
Chapter 2
Transformer, Transmission Line, and Load

2.1 Transformer

2.1.1 Single-Phase Transformer

The single-phase transformer consists of a core and two or more windings. Figure 2.1
shows a transformer with two windings.

Let the transformer be ideal: the windings have zero resistance and the core has
infinite permeability [1]. Infinite permeability means that there is no flux outside the
core.

N1 and N2 are the number of turns in the windings. If the flux in the core is φ,
the induced emfs in the windings are

e1 = N1
dφ

dt
(2.1)

e2 = N2
dφ

dt
(2.2)

From (2.1) and (2.2),

e1

e2
= N1

N2
(2.3)

The relation between i1 and i2 is obtained from Ampere’s law. Due to infinite
permeability, the magnetic field intensity in the core is zero. Application of Ampere’s
law to the closed path in the core, shown in Fig. 2.1, gives

i1

i2
= N2

N1
(2.4)
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Fig. 2.1 Single-phase
transformer with two windings
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Fig. 2.2 Single-phase
transformer with three
windings
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Fig. 2.3 Representation of
ideal transformer
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For the three-winding transformer shown in Fig. 2.2, where the number of turns
in the windings are N1, N2, and N3,

e1

e2
= N1

N2
,

e1

e3
= N1

N3
(2.5)

N1i1 = N2i2 + N3i3 (2.6)

The two-winding ideal transformer can be represented by the equivalent circuit
shown in Fig. 2.3. The dots shown at a terminal of each winding indicate the winding
terminals which simultaneously have the same polarity due to the emfs induced.

There are applications where the ideal transformer cannot be used. Then the
equivalent circuit of the transformer is given by Fig. 2.4. R1 and R2 are the resistances
of the two windings. Though the permeability of the core is high, it is not infinite,
and hence there is flux outside the core which links some or all turns of only one
winding and induces an emf. This flux is called leakage flux and its effect is modelled
by leakage inductances L1 and L2. e1 and e2 are related by (2.3). Due to finite
permeability of the core, (2.4) is not exact but is used as an approximation.
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Fig. 2.4 Equivalent circuit of transformer

2.1.2 Three-Phase Transformer

A three-phase transformer can be obtained from three identical single-phase trans-
formers. Figure 2.5 shows the equivalent circuit of the wye-wye-connected trans-
former. The two windings of a single-phase transformer are shown parallel to each
other.

Let v1a , v1b, and v1c be the potentials of the terminals 1a, 1b, and 1c, respectively,
with respect to the neutral. Let v2a , v2b, and v2c be the potentials of the terminals
2a, 2b, and 2c, respectively, with respect to the neutral. The equations for the wye-
wye-connected transformer are

v1a = i1a R1 + L1
di1a

dt
+ e1a (2.7)

v1b = i1b R1 + L1
di1b

dt
+ e1b (2.8)

v1c = i1c R1 + L1
di1c

dt
+ e1c (2.9)

v2a = N2

N1
e1a − N1

N2
i1a R2 − N1

N2
L2

di1a

dt
(2.10)

v2b = N2

N1
e1b − N1

N2
i1b R2 − N1

N2
L2

di1b

dt
(2.11)

v2c = N2

N1
e1c − N1

N2
i1c R2 − N1

N2
L2

di1c

dt
(2.12)

Elimination of induced emfs from (2.7) to (2.12) gives

v2a = N2

N1
v1a −

(
N2

N1
R1 + N1

N2
R2

)
i1a −

(
N2

N1
L1 + N1

N2
L2

)
di1a

dt
(2.13)

v2b = N2

N1
v1b −

(
N2

N1
R1 + N1

N2
R2

)
i1b −

(
N2

N1
L1 + N1

N2
L2

)
di1b

dt
(2.14)

v2c = N2

N1
v1c −

(
N2

N1
R1 + N1

N2
R2

)
i1c −

(
N2

N1
L1 + N1

N2
L2

)
di1c

dt
(2.15)
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Fig. 2.5 Wye-wye-connected transformer

In order to obtain the equations in per unit quantities, the equations are divided by
the base voltage. If V1B is the base voltage on the transformer side with N1 turns,
the base voltage on the other side of the transformer is

V2B � N2

N1
V1B (2.16)

The base values of other quantities are obtained as follows.

