
Chapter 2
Speech Production Model

Abstract The continuous speech signal (air) that comes out of the mouth and the
nose is converted into the electrical signal using themicrophone.The electrical speech
signal thus obtained is sampled to obtain the discrete signals and are stored in the
digital system for further processing. This is digital speech processing. The speech
signal model is broadly classified as the source-filter model and the probabilistic
model. Source-filter model assumes the physical phenomenon for the production of
speech signal. Probabilistic model like Hidden Markov Model (HMM), Gaussian
Mixture Model (GMM) are the mathematical model that does not care about the
physical phenomenon. Speech model is used to extract the feature vectors from the
speech signal for isolated speech recognition and the speaker recognition. It is used to
compress the speech signal for storage like in Code exited linear prediction (CELP).
It is useful for converting text into speech, known as speech synthesis. It is also used
for continuous speech recognition. This chapter deals with the source-filter model
of speech production.

2.1 Introduction

The air that comes out of the lungs passes through the vocal tract and comes out
of the mouth and the nose to obtain the continuous speech signal. The air coming
out of lungs are either sent directly to the vocal tractor or altered using the vocal
chord vibrations before sending to the vocal tract. The speech signals with vocal
chord vibrations are known as voiced speech signals. The speech signals without the
vocal chord vibrations are known as unvoiced speech signals. The velum is used to
close the nose path,so that the speech signal is coming out only through the mouth.
The vocal tract path is adjusted using tongue and velum to produce different speech
signal. Thus lung, vocal chord, vocal tract, tongue, velum, mouth and nose are the
integral part that produces the speech signal (refer Appendix F).
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74 2 Speech Production Model

Fig. 2.1 Source-filter model of the speech production

2.2 1-D Sound Waves

The sound waves are longitudinal waves. It produces the disturbance along the direc-
tion of the flow (refer Fig. 2.1). The disturbance is in the form of compression and
rarefaction. In source-filter model, the source is either the noise (air from the lungs)
or the impulse stream (vocal chord vibration with the particular frequency) and the
filter is the vocal-tract. The filter is assumed as the cascade connections of the tubes
with different cross-sectional area. The length of the tube is usually less than the
wavelength of the produced sound wave. Hence speech–sound waves are assumed
to travel in one-dimensional direction. This model is known as 1-D sound wave.

2.2.1 Physics on Sound Wave Travelling Through the Tube
with Uniform Cross-Sectional Area A

Consider the small segment of the tube (shaded region). When the sound wave
crosses the small segment, the change in the physical entities (refer Table2.1) like
force (F), pressure (P), volume flow in terms of volume/s (S), velocity (V ) are
described below. Let the tube is kept along the direction of X -axis. Let the points I
and J (refer Fig. 2.2) are at the distances x and x +Δx from the origin. The pressure
as point I is represented as P . Hence the pressure at J is computed as follows

Fig. 2.2 1-D sound wave
travelling through the tube
with uniform cross-sectional
area A
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P + ∂ P

∂x
Δx (2.1)

The velocity is computed as the volume flow per unit area across the tube (V = S
A ).

Let the velocity at I is given as V . Hence the velocity at J is computed as follows

V + ∂S

A∂x
Δx (2.2)

The volume of the air in the element is computed as L = AΔx . The rate of change
of volume is computed as

∂L

∂t
= A∂x

∂t
= A

∂x

∂t
(2.3)

Note that ∂x
∂t is the change in the velocity in the element. From (2.2) and (2.3), we

get the following
∂L

∂t
= A

∂S

A∂x
Δx = ∂S

A∂x
L (2.4)

Net force (NF ) in the cross section is obtained as the difference between the force
at I and at J .
Force at I is computed as pressure at A × cross sectional area = P A. Force at J
is computed as pressure at J × cross sectional area = (P + ∂ P

∂x Δx)A. Thus the
netforce in the cross section in the x-direction is given as follows.

NF = P A − (P + ∂ P

∂x
Δx)A = −∂ P

∂x
AΔx (2.5)

Net force in the cross section is also computed as mass× accelaration. Also density
of the air ρ × volume of the cross section gives the mass of the air inside the cross
section. Recall V = S

A and also note that acceleration is the rate of change of velocity
and hence it is computed as ∂V

∂t = ∂S
A∂t . Hence the netforce is computed as follows

NF = ρL
∂S

A∂t
(2.6)

Equating (2.5), (2.6) and L = AΔx , we get the following.

