2 ].

   The power of the various omics fi elds lies in 
the vast and detailed information that can now be 
extracted relatively quickly and easily from a bio-
logical sample. The integration of data from sev-
eral areas of omics (e.g., genomics, proteomics, 
and metabolomics) can offer a more informative, 
holistic view of the system under investigation, as 
shown in Fig.  2.1 . This should lead to advance-

ments in disease prevention (genome sequencing) 
detection (biomarkers), better and more individu-
alized treatments for patients (pharmacogenomic 
profi ling), as well as a more thorough and accu-
rate picture of disease prognosis (biomolecular 
profi ling).

   Although we saw in the fi rst decade of the 
twenty-fi rst century an explosion in new methods 
that allow for more detailed and comprehensive 
exploration of biological systems, improvements 
in both detection and analysis of omics data 
are needed [ 1 ,  3 ,  4 ]. Ultimately, in the context 
of medicine, the goal of the omics revolution is 
for a better understanding of pathophysiological 
 processes and better prevention, detection, and 
treatment/management of disease. This chapter 
aims to describe some of the main omics meth-
ods currently utilized in cancer research and how 
they have contributed to our current understand-
ing of hereditary breast cancer.  

    A Growing Problem 

 Cancer places a heavy economic burden on 
health-care systems, making the need for early 
detection and more effective treatments not only 
a medical imperative but also an economic one as 
well [ 5 – 7 ]. Current treatment regimens, while 
improved and often more targeted, are still harm-
ful to healthy cells and tissues. This harm to 
healthy cells is responsible for unpleasant side 
effects and carries the possibility of causing sec-
ondary cancers [ 8 – 10 ]. 

 Cancer is the leading cause of death in high- 
income nations and the second leading cause of 
death in nations of low to moderate income. For 
women, breast cancer is the leading cause of 
cancer- related death. In 2008, breast cancer 
accounted for 23 % of newly diagnosed cancers 
and 14 % of cancer-related deaths in women. 
Fifty percent of breast cancers are diagnosed in 
economically developing countries, and 60 % of 
breast cancer-related deaths worldwide occur in 
these nations, suggesting an even more urgent 
need for better early detection and targeted, cost- 
effective treatments [ 11 ,  12 ]. The impact of 
breast cancer on a patient and their family is both 
physically and emotionally devastating, and in 

   Table 2.1    Publicly available Web-based databases con-
taining microarray datasets   

 Database  Curator  Publication 

 Gene Expression 
Omnibus (GEO) 

 National Center for 
Biotechnology 
Information (NCBI) 

 [ 111 ] 

 Riken 
Expression 
Array Database 
(READ) 

 Riken  [ 112 ] 

 ArrayTrack  U.S. Food and Drug 
Administration (FDA) 

 [ 113 ] 

 ArrayExpress  European Molecular 
Biology Laboratory – 
European 
Bioinformatics Institute 
(EMBL-EBI) 

 [ 114 ] 

 BioGPS  Genomics Institute of 
the Novartis Research 
Institute 

 [ 115 ] 

 Microarray 
Retriever 
(MaRe) 

 Leiden University 
Medical Center 
(LUMC) 

 [ 116 ] 
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some nations, like the United States, which lack a 
comprehensive social health care system, it can 
also be economically crippling for a family. 
While great strides forward have been made in 
early detection and identifi cation of new treat-
ments, there still remains much work to be done. 
A concentrated effort is required to improve our 
understanding of the genetic, biochemical, and 
environmental factors that contribute to the 
development of breast cancer. 

    Heterogeneity 

 One of the major challenges in understanding any 
form of cancer is the heterogeneity inherent in 
the disease [ 12 ]. In fact, the word “cancer,” while 
useful as a general descriptor, has led to a great 

deal of confusion and frustration among laypeo-
ple who may not be aware of the immense hetero-
geneity both between and within different cancer 
types. Owing to breakthroughs in understanding 
from the omics world, we have come to even bet-
ter appreciate this aspect of cancer. Breast cancer 
is a particularly good example of why this term, 
while useful, is at the same time woefully inade-
quate [ 13 ]. Breast cancer is often broadly catego-
rized as either hereditary or familial and sporadic. 
Tumors are also classifi ed into subtypes based on 
various histological, genetic, and biomolecular 
characteristics. What has become increasingly 
clear in the past decade is that each tumor, while 
similar to others in many characteristics, is also 
unique. So while the search for new targets 
focuses on the similarities within subtypes, we 
must also remain aware of the unique nature of 

Combine and filter multiplatform microarray data from tumor cell population

Strong candidate biomarkers

  Fig. 2.1    Visual representation of the 
synthesis of high- throughput data for 
the identifi cation of more robust pre-
dictive biomarkers          
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each tumor, which may make it resistant to any 
number of available therapies. The promise of the 
omics revolution is that routine, inexpensive 
molecular profi ling of individual tumors will lead 
to truly personalized treatment modalities.   

    Oncogenic Transformation 

 Oncogenic transformation is a complex, multistep 
process that differs widely between and even 
within cancer types. However different each can-
cer case may be, common to all are the character-
istics of oncogene activation and mutations in 
tumor suppressors and other genes involved in a 
multitude of different signaling pathways that 
cumulatively produce the phenotype of a cancer 
cell [ 14 ]. Monitoring biological samples (e.g., 
blood, serum, or urine) taken from high-risk candi-
dates over time using global transcription, metabo-
lomic, and proteomic methods may help us to 
understand the early changes that occur during this 
transformation. Some recent studies have utilized 
breast cancer cell lines and/or patient- derived sam-
ples in order to examine the global changes that 
occur during the transformation to metastasis with 
the aim of identifying more specifi c and sensitive 
biomarkers. The hope is that early identifi cation 
and treatment can prevent a cancer’s advancement 
to metastasis [ 15 ]. Perhaps one day our under-
standing of the disease along with advancements 
in detection will even allow us to detect oncogenic 
transformation at a stage where its progression to 
cancer can even be blocked. 

 Four omics disciplines and their contributions 
to our understanding of hereditary breast cancer 
will be described in this chapter: genomics, tran-
scriptomics, proteomics, and metabolomics. The 
order in which they are presented is meant to 
represent the fl ow of cellular information from 
genomics, the relatively fi xed, molecular code of 
life; to transcriptomics, the fi rst step in translat-
ing this code into “usable” parts; to proteomics, 
representing the workhorses of cellular activity; 
and fi nally ending with metabolomics, the down-
stream “end products” of the myriad cellular 
processes carried out by the aforementioned 
molecules.  

    Cancer Genomics 

 The discipline of genomics, as it is known today, 
started with the invention of DNA cloning in the 
1970s and then the sequencing of the human 
genome [ 16 ]. “Classical” genomics is primarily 
concerned with the sequencing of genomes, the 
identifi cation of all genes contained within a par-
ticular genome, and understanding gene structure 
and the complex interplay between genes and 
environment. There are now many subdisciplines 
within this fi eld, such as structural and functional 
genomics, epigenomics, and pharmaco- and toxi-
cogenomics. All aim to better understand the 
relationship between genetic sequences and bio-
logical processes or outcomes. 

