Chapter 2
Transformer, Transmission Line, and Load

2.1 Transformer

2.1.1 Single-Phase Transformer

The single-phase transformer consists of a core and two or more windings. Figure 2.1
shows a transformer with two windings.

Let the transformer be ideal: the windings have zero resistance and the core has
infinite permeability [1]. Infinite permeability means that there is no flux outside the
core.

Njp and N; are the number of turns in the windings. If the flux in the core is ¢,
the induced emfs in the windings are

d¢
=N — 2.1
e 14 2.1
do
= N,— 2.2
e 24 (2.2)
From (2.1) and (2.2),
el Ny
L0 2.3
A (2.3)

The relation between i1 and i» is obtained from Ampere’s law. Due to infinite
permeability, the magnetic field intensity in the core is zero. Application of Ampere’s
law to the closed path in the core, shown in Fig.2.1, gives

i M

= 2.4
in Ny 24)
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Fig. 2.1 Single-phase Closed path
transformer with two windings {
; ' N iy
\ 2
— ( +
* 17
‘ d
€ q Nl N2 D €
D
q
= D
o D q P -
\_ J
Fig. 2.2 Single-phase
transformer with three i Q)
windings —- q T
+ 4 D N D
) 2( h e
€ N, ._
q D 1 B,
q q
o= D N d e-'_;

Fig. 2.3 Representation of iy
ideal transformer
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For the three-winding transformer shown in Fig.2.2, where the number of turns
in the windings are N1, N>, and N3,

e N1 e N1

e Nies N3
Nii1 = Naip + N3is (2.6)

(2.5)

The two-winding ideal transformer can be represented by the equivalent circuit
shown in Fig. 2.3. The dots shown at a terminal of each winding indicate the winding
terminals which simultaneously have the same polarity due to the emfs induced.

There are applications where the ideal transformer cannot be used. Then the
equivalent circuit of the transformer is given by Fig. 2.4. R and R, are the resistances
of the two windings. Though the permeability of the core is high, it is not infinite,
and hence there is flux outside the core which links some or all turns of only one
winding and induces an emf. This flux is called leakage flux and its effect is modelled
by leakage inductances L and L. e; and ey are related by (2.3). Due to finite
permeability of the core, (2.4) is not exact but is used as an approximation.
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Fig. 2.4 Equivalent circuit of transformer

2.1.2 Three-Phase Transformer

A three-phase transformer can be obtained from three identical single-phase trans-
formers. Figure2.5 shows the equivalent circuit of the wye-wye-connected trans-
former. The two windings of a single-phase transformer are shown parallel to each

other.

Let vi4, v1p, and vy, be the potentials of the terminals la, 1b, and 1c, respectively,
with respect to the neutral. Let va,, vap, and vo. be the potentials of the terminals
2a, 2b, and 2c, respectively, with respect to the neutral. The equations for the wye-
wye-connected transformer are

Vig = i1 R1 + lecii% + ela (2.7)
vip = i1pRy + Ll% + e (2.8)
ve = iR + L1 e, 2.9)
Vg = %ela - %ilaRz - %deélta (2.10)
V2p = %61;; — %ilhRZ — % 2% (2.11)
e = rete = iR = LS @.12)
Elimination of induced emfs from (2.7) to (2.12) gives
vaa = %vla - (fol + %Rz) ila (%Ll - % 2) d; (2.13)
vop = %Ulb - (%Rl + %Rz) i — (_TLl + %Lz) dcll—ib (2.14)
e = v (%Rl " %Rz) e (V?L‘ T %Lz) T @iy
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Fig. 2.5 Wye-wye-connected transformer

In order to obtain the equations in per unit quantities, the equations are divided by
the base voltage. If Vjp is the base voltage on the transformer side with N turns,
the base voltage on the other side of the transformer is

Vap £ —=Vip (2.16)

The base values of other quantities are obtained as follows.

SB SB Vig Vap
hp=——hp=—-—,Zip=——,2=—F— (2.17)
ViB Vop I bhp

Dividing (2.13)-(2.15) by V> gives

dla

V2a =Via — (R1 + R2) iq ——(_1+X2) (2.18)
=T, — (R1 +R2) i —L(X +X)d” (2.19)

Vop =Vip 1 2) b w5 1 2 dr .

_ 1 di,

Vae =Vie — (Ri + R2)ic — — (X |+ X2) — - (2.20)

where X| £ wgL; and X2 = wp L2 The subscrlpts 1 and 2 are not necessary in the
notation for currents since lla e llb =17, and i e = lzC
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Fig. 2.7 Delta-delta-connected transformer

The equivalent circuit of the wye-delta-connected transformer is shown in Fig. 2.6.
For the wye-delta-connected transformer, if Vj p is the base voltage on the transformer
side with N turns, the base voltage on the other side of the transformer is

Ny

V3N,

For balanced sinusoidal operation, if resistance and leakage inductance are neglected,
the phase shift between terminal voltages on the two sides of the transformer is 30°.