−∂ P

∂x
AΔx = ρL

∂S

A∂t
(2.7)

⇒ −∂ P

∂x
A = ρL

∂S

AΔx∂t
(2.8)

⇒ −∂ P

∂x
A = ρ

∂S

∂t
(2.9)
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From ideal gas law inside the cross section, we get, P L = n RT, where P is
the pressure, L is the volume inside the cross section, n = mass

molecular weight of the air

= volume× density
molecular weight of the air = Lρ

M is the number of moles, R is the gas constant, T is
the temperature in kelvin. From the above discussion, we get the following.

P L = Lρ

M
RT ⇒ P = ρ

M
RT (2.10)

The square of the speed of the sound depends only on temperature and is given as
c2 = γ RT

M . Hence,

Pγ = ργ

M
RT = ρc2 (2.11)

The transfer of sound energy inside the cross section is faster so that we can assume
that there is no transfer of heat energy and hencewe assume it as the adiabatic process
inside the cross section. Hence it obeys P Lγ = constant. This implies the following

P Lγ = constant (2.12)

⇒ ∂(P Lγ )

∂t
= 0 (2.13)

⇒ Pγ Lγ−1 ∂L

∂t
+ Lγ ∂ P

∂t
(2.14)

⇒ ∂L

∂t

Pγ

L
+ ∂ P

∂t
= 0 (2.15)

From (2.4), (2.11) and (2.15), we get the following

∂S

A∂x
L

Pγ

L
+ ∂ P

∂t
= 0 (2.16)

⇒ ∂S

A∂x
Pγ + ∂ P

∂t
= 0 (2.17)

⇒ ρc2
∂S

∂x
= −A

∂ P

∂t
(2.18)

The sound flow in the segment is described by (2.9) and (2.18).

2.2.2 Solution to (2.9) and (2.18)

Differentiating (2.9)with respect to t and (2.18)with respect to x ,weget the following

−∂ P

∂x
A = ρ

∂S

∂t
(2.19)
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⇒ − ∂2P

∂x∂t
A = ρ

∂2S

∂t2
(2.20)

ρc2
∂S

∂x
= −A

∂ P

∂t
(2.21)

⇒ ρc2
∂2S

∂x2
= −A

∂2P

∂t∂x
(2.22)

Using (2.20) and (2.22), we get the following

ρc2
∂2S

∂x2
= ρ

∂2S

∂t2
(2.23)

⇒ ∂2S

∂t2
= c2

∂2S

∂x2
(2.24)

Let u = x + ct and v = x − ct . ∂2S
∂x2

is computed in terms of u and v as follows

∂S

∂t
= ∂S

∂u

∂u

∂t
+ ∂S

∂v

∂v

∂t
(2.25)

⇒ ∂S

∂t
= ∂S

∂u
c + ∂S

∂v
(−c) (2.26)

⇒ ∂2S

∂t2
= c(

∂2S

∂u2 (c) + ∂2S

∂u∂v
(−c) − ∂2S

∂v∂u
(c) − ∂2S

∂v2
(−c)) (2.27)

⇒ ∂2S

∂t2
= c2(

∂2S

∂u2 + ∂2S

∂v2
− 2

∂2S

∂u∂v
) (2.28)

Similarly ∂2S
∂x2

is computed as follows

∂2S

∂x2
= (

∂2S

∂u2 + ∂2S

∂v2
+ 2

∂2S

∂u∂v
) (2.29)

Using (2.28) and (2.29), (2.24) is rewritten as follows

c2(
∂2S

∂u2 + ∂2S

∂v2
+ 2

∂2S

∂u∂v
) = c2(

∂2S

∂u2 + ∂2S

∂v2
− 2

∂2S

∂u∂v
) (2.30)

⇒ ∂2S

∂u∂v
= 0 ⇒ ∂S

∂u
= f (v) (2.31)

⇒ S(x, t) = g(v) + h(u) = g(x − ct) + h(x + ct) (2.32)

Note that f , g and h are arbitrary functions. Represent g(x − ct) as S+(t − x
c ) and

g(x + ct) as −S−(t + x
c ), we get the following

S(x, t) = S+(t − x

c
) − S−(t + x

c
) (2.33)
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Using (2.18) we get the pressure equation as follows

∂S

∂x
= (−1

c
)(S′+(t − x

c
) + S′−(t + x

c
)) (2.34)

⇒ ∂ P

∂t
= cρ(S′+(t − x

c
) + S′−(t + x

c
)) (2.35)

⇒ P(x, t) = ρc

A
(S+(t − x

c
) + S−(t + x

c
)) (2.36)

Note that S+(t− x
c ) is the volumeflow in the positive direction of x-axis and S−(t− x

c )

is the volume flow in the negative direction of x-axis. Thus the netflow in the positive
direction is given as (2.33). Also the pressure at (t, x) is the constant times absolute
sum of volume flow in both the directions as given in (2.36).