 We are now living in the so-called “post- 
genomic” age. Gene mutations that increase a 
person’s risk of developing various types of can-
cer have been identifi ed. In high-risk breast can-
cer families, genetic screening can be carried out 
so that preventive measures can be taken, such as 
lifestyle changes, beginning mammograms at an 
earlier age, or prophylactic mastectomy [ 17 – 20 ]. 

    Genomics of Hereditary 
Breast Cancer 

 Many attempts have been made to classify breast 
cancers into meaningful subgroups to aid in diag-
nosis, optimal treatment determination, and prog-
nosis. Breast cancer tumor classifi cation systems 
have evolved over time as our understanding of 
the heterogeneity of this disease has increased. 
Breast cancer tumors may be separated into four 
main types based on clinical and therapeutic char-
acteristics. The luminal group is the most numer-
ous and diverse subtype and is often subclassifi ed 
into luminal A and luminal B, and several genomic 
tests are available to predict outcomes to endo-
crine therapy. The second group is the human epi-
dermal growth receptor 2 (HER2 or ERBB2) 
amplifi ed or HER-2 enriched group, which has 
responded very well to targeting of HER2 with 
monoclonal antibodies. The third group is referred 
to as normal breastlike. The fourth group is 
referred to as triple negative (or basal like) and is 
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so called because they lack estrogen receptor 
(ER), progesterone receptor (PR), and HER2 
expression [ 21 ]. They have higher incidence in 
patients with germline BRCA1 mutations or who 
are of African ancestry and account for about 
15 % of all breast cancer [ 22 ]. 

 In 2009, Parker et al. reported subtype predic-
tion by 50 genes using qRT-PCR and microarray 
technology, which came to be known as the 
Prediction Analysis of Microarray 50 (PAM50) 
and is commonly used to predict the best treat-
ment modalities for individual cases [ 23 ]. In 
2011, Ebbert et al. reported that the PAM50 sys-
tem is generally accurate and that the assay is 
resistant to errors in the multivariate analyses 
(MVAs) used for classifi cation. However, in the 
case of tumors that do not fi t existing parameters 
very well, the system can lead to inaccurate con-
clusions [ 24 ]. In 2012, the IMPAKT task force 
compared the effectiveness of the PAM50 assay 
with a three-gene immunohistochemical (IHC) 
approach using antibodies against ER, HER2, 
and Ki67 and found that the former was “insuffi -
ciently robust” to make systemic treatment deci-
sions. They recommend instead the combined 
use of ER and HER2 IHC. 

 In addition to the PAM50, there are germline 
genetic tests for BRCA1, BRCA2, and CYP2D6 
and the Breast Cancer Index (BCI). OncotypeDX 
and MammaPrint assays are used in the United 
States and Europe for clinical decision-making 
[ 25 ]. Recently, more extensive and meaningful sub-
grouping has been made possible by genomic (as 
well as other omic) profi ling of large sample groups 
[ 12 ,  26 ]. Such subtyping is essential for identifying 
and applying rational treatment combinations. 

 The fi rst genes to be associated with heredi-
tary breast cancer are also probably the best 
known. These breast cancer susceptibility genes, 
BRCA1 and BRCA2, are inherited in an autoso-
mal dominant fashion and have high penetrance 
[ 27 ,  28 ]. Together, they account for about 30 % 
of familial cases of breast cancer [ 29 ]. Germline 
mutations in these genes result in what is called 
hereditary breast and ovarian cancer (HBOC) 
syndrome, which is associated with a lifetime 
risk of developing breast cancer of 50–80 % and 
of 30–50 % for ovarian cancer [ 30 ]. Interestingly, 

although primarily associated with breast cancer, 
the BRCA genes are more highly associated with 
ovarian cancer, with an overall mutation rate of 
about 12 % in women diagnosed with ovarian 
cancer [ 31 ]. After their identifi cation, there was a 
great deal of excitement, with many hoping that 
more high-penetrance genes would be discov-
ered. However, this has not been the case and this 
is one reason why many have great hope for 
advancements in understanding breast cancer via 
omics methodologies. 

 Although the two BRCA genes function in the 
same DNA repair pathway, homology-directed 
recombination repair (Fig.  2.2 ), the tumors that 
result from BRCA1 and BRCA2 mutation are 
remarkably different. BRCA2 tumors have char-
acteristics similar to sporadic cases. BRCA1 
tumors, on the other hand, are uniformly aggres-
sive, diffi cult to treat, and are typically ER nega-
tive [ 30 ,  32 ]. In a recent review, Roy et al. propose 
several theories to explain why tumors arising 
from two genes involved in the same DNA repair 
pathway may vary so signifi cantly, both geneti-
cally and clinically. It is possible that other gene 
mutations or polymorphisms are co-inherited 
with BRCA1; although, they note, there is no evi-
dence currently available to support this. Another 
possibility they propose is that the role of 
BRCA1 in transcriptional co-activation or co- 
repression, which is not shared by BRCA2, may 
be able to modify expression of the ER bio-
marker. For this to be proven correct, the expres-
sion profi les of ER-negative BRCA1 and 
ER-negative sporadic tumors would need to be 
compared to identify a common mechanism. 
Finally, they suggest the possibility that BRCA1 
and BRCA2 heterozygosity induce different 
mutational spectrums, perhaps resulting from 
their different roles in homologous recombina-
tion (HR) repair. Analyses using array- 
comparative genome hybridization (aCGH) show 
some similarities between BRCA1 and BRCA2 
cancers, including large deletions and amplifi ca-
tions, but some differences are also seen [ 30 ].

   In a response to this review, Simon A. Joosse 
puts forward an intriguing alternative to these 
explanations. He starts by noting that all mammary 
stem cells, from which all epithelial breast cells 

2 Omics of Hereditary Breast Cancer



22

originate, begin as ER negative and that BRCA1, but 
not BRCA2, is required for their maturation to 
ER-positive cells. Thus, BRCA1 defi ciency may 
result in an accumulation of undifferentiated 
ER-negative stem cells with oncogenic potential. 
Following this line of thought, BRCA1 tumors 
would originate from a common cell lineage, 
explaining why they are so homogeneous as com-
pared to tumors in BRCA2 mutation carriers. It 
could also explain why BRCA1 mutation carriers 
have a higher overall risk for developing breast can-
cer and why they are typically diagnosed at an ear-
lier age than BRCA2 mutation carriers [ 32 ]. Further 
genomic and proteomic analyses will hopefully pro-
vide answers to these questions in the near future. 

 Apart from the BRCA genes, several oth-
ers have been associated with familial cases 
of breast cancer. Among the high-penetrance 

genes are the tumor suppressors P53, PTEN, 
and STK11 [ 33 – 35 ]. Also implicated are genes 
of moderate penetrance, which include ATM, 
CHK2, RAD51D, and RAD51B [ 36 – 39 ]. Other 
moderate- penetrance genes that are part of the 
Fanconi anemia (FA) pathway are PALB2, 
BRIP1, RAD51C, and XRCC2 [ 38 ,  40 – 43 ]. A 
further 21 low-risk alleles have been identifi ed 
[ 44 – 47 ]. Together these genes, including BRCA1 
and BRCA2, account for approximately 35 % of 
all familial breast cancer worldwide. This leaves 
a gaping hole in our knowledge of what causes 
the majority of familial breast cancer; a hole that 
is slowly being fi lled with valuable omics data. 
(See Table  2.2  for a list of genes mentioned in 
this chapter, including brief descriptions.)

