
Chapter 2
Optimal Regression Designs

Abstract In this chapter, we review the theory of optimum regression designs.
Concept of continuous design and different optimality criteria are introduced. The
role of de la Garza phenomenon and Loewner order domination are discussed.
Equivalence theorems for different optimality criteria, which play an important role
in checking the optimality of a given otherwise prospective design, are presented.
These results are repeatedly used in later chapters in the search for optimal mix-
ture designs. We present standard optimality results for single variable polynomial
regression model and multivariate linear and quadratic regression model. Kronecker
product representation of the model(s) and related optimality results are also dis-
cussed.

Keywords Continuous design · Optimality criteria · de la Garza phenomenon ·
Loewner order domination · Polynomial regression models · Equivalence theorem ·
Optimum regression designs

2.1 Introduction

In this chapter, we will discuss optimality aspects of regression designs in an approx-
imate (or, continuous) design setting defined below.

Let y be the observed response at a point (x1, x2, . . . , xk) = x varying in some
k-dimensional experimental domain X following the general linear model

y(x) = η(x,β) + e(x), (2.1.1)

with usual assumptions on error component e(x), viz. mean zero and uncorrelated
homoscedastic variance σ 2; η(x,β) is the mean response function involving k or
more unknown parameters. Once for all, we mention that x will represent a combi-
nation of themixing components, the number of such components will be understood
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from the context.Moreover, the samewill be used to denote a row or a column vector,
as the context demands.

Generally, it is assumed that in the region of immediate interest, η(x, β) can be
approximated by a polynomial of certain degree and can be expressed as

η(x, β) = f ′(x)β. (2.1.2)

The discrete or, exact designing problem is that of choosing N design points in
the experimental domain X so that individually each of the t parameters of the
mean response function can be estimated with satisfactory degree of accuracy. A
continuous or an approximate design ξ for model (2.1.2), as introduced by Kiefer
(1959), consists of finitely many distinct support points x1, x2, . . . , xn ∈ X , at
which observations of the response are to be taken, and of corresponding design
weights ξ(xi ) = pi , i = 1, 2, . . . , n which are positive real numbers summing up
to 1. In other words, an approximate design ξ is a probability distribution with finite
support on the factor space X and is represented by

ξ = {x1, x2, . . . , xn; p1, p2, . . . , pn}, (2.1.3)

which assigns, respectively, masses p1, p2, . . . , pn; pi > 0,
∑

pi = 1, to the n
distinct support points x1, x2, . . . , xn of the design ξ in the experimental region
[may be a subspace of the factor space X ]. Let D be the class of all competing
designs. For a given N, a design ξ cannot, in general, be properly realized, unless
its weights are integer multiples of 1/N i.e., unless ni = N pi , i = 1, 2, . . . , n are
integers with

∑
ni = N . An approximate design becomes an exact design of size N

in the special case when ni = N pi , i = 1, 2, . . . , n are integers.
The information matrix (often termed ‘per observation moment matrix’) for β,

using a design ξ, is given by

M(ξ) =
∑

pi f (xi ) f ′(xi ). (2.1.4)

It may be noted that for unbiased estimation of the parameters in the mean response
function, it is necessary that the number of ‘support points’ i.e., xi s must be at
least ‘t,’ the number of model parameters. It is tacitly assumed that the choice of a
design leads to unbiased estimation of the parameters and as such the information
matrix M of order t × t is a positive definite matrix. Let M denote the class of all
positive definite moment matrices. As we will see in the rest of this monograph, the
information matrix (2.1.4) of a design plays an important role in the determination
of an optimum design. In fact, most of the optimality criteria are different functions
of the information matrix.
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2.2 Optimality Criteria

The utility of an optimum experimental design lies in the fact that it provides a
design ξ∗ that is best in some sense. Toward this let us bring in the concept of
Loewner ordering. A design ξ1 dominates another design ξ2 in the Loewner sense if
M(ξ1)−M(ξ2) is a nonnegative definite (nnd)matrix. Thus, Loewner partial ordering
among informationmatrices induces a partial ordering among the associated designs.
We shall denote ξ1 � ξ2 when ξ1 dominates ξ2 in the Loewner sense. A design ξ∗
that dominates over all other designs in D in the Loewner sense is called Loewner
optimal. In general, there exists no Loewner optimal design ξ∗ that dominates every
other design ξ in D [vide Pukelsheim (1993)]. A popular way out is to specify an
optimality criterion, defined as a real-valued function of M(ξ). An optimal design is
one whose moment matrix minimizes the criterion function φ(ξ) over a well-defined
set of competing moment matrices (or designs); vide Shah and Sinha (1989) and
Pukelsheim (1993) for details. Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λt be the t positive
characteristic roots of the moment matrix M. It is essential that a reasonable criterion
φ conforms to the Loewner ordering

M(ξ1) ≥ M(ξ2) ⇒ φ(M(ξ1)) ≥ φ(M(ξ2)).