2.3 Vocal Tract Model as the Cascade Connections of Identical
Length Tubes with Different Cross-Sections

Consider that the vocal tract is modelled as the cascade of three identical length (L)
tubes with the cross sectional areas as A1, A2 and A3 respectively (refer Fig. 2.3).
The inlet volume flow in the forward direction of the i th tube is represented as Pi .
The outlet volume flow in the forward direction of the i th tube is represented as Ri .
Similarly the inlet and outlet volume flow in the reverse direction of the i th tube is
represented as Si and Qi respectively. The relationship between Pi , Qi , Ri , Si are
given as follows

Pi (t) = Ri (t + τ) (2.37)

⇒ Ri (t) = Pi (t − τ)Si (t) = Qi (t + τ) (2.38)

Fig. 2.3 Cascade of three tubes with different cross-sectional areas as the model of the vocal tract
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where τ is the delay. The delay is the time required for the sound wave to travel
through the single tube of length L , which is computed as τ = L/c. If the signal is
sampled with sampling time Ts , we get the following

Ri (nTs) = Pi (nTs − τ) (2.39)

Si (nTs) = Qi (nTs + τ) (2.40)

If τ = Ts
2 and representing the (2.39) and (2.40) in discrete form,we get the following

Ri (n) = Pi (n − 1

2
) (2.41)

Si (n) = Qi (n + 1

2
) (2.42)

Representing in z-domain, we get the following

Ri (Z) = Pi (Z)Z
1
2 (2.43)

Si (Z) = Qi (Z)Z− 1
2 (2.44)

Let the input vector of the i th segment is represented as ISi = [Pi QSi ]T and the
output vector of the segment is represented as OSi = [Ri Si ]T . They are related with
thematrix [MSi ] as [OSi ] = [MSi ][ISi ], where MSi is given as follows. Representing

in thematrix form in z-domain,weget the following

[
Z

1
2 0

0 Z− 1
2

]
. Let the input vector

of the i th junction is represented as IJ i = [Ri−1 Si−1]T and the output vector of the
segment is represented as OJi = [Pi Qi ]T (refer Fig. 2.3). They are related using the
matrix MJi as [OJi ] = [MJi ][IJ i ]. MJi is computed as follows. At the i th junction,
there is the continuation in the pressure and the volume flow as mentioned below.

• Volume flow continuity
Ri−1 − Si−1 = Pi − Qi (2.45)

• Pressure continuity

ρc

Ai−1
(Ri−1 + Si−1) = ρc

Ai
(Pi + Qi ) (2.46)

⇒ (Ri−1 + Si−1)

Ai−1
= (Pi + Qi )

Ai
(2.47)

⇒ (Ri−1 + Si−1)(Ai ) = (Pi + Qi )(Ai−1) (2.48)

Multiplying (2.45) with Ai we get the following

(Ri−1 − Si−1)Ai = (Pi − Qi )Ai (2.49)
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Adding (2.48) and (2.49), we get the following

2Ri−1Ai = Pi (Ai + Ai−1) + Qi (Ai − Ai−1) (2.50)

⇒ Ri−1 = Pi
(Ai + Ai−1)

2Ai
+ Qi

(Ai − Ai−1)

2Ai
(2.51)

Subtracting (2.48) and (2.49), we get the following

2Si−1Ai = Pi (Ai−1 − Ai ) + Qi (Ai−1 + Ai ) (2.52)

⇒ Si−1 = Pi
(Ai−1 − Ai )

2Ai
+ Qi

(Ai−1 + Ai )

2Ai
(2.53)

Let ri = Ai −Ai−1
Ai +Ai+1

and hence

Ai−1

Ai
= 1 − ri

1 + ri
(2.54)

Using (2.54), we get the following

(Ai + Ai−1)

2Ai
= 1

2
(1 + Ai−1

Ai
) = 1

1 + ri
(2.55)

(Ai−1 − Ai )

2Ai
= 1

2
(

Ai−1

Ai
− 1) = −ri

1 + ri
(2.56)

Thus Ri−1 and Si−1 are expressed interms of r as follows

Ri−1 = Pi
1

1 + ri
− Qi

−ri

1 + ri
(2.57)

Si−1 = Pi
−ri

1 + ri
+ Qi

1

1 + ri
(2.58)

Thus the matrix MJi is given as 1
1+ ri

[
1 −ri

−ri 1

]
. It is noted that the matrix MJi is

identical in z-domain also. The transfer function of the system is given as P4(Z)
R0(Z)

. This
is computed using the relationship between the vector I0(Z) and O4(Z) as O4(Z) =
MJ1(Z)MS1(Z)MJ2(Z)MS2(Z)MJ3(Z)MS3MJ4(Z)I0(Z), which is computed as
follows.