   Gracia-Aznarez et al. analyzed seven BRCA1/
BRCA2-negative families, each with six to ten 
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  Fig. 2.2    Relationship between various genes involved in/
implicated in the development and/or progression of breast 
cancer. Role of several proteins implicated in breast cancer 
susceptibility in homologous recombination directed repair 
of double strand breaks (DSBs) ( left ); Signaling between 
various proteins implicated in breast cancer susceptibility 
( right ). Gene/protein abbreviations:  RAD50  RAD50 homo-
log ( S. cerevisiae ),  NBS1  Nijmegen breakage syndrome pro-
tein 1,  MRE11  MRE11 meiotic recombination 11 homolog 
( S. cerevisiae ),  RPA  replication protein A,  BARD1  BRCA1 
associated RING domain 1,  BRIP1  BRCA1 interacting pro-
tein C-terminal helicase 1,  PALB2  partner and localizer of 

BRCA2,  BRCA1  breast cancer 1, early onset,  BRCA2  breast 
cancer 2, early onset,  XRCC2  X-ray repair complementing 
defective in Chinese hamster cells 2,  RAD51  RAD51 homo-
log ( S. cerevisiae ),  RAD52  RAD52 homolog ( S. cerevisiae ), 
 ATM  ataxia telangiectasia mutated,  CHK2  checkpoint 
kinase 2, Topoisomerase (DNA) II binding protein 1,  P53  
tumor protein p53,  PTEN  phosphatase and tensin homolog, 
 AKT  v-akt murine thymoma viral oncogene homolog 1, 
 MDM2  MDM2 oncogene, E3 ubiquitin protein kinase, 
 PI3K  phosphatidylinositol-4,5 bisphosphate 3-kinase, cata-
lytic subunit alpha,  BACH1  BTB and CNC homology 1, 
basic leucine zipper transcription factor 1       
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   Table 2.2    Brief description of genes reviewed in this chapter: their basic function and role in various cancer types   

 Gene name  Function  Role in various cancer types 

 PPP2R2A (Protein 
phosphatase 2, 
regulatory subunit B, 
alpha) 

 Negative control of cell growth 
and cell division 

 Associated with complexes that directly 
dephosphorylate ATM at DSBs; loss inhibits 
homologous recombination directed DNA repair [ 143 ]; 
somatic deletion predicts prostate cancer [ 144 ] 

 MTAP 
(methylthioadenosine 
phosphorylase) 

 Polyamine metabolism, adenine 
and methionine scavenger 

 Loss is common in human cancer, addition of MTA to 
MTAP negative tumor cells increased sensitivity to 6TG 
and 5FU without affecting MTAP positive cells [ 145 ] 

 MAP2K4 (MKK4) 
(mitogen-activated 
protein kinase kinase 4) 

 Serine threonine protein kinase, 
phosphorylates and activates 
JNK 

 Metastasis repressor in prostate and ovarian cancers 
[ 146 ] 

 STK11 (LKB1) (serine/
threonine kinase 11) 

 Serine threonine protein kinase, 
regulates cell polarity, tumor 
suppressor 

 Gastrointestinal polyposis- associated mutations [ 147 ]; 
inactivating mutations present in 20 % NSCLC [ 148 ]; 
pancreatic cysts resembling precancerous lesions in 
Lkb1 mutant allele knock-in mouse model [ 149 ] 

 DUSP4 (MKP2) 
(dual-specifi city 
phosphatase 4) 

 Negatively regulates ERK, p38 
and JNK 

 Low expression activates RAS-ERK signaling in 
residual breast cancer cells after neoadjuvant treatment 
[ 76 ]; frequently overexpressed in MSI-H colorectal 
cancer [ 150 ] 

 RUNX1 (AML1 or 
CBFA2) (runt-related 
transcription factor 1) 

 Transcription factor regulating 
differentiation of HSCs, ERα 
antagonist 

 Inactivation common in many hematopoietic and solid 
tumors, as expression decreases with increasing breast 
cancer aggression [ 151 ]; central to miRNA circuits 
involved in normal and malignant hematopoiesis [ 152 ] 

 AMBP (alpha-1-
microglobulin/bikunin 
precursor) 

 Found in complexes with 
prothrombin, albumin, and 
immunoglobulin A (CD79a) in 
plasma 

 Differentially expressed in bladder cancer [ 153 ] 

 ABAT (4-aminobutyrate 
aminotransferase) 

 Catabolizes neurotransmitter 
GABA into succinic 
semialdehyde 

 Differentially expressed in ARMS 

 CDH1 (cadherin 1, type 
1, E-cadherin 
(epithelial)) 

 Suppresses re-accumulation of 
mitotic cyclins by recruiting 
them to APC for ubiquitination 
and subsequent proteolysis 

 Germline alterations associated with various gastric 
cancer syndromes [ 154 ]; normally considered tumor 
suppressor, but expression may cause progression of 
some ovarian and brain cancers [ 155 ] 

 RB1 (retinoblastoma 1)  Tumor suppressor, regulates cell 
growth, interacts with proteins 
involved in apoptosis and 
differentiation 

 Demonstrated role in various cancers [ 156 ]; possible 
role in EMT in TNBC [ 157 ] 

 HSP90 (Hsp90 
chaperone) 

 Role in folding and activating 
proteins in various signal 
transduction pathways 

 HSP90 inhibitors used in treatment refractory HER2 
BC and various other cancers [ 158 ,  159 ] 

 PIK3CA 
(phosphatidylinositol-
4,5- bisphosphate 
3-kinase, catalytic 
subunit alpha) 

 Gene with highest frequency of gain-of-function 
mutations in breast cancer [ 160 ] 

 MLL3 (myeloid/
lymphoid or mixed- 
lineage leukemia 3) 

 Histone methyltransferase, 
involved in circadian 
transcription 

 Germline mutations, i.e., by exome sequencing in colon 
cancer and AML [ 161 ]; loss of expression common in 
MSI-H gastric cancers [ 162 ] 

 GATA3 (GATA binding 
protein 3) 

 Transcription factor regulating 
luminal epithelial cell 
differentiation in the mammary 
gland, involved in regulation of 
T-cell development 

 Suppresses breast cancer metastasis by inducing 
miR-29b [ 163 ]; loss of expression in PTEN-defi cient 
prostates accelerates tumor invasion [ 164 ]; may impact 
ESR1 enhancer accessibility [ 165 ]; mutant status 
correlated with suppression of proliferation upon 
aromatase inhibitor treatment [ 166 ] 

(continued)
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affected family members across generations who 
were diagnosed under the age of 60. A known 
moderate susceptibility indel variant, CHEK2 
1100delC, was identifi ed. CHEK2 (or CHK2) is 
a gene integral to cell cycle checkpoint regula-
tion and is found within the same signaling path-
way as ATM and p53 (see Fig.  2.2 ). Additionally, 
11 rare variants were identifi ed, although their 

association with breast cancer was not clear 
due to insuffi cient statistical power. Targeted re- 
sequencing of these gene candidates would need 
to be carried out in a larger cohort to determine 
whether or not an association actually exists [ 48 ]. 