The first original contribution on optimum regression design is by Smith (1918) who
determined the G-optimum design for the estimation of parameters of a univariate
polynomial response function. After a gap of almost four decades, a number of
contributions in this area were made by, Elfving (1952), Chernoff (1953), Ehrenfield
(1955), Guest (1958), Hoel (1958). Extending their results, Kiefer (1958, 1959,
1961), Kiefer and Wolfowitz (1959) developed a systematic account of different
optimality criteria and related designs. These can be discussed in terms ofmaximizing
the function φ(M(ξ)) of M(ξ).

Themost prominent optimality criteria are thematrix means φp, for p ∈ (−∞, 2],
which enjoy many desirable properties. These were introduced by Kiefer (1974,
1975):

φp(M) =
((

1

t

) ∑

i

λ
p
i

)1/p

where λ1, λ2, . . . , λt denote the eigenvalues of the positive definite information
matrix M(ξ) of order t × t . Excluding trivial cases, it is evident that an opti-
mum design which satisfies all the criteria does not exist. The classical A-, D-
and E-optimality criteria are special cases of φp-optimality criteria. The criterion
φ−1(M) is the A-optimality criterion. Maximizing φ−1(M) is equivalent to mini-
mizing the trace of the corresponding dispersion matrix (in the exact or asymptotic
sense). The D-optimality criterion φ0(M) is equivalent to maximizing the determi-
nant det.(M). The extrememember of φp(M) for p → −∞ yields the smallest eigen
(E-optimality criterion) φ−∞(M) = λmin(M). Besides, there are other optimality
criteria for comparing designs viz. G-optimality criterion, Ds- and DA-optimality
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criteria, I -optimality criterion etc. [For different optimality criteria and their statisti-
cal significance, the readers are referred to Fedorov (1972), Silvey (1980), Shah and
Sinha (1989), Pukelsheim (1993)].

In general, the direct search for optimum design may be prohibitive. The degree
of difficulty depends on the nature of response function, criterion function and/or the
experimental region. However, there are tools that can be used to reduce, sometimes
substantially, the class of competing designs.

2.3 One Dimensional Polynomial Regression

In practice, polynomial models are widely used because they are flexible and usually
provide a reasonable approximation to the true relationship among the variables.
Polynomial models with low order, whenever possible, are generally recommended.
Higher order polynomial may provide a better fit to the data and hence an improved
approximation to the true relationship; but the numerous coefficients in such models
make them difficult to interpret. Sometimes, polynomial models are used after an
appropriate transformation has been applied on the independent variables to lessen
the degree of nonlinearity. Examples of such transformations are the logarithm and
square transformations. Box and Cox (1964), Carroll and Ruppert (1984) gave a
detailed discussion on the use andproperties of various transformations for improving
fit in linear regression models.

In a one-dimensional polynomial regression, the mean response function is
given by

η(x) = f ′(x)β = β0 + β1x + β2x2 + · · · + βd xd , (2.3.1)

where f ′(x) = (1, x, x2, . . . , xd) and β ′ = (β0, β1, . . . , βd). Several authors
attempted to find optimum designs for the estimation of parameters of the above
model. As mentioned earlier, Smith (1918) first obtained G-optimum designs for the
estimation of parameters. de la Garza (1954) considered the estimation of parameters
of the above model from N observations in a given range. By changing the origin and
scale, the domain of experimental region, i.e., the factor space may be taken to be
X = [−1, 1]. Consider a design ξ given by (2.1.3) in the factor space [−1, 1] with
information matrix (2.1.4). de la Garza (1954) showed that corresponding to any
arbitrary continuous design ξ as in (2.1.3) supported by n [>d + 1] distinct points,
there exists a design with exactly d + 1 support points such as

ξ∗ = {x∗
1 , x∗

2 , . . . , x∗
d+1; p∗

1, p∗
2, . . . , p∗

d+1}, (2.3.2)

for which the information matrices are the same, i.e, M(ξ) = M(ξ∗). Moreover,
xmin ≤ x∗

min ≤ x∗
max ≤ xmax. This appealing feature of the two designs is referred

to as information equivalence. Afterward, the de la Garza phenomenon has been
extensively studied by Liski et al. (2002), Dette and Melas (2011), Yang (2010).
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In addition to this, Pukelsheim (1993) extensively studied the phenomenon of infor-
mation domination in this context.