The equivalent circuit of the delta-delta-connected transformer is shown in
Fig.2.7. For the delta-delta-connected transformer, if V| p is the base voltage on the

Vap £ Vi (2.21)
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transformer side with N turns, the base voltage on the other side of the transformer
is

Vag & —Vip (2.22)

2.2 Transmission Line

A transmission line has four parameters: series resistance, series inductance, shunt
conductance, and shunt capacitance. These parameters are distributed uniformly
throughout the length of the transmission line. The series resistance in each phase is
denoted by R. For an overhead transmission line, the shunt conductance represents
the effects of leakage current over the surface of the insulator and corona. The shunt
conductance in each phase is denoted by G.

The expression for inductance and capacitance are derived for overhead transmis-
sion lines. The derivations assume that the conductors are straight.

2.2.1 Inductance

2.2.1.1 Transmission Line with Three Conductors

Let the transmission line consist of three conductors, one for each phase, of radius r
as shown in Fig. 2.8. Let the current in these conductors be iy, ip, and i, with uniform
current density. The expression for inductance is derived assuming that

ia+ip+ic=0 (2.23)

It is assumed that the three conductors are transposed if not spaced symmetrically,
in order to have a symmetrical system; the transmission line is divided into three
sections of equal lengths and each conductor occupies each of the three positions 1,
2, and 3 for one third of the transmission line length. Let the conductors a, b, ¢ occupy
positions 1, 2, 3, respectively, in the first section, positions 2, 3, 1, respectively, in
the second section, and positions 3, 1, 2, respectively, in the third section.

Consider a tube of radius x < r and thickness dx in phase a conductor in section 1
as shown in Fig. 2.8; the tube is coaxial with the conductor. Consider a filament in
this tube with cross-sectional area xdxdf; d6 is the angle subtended at the axis of the
conductor by the filament [2]. Consider the closed path consisting of this filament
and an arbitrarily located (at P) straight line parallel to the conductors. Let v ¢4,
V¥ b, and ¥ 7. be the flux linkage of this closed path in section 1, due to iy, ip, and
i, respectively. The power delivered to this closed path, due to i,, is equal to
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Fig. 2.8 Cross section of transmission line conductors
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The power delivered to phase a, due to i,, is obtained by integrating this expression
over the cross-sectional area of the conductor as follows.

1 dig /271 ' ¥ raxdxdd (2.25)
= — o XAX .
p 7'[7'2 dr 0=0Jx=0 fa

Let Yaq, Yap, and ¥, be the flux linkages of phase a in section 1 due to iy, ip, and
i, respectively. The expression for p can also be written in terms of flux linkage of
phase a due to i,, as

d di
p= i = Y (2.26)
From (2.25) and (2.26),
1 2 r
Vaa = — ¥ faxdxdd (2.27)

Tre Jo=0Jx=0
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Similarly, it can be shown that

1 2
Vab = — Y rpxdxdd (2.28)
r 6=0.Jx=0
Vac = —> / / Y exdxdd (2.29)
nr

Hence, the flux linkage of a phase is the average of the flux linkages of all the
filamentary closed paths in that phase.

The flux linkage of a phase can be determined from the flux densities due to
currents in the three conductors. The flux density B, due to i, can be obtained from
Ampere’s law.

T
lgX
—MZO az ifx' <r
B,=1{ " (2.30)
gola, ifx' >r
TX

where x’ is the distance from the axis of conductor a and g is permeability of free
space; permeability of air and conductor are almost equal to that of free space. Then,

I [ il (1 2 D
Via = 5/ B,dx' = X0 (_ -2 4 71) 2.31)
X

6 2 272

where [ is the length of the transmission line. From (2.27) and (2.31),

2
Hoig x Dy Holal
= — - — In — ) xdxdf = In —(2.32
Vaa /0 671( 2r2+nr)xx 6 ( )
where ' £ e~ /4y,
The flux density due to ij, is
b=oop D =r (2.33)

where D’ is the distance from the axis of conductor . Then,

1 [P iyl D
V=1 / BydD' = S (2.34)
D

where D = (D%, + x> — 2D1px cos 0) 2 From (2.28) and (2.34),

woipl . Do Hoipl D,
= In —xdxdf = In — 2.35
Vab = 7r? /9 /x —o 6m D" o7 Di> 2.35)




2.2 Transmission Line 53

Similarly,

In — (2.36)

The flux linkage of phase a in section 1 is

pmol (- D1 .. Dy . Ds
Yal = Yaa + Vab + Yac = iqIn - +ipln — +i.ln — (2.37)
(4 r D> D3

Similarly, the flux linkage of phase a in sections 2 and 3, v,2 and ¥,3, respectively,
are given by

ol D3 D

Va2 = 6 iq ln + ip ln + icIn E (2.38)
pL()l D3 D D»

In — In — In — 2.39

Va3 = o (za n— +iyln D, +icln D23) (2.39)

The flux linkage of phase a is

% = 1ﬁal + ‘/faZ + l,003 (2-40)

From (2.37) to (2.40),

2r r D12D23 D3 D12 D23 D3
(2.41)
The coefficient of i, is self inductance and the coefficients of i, and i, are mutual
inductances. Using (2.23), the self and mutual inductances can be replaced by an
equivalent self inductance L.