 In 2011, Rebbeck et al. published the results 
of a study in which they analyze a set of genes 
known to code for BRCA1 interacting  proteins in 

Table 2.2 (continued)

 Gene name  Function  Role in various cancer types 

 MAP3K1 (mitogen-
activated protein kinase 
kinase kinase 1, E3 
ubiquitin protein ligase) 

 Serine threonine kinase  Correlated with breast cancer susceptibility in BRCA2 
carriers [ 167 ] 

 CDKN1B (P27KIP1) 
(cyclin-dependent kinase 
inhibitor 1B) 

 Controls cell cycle progression 
at G1 by binding cyclin E-CDK2 
or cyclin D-CDK4 complexes 

 HSP90 inhibitors alter its expression in melanoma cells 
[ 168 ]; its inhibition by Id3 may result in more aggressive 
prostate cancers [ 169 ]; induction by vitamin E 
δ-tocotrienol inhibits proliferation in PDCA cells [ 170 ] 

 TBX3 (T-box 3)  Transcription repressor  Overexpressed in HNSCC, represses PTEN [ 171 ]; 
BRAF/Tbx3/E-cadherin pathway may promote 
metastasis of BRAF- mutant melanomas [ 172 ]; 
methylation status of promoter identifi ed glioblastoma 
patients with MGMT-methylated tumors [ 172 ] 

 CBFB (core-binding 
factor, beta subunit) 

 Beta subunit of a core-binding 
transcription factor complex 
involved in development and 
stem-cell homeostasis 

 CBFB-MYH11 fusion protein associated with AML 
[ 173 ]; decreased expression may be involved in 
malignant phenotype of some prostate and ovarian 
cancers [ 174 ] 

 NF1 (neurofi bromin 1)  Negative regulator of several 
signal transduction pathway 
involved in proliferation, 
including Ras pathway 

 Mutations strongly associated with myeloid 
malignancies [ 175 ]; loss-of-function mutations cause 
neurofi bromatosis 1, a tumor predisposition syndrome 
[ 176 ]; somatic mutations occur in OSCs [ 177 ]; allelic 
loss detected in CRC [ 178 ] 

 SF3B1 (splicing factor 
3b, subunit 1, 155 kDa) 

 Subunit of U2 snRNP complex 
and minor U12-type spliceosome 

 Mutations common in B-CLL [ 179 ]; mutations at codon 
625 in uveal melanoma [ 180 ]; mutated in PDCA [ 181 ] 

 CCND3 (cyclin D3)  Forms regulatory subunit of 
CDK4 and CDK6 which are 
required for G1/S cell cycle 
transition 

 Molecule targeting kinase function of cyclin 
D3:CDK4/6 inhibits cell cycle entry in human T-ALL 
[ 182 ]; expression upregulated in AC [ 183 ]; may be 
regulated by miR-138 which is often downregulated in 
HCC [ 184 ]; overexpressed in laryngeal squamous cell 
carcinoma [ 185 ] 

 PDZK1 (PDZ domain 
containing 1) 

 Scaffolding protein mediating 
localization of cell surface 
proteins and involved in 
cholesterol metabolism 

 Overexpression likely associated with drug resistance in 
multiple myeloma [ 186 ]; upregulated by 17beta-
estradiol in some ovarian cancer cell lines [ 187 ] 

 PTX3 (pentraxin 3, 
long) 

 Involved in innate immunity and 
extracellular matrix formation 

 May be used as FGF2 antagonist in tumor cells resistant 
to anti-VEFG therapy [ 188 ] 

   5FU  fl uorouracil,  6TG  thioguanine,  AC  lung adenocarcinoma,  AML  acute myeloid leukemia,  APC  anaphase-promoting 
complex,  ARMS  alveolar pediatric rhabdomyosarcoma,  B-CLL  B-cell chronic lymphocytic leukemia,  CRC  colorectal 
cancer,  EMT  epithelial-to-mesenchymal transition,  GABA  gamma-aminobutyric acid,  HCC  hepatocellular carcinoma, 
 HNSCC  head and neck squamous cell carcinoma,  MSI-H  microsatellite instability high,  MTA  methylthioadenosine, 
 NSCLC  non-small cell lung cancer,  OSCs  ovarian serous carcinomas,  PDCA  pancreatic ductal cancer,  snRNP  small 
nuclear ribonucleoproteins,  T-ALL  T-cell acute lymphocytic leukemia  
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2,825 BRCA1 mutation carriers to try to identify 
breast cancer risk-modifying genes. The follow-
ing genes were identifi ed as potential modifi ers: 
ATM, BRCC45, BRIP1, CTIP, MERIT40, NBS1, 
RAD50, and TOPBP1 [ 49 ]. ATM, BRIP1, NBS1, 
and RAD50 had previously been associated with 
hereditary breast cancer cases [ 50 ]. Mutation 
screenings of the MERIT40 and TOPBP1 gene 
had been previously carried out by the Winqvist 
group. In their work, MERIT40 was not found to 
be associated with disease in familial breast can-
cer cases. However, the sample size of the study 
was relatively small (125 families) and geograph-
ically limited (families originating in northern 
Finland); thus, their results may not be relevant 
to other populations [ 51 ]. The same group had 
performed a similar study in 2006 in which they 
examined TOPBP1 and identifi ed several variants 
in familial breast cancer cases [ 52 ]. Two other 
studies examined the possible role of TOPBP1 in 
modifying breast cancer risk. The fi rst found 
aberrant subcellular localization of the protein in 
breast carcinoma from an unselected consecutive 
cohort of 61 patients [ 53 ] and the other, specifi -
cally examining familial breast cancer cases in 
Poland, found that decreased mRNA levels and 
increased protein levels of TOPBP1 were associ-
ated with disease progression [ 54 ]. 

 The power of genomic analysis is well illus-
trated in a study published by Banerji et al. in 
2012 in which whole-exome sequences of 103 
breast cancers from patients in Mexico and 
Vietnam were compared to matched normal 
DNA. They also performed whole-genome 
sequencing for 22 breast cancer/normal pairs. 
Results confi rmed a number of previously identi-
fi ed somatic mutations as well as discovering 
some new mutations, including a recurrent 
MAGI3-AKT3 fusion enriched in triple-negative 
breast cancers. The fusion causes constitutive 
activation of AKT kinase. They found that treat-
ment with an AKT small-molecule inhibitor was 
able to abolish AKT activation [ 55 ]. Although 
this work does not specifi cally assess cases of 
hereditary breast cancer, it illustrates the power-
fully informative nature of high-throughput 
sequencing technologies that are now at many 
researchers’ disposal. 

 DNA methylation is an epigenetic mecha-
nism that is thought to contribute to the control 
of gene expression [ 56 ]. In a recent review the 
possibility of targeting epigenetic enzymes to 
specifi c DNA sequences to attain a more thor-
ough understanding of epigenetic effects on gene 
expression was discussed [ 57 ]. With recent 
major advances in genome editing, it seems that 
epigenomic editing may be a reality in the near 
future [ 58 ,  59 ]. Recent research linking DNA 
methylation of particular genes with breast and 
other types of cancers suggests that the ability to 
edit epigenetic marks could be immensely useful 
both to basic and translational cancer research 
[ 60 – 63 ]. 