Remark 2.3.1 The exact design analog of the feature of information equivalence is
generally hard to realize. Mandal et al. (2014) provide some initial results in this
direction.

In general, different optimal designs may require different number of design
points. It is clear that in order to estimate ‘t’ parameters in any model, at least
‘t’ distinct design points are needed, and for many models and optimality criteria,
the optimal number of distinct design points will be ‘t.’ For nonlinear models, the
informationmatrix has an interpretation in an approximate sense, as being the inverse
of the asymptotic variance-covariance matrix of the estimates of the model parame-
ters. An interesting result called Caratheodory’s Theorem provides us with an upper
bound on the number of design points needed for the existence of a positive definite
information matrix. For many design problems with ‘t’ parameters, this number is
‘t(t + 1)/2.’ Thus the optimal number of distinct design points is between ‘t’ and
‘t(t + 1)/2.’ Finally, it should be noted that the upper bound does not hold for the
Bayesian design criteria (Atkinson et al. 2007, Chap. 18).

Guest (1958) obtained general formulae for the distribution of the points of obser-
vations and for the variances of the fitted values in the minimax variance case, and
compared the variances with those for the uniform spacing case. He showed that the
values of x1, x2, . . . , xd+1, (with reference to the model (2.3.1)) that minimize the
maximum variance of a single estimated ordinate are given by means of the zeros
of the derivative of a Legendre polynomial. Hoel (1958) used the D-optimality cri-
terion for determining the best choice of fixed variable values within an interval for
estimating the coefficients of a polynomial regression curve of given degree for the
classical regression model. Using the same criterion, some results are obtained on
the increased efficiency arising from doubling the number of equally spaced obser-
vation points (i) when the total interval is fixed and (ii) when the total interval is
doubled. Measures of the increased efficiency are found for the classical regression
model and for models based on a particular stationary stochastic process and a pure
birth stochastic process. Moreover, he first noticed that D- and G-optimum designs
coincide in a one-dimensional polynomial regression model.

Kiefer and Wolfowitz (1960) extended and established this phenomenon of coin-
cidence to any linear model through what is now known as ‘Equivalence Theorem.’
Writing d(x, ξ) = f ′(x)M−1(β, ξ) f (x), the celebrated equivalence theorem of
Kiefer and Wolfowitz (1960) can be stated as follows:

Theorem 2.3.1 The following assertions:

(i) the design ξ∗ minimizes | M−1(β, ξ) |,
(ii) the design ξ∗ minimizesmaxx d(x, ξ),

(iii) maxx d(x, ξ∗) = t

are equivalent. The information matrices of all designs satisfying (i)–(iii) coincide
among themselves. Any linear combination of designs satisfying (i)–(iii) also satisfies
(i)–(iii).
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In this context, Fedorov (1972) also serves as a useful reference. This theorem
plays an important role in establishing the D-optimality of a given design obtained
from intuition or otherwise. Moreover, it gives the nature of the support points of an
optimum design. For example, let us consider a quadratic regression given by

yi = β0 + β1xi + β2x2i + ei , i = 1, 2, . . . , n (2.3.3)

where βi s are fixed regression parameters and ei s are independent random error
with usual assumptions, viz. mean 0 and variance σ 2. We assume, as before, that the
factor space is X = [−1, 1].

The information matrix for an arbitrary design ξ = {x1, x2, . . . , xn; p1, p2, . . . ,
pn} can be readily written down, and it involves the moments of x-distribution, i.e.,
μ′

r = ∑
pi xr

i ; r = 1, 2, 3, 4. It is well known that the information matrix M is
positive definite iff n > 2, since the xi s are assumed to be all distinct without any
loss of generality and essentially we are restricting to this class of designs. It is clearly
seen that d(x, ξ) = f ′(x)M−1(β, ξ) f (x), with f (x) = (1, x, x2)′ is quartic in x so
that the three support points of the D-optimum design are at the two extreme points
±1 and a point lying in between. Since the D-optimality criterion, for the present
problem, is invariant with respect to sign changes, the interior support point must be
at 0. Thus, the three support points of the D-optimum design in [−1, 1] are 0 and±1.
Theweights at the support points are all equal since here the number of support points
equals the number of parameters. It may be noted that for D-optimality, whenever
the number of support points is equal to the number of parameters, the weights at
the support points are necessarily equal.