! DD, D3)'/3 D1DyD3 \'/? D1DyD; \'/?
wa:m)|:ialn(l23) _thn( 123) +icln( 123)

[ . (DypDyD3)'/3
[ (D12D23D31)

i - (2.42)

2.2.1.2 Composite Conductors

A composite conductor consists of two or more individual conductors. Examples
of composite conductor are bundled conductor, stranded conductor, and conductor
of a multi-circuit transmission line. Figures2.9, 2.10, and 2.11 show a double cir-
cuit transmission line, a transmission line with bundled conductors, and a stranded
conductor, respectively.
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Fig. 2.9 Double circuit
transmission line

Fig. 2.10 Transmission line
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l< <

g D > D \
Fig. 2.11 Stranded conductor
Fig. 2.12 Transmission line 12
with composite conductors 11 O oP

Consider the transmission line consisting of a composite conductor in each phase,
as shown in Fig.2.12 [2]. Let each phase consist of n individual conductors of
radius r.

It is assumed that the three phases are transposed if not placed symmetrically;
the transmission line is divided into three sections of equal lengths and each phase
occupies each of the three positions 1, 2, and 3 for one third of the transmission line
length. Let phases a, b, ¢ occupy positions 1, 2, 3, respectively, in the first section,
positions 2, 3, 1, respectively, in the second section, and positions 3, 1, 2, respectively,
in the third section. The position of each individual conductor is identified by two
numbers as in Fig. 2.12; the first number is that of the position of the phase and the
second number is that of the position of the individual conductor. Let the current in
the individual conductors of phases a, b, ¢ be i, /n, ip/n, i./n, respectively. This is
true if the individual conductors in each phase are transposed so that each individual
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conductor occupies each of the n positions for equal lengths along a section. i,, ip,
and i satisfy (2.23). Consider the closed path consisting of the individual conductor
of phase a at position 1k for length [ /(3n), and the straight line (at P) parallel to the
conductors. Similar to (2.37), the flux linkage of this closed path is

Mol -
Valk = 7 2

D D
Tipln 2" 4. In 3’”} (2.43)
Difim Dirom Dij3m

where D pigm (p and g are 1,2, or 3, and pk # gm) is the distance between the axes
of conductors at positions pk and gm, D pipr = r’,and D pk 18 the distance between
point P and the axis of conductor at position pk. It is evident from (2.27) to (2.29)
that the flux linkage of a phase is the average of the flux linkages of the closed paths
formed by individual conductors in that phase. Therefore, the flux linkage of phase
a in section 1 is

n

= g 23 [

k=1 m=1

) D3,
»1In +i.In
lklm Diom Di3m

Similarly, the flux linkage of phase a in sections 2 and 3, v,2 and ¥,3, respectively,
are given by

n

Va2 = MOZZZZ[ +llnD

. D,
+i.In D—”’] (2.45)

prr Dojom 2k3m 2kim
n
ol Dy . Dy,
Va3 = |:1 In +ipIn +ic1n ] (2.46)
“ 7 6mn? ;n; “" Dstam D3kim Diyom

The flux linkage of phase a is

Va = Va1 + Va2 + Ya3 (2.47)

From (2.23) and (2.44) to (2.47), the equivalent self inductance of each phase is

(2.48)

where

n_on 1/Gn?)
Dy, = (H I1 D1k2mD2k3mD3klm) (2.49)

k=1 m=1

n n 1/(3n%)
Ds = (H H lelmD2k2mD3k3m) (250)

k=1 m=1
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D, is known as mutual geometric mean distance (GMD) and D; is known as self
GMD.
For the double circuit transmission line shown in Fig.2.9,

1/6
Dy = (2d12d22d3d4) 2.51)

1/6
D, = (e_3/4r3d52d6) (2.52)

where r is the radius of the individual conductors. For hexagonal spacing (d4s = d
and dg¢ = ds), transposition is not necessary.

For the transmission line with bundled conductors shown in Fig. 2.10, where each
bundle (composite conductor) consists of two individual conductors,

) 1/12
D, = [41)6 (02 — dz) (41)2 - dz)} (2.53)
1/2
D, = (e_l/4rd) (2.54)
where r is the radius of the individual conductors.
For the stranded conductor shown in Fig.2.11,
Dy = 2(364.5)1/4% ¢=1/28,. (2.55)

where r is the radius of the strands.

Itis to be noted that the transposition of the individual conductors in the composite
conductor is not necessary for the three phases to be symmetrical; but the assumption
of transposition helps in easily obtaining the expression for inductance.