 Swift-Scanlan et al. reported the use of quan-
titative multiplex-methylation specifi c PCR 
(QM-MSP) to examine the precise levels of 
methylation of genes known to be hypermethyl-
ated in breast cancer [ 64 ]. In a set of 99 formalin- 
fi xed archival breast cancer tissue samples from 
patients with germline mutations in BRCA1 or 
BRCA2 and/or a family history of breast cancer, 
the authors were able to identify associations 
between levels of DNA methylation in several 
genes (APC, RASSF1A, TWIST, ERα, CDH1, 
and cyclin D2) and tumor stage, hormone recep-
tor status, growth receptor status, and history of 
recurrent or metastatic disease. While not as high 
throughput as other methods, QM-MSP is very 
sensitive, allowing analysis of samples that are 
very limited in size (50–1,000 cells) [ 64 ]. Other 
studies investigating DNA methylation in breast 
cancer have found that GSTP1 and FOXC1 pro-
moter methylation status could be used as a prog-
nostic marker [ 65 ]. 

 Another interesting and promising method 
that is increasingly being utilized is single- 
nucleus sequencing (SNS) from fl ow-sorted 
nuclei. This has clearly illustrated that tumors 
are composed of a number of distinct subpopu-
lations, each with unique genetic characteristics 
but also shared genomic mutations. These vari-
ous subpopulations may then travel to different 
parts of the body, forming genetically distinct 
metastases [ 15 ]. 

 According to a number of different studies, 
the majority of mutations present in metastases 
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are also present in the primary tumor [ 66 ]. This is 
potentially good news in that the transformation 
to metastasis may be more easily inhibited than 
previously thought. Then again, cancer is a very 
“smart” disease with quickly evolving genetic 
characteristics allowing tumor cells, even if only 
a small subpopulation, to escape our attempts at 
its eradication.   

    Cancer Transcriptomics 

 With the development of microarray technologies 
and advanced bioinformatics analysis software, 
the focus of many researchers turned to such 
efforts as identifying patterns of differential gene 
expression in cells under various conditions. In 
1999, Golub et al. showed that identifi cation of 
tumor subtypes could be carried out using global 
gene expression data rather than histological and 
clinical observations [ 67 ,  68 ]. However, some 
recent reports suggest that a combination of vari-
ous methods is currently the most effective way to 
make accurate diagnoses and prognoses [ 69 ]. 

 Transcriptomics is the study of all the tran-
scripts of a particular organism, including 
mRNAs, small RNAs (microRNA and siRNA), 
and noncoding RNAs. It also includes the charac-
terization of transcriptional structure, splicing 
patterns, and other posttranscriptional modifi ca-
tions of genes. The characterization of differen-
tial gene expression between different types of 
cells or in the same cell type under variable con-
ditions is an invaluable tool in cancer research. 
The gene expression profi le of a cancer cell is 
strikingly different from surrounding noncancer-
ous cells. It can also be used to defi ne tumor sub-
types for a variety of different cancers, including 
breast cancer [ 21 ,  70 – 73 ]. Examination of the 
changes in gene expression between cells of pri-
mary and metastatic tumors adds to our under-
standing of the mechanisms underlying metastatic 
transformation. 

 While traditional sequencing techniques have 
been modifi ed for transcriptional profi ling (serial 
analysis of gene expression (SAGE), cap analysis 
of gene expression (CAGE), massively parallel sig-
nature sequencing (MPSS)), these methods are low 

throughput, expensive, and imprecise. Microarray 
and gene chip technologies are currently the main 
tools of choice in this omics fi eld. RNA-Seq (RNA 
sequencing), a relatively recent development, is a 
method that uses deep sequencing technology and 
has vastly improved precision in transcript mea-
surement, does not rely on known genomic 
sequences, and can identify single nucleotide poly-
morphisms (SNPs) present in transcripts [ 74 ]. 

    Transcriptomics of Hereditary 
Breast Cancer 

 The heterogeneity inherent in triple-negative 
breast cancer (TNBC), frequently associated 
with BRCA1 germline mutations, makes it an 
especially intractable disease. A recent study 
published by Cascione et al. examined miRNA 
and mRNA expression profi les of samples (for-
malin fi xed and paraffi n embedded) that had been 
obtained from women with TNBC between 1995 
and 2005 (see Table  2.3  for a complete list of 
the miRNAs identifi ed). Samples were obtained 
from tumor, adjacent non-tumor, and lymph node 
metastatic lesions from 173 patients. Due to low 
RNA yield, a somewhat limited array analysis 
was necessary. A human cancer-specifi c mRNA 
array and the human miRNA expression profi l-
ing v1 panel were used. Two miRNA signatures 
were linked to patient survival (miR-16, 155, 
125b, 374a and miR-16, 125b, 374a, 374b, 421, 
655 497) and miRNA/mRNA anticorrelations 
were used to identify four distinct molecular 
subclasses. One (subclass) group included seven 
mRNAs overexpressed in tumors compared to 
normal tissue (SPP1, MMP9, MYBL2, BIRC5, 
TOP2A, CDC2, and CDKN2A). The second 
group had 43 mRNAs downregulated in tumors 
with the top gene ontologies being enriched in 
NF-κB, PPAR, and PTEN signaling pathways. 
The third group had ten deregulated mRNAs and 
was enriched with gene ontologies associated 
with growth factors. Finally, the fourth group is 
composed of 64 mRNAs with NF-κB signaling 
pathway as the most enriched gene ontology [ 22 ].

   Adjuvant and neoadjuvant treatments are 
often coupled with primary therapeutic  modalities 
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with the aim of improving the effectiveness of the 
primary therapy. For tumors that do not respond 
well to treatment, there is a good chance of dis-
ease recurrence and/or progression. Some theo-
rize that this is due to the diffi culty of eradicating 
tumor cells especially resistant to cancer therapy, 
what are commonly referred to as cancer stem 
cells [ 75 ]. To identify genes associated with drug 
resistance in TNBC (also referred to in the paper 
as basal-like breast cancer, BLBC), transcrip-
tional profi ling was performed on 49 archival 
samples that had been surgically resected follow-
ing neoadjuvant treatment. To estimate long-term 
clinical outcome, IHC staining with Ki67 (a com-
monly used marker of proliferation) was per-
formed on all samples. Ki67 staining highly 
correlated with tumor subtype, both clinically 

and molecularly, with the highest positive stain-
ing observed in BLBC cases. Expression profi l-
ing data from BLBC samples with high Ki67 
staining, when compared with the Molecular 
Signatures Database, indicated activation of the 
Ras-ERK pathway. 