I1B = SB

V1B
, I2B = SB

V2B
, Z1B = V1B

I1B
, Z2B = V2B

I2B
(2.17)

Dividing (2.13)–(2.15) by V2B gives

v2a = v1a − (
R1 + R2

)
ia − 1

ωB

(
X1 + X2

) dia

dt
(2.18)

v2b = v1b − (
R1 + R2

)
ib − 1

ωB

(
X1 + X2

) dib

dt
(2.19)

v2c = v1c − (
R1 + R2

)
i c − 1

ωB

(
X1 + X2

) di c

dt
(2.20)

where X1 � ωB L1 and X2 � ωB L2. The subscripts 1 and 2 are not necessary in the
notation for currents since i1a = i2a , i1b = i2b, and i1c = i2c.
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Fig. 2.6 Wye-delta-connected transformer
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Fig. 2.7 Delta-delta-connected transformer

The equivalent circuit of the wye-delta-connected transformer is shown in Fig. 2.6.
For the wye-delta-connected transformer, if V1B is the base voltage on the transformer
side with N1 turns, the base voltage on the other side of the transformer is

V2B � N2√
3N1

V1B (2.21)

For balanced sinusoidal operation, if resistance and leakage inductance are neglected,
the phase shift between terminal voltages on the two sides of the transformer is 30◦.

The equivalent circuit of the delta-delta-connected transformer is shown in
Fig. 2.7. For the delta-delta-connected transformer, if V1B is the base voltage on the
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transformer side with N1 turns, the base voltage on the other side of the transformer
is

V2B � N2

N1
V1B (2.22)

2.2 Transmission Line

A transmission line has four parameters: series resistance, series inductance, shunt
conductance, and shunt capacitance. These parameters are distributed uniformly
throughout the length of the transmission line. The series resistance in each phase is
denoted by R. For an overhead transmission line, the shunt conductance represents
the effects of leakage current over the surface of the insulator and corona. The shunt
conductance in each phase is denoted by G.

The expression for inductance and capacitance are derived for overhead transmis-
sion lines. The derivations assume that the conductors are straight.

2.2.1 Inductance

2.2.1.1 Transmission Line with Three Conductors

Let the transmission line consist of three conductors, one for each phase, of radius r
as shown in Fig. 2.8. Let the current in these conductors be ia , ib, and ic with uniform
current density. The expression for inductance is derived assuming that

ia + ib + ic = 0 (2.23)

It is assumed that the three conductors are transposed if not spaced symmetrically,
in order to have a symmetrical system; the transmission line is divided into three
sections of equal lengths and each conductor occupies each of the three positions 1,
2, and 3 for one third of the transmission line length. Let the conductors a, b, c occupy
positions 1, 2, 3, respectively, in the first section, positions 2, 3, 1, respectively, in
the second section, and positions 3, 1, 2, respectively, in the third section.

Consider a tube of radius x < r and thickness dx in phase a conductor in section 1
as shown in Fig. 2.8; the tube is coaxial with the conductor. Consider a filament in
this tube with cross-sectional area xdxdθ ; dθ is the angle subtended at the axis of the
conductor by the filament [2]. Consider the closed path consisting of this filament
and an arbitrarily located (at P) straight line parallel to the conductors. Let ψ f a ,
ψ f b, and ψ f c be the flux linkage of this closed path in section 1, due to ia , ib, and
ic, respectively. The power delivered to this closed path, due to ia , is equal to
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Fig. 2.8 Cross section of transmission line conductors

dψ f a

dt
ia

xdxdθ

πr2 = 1

πr2 ψ f a
dia

dt
xdxdθ (2.24)

The power delivered to phase a, due to ia , is obtained by integrating this expression
over the cross-sectional area of the conductor as follows.

p = 1

πr2

dia

dt

∫ 2π

θ=0

∫ r

x=0
ψ f a xdxdθ (2.25)

Let ψaa , ψab, and ψac be the flux linkages of phase a in section 1 due to ia , ib, and
ic, respectively. The expression for p can also be written in terms of flux linkage of
phase a due to ia , as

p = dψaa

dt
ia = ψaa

dia

dt
(2.26)

From (2.25) and (2.26),

ψaa = 1

πr2

∫ 2π

θ=0

∫ r

x=0
ψ f a xdxdθ (2.27)
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Similarly, it can be shown that

ψab = 1

πr2

∫ 2π

θ=0

∫ r

x=0
ψ f bxdxdθ (2.28)

ψac = 1

πr2

∫ 2π

θ=0

∫ r

x=0
ψ f cxdxdθ (2.29)

Hence, the flux linkage of a phase is the average of the flux linkages of all the
filamentary closed paths in that phase.