[
R0(Z)

S0(Z)

]
= 1

1 + r1

[
1 −r1

−r1 1

][
Z

1
2 0

0 Z− 1
2

]
1

1 + r2

[
1 −r2

−r2 1

] [
Z

1
2 0

0 Z− 1
2

]

1

1 + r3

[
1 −r3

−r3 1

][
Z

1
2 0

0 Z− 1
2

]
1

1 + r4

[
1 −r4

−r4 1

] [
P4(Z)

Q4(Z)

]
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Note that R0 is coming from the lung openings and P4 is coming out of mouth
and nose. As there is no feedback in the mouth opening during speech, Q4 is equated
to zero and solving the P4(Z)

R0(Z)
gives the transfer function. Note that ri is defined as

the reflection co-efficient of i th segment. The values for ri ranges from −1 to 1. It
is also noted that A0 is the area of the opening from the lungs to the vocal chord
(glottis opening) and A4 is assumed to be large finite value. On simplification, we
get the following

[
R0(Z)

S0(Z)

]
= 1

(1 + r1)(1 + r2)(1 + r3)(1 + r4)

[
Z

1
2 −r1Z− 1

2

−r1Z
1
2 Z− 1

2

][
Z

1
2 −r2Z− 1

2

−r2Z
1
2 Z− 1

2

]
[

Z
1
2 −r3Z− 1

2

−r3Z
1
2 Z− 1

2

] [
Z

1
2 −r4Z− 1

2

−r4Z
1
2 Z− 1

2

] [
Z− 1

2 0

0 Z
1
2

] [
P4(Z)

0

]

On further simplification, we get the following

[
R0(Z)

S0(Z)

]
= 1

(1 + r1)(1 + r2)(1 + r3)(1 + r4)

[
Z + r1r2 −r2 − r1Z−1

−r1Z − r2 r1r2 + Z−1

]
[

Z + r3r4 −r3 − r4Z−1

−r3Z − r4 r3r4 + Z−1

] [
Z− 1

2 0

0 Z
1
2

] [
P4(Z)

0

]

Thus the transfer function of the vocal tract is given as follows

P4(Z)

R0(Z)
= Z− 1

2

(Z + r1r2)(Z + r3r4) + (r2 + r1Z−1)(r4 + r3Z)
(2.59)

= Z− 1
2

Z2 + (r1r2 + r3r4 + r2r3)Z + r1r2r3r4 + r2r4 + r1r3 + r1r4Z−1

(2.60)

= Z− 3
2

1 + (r1r2 + r3r4 + r2r3)Z−1 + +r1r4Z−2 + r1r2r3r4 + r2r4 + r1r3
(2.61)

Note that the factor Z− 3
2 is due to the delay introduced by the three segments.

The transfer function of the vocal tract is identified as the ALL POLE third order
filter. In general if vocal chord is assumed to have r segments, we get the transfer
function becomes the r th order all pole filter with the delay factor of Z−r/2. Thus
the generalized transfer function of the r th order vocal tract filter is given as follows

V (Z) = Z− r
2

1 − ∑k=r
k=1 ak Z−k

(2.62)
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The length of the vocal tract is approximately 15cm for adults. If the sampling
frequency is Fs = 8000 H z, the length of the each segment is given as c

2Fs

= 340
16000 = 0.02125m. Hence number of segments are usually assumed as

0.15
0.02125

∼= 7. Hence the order of the filter is assumed around 7 for the sampling
frequency of 8000Hz.

2.4 Modelling the Vocal Tract from the Speech Signal

The sound wave that comes out from the lungs is the noise, which passes through the
vocal tract filter to produce the particular speech signal. This type of speech signal is
known as unvoiced speech signal. The soundwave that is produced by the vocal chord
gets mixed with the wave that comes out of the lungs is passed through the vocal tract
filter to produce the particular speech signal. This type of speech signal is known
as unvoiced speech signal. In both the cases, the speech signal is modelled as the
convolution of the sound source with the vocal tract filter. In Z-domain, speech signal
is the product of the Z-transformation of the source signal with the Z-Transformation
of the vocal tract. Let the source signal is represented as I (Z) and output speech signal

S(Z) and are related as S(Z)
I (Z)

= V (Z) = Z− n
2

1−∑k=n
k=1 ak Z−k

. Rewriting the expression

without delay we get the following.