2.2.2 Capacitance

2.2.2.1 Transmission Line with Three Conductors

Consider the transmission line with three conductors shown in Fig. 2.8. Let the charge
per unit length on the conductors of phases a, b, and ¢ be q,, q», and g, respectively,
such that

qa+qp+qc=0 (2.56)
The radius of the conductors is assumed to be very small compared to the distance

between any two conductors. Therefore, the potential of conductor a with respect to
the point P is
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D, D, D3
Vyp = galn — + gp ln + geln — (2.57)

2men D3

€o is the permittivity of free space; permittivity of air is almost equal to that of free
space. The potential of the conductor is obtained by allowing P to recede to infinity.
As P recedes to infinity, using (2.56), the potential of conductor a for symmetrical
spacing of conductors (D12 = D3 = D31 = D) is

Vg =

1 1 1
(qa In~+gsln - +cln —) (2.58)
271

From (2.56) and (2.58), the capacitance in each phase is

2mepl

~ In(D/r) (239

If the conductors are not spaced symmetrically, it is assumed that transposition
is done in order to have a symmetrical system. Let the conductors a, b, ¢ occupy
positions 1, 2, 3, respectively, in the first section, positions 2, 3, 1, respectively, in the
second section, and positions 3, 1, 2, respectively, in the third section. The charge
per unit length is not same in all three sections for any phase whereas the potential
is same. It is assumed that the charge per unit length is same in all the three sections
[3]; let the charge per unit length on the conductors of phases a, b, and ¢ be ¢,
qp, and q., respectively, which satisfy (2.56). With this assumption, the potential of
conductor a in sections 1, 2, and 3, v,1, v42, and v,3, respectively, are given by

Vgl = ! (Qa In 1 + gpIn L + gc1In L) (2.60)
27‘[8 r Ds
1 1 1 1

v = 5 (qa In -+ gyln 5 +cn D_lz) 261)
1 1 1

Vg3 = e (Cla In - +¢qpIn D_31 +gcln D_23) (2.62)

The potential of conductor a is assumed to be given by the following equation [3].

1
Vg = g(val + Va2 + v43) (2.63)

From (2.56) and (2.60) to (2.63), the capacitance in each phase is

2 [
c_ meol : (2.64)
In [(D12D23D31)' 3 /r]
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2.2.2.2 Composite Conductors

Consider the transmission line with composite conductors shown in Fig.2.12. It is
assumed that the three phases are transposed if not placed symmetrically. Let the
composite conductors of phases a, b, ¢ occupy positions 1, 2, 3, respectively, in
the first section, positions 2, 3, 1, respectively, in the second section, and positions
3, 1,2, respectively, in the third section. Let each individual conductor of a composite
conductor occupy each of the n positions for equal lengths along a section. Let the
charge per unit length on the individual conductors of phases a, b, and ¢ be g, /n,
qp/n, and g./n, respectively, which satisfy (2.56). It is assumed that the charge
per unit length on all individual conductors is same along the entire length of the
transmission line. The potential of phase a individual conductor at position 1k is

! Z [ n_ +qpl : +q.1 : } (2.65)
Valk = da In gp In gdcIn .
2meon = Dijim Do Dijam

!/
where D pkgm
conductors at positions pk and gm; D; kpk is the radius of the individual conductors.
The potential of phase a composite conductor in section 1, v,1, is assumed to be

equal to the average of the potentials of the individual conductors.

(pandgq are 1,2, 0r 3, and pk # gm)is the distance between the axes of

l < [ 1 1 1
Vgl = ——— E E galn +gpIn — + gcIn ] (2.66)
2 eon’ P — Diyim Diom Diam

The potential of phase a composite conductor in sections 2 and 3, v,2 and v,3,
respectively, are given by

Vg2 = Smeon? Z Z |:6]a In D +4gpIn o +gcIn D ] (2.67)

k=1 m=1 2k2m 2k3m 2k1m
! i i |: 1 ! +aqpl ! +4qcl ! :| (2.68)
Va3 = qa qp 1 qcIn .
27[80”2 k=1 m=1 Dék3m Dﬁ/’:klm DékZm

The potential of phase a composite conductor is assumed to be given by

1
Vg = g(val + Va2 + vg3) (2.69)

From (2.56) and (2.66) to (2.69), the capacitance in each phase is

2eol
C=_ T8 (2.70)
In (D /D})
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Fig. 2.13 Conductors and
their images

where

n n 1/(3”2)
Dy, = (H H /lk2mDék3mDéklm) (2.71)

k=1m=1

noon 1/(3n%)
D; £ (H H D/lk]mDékZngkSm) (2.72)

k=1m=1

2.2.2.3 Effect of Earth

The earth affects the distribution of the electric field due to charge on a conductor.
The earth is at zero potential. The effect of earth is same as that of the image of the
conductor [3]. The image of the conductor with charge g, per unit length is a con-
ductor with charge —g, per unit length located at the same distance from the earth’s
surface below it as shown in Fig.2.13. The images of conductors at positions 1, 2,
and 3 are at positions 1’, 2’, and 3, respectively.