Remark 2.3.2 The above result can be derived using altogether different arguments.
In view of de la Garza phenomenon, given the design ξ with n > 3, there exists a
three-point design ξ∗ = {(a, P), (b, Q), (c, R)}, where −1 ≤ a < b < c ≤ 1, and
0 < P, Q, R < 1, P + Q + R = 1, such that M(ξ) = M(ξ∗). Again, referring to
Liski et al. (2002), we may further ‘improve’ ξ∗ to ξ∗∗ = {(−1, P), (c, Q), (1, P)}
by proper choice of ‘c’ in the sense of Loewner Domination. It now follows that for
D-optimality, det.M(ξ∗∗) ≤ (4/27)(1 − c2)2 ≤ 4/27 with ‘=’ if and only if c = 0
and P = Q = R = 1/3.

Atwood (1969) observed that in several classes of problems an optimal design
for estimating all the parameters is supported only on certain points of symmetry.
Moreover he considered the optimality when nuisance parameters are present and
obtained a new sufficient condition for optimality. He corrected a version of the
condition which Karlin and Studden (1966) stated as equivalent to optimality, and
proved the natural invariance theorem involving this condition. He applied these
results to theproblemofmulti-linear regressionon the simplex (introducedbyScheffé
1958) when estimating all or only some of the parameters. This will be discussed in
detail in Chaps. 4–6.

Fedorov (1971, 1972) developed the equivalence theorem for Linear optimality
criterion in the lines of equivalence theorem of Kiefer and Wolfowitz (1960) for

http://dx.doi.org/10.1007/978-81-322-1786-2_4
http://dx.doi.org/10.1007/978-81-322-1786-2_6
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D-optimality. Assuming estimability of the model parameters, we denote the dis-
persion matrix by D(ξ). It is known that D(ξ) = M−1(ξ). A design ξ∗ is said to be
linear optimal if it minimizes L(D(ξ)) over all ξ in � where L is a linear optimality
functional defined on the dispersion matrices satisfying

L(A + B) = L(A) + L(B)

for any two nnd matrices A and B and

L(cA) = cL(A)

for any scalar c > 0. Then, the equivalence theorem for linear optimality can be
stated as follows.

Theorem 2.3.2 The following assertions:

(i) the design ξ∗ minimizes L[D(ξ)],
(ii) the design ξ∗ minimizes maxx L[D(ξ) f (x) f ′(x)D(ξ)],

(iii) maxx L[D(ξ∗) f (x) f ′(x)D(ξ∗)] = L[D(ξ∗)]
are equivalent. Any linear combination of designs satisfying (i)–(iii) also satisfies
(i)–(iii).

Similar equivalence theorems are also available for E-optimality criterion
(cf. Pukelsheim 1993).

Afterword, Kiefer (1974) introduced the φ-optimality criterion, a real-valued con-
cave function defined on a set M of positive definite matrices. He then established
the following equivalence theorem [cf. Silvey (1980), Whittle (1973)].

LetM be the class of all moment matrices obtained by varying design ξ in � and
φ is a real-valued function defined onM. Then the Frechét derivative of φ at M1 in
the direction of M2 is defined as

Fφ(M1, M2) = lim
α→0+

1

α
[φ{(1 − α)M1 + αM2} − φ(M1)].

Theorem 2.3.3 When φ is concave on M, ξ∗ is φ-optimal if and only if

Fφ(M(ξ∗), M(ξ)) ≤ 0 (2.3.4)

for all ξ ∈ D.

This theorem states simply that we are at the top of a concave mountain when
there is no direction in which we can look forward to another point on the mountain.
However, since it is difficult to check (2.3.4) for all ξ ∈ D,Kiefer (1974) established
the following theorem that ismore useful in verifying the optimality or non-optimality
of a design ξ∗.
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Theorem 2.3.4 When φ is concave on M and differentiable at M(ξ∗), ξ∗ is
φ-optimal if and only if

Fφ{M(ξ∗), f (x) f ′(x)} ≤ 0 (2.3.5)

for all x ∈ X .

For the proof and other details, one can go through Kiefer (1974) and Silvey
(1980). This result has great practical relevance because in many situations, the
optimality problems may not be of the classical A-, D- or E-optimality type but
fall under a wide class of φ-optimality criteria. The equivalence theorem above then
helps us to establish the optimality of a design obtained intuitively or otherwise.