S(Z)

I (Z)
= 1

1 − ∑k=n
k=1 ak Z−k

⇒ S(n) = I (n) +
k=r∑
k=1

ak S(n − k) (2.63)

As the amplitude of the input signal is negligible, we can approximate S(n) as
S(n) ∼= ∑k=r

k=1 ak S(n − k). This equation is known as prediction equation because
nth sample of the speech signal is predicted using the past r samples of the identical
speech signal. The co-efficiets ak∀k = 1 · · · n are known as Linear Predictive Co-
efficients (LPC). The LPC completely describes the vocal tract filter. These are
obtained from the speech signal using the following techniques.

2.4.1 Autocorrelation Method

The LPC’s are obtained such that

E((S(n) −
k=r∑
k=1

ak S(n − k))2) (2.64)

is minimized. In this E is the expectation operator and (S(n) − ∑k=r
k=1 ak S(n − k))2

is the squared error obtained in predicting the nth sample of the speech signal using
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the past r samples. minimizing (2.64) is achieved by partial differentiating the (2.64)
with respect to unknown variables a j∀ j = 1 · · · r and equate to zeros as mentioned
below

∂ E((S(n) − ∑k=r
k=1 ak S(n − k))2)

∂a j
(2.65)

⇒ E(2(S(n) −
k=r∑
k=1

ak S(n − k))S(n − j)) = 0 (2.66)

⇒ RS( j) =
k=r∑
k=1

ak RS( j − k) (2.67)

RS( j) is the autocorrelation of the speech signal. The speech signal under consider-
ation for the particular duration is assumed to be Wide Sense Stationary (W.S.S) and
hence the autocorrelation depends on the difference of the index. As speech signal
is the real signal and W.S.S, autocorrelation is symmetric function. This technique
is known as autocorrelation method.

2.4.1.1 Solving (2.67) Using Levinson–Durbin Algorithm

The auto correlation RS( j) is computed as E(S(n)S(n − j)). Consider S(n) is the
randomvariable obtained by sampling across the randomprocess S at the time instant
n and S(n− j) is the randomvariable obtained by sampling across the randomprocess
S at the time instant n− j . To compute E(S(n)S(n− j)), we need the joint probability
density function fS(n)S(n− j)(α, β). This is not available in practice. Hence the RS( j)
is estimated from the sample speech signal itself. The estimation is done along the
process assuming that the speech signal is ergodic in autocorrelation as follows

RS( j) =
n=∞∑

n=−∞
S(n)S(n − j) (2.68)

In practice, the computation is done for the longer duration of above 20ms. The
(2.68) is written in the matrix form for r = 5 as follows

⎡
⎢⎢⎢⎢⎣

RS(1)
RS(2)
RS(3)
RS(4)
RS(5)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

RS(0) RS(−1) RS(−2) RS(−3) RS(−4)
RS(1) RS(0) RS(−1) RS(−2) RS(−3)
RS(2) RS(1) RS(0) RS(−1) RS(−2)
RS(3) RS(2) RS(1) RS(0) RS(−1)
RS(4) RS(3) RS(2) RS(1) RS(0)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a1
a2
a3
a4
a5

⎤
⎥⎥⎥⎥⎦

Due to symmetric nature of autocorrelation function, the equation in the matrix
form is rewritten with Rs(−n) = Rs(n).
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Fig. 2.4 Matrix highlighting
the toeplitz structure

The autocorrelation matrix thus obtained is the toeplitz matrix because, it is the
symmetric matrix with the identical diagonal elements. (refer Fig. 2.4).

2.4.1.2 Levinson–Durbin Algorithm

Consider the vocal tract with 5 Linear predictive co-efficients (5th order LPC) (rep-

resented as x45 = [x5(0) x5(1) x5(2) x5(3) x5(4)]T ) are obtained by solving the
equation mentioned in Fig. 2.5. If the vocal tract is modelled with 4 LPC (4th order

LPC), the co-efficients x34 = [x4(0) x4(1) x4(2) x4(3)] are obtained by solving the
equation mentioned in Fig. 2.6. The key idea in Levinson–Durbin algorithm is to
obtain the 5th order LPC from the 4th order LPC. They are related as follows. Let
[c5(0)c5(1)c5(2)c5(3)c5(4)]T is the correction vector. Note that x5(4) = c4(4).⎡

⎢⎢⎢⎢⎣
x5(0)
x5(1)
x5(2)
x5(3)
x5(4)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x4(0)
x4(1)
x4(2)
x4(3)
0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

c4(0)
c4(1)
c4(2)
c4(3)
c4(4)

⎤
⎥⎥⎥⎥⎦ (2.69)