Transposition of conductors is assumed. Let the conductors a, b, ¢ occupy posi-
tions 1, 2, 3, respectively, in the first section, positions 2, 3, 1, respectively, in the
second section, and positions 3, 1, 2, respectively, in the third section. Let the charge
per unit length on the conductors a, b, and ¢ be g,, qp, and g., respectively, which
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satisfy (2.56). It is assumed that the charge per unit length is same in all the three
sections. The potential of conductor a in sections 1, 2, and 3, v,1, v42, and v,3,
respectively, are given by

| ln1 In ! + In ! In ! + In ! In LY
v, = - _— _ I —_— —
al 2meg _qa r hy b Diy hi2 1 D3 h3i /|
(2.73)
1T : 1 1 1 n : 1 I 1 n : 1 I 1 \]
= n— —In— n— —In— n— —1In—
vaz 2meq _qa r ho b Dy3 h3 e Dy hi2) |
(2.74)
LT 1 ! 1 ! + 1 ! 1 ! + 1 ! 1 LY
Vg3 = n—-—In— n— —In— n— —1In
a3 270 _Qa , I3 b D31 ha1 qc Dys hy)
(2.75)

where r is the radius of the conductors. The potential of conductor a is assumed to
be given by

1
Vg = g(val + Va2 + v43) (2.76)

From (2.56) and (2.73) to (2.76), the capacitance in each phase is

2mepl
C = 73 e (2.77)
1 L12D2sDs) = (h12h23h31)

r hihahs

Since hiaha3h31 > hihahs, the effect of earth is to increase the capacitance.

2.2.3 Transmission Line Model

Let vy, vp, and v, be the voltages with respect to the neutral, i,, i, and i, be the
currents, at the point which is at distance x from the receiving end, as shown in
Fig.2.14. The currents satisfy (2.23). Then, the voltages and currents are related by
the following equations.

v, R. L, 078
ax 1T T o :
avp R . L 0ip,
M _ By 20 279
ox T T T (2.79)
ove R . L di.

=2 2l 2.80
ax 1T T (2.80)
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Sending
end

Fig. 2.14 Transmission line

digy
0x
dip
0x
dic

Pl

v,
v

a
Uc

G
[
G
l
G
l

b +

C vy,
[ ot
C dvp
| ot
C dv,
[ ot

The equations for the three phases are decoupled.
Dividing (2.78)—(2.80) by V3, and (2.81)—(2.83) by Ip gives the equations in per

unit quantities.

v,
0x
vy
ax
AV,
dx
dig
ax
iy
ax
A,

0x

_R- N X 0i,
T e ot
R- N X 9i,
= —1 _—
1" log or
R- N X 9i,
= —1 —_—
[ lwg ot
G_ B 9,
T, + —
I log ot
6_ B ovp
12T lwg ot
G_ B 07,
l lwp 0t

61
Receiving
end
.
i
(2.81)
(2.82)
(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

where X £ wpL, B £ wpC, base admittance Yz £ 1/Zp, and base capacitance
Cp2v /wp. Two special cases: lossless transmission line and sinusoidal operation,

are considered.
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2.2.3.1 Lossless Transmission Line

If R =G = 0, then (2.78)—(2.83) can be written as follows.

0V, L dig
ax 1 or
dia _ C v,
ax 1 ot
avp _ L 0ip
ax [ or
dip _ C dvp
ax 1 ot
dve L di
ax 1 ot
dic  C v,
ax 1 ot

If the subscripts a, b, and ¢ are not shown, the solution for any phase is

i(x,1) = = fi(x —vpt) — falx + vpt)
v(x,t) = Zcfi(x —vpt) — Ze fo(x + vpt)

(2.90)
(2.91)
(2.92)
(2.93)
(2.94)

(2.95)

(2.96)
(2.97)

where v, £ /+/LC and Z. £ /L/C [4]. v, is called phase velocity and Z, is
called characteristic impedance. f] and f> are functions of x and 7. Let subscripts
S and R denote sending end quantities and receiving end quantities, respectively.
If only terminal response is of interest, the following method known as Bergeron’s

method is used. From (2.96) and (2.97),
ir() =i(0,1) = —fi(—=vpt) — fa(vpl)

vr(0) = v(0,1) = Z¢ fi(=vpt) — Zc fr(vpt)

is(l‘—i)zi(l,t—vL)=—f1(21—vpt)—f2(vpt)

Up p

(2.98)
(2.99)

(2.100)

Us (r - L) =v (1, r— L) =Zcfi (21 —vpt) = Zc f2 (vpt) (2.101)

Up Up

Elimination of f} (—vpt), fi (21 — v,,t), and f>(v,t) from (2.98) to (2.101) gives

iR(t) =is |t ! +1 t ! ! (1)
IR(t) =15 o chs o ZCUR

(2.102)
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This equation relates the receiving end current and voltage. Similarly, one can obtain
the following equation which relates the sending end current and voltage.