The equivalence theorem in some form or the other has been repeatedly used in
subsequent chapters of this monograph. For the equivalence theorem for Loewner
optimality or other specific optimality criteria, the readers are referred to Pukelsheim
(1993).

Remark 2.3.3 An altogether different optimality criterion was suggested in Sinha
(1970). Whereas all the traditional optimality criteria are exclusively functions of
the (positive) eigenvalues of the information matrix, this one was an exception.
In the late 1990s, there was a revival of research interest in this optimality criterion,
termed as ‘Distance Optimality criterion’ or, simply, ‘DS-optimality’ criterion.

In the context of a very general linear model set-up involving a (sub)set of para-
meters θ admitting best linear unbiased estimator (blue) θ̂ , it is desirable that the
‘stochastic distance’ between θ and θ̂ be the least. This is expressed by stating that
the ‘coverage probability’

Pr[‖θ̂ − θ‖ < ε]

should be as high as possible, for every ε > 0. As an optimal design criterion,
therefore, we seek to characterize a design ξ0 such that for every given ε, θ̂ based on
ξ0 provides largest coverage probability than any other competing ξ.

Sinha (1970) initiated study of DS-optimal designs for one-way and two-way
analysis of variance (ANOVA) setup. Much later, the study was further continued in
ANOVAand regression setup (Liski et al. 1998; Saharay andBhandari 2003; Mandal
et al. 2000). On the other hand, theoretical properties of this criterion function were
studied in depth in a series of papers (Liski et al. 1999; Zaigraev and Liski 2001,
2006; Zaigraev 2005)

We will not pursue this criterion in the present Monograph.
Since in amixture experiment,wewill be concernedwith a number of components,

let us first review some results in the context of multi-factor experiment.

2.4 Multi-factor First Degree Polynomial Fit Models

Let us first consider a k-factor first degree polynomial fit model with no constant
term, viz.,



2.4 Multi-factor First Degree Polynomial Fit Models 17

yi j = β1xi1 + β2xi2 + · · · + βk xik + ei j , (2.4.1)

with k regressor variables, n experimental conditions xi = (xi1, xi2, . . . , xik), i =
1, 2, . . . , n; j = 1, 2, . . . , Ni ,

∑
Ni = N . Most often we deal with a continuous

or approximate theory version of the above formulation in which pi s are regarded
as (positive) ‘mass’ attached to the points xi s, subject to the condition

∑
pi = 1.

In polynomial fit model with single factor, the experimental domain is generally
taken as X = [−1,+1]. For k-factor polynomial linear fit model (2.4.1), the exper-
imental domain is a subset of the k-dimensional Euclidean space Rk . Generally,
optimum designs are developed for the following two extensions of the one-
dimensional domainX = [−1,+1]: A Euclidean ball of radius

√
k and a symmetric

k-dimensional hypercube [−1,+1]k . In practice, theremay be other types of domains
viz., a constrained region of the type XR = [0 ≤ xi ≤ 1,

∑
xi = α ≤ 1]. The

mixture experiment, the optimality aspect of which will be considered in details in
subsequent chapters, has domain that corresponds to α = 1.

Belowwe develop the continuous design theory for the abovemodel. Consider the
experimental domain for the model (2.4.1), which is a k-dimensional ball of radius√

k, that is, X (k) = [x ∈ Rk, ‖x‖ ≤ √
k}, where ‖.‖ denotes the Euclidean norm.

Setμ jm =
∑

i
pi xi j xim for j, m = 1, 2, . . . , k.This has the simple interpretation as

the ‘product moment’ of jth and mth factors in the experiment. Then, the information
matrix for an n-point (n ≥ k) design

ξ = {x1, x2, . . . , xn; p1, p2, . . . , pn}

is of the form

M(ξ) =
∑

pi f (xi ) f ′(xi ) =

⎛

⎜
⎜
⎝

μ11 μ12 . . . μ1k

μ22 . . . μ2k

. . . . . .

μkk

⎞

⎟
⎟
⎠ (2.4.2)

with f ′(xi ) = (xi1, xi2, . . . , xik).