The flux linkage of a phase can be determined from the flux densities due to
currents in the three conductors. The flux density Ba due to ia can be obtained from
Ampere’s law.

Ba =

⎧⎪⎪⎨
⎪⎪⎩

μ0ia x ′

2πr2 if x ′ ≤ r

μ0ia

2πx ′ if x ′ ≥ r

(2.30)

where x ′ is the distance from the axis of conductor a and μ0 is permeability of free
space; permeability of air and conductor are almost equal to that of free space. Then,

ψ f a = l

3

∫ D1

x
Badx ′ = μ0ial

6π

(
1

2
− x2

2r2 + ln
D1

r

)
(2.31)

where l is the length of the transmission line. From (2.27) and (2.31),

ψaa = 1

πr2

∫ 2π

θ=0

∫ r

x=0

μ0ial

6π

(
1

2
− x2

2r2 + ln
D1

r

)
xdxdθ = μ0ial

6π
ln

D1

r ′ (2.32)

where r ′ � e−1/4r .
The flux density due to ib is

Bb = μ0ib

2π D′ if D′ ≥ r (2.33)

where D′ is the distance from the axis of conductor b. Then,

ψ f b = l

3

∫ D2

D
BbdD′ = μ0ibl

6π
ln

D2

D
(2.34)

where D = (
D2

12 + x2 − 2D12x cos θ
)1/2

. From (2.28) and (2.34),

ψab = 1

πr2

∫ 2π

θ=0

∫ r

x=0

μ0ibl

6π
ln

D2

D
xdxdθ = μ0ibl

6π
ln

D2

D12
(2.35)
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Similarly,

ψac = μ0icl

6π
ln

D3

D31
(2.36)

The flux linkage of phase a in section 1 is

ψa1 = ψaa + ψab + ψac = μ0l

6π

(
ia ln

D1

r ′ + ib ln
D2

D12
+ ic ln

D3

D31

)
(2.37)

Similarly, the flux linkage of phase a in sections 2 and 3, ψa2 and ψa3, respectively,
are given by

ψa2 = μ0l

6π

(
ia ln

D2

r ′ + ib ln
D3

D23
+ ic ln

D1

D12

)
(2.38)

ψa3 = μ0l

6π

(
ia ln

D3

r ′ + ib ln
D1

D31
+ ic ln

D2

D23

)
(2.39)

The flux linkage of phase a is

ψa = ψa1 + ψa2 + ψa3 (2.40)

From (2.37) to (2.40),

ψa = μ0l

2π

[
ia ln

(D1 D2 D3)
1/3

r ′ + ib ln

(
D1 D2 D3

D12 D23 D31

)1/3

+ ic ln

(
D1 D2 D3

D12 D23 D31

)1/3
]

(2.41)
The coefficient of ia is self inductance and the coefficients of ib and ic are mutual
inductances. Using (2.23), the self and mutual inductances can be replaced by an
equivalent self inductance L .

L = μ0l

2π
ln

(D12 D23 D31)
1/3

r ′ (2.42)

2.2.1.2 Composite Conductors

A composite conductor consists of two or more individual conductors. Examples
of composite conductor are bundled conductor, stranded conductor, and conductor
of a multi-circuit transmission line. Figures 2.9, 2.10, and 2.11 show a double cir-
cuit transmission line, a transmission line with bundled conductors, and a stranded
conductor, respectively.
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Fig. 2.9 Double circuit
transmission line
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Fig. 2.12 Transmission line
with composite conductors
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Consider the transmission line consisting of a composite conductor in each phase,
as shown in Fig. 2.12 [2]. Let each phase consist of n individual conductors of
radius r .