Representing the equation in Fig. 2.5 using (2.69), we get the following

Fig. 2.5 Equation for
obtaining 5 LPC

Fig. 2.6 Equation for
obtaining 4 LPC
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⎡
⎢⎢⎢⎢⎣

a0 a1 a2 a3 a4
a1 a0 a1 a2 a3
a2 a1 a0 a1 a2
a3 a2 a1 a0 a1
a4 a3 a2 a1 a0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x4(0) + c4(0)
x4(1) + c4(1)
x4(2) + c4(2)
x4(3) + c4(3)
0 + c4(4)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

a1
a2
a3
a4
a5

⎤
⎥⎥⎥⎥⎦ (2.70)

Using the notations used in Fig. 2.5, (2.70) is represented as the
following. Also let c4(4) = k4.

A3x34 + A3c34 + ar
4c4(4) = a4 (2.71)

It is noted A3x34 = a4 and hence

A3c34 = −ar
4k4 (2.72)

⇒ c34 = −A−1
3 ar

4k4 (2.73)

It is also noted the following from the Fig. 2.5.

ar
4

T
x34 + ar

4
T

c34 + a0k4 = a5 (2.74)

⇒ ar
4

T
x34 + x3r

4

T
AT
3 c34 + a0k4 = a5 (2.75)

⇒ ar
4

T
x34 + x3r

4

T
A3c34 + a0k4 = a5 (2.76)

Table 2.1 List of notations Symbol Notations

A Area of cross section (m2)

P Pressure (Kg/ms2)
S Volume flow (m3/s)
V Velocity of the sound wave (m/s)
L Volume (m3)

ρ Density of the air
m Mass of the air
M Molecular mass of the air
R Gas constant
T Temperature
c Speed of the air
γ Adiabatic constant
x Distance from the origin on the x-axis (m)
t Time (s)
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Using (2.73), we get the following

⇒ ar
4

T
x34 − x3r

4

T
ar
4k4 + a0k4 = a5 (2.77)

k4 = a5 − ar
4

T
x34

a0 − x3r
4

T
ar
4

(2.78)

Thus the Levinson–Durbin algorithm is described by (2.70), (2.73) and (2.78) and
steps involved are summarized as follows

1. a0x1(0) = a1,⇒ x1(0) = x01 = a1
a0

2.

[
a0 a1
a1 a0

] [
x2(0)
x2(1)

]
=

[
a1
a2

]
[

x2(0)
x2(1)

]
=

[
x1(0)
0

]
+

[
c1(0)
c1(1)

]

3. Compute k1 = c1(1) = a2−ar
1

T
x01

a0−x0r
1

T
ar
1

T
= a2−a1x1(0)

a0−x1(0)a1

4. Compute c01 = −A−1
0 ar

1k1 = −a−1
0 a1k1

5. Compute x12 =
[

x2(0)
x2(1)

]
=

[
x1(0)
0

]
+

[
c1(0)
c1(1)

]

6.

⎡
⎣ a0 a1 a2

a1 a0 a1
a2 a1 a0

⎤
⎦

⎡
⎣ x2(0)

x2(1)
x2(2)

⎤
⎦ =

⎡
⎣ a1

a2
a3

⎤
⎦

⎡
⎣ x3(0)

x3(1)
x3(2)

⎤
⎦ =

⎡
⎣ x2(0)

x2(1)
0

⎤
⎦ +

⎡
⎣ c2(0)

c2(1)
c2(2)

⎤
⎦

7. Compute k2 = c2(2) = a3−ar
2

T
x12

a0−x1r
2

T
ar
2

T

8. Compute c12 = −A−1
1 ar

2k2

9 Compute x23

10 In general, compute ki = ci (i) = ai+1−ar
i

T
xi−1

i

a0−x (i−1)r
i

T
ar

i
T

11. Compute, ci−1
i = −A−1

i ar
i ki

12. Compute xi−1
i

13. Repeat the steps 10, 11, 12 for i = 1 · · · n to obtain the nth order LPC xn−1
n .
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2.4.2 Auto Covariance Method

The LPC obtained using the Autocorrelation method needs long duration of speech
signal(>20ms) and hence the vocal tract model is not very accurate. But the compu-
tation time to obtain the LPC has been reduced by using Levinson–Durbin algorithm.
More accurate vocal tract model is obtained for every 2ms speech signal data. This is
obtained using covariance method as described below. The (2.66) is rewritten again
for clarity using expectation operator as follows

E(2(S(n) −
k=r∑
k=1

ak S(n − k))S(n − j)) = 0 (2.79)

⇒ E(S(n)S(n − j) =
k=r∑
k=1

ak E(S(n − k)S(n − j)) (2.80)

In autocorrelation method, E(S(n − k)S(n − j)) is computed as
∑n =∞

n =−∞
S(n − k)S(n − j) (In practice for the long duration of greater than 20ms) and
hence can be represented as RS( j − k). But in case of auto covariance method,
E(S(n − k)S(n − j)) is computed as

∑n = L−1
n = 0 S(n − k)S(n − j) = Ckj =∑n = L−1

n = 0 S(n − j)S(n − k) = C jk . Hence the LPC using the co-variance method is
computed by solving (2.81).