 To rule out KRAS mutation, which is 
 infrequent in breast cancer, DNA sequencing 
was performed and no mutations were found. 
However, expression of DUSP4, a negative regu-
lator of the Ras-ERK pathway, was signifi cantly 
 downregulated in these samples. Low DUSP4 
expression had previously been correlated with 
shorter DFS in a cohort of 286 patients who had 
not received adjuvant therapy. To further verify 
the signifi cance of DUSP4, the authors measured 
its expression in another cohort composed of 
samples obtained from 89 TNBC patients after 
neoadjuvant treatment and found a similar pattern 
of high Ki67 staining together with low DUSP4 
expression. Experiments conducted in BLBC cell 
lines with siRNA knockdown of DUSP4 resulted 
in decreased apoptosis, increased mitogen-acti-
vated protein kinase (MEK)-dependent prolifera-
tion, and an increased half-maximal inhibitory 
concentration (IC 50 ) of docetaxel, an antimitotic 
drug used in the clinic. 

 After restoring DUSP4 expression in three 
BLBC cell lines, phosphorylation of ERK was 
inhibited and viability in two of the three cell 
lines was reduced. The addition of MEK inhibi-
tors was found to increase sensitivity to docetaxel 
in 17 BLBC cell lines. In cell lines with loss of 
PTEN expression, the PI3K pathway is activated 
resulting in what is likely MEK-independent pro-
liferation and evasion of apoptosis. Thus, the 
authors conclude DUSP4 expression coupled 
with PTEN status may effectively predict effi -
cacy of MEK inhibitors in patients with BLBC 
tumors [ 76 ]. 

 Taking advantage of the vast number of tumor 
samples available in tissue banks, Curtis et al. car-
ried out an analysis of copy number variation and 
its effects on the transcriptome using a discov-
ery set of 997 fresh-frozen primary breast tumor 
samples with accompanying clinical information. 
Another set of 995 tumors was then used as a test 
set to verify the predictive ability of data gleaned 

   Table 2.3    Deregulation of miRNAs identifi ed by 
Cascione et al. (in TNBC expression signatures)   

 miRNA  Dereguation of identifi ed miRNAs in other 
types of cancer cells 

 miR-16  Prostate [ 117 ] 
 Myeloma [ 118 ] 
 Breast [ 119 ] 
 Colon [ 120 ] 
 Oral [ 121 ] 
 Lung [ 122 ] 
 Liver [ 123 ] 
 Brain [ 124 ] 

 miR-155  Colon, cervix, pancreas, lung, thyroid, 
lymphoma, leukemia [ 125 ] 
 Pancreas [ 126 ] 

 miR-374a  Lung [ 127 ] 
 Breast [ 128 ] 
 Colon [ 129 ] 

 miR-421  Head and neck [ 130 ] 
 Stomach [ 131 ] 
 Liver [ 132 ] 
 Pancreas [ 133 ] 
 Prostate [ 134 ] 
 Breast [ 135 ] 

 miR-497  Cervix [ 136 ] 
 Breast [ 137 ] 
 Skin [ 138 ] 
 Colon [ 139 ] 
 Brain [ 140 ] 
 Head and neck [ 141 ] 
 Stomach, lung [ 142 ] 
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from the discovery set. The aim was to identify 
the underlying genetic mechanisms that trans-
late into observed variance between and among 
breast cancer subgroups. Patients were clinically 
homogenous with most ER-positive/lymph node 
(LN)-negative patients having not received treat-
ment while ER-negative/LN-positive patients had 
received treatment. A number of putative can-
cer genes were identifi ed including PPP2R2A, 
MTAP, and MAP2K4. The patients also stratifi ed 
into a high-risk, ER-positive 11q13/14  cis -acting 
subgroup and a subgroup without any copy num-
ber aberrations, which corresponded to favorable 
prognosis, providing a new method for identify-
ing breast cancer subgroups [ 77 ].   

    Cancer Proteomics 

 Proteomics is the study of the entire comple-
ment of proteins expressed by a particular bio-
logical system. As with genomics, subspecialties 
of proteomics have developed. The four major 
subfi elds are expression proteomics, functional 
proteomics, structural proteomics, and the pro-
teomics of posttranslational modifi cations [ 78 ]. 
The aim of proteomics is not only to identify all 
proteins in a particular system, but also to 
understand the regulation of their expression, 
the interactions that occur between them, and 
their effects on cellular function. An example of 
one of the many programs available for visual-
izing protein- protein interactions is presented in 
Fig.  2.3 .

   The primary method in the proteomics tool-
box is mass spectrometry (MS), a technology that 
measures the mass-to-charge ratio of ions in the 
gas phase. Throughout the twentieth century, MS 
technologies developed, but it was not until the 
late 1980s that its widespread use in biological 
research became feasible. This was made possi-
ble by the development of electron spray ioniza-
tion (ESI) and matrix-assisted laser desorption/
ionization (MALDI) [ 78 ,  79 ]. 

 A recent review outlines the main challenges 
facing the fi eld of proteomics. According to the 
authors, the primary bottleneck in proteomics 
development is in data analysis [ 3 ]. For a review 

of available methods for MS data analysis and 
protein identifi cation via database search, we 
refer the reader to Brusniak et al. and Eng et al., 
respectively [ 80 ,  81 ]. For a basic look at how to 
analyze protein-protein interaction networks and 
regulatory networks, we recommend Koh et al. 
and Poultney et al. [ 82 ,  83 ]. Finally, for integrated 
analysis of omics data from multiple platforms, 
the reader is referred to Chavan et al. [ 84 ]. 

    Proteomics of Hereditary 
Breast Cancer 

 Cohen et al. examined plasma from 76 breast can-
cer patients and were able to identify a signature 
consisting of four proteins previously found to be 
associated with breast cancer tissue: fi bronectin, 
clusterin, gelsolin, and α-1-microglobulin/inter-
α-trypsin inhibitor light chain precursor (AMBP). 
The plasma levels of these proteins differed 
between the two tumor types such that they were 
able to distinguish between infi ltrating ductal and 
invasive mammary breast carcinomas [ 85 ]. 

 A powerful methodology for identifying puta-
tive breast cancer biomarkers was used in a recent 
study by Pavlou et al. First, proteomic data was 
collected from the secretome (the full complement 
of proteins secreted by a cell) of eight different 
breast cancer cell lines, representing the three 
major breast cancer tumor subtypes. Out of 5,200 
nonredundant proteins identifi ed by MS, 23 were 
unique to basal breast cancer cells, 4 were unique 
to HER2-neu-amplifi ed, and another 4 were 
unique to luminal breast cancer cells. These results 
were then compared with four publicly available 
breast cancer mRNA microarray data sets queried 
from the National Center for Biotechnology 
Information Gene Expression Omnibus (NCBI 
GEO). In total, 24 out of the 30 candidate proteins 
had microarray expression patterns similar to 
those identifi ed in the proteomic approach. 

 They next tested the clinical applicability of 
this data by performing MS on cytosol collected 
from eight ER-positive and eight ER-negative 
breast cancer tissue samples. Eighteen out of the 
30 subtype-specifi c proteins were identifi ed and 
three proteins in particular (ABAT, PDZK1, and 
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PTX3) had signifi cantly different expression in 
the different subtypes. Finally, they examined the 
2-year and 5-year disease-free survival (DFS) 
data that accompanied the four gene expression 
array data sets. ABAT was the most robust candi-
date of the three potential biomarkers. Expression 
levels of ABAT were, on average, 2.3 times 
higher for patients with DFS of more than 2 years. 
ABAT expression remained signifi cantly differ-
ent in all four datasets at the 5-year DFS mark. 