It is assumed that the three phases are transposed if not placed symmetrically;
the transmission line is divided into three sections of equal lengths and each phase
occupies each of the three positions 1, 2, and 3 for one third of the transmission line
length. Let phases a, b, c occupy positions 1, 2, 3, respectively, in the first section,
positions 2, 3, 1, respectively, in the second section, and positions 3, 1, 2, respectively,
in the third section. The position of each individual conductor is identified by two
numbers as in Fig. 2.12; the first number is that of the position of the phase and the
second number is that of the position of the individual conductor. Let the current in
the individual conductors of phases a, b, c be ia/n, ib/n, ic/n, respectively. This is
true if the individual conductors in each phase are transposed so that each individual
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conductor occupies each of the n positions for equal lengths along a section. ia , ib,
and ic satisfy (2.23). Consider the closed path consisting of the individual conductor
of phase a at position 1k for length l/(3n), and the straight line (at P) parallel to the
conductors. Similar to (2.37), the flux linkage of this closed path is

ψa1k = μ0l

6πn2

n∑
m=1

[
ia ln

D1m

D1k1m
+ ib ln

D2m

D1k2m
+ ic ln

D3m

D1k3m

]
(2.43)

where Dpkqm (p and q are 1, 2, or 3, and pk �= qm) is the distance between the axes
of conductors at positions pk and qm, Dpkpk = r ′, and Dpk is the distance between
point P and the axis of conductor at position pk. It is evident from (2.27) to (2.29)
that the flux linkage of a phase is the average of the flux linkages of the closed paths
formed by individual conductors in that phase. Therefore, the flux linkage of phase
a in section 1 is

ψa1 = μ0l

6πn2

n∑
k=1

n∑
m=1

[
ia ln

D1m

D1k1m
+ ib ln

D2m

D1k2m
+ ic ln

D3m

D1k3m

]
(2.44)

Similarly, the flux linkage of phase a in sections 2 and 3, ψa2 and ψa3, respectively,
are given by

ψa2 = μ0l

6πn2

n∑
k=1

n∑
m=1

[
ia ln

D2m

D2k2m
+ ib ln

D3m

D2k3m
+ ic ln

D1m

D2k1m

]
(2.45)

ψa3 = μ0l

6πn2

n∑
k=1

n∑
m=1

[
ia ln

D3m

D3k3m
+ ib ln

D1m

D3k1m
+ ic ln

D2m

D3k2m

]
(2.46)

The flux linkage of phase a is

ψa = ψa1 + ψa2 + ψa3 (2.47)

From (2.23) and (2.44) to (2.47), the equivalent self inductance of each phase is

L = μ0l

2π
ln

Dm

Ds
(2.48)

where

Dm �
(

n∏
k=1

n∏
m=1

D1k2m D2k3m D3k1m

)1/(3n2)

(2.49)

Ds �
(

n∏
k=1

n∏
m=1

D1k1m D2k2m D3k3m

)1/(3n2)

(2.50)
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Dm is known as mutual geometric mean distance (GMD) and Ds is known as self
GMD.

For the double circuit transmission line shown in Fig. 2.9,

Dm =
(

2d2
1 d2

2 d3d4

)1/6
(2.51)

Ds =
(

e−3/4r3d2
5 d6

)1/6
(2.52)

where r is the radius of the individual conductors. For hexagonal spacing (d4 = d1
and d6 = d5), transposition is not necessary.

For the transmission line with bundled conductors shown in Fig. 2.10, where each
bundle (composite conductor) consists of two individual conductors,

Dm =
[

4D6
(

D2 − d2
)2 (

4D2 − d2
)]1/12

(2.53)

Ds =
(

e−1/4rd
)1/2

(2.54)

where r is the radius of the individual conductors.
For the stranded conductor shown in Fig. 2.11,

Ds = 2 (364.5)1/49 e−1/28r (2.55)

where r is the radius of the strands.
It is to be noted that the transposition of the individual conductors in the composite

conductor is not necessary for the three phases to be symmetrical; but the assumption
of transposition helps in easily obtaining the expression for inductance.