C0 j =
k = r∑
k = 1

akCkj (2.81)

The (2.81) for r = 5 is represented as follows⎡
⎢⎢⎢⎢⎣

C01
C02
C03
C04
C05

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15
C12 C22 C23 C24 C25
C13 C23 C33 C34 C35
C14 C24 C34 C44 C45
C15 C25 C35 C45 C55

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a1
a2
a3
a4
a5

⎤
⎥⎥⎥⎥⎦ (2.82)

Note that the matrix in (2.82) is the symmetric matrix, but not the toeplitz matrix.
Hence Levison–Durbin cannot be used to solve the (2.81). It is also noted that the
diagonal elements are greater than the other elements of the matrix and hence the
matrix is positive-semi-definite matrix. Hence this can be solved using diagonal-
ization of the matrix or Gauss-elimination method. Note that positive-semi definite
symmetric matrix is always diagonalizable (refer Appendix C) with non-negative
eigenvalues as the diagonal elements of the diagonal matrix. The computation time
required to solve (2.81) is greater than the time required to solve (2.67).
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2.5 Lattice Structure to Obtain Excitation Source
for the Typical Speech Signal

The transfer function of the vocal tract is modelled as N th order all pole filter which
is represented as V (Z).

V (Z) = 1

1 + ∑k = N
k = 1 ak z−k

(2.83)

If the E(Z) is the excitation source signal and S(Z) is the output signal, they
are related as S(Z) = E(Z)V (Z). In discrete domain they are related as e(n) =
s(n) + ∑k = N−1

k = 1 aks(n − k). The excitation source e(n) needs the FIR filter co-
efficients ak . This can also be realized using lattice structure. The excitation source
computed for mth order filter is obtained directly from the excitation source for
(m −1)th filter. Hence fixing up the order of the model becomes easier in real time in
modelling the vocal tract filter. The lattice structure for the 1st order filter is as given
in Fig. 2.8. Let f0(n) = g0(n) = s(n) and f1(n) = e1(n). Note that ei (n) is the nth
sample of the excitation source with i th order model. They are related as follows

f1(n) = f0(n) + k1g0(n − 1), g1(n) = k1 f0(n) + g0(n − 1) (2.84)

The relationship using the first order filter is given as follows

e1(n) = s(n) + a1
1s(n − 1) (2.85)

Comparing (2.84) and (2.85), we get k1 = a1
1 . For the second order filter, we get the

following

f2(n) = f1(n) + k2g1(n − 1) (2.86)

⇒ f2(n) = f0(n) + k1g0(n − 1) + k2(g0(n − 2) + k1 f0(n − 1)) (2.87)

= s(n) + k1s(n − 1) + k2s(n − 2) + k1k2s(n − 1) (2.88)

g2(n) = g1(n − 1) + k2 f1(n) (2.89)

The relationship using the second order filter is given as follows

Fig. 2.7 Lattice Structure for
the first order filter
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Fig. 2.8 Speech signal and the corresponding excitation source modelled using lpc with different
co-efficients

f2(n) = e2(n) = s(n) + a2
1s(n − 1) + a2

2s(n − 2) (2.90)

Comparing (2.88) and (2.90), we get the following

a2
1 = k1 + k1k2 (2.91)

a2
2 = k2 (2.92)

In general it is noted that ar
r = kr . Also it is noted that g2(n) = k1 f0(n − 1) +

g0(n − 2) + k2( f0(n) + k1g0(n − 1)), which is simplified as follows

g2(n) = k2s(n) + (k1 + k1k2)s(n − 1) + s(n − 2) (2.93)

g2(n) = a2
2s(n) + a2

1s(n − 1) + s(n − 2) (2.94)

Comparing (2.90) and (2.94), we understand that if the filter co-efficients of f2(n)

are arranged in the reverse order, we get the filter co-efficients for g2(n). In z-domain
G2(Z) = Z−2F2(Z−1). In general

G N (Z) = Z−N FN (Z−1) (2.95)