. . l 1 l 1
is(t)y =ip (t — —) — —UR (t — —) + —wg(1) (2.103)

vp Z: vp Z:

Dividing (2.102) and (2.103) by Ip gives the equations in per unit quantities.

- - l 1 _ l 1 _
lR(l)ZlS(t——)+_—US (f——) —7vg(1) (2.104)
v Z.

p

_ - l 1 1
is(t) =ipR (t — E) — 7_051? (t — E) 7—53(1‘) (2.105)

2.2.3.2 Sinusoidal Operation

Let the voltages and currents be sinusoidal with angular frequency w,. Then voltages
and currents can be represented by phasors. Let V and I be the notations for phasor
representation of v and 7, respectively. If subscripts a, b, and ¢ are not shown, (2.78)—
(2.83) can be written in the following form for each phase.

dvV. R+ jw,L

= N TI%ky 2.106
dx l ( )
dl G +jw,C

d_ oty (2.107)
dx l

If Vg and Iy are the receiving end voltage and current, respectively, the solution of
(2.106) and (2.107) is

V = cosh(yx)Vg + Z. sinh(yx)Ig (2.108)
1

1= A sinh(yx)Vg 4+ cosh(yx)Ir (2.109)
c

where Z, is called characteristic impedance and y is called propagation constant.

R+jw,L 5 /(R+]jw,L)(G + jw,C)
G+joC /

(2.110)

If Vg and I are the sending end voltage and current, respectively, then from (2.108)
and (2.109),

Vg = cosh(yl)Vg + Z, sinh(y)Ir (2.111)
1

Is = A sinh(y[)Vg + cosh(yDIg (2.112)
c
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Fig.2.15 Equivalent 7 circuit I
of transmission line S

V4 I

Fig. 2.16 Nominal 7 circuit I
of transmission line i

R+j o, L I

(G+jw,C)/2

(GHw,0)/2

Each phase of the transmission line can be represented by the equivalent 7 circuit
shown in Fig.2.15, where Z is impedance and Y is admittance. For this circuit, the
following equations can be written.

Y7z
Vg = (1—}—7) V¢ + ZIR (2.113)

YZ YZ
IS=Y(1+T)VR+(1+T)IR 2.114)

Equating the coefficients of Vg and Ir in (2.111) and (2.113) gives

inh(y! tanh(y1/2
7 = R+jo, )30 v (6 4 jw,0) 02 (2.115)
vl vl/2
It is to be noted that
limZ = R + jw,L, lim ¥ = G + jw,C (2.116)
=0 =0

If Z and Y in Fig.2.15 are replaced by the values of their respective limits as [ — 0,
the circuit shown in Fig.2.16 is obtained. This circuit is called nominal 7 circuit.
For transmission lines of length less than 240 km, the nominal 7 circuit shown in
Fig.2.16 is a good approximation [3].



2.3 Kron’s Transformation 65

2.3 Kron’s Transformation

Kron’s transformation does a transformation of the three-phase voltages and currents
as follows [5].

Up Vg iD ia
vo | 2Tk |w |, |io | 2Tk | is (2.117)
Vo Ve io ic

where

V2 cos (wot) V2 cos (wot — 27 /3) V2 cos (wot + 271/3)
Tx = 7 V2sin (wot) /2 sin (wot — 27/3) ~/2sin (wot +27/3) | (2.118)
3 1 1 1
where w, is the operating frequency. It can be verified that T I = TI? .

If vg = ig = 0, then (2.117) can be written as

v Va i fa
D | _ 4/ D | _ 4/ .
|:in| =Tg | v |, |:in| =Ty l.b (2.119)
Ve e
where
_ 1 [W2cos (wot) v/2cos (wot — 27/3) v/2cos (wot + 27/3) (2.120)
K /3 | V2sin (wot) v/2sin (ot —27/3) +/2sin (wot + 27/3) :

In certain studies, high-frequency transients in the transformer and the trans-
mission line are neglected. Then, Kron’s transformation results in simplification of
equations. Kron’s transformation also enables generalization of the definitions of
certain electrical quantities.

2.3.1 Definitions

There are quantities such as voltage magnitude, phase angle, frequency, reactive
power etc. which are well defined in steady state when voltages and currents are
sinusoidally varying and balanced. The definition of these quantities will be general-
ized so that they can be used even in the presence of harmonics and during a transient
when the voltage and current are not sinusoidal; however, these definitions are made
with the assumption that vo = ip = 0.