 They also queried the Gene Expression-Based 
Outcome for Breast Cancer Online Database and 
found that patients with higher ABAT expression 
had slightly longer disease-free survival than 
those with low expression. Patients with 
ER-positive disease and high ABAT expression as 
well as tamoxifen-treated patients with high 
ABAT expression had better prognosis than those 
with low expression [ 86 ]. This work demonstrates 
that in vitro proteomic analysis of breast cancer 
cell lines combined with publicly available tran-
scriptomic data from patients can be used to suc-
cessfully identify new candidate biomarkers that 
are breast cancer subtype specifi c. 

 Lee et al. carried out protein expression 
profi ling of 38 sample pairs from lymph node 
metastases of varying grades (classifi ed accord-
ing to the TNM staging system, which includes 

physical examination, biopsy, and imaging) 
alongside adjacent normal tissue collected 
from patients with infi ltrating ductal carcinoma 
(IDC). Using two-dimensional polyacrylamide 
gel electrophoresis (2D-PAGE) and high-per-
formance liquid chromatography and tandem 
mass spectrometry (LC-MS/MS), they found 
a number of proteins upregulated specifi cally 
in metastatic tissue and also identifi ed possible 
markers to  distinguish between the various 
metastatic stages. Calreticulin was signifi cantly 
upregulated in metastases of all three stages with 
a rate of 77 % in stage N0, 92 % in stage N1, and 
83 % in stage N2. Tropomyosin alpha-3 chain 
was also upregulated in all three stages, albeit 
at lower overall incidence (N0 and N1 69 %, N2 
75 %). They suggest that HSP70 is a possible 
marker for stage N0 metastases, 80 k protein H 
precursor and PDI may serve as biomarkers for 
N1 stage metastases, and immunoglobulin heavy 
chain binding protein (BIP) is a potential identi-
fi er of stage N2 metastases [ 87 ]. 

 Another study aimed at stratifying tumors into 
subgroups based on protein expression profi les 
found increased expression of STAT1 and CD74 
to be associated with metastatic potential in 
TNBC, both in patient samples and in 
MDA-MB-231 cells. The authors suggest that the 

BRIP1

BRCA1

ESR1

UIMC1

BARD1

RAD51
ATM

RBBP8

H2AFX

BRCA2 PALB2

HMG20B

SHFM1

BRCA2
BRCA1

BARD1

TP53

RAD51

XRCC3

FANCG

FANCD2

TP53

  Fig. 2.3    Protein interaction networks for BRCA1 ( left ) 
and BRCA2 ( right ) generated using Search Tool for the 
Retrieval of Interacting Proteins/Genes (STRING) 9.05. 

The t hickness of lines  represents strength of association, 
with  thicker lines  indicating stronger associations       

 

2 Omics of Hereditary Breast Cancer



30

mechanism by which this increased capability 
occurs is likely the CD74/CD44/ERK, MIF 
receptor pathway with a positive feedback loop 
between CD74 and STAT1 [ 88 ].   

    Cancer Metabolomics 

 Metabolomics is another piece of the omics puz-
zle that will improve our understanding of cancer 
cells and their transformation to the metastatic 
state. Metabolomics may be defi ned as “the com-
prehensive analysis of the low-molecular-weight 
molecules, or metabolites, that are the intermedi-
ates and products of metabolism” [ 89 ]. The 
Human Metabolome Database (  www.hmdb.ca    ) is 
a publicly available collection of detailed infor-
mation about the 40,250 small-molecule metabo-
lites that have been thus far identifi ed in human 
cells. “The large number of different metabolites, 
differences in their relative concentrations and 
variability in their physicochemical properties 
(polarity, hydrophobicity, molecular mass or 
chemical stability) require the application of dif-
ferent technologies and a huge range of experi-
mental conditions” [ 90 ]. The most common 
techniques used in metabolomic profi ling are 
nuclear magnetic resonance (NMR) and mass 
spectroscopy (MS) [ 89 ]. 

 While metabolomics, like the other omics 
disciplines, offers great hope, it also comes 
with many challenges. The complete human 
 metabolome is very large, almost twice that of 
the human proteome, and they exist in a con-
stant dynamic fl ux. While collection of samples 
for metabolomic analysis is relatively easy and 
noninvasive (typically serum, plasma, or urine), 
because the molecules of interest are so easily 
modifi ed during the process of sample transport 
and preparation, this presents potential variability 
that may be very diffi cult to control for. For trans-
lation to use in medicine, standard protocols and 
conditions for collection, storage, and processing 
must be designed and strictly adhered to. 

 One of the distinguishing characteristics of 
cancer cells is their unique “reprogramming” 
of metabolic pathways, in which they acquire 
changes that affect the metabolism of the four 

major types of macromolecules (carbohydrates, 
lipids, proteins, and nucleic acids) [ 14 ,  91 ,  92 ]. 
This phenomenon was fi rst formally described 
by Otto Warburg in the 1920s and refers specifi -
cally to a cancer cell’s “preference” for perform-
ing glycolysis even in the presence of oxygen 
(aerobic glycolysis) [ 14 ,  93 ,  94 ]. Known as 
the Warburg effect, this characteristic of “glu-
cose addiction” is exploited in the clinic for 
the identifi cation of cancerous lesions. Positron 
emission tomography (PET) is used to detect 
radioactively labeled glucose (2-deoxy-2-[18F]
fl uoro-D- glucose, FDG), which accumulates 
more in tumor cells relative to other cells due 
to their heavy reliance on glycolysis [ 93 ]. This 
has helped thrust cancer metabolism back into 
the spotlight in recent years. Evidence that acti-
vated oncogenes and mutant tumor suppressors 
can impact metabolism has also helped feed 
this interest.  Nature  and  Nature Reviews Cancer  
published a “Web focus” on cancer metabolism 
where they highlight some recent developments 
in the fi eld [ 27 ]. One review notes that the oxy-
gen and nutrient- rich environment in which 
cancer cell lines are typically maintained and 
studied is markedly different from the in vivo 
tumor microenvironment [ 91 ]. Cocultures of 
breast cancer cells with fi broblasts may more 
accurately refl ect the conditions in which tumors 
grow and can add to our understanding of how 
cancer cells evade death during treatment. 

 An example of how metabolomics, integrated 
with the other omics fi elds, can enrich our under-
standing of biological systems comes from a 
study published in 2011 in which a panel of 59 
cell lines from different cancer types is used to 
identify links between genetic and metabolic 
profi les. They examined these cell lines before 
and after treatment with a variety of chemother-
apy agents, including a variety of platinum- 
containing drugs. Their approach required an 
integrated analysis of two very different sets of 
data. Using the common method of overrepre-
sentation (OR) analysis to fi rst analyze the two 
sets of data individually and then develop a 
method to integrate analysis of both data sets 
together, they illustrate the potential power of 
inter-omics analysis [ 95 ]. 
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    Metabolomics of Hereditary 
Breast Cancer 

 A fl urry of papers specifi cally investigating breast 
cancer metabolism were published by the Lisanti 
group in 2009 and 2010. As a result of their fi nd-
ings, they proposed that it is not only the cancer 
cells that have altered metabolic pathways but 
that cancer-associated fi broblasts (CAFs) present 
in the tumor microenvironment also have major 
alterations in metabolism [ 25 ,  96 ,  97 ]. Known as 
the “reverse Warburg effect” or “stromal- epithelial 
metabolic coupling,” this theory posits that epithe-
lial cancer cells actually induce the Warburg effect 
in stromal fi broblasts located in the tumor micro-
environment so that they produce and secrete 
additional pyruvate and lactate that can then be 
utilized by cancer cells as inputs to the mitochon-
drial TCA cycle, oxidative phosphorylation, and 
ATP production [ 98 ]. They proposed that CAFs, 
which are thought to be derived from mesenchy-
mal stem cells of the bone marrow, are essentially 
like TGFβ-activated fi broblasts (myofi broblasts) 
that cannot be “turned off” [ 99 ]. They, and others, 
have shown that CAFs exhibit a loss of caveolin-1 
(Cav1), an inhibitor of TGFβ signaling. 