2.5.1 Computation of Lattice Co-efficient from LPC Co-efficients

Let the N th order transfer function 1
V (Z)

is represented as AN (Z).
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Fig. 2.9 Sum squared error (sum squared value of the samples of the excitation source) obtained
using lpc model versus order of the lpc filter (number of lattice co-efficients)

AN (Z) = 1 + aN
1 z−1 + aN

2 z−2 + aN
3 z−3 + · · · + aN

N z−N (2.96)

Note that aN
N is the lattice co-efficient kN . So if the (N −1)th order transfer function

AN−1(Z) is obtained , the co-efficient of zN−1 of AN−1(Z) is obtained as kN .
The relation between AN (Z) and AN−1(Z) is needed and are obtained as follows.
The excitation source signals obtained for various order and the corresponding sum
squared values are displayed in Figs. 2.8 and 2.9 respectively.

FN (Z) = FN−1(Z) + kN G N−1(Z)Z−1 (2.97)

G N (Z) = kN Fn−1(Z) + G N−1(Z)Z−1 (2.98)

S(Z)AN (Z) = EN (Z) = FN (Z) (2.99)

⇒ AN (Z) = AN−1(Z) + kN
G N−1(Z)

S(Z)
Z−1 (2.100)

Let BN (Z) = G N (Z)
S(Z)

and we get the following.

AN (Z) = AN−1(Z) + kN BN−1(Z)−1 (2.101)

BN (Z) = kN AN−1(Z) + BN−1(Z)Z−1 (2.102)

⇒ AN (Z) = AN−1(Z) + kN (BN (Z) − kN AN−1(Z)) (2.103)

⇒ AN−1(Z) = AN (Z) − kN BN (Z)

1 − k2N
(2.104)

Note that B0(Z) = G0(Z)
S(Z)

= 1. Thus the steps involved in computing lattice para-
meters from N th order lpc are summarized as follows.



2.5 Lattice Structure to Obtain Excitation Source for the Typical Speech Signal 91

function [L,k,E,ERROR]=lattice(S1,FS)
L=lpc(S1,11);
k=[];
for i=1:1:length(L)-1

k=[k L(length(L))];
R=L(length(L):-1:1);

temp=(L-k(i)*R)/(1-(k(i)ˆ2))
temp1=temp(1:1:length(temp)-1);
L=temp1;
end
close all
k=k(length(k):-1:1);
ERROR=[];
r=1;
for j=4:1:12
e=[];
for i=1:1:11

f{i}(1)=0;
g{i}(1)=0;

end
for n=2:1:length(S1)
f{1}(n)=S1(n);
g{1}(n)=S1(n);
g{1}(n-1)=S1(n-1);
for i=2:1:j
f{i}(n)=f{i-1}(n)+k(i-1)*g{i-1}(n-1) ;
g{i}(n)=g{i-1}(n-1)+k(i-1)*f{i-1}(n);
end
e=[e f{j}(n)];
end
E{r}=e;
ERROR=[ERROR sum(E{r}.ˆ2)];
r=r+1;
end
figure
stem([2:1:11],ERROR)
figure
for i=2:1:10

subplot(5,2,i)
plot(E{i})

end
subplot(5,2,1)
plot(S1)
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1. Obtain AN (Z) = 1 + aN
1 z−1 + aN

2 z−2 + aN
3 z−3 + · · · + aN

N z−N using the lpc
2. KN = aN

N
3. Compute BN (Z) = Z−N AN (Z−1). Trick is to arrange the co-efficients of

AN (Z) in the reverse order to obtain BN (Z).
4. Compute AN−1(Z) = AN (Z)−kN BN (Z)

1−k2N
. Identify the co-efficient of (N − 1) to

obtain KN−1
5. Repeat 3 and 4 to obtain the lattice co-efficients.

%levinsondurbin.m
function [res]=levinsondurbin(a)
%a is the vector with size 1xn
temp1=a(2:1:length(a));
for j=1:1:length(a)-1
A{j}=toeplitz(a(1:1:j));
end
x{1}=[a(2)/a(1)];
k(1)=(a(3)-a(2)*x{1}(1))/(a(1)-a(2)*x{1}(1));
c{1}=-inv(A{1})*a(2)*k(1) ;
c{1}=[c{1};k(1)];
x{2}=[x{1} ;0];
x{2}=x{2}+c{1};
for r=2:1:length(a)-2

k(r)=(a(r+2)-rev(a,r)*x{r})/(a(1)-[a(2:1:r+1)]*x{r});
c{r}=-1*inv(A{r})*rev(a,r)’ *k(r) ;
c{r}=[c{r};k(r)];
x{r+1}=[x{r};0];
x{r+1}=x{r+1}+c{r};
end
res=[1; -1*x{r+1}];
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