Consider the shunt-connected equipment shown in Fig.2.17. Let v,, vp, and v,
be the voltages of terminals a, b, and ¢, respectively, with respect to the neutral.
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Fig. 2.17 Shunt-connected i
. a
equipment a«—
Iy
b
A
C —_—

The magnitude V and phase angle ¢ of the voltage of the three-phase bus, at
which the equipment in Fig.2.17 is connected, are defined as

V£ Juh+vh (2.121)
¢ 2an ' 22 (2.122)
vo

In other words, VZ¢ = vg + jup. vg and vp can be expressed in terms of V and
¢ as follows.

vg = Vcos¢p,vp = Vsing (2.123)

If v4, vp, and v, are obtained from these expressions for vg and vp using (2.119),
then

2

Vg = \/;V sin(wyt + @) (2.124)
2 . 2w

vp = \/;V sin (a)ot + ¢ — ?) (2.125)
2 . 2

Ve = \/;V sin (a)ot + ¢+ ?) (2.126)

Therefore, if v,, vp, and v, are sinusoidal with angular frequency w, and balanced,
V is the rms value of the line-to-line voltage and ¢ is the phase angle of v,.
The frequency at the three-phase bus f is defined as

1 d¢

2.127
2 dr ( )

fEfo+

where f, £ w, /Q2m).
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Similar to voltage magnitude and phase angle definitions, the magnitude / and
phase angle v of the current drawn by the equipment in Fig.2.17 are defined as

1£\/i+ij (2.128)
¥ 2 an~! 2 (2.129)
iQ

If iy, ip, and i. are sinusoidal with angular frequency w, and balanced, then I is /3
times the rms value of i,, ip, Or i, and 1 is the phase angle of i,.
The power drawn by the equipment in Fig.2.17 is

P = v4iq + vpip + veic (2.130)
From (2.119),
P =vpip +vgig (2.131)
It can be seen that
P =Re[VZpIZL(—)] (2.132)

P is also known as active power. The reactive power Q drawn by the equipment in
Fig.2.17 is defined as

Q £ Im[VZpI /()] = vpig — vgip (2.133)

The active current i4 and the reactive current ig drawn by the equipment in
Fig.2.17 are defined as

in 2 Icos(p — ) =igcosp +ipsing (2.134)
] Isin(p — ) =igsing —ipcos¢ (2.135)

(1>

LR

Itisto be noted thatiy > 0 < P > 0,andig > 0 <& Q > 0. The reactive current
is said to be inductive if it is positive, and is said to be capacitive if it is negative.

Consider the series-connected equipment shown in Fig.2.18. The magnitude V
and phase angle ¢ of the voltage across the equipment in Fig.2.18 are given by
(2.119)—(2.122) using v,, vp, and v, of Fig.2.18. Similarly, the magnitude / and
phase angle ¥ of the current through the equipment in Fig. 2.18 are given by (2.119),
(2.120), (2.128), and (2.129) using i,, ip, and i, of Fig.2.18. The active voltage v4
and the reactive voltage vy across the equipment in Fig.2.18 are defined as

va £ Veos(gp — ) (2.136)
vr £ Vsin(gp — ¥) (2.137)
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Fig. 2.18 Series-connected

equipment —
—
-y, o+
Iy
—
—
-y, 4
L
E—
—
-y o+

If vy is positive, active power is supplied by the equipment, otherwise, active power
is drawn by the equipment. The reactive voltage is said to be capacitive if it is positive
and inductive if it is negative.

2.3.2 Application to Transformer

Equations (2.18)—(2.20) of the wye-wye-connected transformer can be written as

V24 ﬁm o _ éa 1 o _ dza/dt

v | =9 | = (Ri+R2) | ip | —— (X1 4+ X2) | dip/dr [(2.138)
— ) wpR T

Ve Vie ic di./dt

By Kron’s transformation,

7 [ Top 7| 71D = s\ |iD 1 — d r[ip
w7 o )= [5p |- @m0 ] L onemy g (w2 ])

ig iQ
(2.139)
T Vig 7 V2q l_ za
where |:_1D:| £ Te | v | [_ZD:| £ Tt | vap | and |:—_D:| £ T | ip
v v Z
12 Vie 20 Ve 0 ic

Pre-multiplying (2.139) by T}, gives

_ _ — - \7 Wo — <\ 7 1 < dip
= — (R R —— (X X - — (X X7) — (2.140
v2p =Vip — (R1 + R2)ip op (X1+X2)ig op (X1 +X2) I ( )
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Fig.2.19 Equivalent 7 circuit i
a

I
of phase a of transmission line R % Ra
+ +
G, L c, G Cc,——
¥sa EE i ~ ze Ee 56 AT~ YRa

_ _ - — - 10) — - 1 — . d
V20 =Tig — (R + R)ig + —= (X1 + Xa)ip — — (X1 + X2) =2 (2.141)
(9F;] wB dt

If the high-frequency transients are to be neglected, then the last term on the right-
hand side of (2.140) and (2.141) are set to zero. For balanced sinusoidal operation at
angular frequency w,, all transformed variables are constant and hence the last term
on the right-hand side of (2.140) and (2.141) is equal to zero. The factor w,/wp in
one of the terms of (2.140) and (2.141) is usually approximated to 1. Therefore,

p =0ip — (R1 4+ Ro)ip — (X1 + X2)ig (2.142)
V0 =719 — (R + Ro)ig+ (X1 +X2)ip (2.143)

2.3.3 Application to Transmission Line

For sinusoidal operation, the equivalent 7 circuit of the transmission line shown in
Fig.2.15 is applicable. Let Z = R, + jw,L, and Y = G, + jw,C.. The circuit of
Fig.2.15 can be redrawn as shown in Fig. 2.19 for phase a.