 In another paper, the Lisanti group shows that 
Cav1 was dramatically downregulated in breast 
cancer CAFs as compared with normal fi bro-
blasts taken from the same patients. Other studies 
have shown that Cav1 is an effective predictor of 
breast cancer tumor recurrence, lymph node 
metastasis, tamoxifen resistance, and poor clini-
cal outcome even independent of ER, PR, and 
HER2 tumor status [ 100 – 102 ]. 

 Jerby et al. designed and validated an in silico 
metabolic phenotypic analysis (MPA) to measure 
whole metabolomic fl ux. These phenotypes were 
inferred by integration of transcriptomic and pro-
teomic data and this technique was applied to 
conduct the fi rst genome-scale study of breast 
cancer metabolism. This method differs from 
previous models in that it does not require an 
optimal fi t to the data. The model used in MPA 
allows the data to deviate somewhat from the 
optimal fi t so that one can estimate the cell or sys-
tem’s adaptive potential. Predictions were made 
based on data from nearly 400 clinical samples 

and subsequently studied in vitro in metastatic 
and nonmetastatic breast cancer cell lines. 
Consistent with results from previous studies 
examining other types of cancers, they found that 
metastatic breast cancer cells had a proliferative 
capacity similar to that of cells in the primary 
tumor; that is, metastatic cells did not have higher 
proliferative activity than primary tumor cells. 
There was also an apparent trade-off between 
proliferation and detoxifi cation of  reactive 
 oxygen species. Production of lipids is necessary 
for cell proliferation but hinders a cell’s ability to 
detoxify oxidative molecules. The authors identi-
fi ed metabolic differences between ER-positive 
and ER-negative tumor cells, which suggested 
that the latter have a lower capacity for producing 
lactate from glucose. The authors suggest that 
their fi ndings may apply broadly to many differ-
ent types of cancer, but also note that their work 
was in cell lines and thus in vivo experiments are 
necessary to explore the applicability of their 
results to disease in the organismal context [ 103 ]. 

 In 2011, Possemato et al. presented a new 
tool for target identifi cation with an in vivo 
RNA interference-based loss-of-function screen 
of metabolic genes associated with aggressive 
breast cancer and stemness in a human breast 
cancer xenograft model. Increased expression 
of phosphoglycerate dehydrogenase (PHGDH) 
was found to be required for increased serine 
pathway fl ux in some breast cancers. Inhibition 
of PHGDH in cell lines with elevated PHGDH 
resulted in decreased proliferation and a reduc-
tion in serine synthesis. While overall cellular 
serine levels were not affected, a reduction in 
α-ketogluterate, another output of the serine bio-
synthesis pathway, was observed [ 104 ]. 

 Another study published in 2011 found that 
basal, but not luminal, breast cancer cells are 
highly glutamine dependent and that the gluta-
mine independence of luminal breast cancers is 
associated with cell lineage-specifi c expression 
of glutamine synthetase (GS). Glutamine synthe-
tase is induced by GATA3 and glutaminase 
expression is repressed by GATA3 [ 105 ]. This is 
yet another aspect of tumor biology that must be 
considered when formulating treatment plans for 
individual patients. 
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 For a review of breast cancer metabolism, we 
refer the reader to a piece by Davison and Schafer, 
published in 2010 [ 106 ]. A review from 2011 that 
looks specifi cally at the role of the PI3 kinase 
pathway in breast cancer is also recommended 
[ 107 ]. For a more recent review, we refer the 
reader to a piece by Deblois and Giguere about 
estrogen-related receptors and their role in breast 
cancer cell growth and metabolism [ 108 ].   

    Pharmacogenomics 

 Perhaps equally important to an understanding of 
the genetic and metabolic profi les of cancer cells 
is knowledge of the status of the genes involved 
in the body’s response to cancer therapeutics. In 
terms of chemotherapy, the status of genes 
involved in drug metabolism and transporters 
may be used to determine the suitability of a par-
ticular treatment for a patient. Likewise, the sta-
tus of genes involved in the body’s response to 
radiation therapy (e.g., DNA repair and radiation- 
induced fi brosis) can also aid in determining the 
best treatment options for each individual [ 109 ]. 
This will certainly be a key component in the 
“personalized medicine” revolution.  

    The Power of Omics Integration 

 The Cancer Genome Atlas Research Network 
published a paper in 2012 presenting results from 
a comprehensive molecular analysis of tumors 
and germline DNA samples from 825 breast can-
cer patients. Samples were analyzed by genomic 
DNA copy number arrays, DNA methylation, 
exome sequencing, messenger RNA arrays, 
microRNA sequencing, and reverse-phase pro-
tein arrays. Data from the six different platforms 
were analyzed both individually and in an inte-
grated manner, which resulted in identifi cation of 
four basic breast cancer classes, each with a dis-
tinct molecular signature. Almost all genes that 
had been previously identifi ed in breast cancer 
were confi rmed in this study, including PIK3CA, 
PTEN, AKT1, TP53, GATA3, CDH1, RB1, 
MLL3, MAP3K1, and CDKN1B. Novel genes 

were also identifi ed and include TBX3, RUNX1, 
CBFB, AFF2, PIK3R1, PTPRD, NF1, SF3B1, 
and CCND3 [ 26 ].  

    Conclusion and Future Perspective 

 The  Oxford English Dictionary  defi nes the suffi x 
 –ome  in cellular and molecular biology applica-
tions as “forming nouns with the sense ‘all of the 
specifi ed constituents of a cell, considered col-
lectively or in total’” [ 110 ]. This defi nition very 
neatly captures the broad vision shared by the 
many omics fi elds. Each fi eld has its own unique 
methods and instruments designed by engineers, 
biologists, chemists, and physicists working 
together. And each has its own set of molecules 
of interest. However, combined they all share the 
vision of a more complete and nuanced under-
standing of biological systems. 

 The task of sifting through the data produced 
by high-throughput omics methodologies is a 
daunting task. However, after about a decade of 
work in the various omics fi elds, the value of 
doing so has become evident. Here we reviewed 
some of the recent literature relevant to our 
understanding of breast cancer as seen through 
the prism of various omics fi elds. It is expected 
that these powerful methods will continue to 
 provide a more holistic understanding of cancer 
and other diseases and contribute to the quest for 
truly personalized medical treatment.     
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