2.2.2 Capacitance

2.2.2.1 Transmission Line with Three Conductors

Consider the transmission line with three conductors shown in Fig. 2.8. Let the charge
per unit length on the conductors of phases a, b, and c be qa , qb, and qc, respectively,
such that

qa + qb + qc = 0 (2.56)

The radius of the conductors is assumed to be very small compared to the distance
between any two conductors. Therefore, the potential of conductor a with respect to
the point P is



2.2 Transmission Line 57

va P = 1

2πε0

(
qa ln

D1

r
+ qb ln

D2

D12
+ qc ln

D3

D31

)
(2.57)

ε0 is the permittivity of free space; permittivity of air is almost equal to that of free
space. The potential of the conductor is obtained by allowing P to recede to infinity.
As P recedes to infinity, using (2.56), the potential of conductor a for symmetrical
spacing of conductors (D12 = D23 = D31 = D) is

va = 1

2πε0

(
qa ln

1

r
+ qb ln

1

D
+ qc ln

1

D

)
(2.58)

From (2.56) and (2.58), the capacitance in each phase is

C = 2πε0l

ln(D/r)
(2.59)

If the conductors are not spaced symmetrically, it is assumed that transposition
is done in order to have a symmetrical system. Let the conductors a, b, c occupy
positions 1, 2, 3, respectively, in the first section, positions 2, 3, 1, respectively, in the
second section, and positions 3, 1, 2, respectively, in the third section. The charge
per unit length is not same in all three sections for any phase whereas the potential
is same. It is assumed that the charge per unit length is same in all the three sections
[3]; let the charge per unit length on the conductors of phases a, b, and c be qa ,
qb, and qc, respectively, which satisfy (2.56). With this assumption, the potential of
conductor a in sections 1, 2, and 3, va1, va2, and va3, respectively, are given by

va1 = 1

2πε0

(
qa ln

1

r
+ qb ln

1

D12
+ qc ln

1

D31

)
(2.60)

va2 = 1

2πε0

(
qa ln

1

r
+ qb ln

1

D23
+ qc ln

1

D12

)
(2.61)

va3 = 1

2πε0

(
qa ln

1

r
+ qb ln

1

D31
+ qc ln

1

D23

)
(2.62)

The potential of conductor a is assumed to be given by the following equation [3].

va = 1

3
(va1 + va2 + va3) (2.63)

From (2.56) and (2.60) to (2.63), the capacitance in each phase is

C = 2πε0l

ln
[
(D12 D23 D31)1/3/r

] (2.64)
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2.2.2.2 Composite Conductors

Consider the transmission line with composite conductors shown in Fig. 2.12. It is
assumed that the three phases are transposed if not placed symmetrically. Let the
composite conductors of phases a, b, c occupy positions 1, 2, 3, respectively, in
the first section, positions 2, 3, 1, respectively, in the second section, and positions
3, 1, 2, respectively, in the third section. Let each individual conductor of a composite
conductor occupy each of the n positions for equal lengths along a section. Let the
charge per unit length on the individual conductors of phases a, b, and c be qa/n,
qb/n, and qc/n, respectively, which satisfy (2.56). It is assumed that the charge
per unit length on all individual conductors is same along the entire length of the
transmission line. The potential of phase a individual conductor at position 1k is

va1k = 1

2πε0n

n∑
m=1

[
qa ln

1

D′
1k1m

+ qb ln
1

D′
1k2m

+ qc ln
1

D′
1k3m

]
(2.65)

where D′
pkqm (p and q are 1, 2, or 3, and pk �= qm) is the distance between the axes of

conductors at positions pk and qm; D′
pkpk is the radius of the individual conductors.