Using spectral decomposition of the matrix M(ξ), it can be easily shown that
M(ξ) can equivalently be represented by a design ξ∗ with k orthogonal support
points in X (k):

ξ∗ = {x∗
1, x∗

2, . . . , x∗
k ; p∗

1, p∗
2, . . . , p∗

k } (2.4.3)

i.e., M(ξ∗) = M(ξ). Such a design is termed as orthogonal design (Liski et al.
2002). This incidentally demonstrates validity of the de la Garza phenomenon (DLG
phenomenon) in the multivariate linear setup without the constant term. We can
further improve over this design in terms of the Loewner order domination of the
information matrix by stretching the mass at the boundary of X (k). In other words,
given an orthogonal design ξ∗ as in (2.4.3), there exists another k-point orthogonal
design
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ξ∗∗ = {x∗∗
1 , x∗∗

2 , . . . , x∗∗
k ; p∗

1, p∗
2, . . . , p∗

k } (2.4.4)

with x∗∗
i = √

kx∗
i /‖x∗

i ‖, such that M(ξ∗∗)− M(ξ∗) is nnd i.e., ξ∗∗ � ξ∗ ∼ ξ.One
can now determine optimum designs in the class of designs (2.4.4) using different
optimality criteria. Similar results hold for multi-factor linear model with constant
term.

A symmetric k-dimensional unit cube [−1,+1] k is a natural extension of
[−1,+1]. Note that [−1,+1]k is the convex hull of its extreme points, the 2k ver-
tices of [−1,+1]k . It is known that in order to find optimal support points, we need
to search the extreme points of the regression range only. If the support of a design
contains other than extreme points, then it can be Loewner dominated by a design
with extreme support points only. This result was basically presented by Elfving
(1952, 1959). A unified general theory is given by Pukelsheim (1993).

A generalization of the model (2.4.1) incorporating the constant term has been
studied in Liski et al. (2002). Also details for the latter factor space described above
have been given there. We do not pursue these details here.

In the context of mixture models, as has been indicated before, we do not include
a constant term in the mean model. So, the above study may have direct relevance to
optimality issues in mixture models.

2.5 Multi-factor Second Degree Polynomial Fit Models

Consider now a second-degree polynomial model in k variables:

ηx = β0 +
k∑

i=1

βi xi +
k∑

i=1

k∑

j>i

βi j xi x j . (2.5.1)

For the second-degree model, in finding optimum designs, it is more convenient to
work with the Kronecker product representation of the model (cf. Pukelsheim 1993).

For a k-factor second-degree model, k ≥ 2, let us take the regression function
to be

η(x,β) = g′(x)β (2.5.2)

where
g′(x) = (1, x′, x′ ⊗ x′), (2.5.3)

β is a vector of parameters and the factor space is given by

X (k) = {x : ‖x‖ ≤ k}.
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To characterize the optimum design for the estimation of β, let us consider the
following designs:

ξ0 = {x | x′x = 0}
ξc = 1

2r
fraction of a 2k factorial experiment with levels ±1

ξs = set of star points of the form (±√
k, (0, 0, . . . , 0), (0,±√

k, 0, . . . , 0), . . . ,

(0, 0, . . . ,±√
k)

∼
ξ√

k = ncξc + nsξs

n
, nc = 2k−r , ns = 2k, n = nc + ns .

A design ξ∗ = (1 − α)ξ0 + α
∼
ξ√

k is called a central composite design (CCD)
(cf. Box and Wilson 1951). Such a design ξ∗ is completely characterized by α. It is
understood that 0 ≤ α ≤ 1.

Before citing any result on optimum design in the second-order case, let us first
of all bring in the concept of Kiefer optimality. Symmetry and balance have always
been a prime attribute of good experimental designs and comprise the first step of the
Kiefer design ordering. The second step concerns the usual Loewnermatrix ordering.
In view of the symmetrization step, it suffices to search for improvement when the
Loewner ordering is restricted only to exchangeable moment matrices.

Now, we cite a very powerful result on Kiefer optimality in the second-order
model (2.5.1).

Theorem 2.5.1 The class of CCD is complete in the sense that, given any design,
there is always a CCD that is better in terms of

(i) Kiefer ordering
(ii) φ-optimality, provided it is invariant with respect to orthogonal transformation.

There are many results for specific optimality criteria for the second-order model
(see e.g., Pukelsheim 1993). We are not going to discuss the details.

It must be noted that in the context of mixture models, we drop the constant term
β0 from the mean model. Moreover, the factor space (constrained or not) is quite
different from unit ball/unit cube. Yet, the approach indicated above has been found
to be extremely useful in the characterization of optimal mixture designs. All these
will be discussed in details from Chap. 4 onward.
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