From the circuit diagram in Fig.2.19,

di,

VSq — VRa = Reiq + Lea (2.144)
. . G C de
isa —ia = Tevsgl {T“ (2.145)
. . G, Ce dvR
ig —IiRa = TLURQ TL dta (2.146)

Similarly, for phases b and c,
di
vsh — VRb = Reip + Led—f (2.147)
. dic
USc — VRe = Reic + Lga (2.148)
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G, C, dugp
oy — i) = — _— 2.149
isp —ip = —~vsp + > dr ( )
. . G, C. dvg,
— = —vg + — —= 2.150
ISc — l¢ ) USc 2 dr ( )
G, C, dvgp
[ — iRy = — —_— 2.151
ib—1rp = —"URD + BT ( )
. . G, C dvR.
ic —ige = 7‘ch 76 dt‘ (2.152)
By Kron’s transformation, (2.144)—(2.152) can be written as
. . dip
Vsp —VRD = Reip + woL.ig + Le? (2.153)
. . dig
vsg —VRQ = Reig — woL,.ip + Le? (2.154)
. . G C C deD
ISsp —1lp = TEUSD +w07€v5Q 76 a (2.155)
. . G C C dvs
Isg —lg = TEUSQ — wa?evSD + 76 dtQ (2.156)
. . G C C dvRD
Ip —IRD = TEvRD—i—wo?evRQ 78 ar (2.157)
. . G C C dvR
g —lRQ = TEURQ—Q)()?(EURD 76 dtQ (2.158)
vsSD Vsa URD VRa isp tSa
where |: ] £ Tt | vsp | [ i| £ Tt | vro |» [ ] £ T | isp |s
vso VUSc VRO URc 150 ise

~.

. LRa . a
'RD | & Ti | irp |, and |:1.D :| £ Tt | ip |. For balanced sinusoidal operation
RO iRc ‘o ic

at frequency w,, all transformed variables are constant. Therefore, (2.153)—(2.158)
can be written as

vsp — URD = Reip + woLeig (2.159)

vsg —VRo = Reig — woLeip (2.160)
G C

isp—ip = TKUSD—FLUo?eUSQ (2.161)
. . G C.

isp —ig = Test — LL)DTLUSD (2.162)
G C

ip—1Iirp = TKURD—F(UO%URQ (2.163)
G C

ig —irg = —eURQ — a)o—eURD (2.164)

2 2
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Dividing (2.159) and (2.160) by Vg, and (2.161)—(2.164) by Ip gives the following
equations in per unit quantities.

Vsp — Vrp = Reip + —2Xoig (2.165)
(9F;]

Usg —Uro = Reig — ;U—;YJD (2.166)
- - G wo Be
isp—ip = 78551) + iéﬁsg (2.167)
- - G B
isg —ig= TeUSQ - z—;—eﬁsn (2.168)
- G wo B,
ip—irp = fiRD+w—”7€BRQ (2.169)

B

< - Ee_ Wo Ee_
19 —IRQ = TURQ_ETURD (2.170)

where X, £ wpL, and B, £ wpC,. The factor w,/wp in one of the terms in all
equations is usually approximated to 1. As an approximation, (2.165)—(2.170) are
used even during transients.

2.4 Load

In many system studies, the effects of the subtransmission and the distribution net-
works along with the connected load devices are represented by an aggregated load
at a transmission substation. The load model is given by the expressions for active
power P and reactive power Q drawn, in terms of voltage magnitude and/or frequency
[5, 6]. Two commonly used models are:

V a

P=P, (7) [1+kpr (f = fo)] (2.171)
174 b

0=0, (7) [1+ker (f — fo)] (2.172)

AN 1%
P =P, [m (7) tpyt p3] [14kpr (f = f)] (2.173)

AN 1%
0= 0|4 (7) a2y +a3 [14kyr (f = fo)] (2.174)
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Subscript o identifies the values of the respective variables at the operating point.
a, b, p1, p2, p3, 91, q2, q3, kpr, and kg, are constants; p; + p» + p3 = 1 and
q1 + g2 + q3 = 1. If frequency dependence is not to be considered, ks and k, s are
set to zero.

Equations (2.171)—(2.174) in per unit quantities are

_ PV B
P= v V[ ks (f = fo)] (2.175)
_ Ovb

=_ b Vg —

P=g517 [ _gvz +p2VBV +P3} [L+kpr(f = f)]  177)
— o| V32 Vi —

0= ? [ _gVZJ”]ZVBV “B} [1 4 ks (f = 10)] (2.178)

B o
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