The potential of phase a composite conductor in section 1, va1, is assumed to be
equal to the average of the potentials of the individual conductors.

va1 = 1

2πε0n2

n∑
k=1

n∑
m=1

[
qa ln

1

D′
1k1m

+ qb ln
1

D′
1k2m

+ qc ln
1

D′
1k3m

]
(2.66)

The potential of phase a composite conductor in sections 2 and 3, va2 and va3,
respectively, are given by

va2 = 1

2πε0n2

n∑
k=1

n∑
m=1

[
qa ln

1

D′
2k2m

+ qb ln
1

D′
2k3m

+ qc ln
1

D′
2k1m

]
(2.67)

va3 = 1

2πε0n2

n∑
k=1

n∑
m=1

[
qa ln

1

D′
3k3m

+ qb ln
1

D′
3k1m

+ qc ln
1

D′
3k2m

]
(2.68)

The potential of phase a composite conductor is assumed to be given by

va = 1

3
(va1 + va2 + va3) (2.69)

From (2.56) and (2.66) to (2.69), the capacitance in each phase is

C = 2πε0l

ln
(
Dm/D′

s

) (2.70)
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Fig. 2.13 Conductors and
their images D12 D23
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where

Dm �
(

n∏
k=1

n∏
m=1

D′
1k2m D′

2k3m D′
3k1m

)1/(3n2)

(2.71)

D′
s �

(
n∏

k=1

n∏
m=1

D′
1k1m D′

2k2m D′
3k3m

)1/(3n2)

(2.72)

2.2.2.3 Effect of Earth

The earth affects the distribution of the electric field due to charge on a conductor.
The earth is at zero potential. The effect of earth is same as that of the image of the
conductor [3]. The image of the conductor with charge qa per unit length is a con-
ductor with charge −qa per unit length located at the same distance from the earth’s
surface below it as shown in Fig. 2.13. The images of conductors at positions 1, 2,
and 3 are at positions 1′, 2′, and 3′, respectively.

Transposition of conductors is assumed. Let the conductors a, b, c occupy posi-
tions 1, 2, 3, respectively, in the first section, positions 2, 3, 1, respectively, in the
second section, and positions 3, 1, 2, respectively, in the third section. Let the charge
per unit length on the conductors a, b, and c be qa , qb, and qc, respectively, which
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satisfy (2.56). It is assumed that the charge per unit length is same in all the three
sections. The potential of conductor a in sections 1, 2, and 3, va1, va2, and va3,
respectively, are given by

va1 = 1

2πε0

[
qa

(
ln

1

r
− ln

1

h1

)
+ qb

(
ln

1

D12
− ln

1

h12

)
+ qc

(
ln

1

D31
− ln

1

h31

)]

(2.73)

va2 = 1

2πε0

[
qa

(
ln

1

r
− ln

1

h2

)
+ qb

(
ln

1

D23
− ln

1

h23

)
+ qc

(
ln

1

D12
− ln

1

h12

)]

(2.74)

va3 = 1

2πε0

[
qa

(
ln

1

r
− ln

1

h3

)
+ qb

(
ln

1

D31
− ln

1

h31

)
+ qc

(
ln

1

D23
− ln

1

h23

)]

(2.75)

where r is the radius of the conductors. The potential of conductor a is assumed to
be given by

va = 1

3
(va1 + va2 + va3) (2.76)

From (2.56) and (2.73) to (2.76), the capacitance in each phase is

C = 2πε0l

ln
(D12 D23 D31)

1/3

r
− ln

(
h12h23h31

h1h2h3

)1/3 (2.77)

Since h12h23h31 > h1h2h3, the effect of earth is to increase the capacitance.

2.2.3 Transmission Line Model

Let va , vb, and vc be the voltages with respect to the neutral, ia , ib, and ic be the
currents, at the point which is at distance x from the receiving end, as shown in
Fig. 2.14. The currents satisfy (2.23). Then, the voltages and currents are related by
the following equations.

∂va

∂x
= R

l
ia + L

l

∂ia

∂t
(2.78)

∂vb

∂x
= R

l
ib + L

l

∂ib

∂t
(2.79)

∂vc

∂x
= R

l
ic + L

l

∂ic

∂t
(2.80)
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Fig. 2.14 Transmission line

∂ia

∂x
= G

l
va + C

l

∂va

∂t
(2.81)

∂ib

∂x
= G

l
vb + C

l

∂vb

∂t
(2.82)

∂ic

∂x
= G

l
vc + C

l

∂vc

∂t
(2.83)

The equations for the three phases are decoupled.
Dividing (2.78)–(2.80) by VB , and (2.81)–(2.83) by IB gives the equations in per

unit quantities.

∂va

∂x
= R

l
ia + X

lωB

∂ia

∂t
(2.84)

∂vb

∂x
= R

l
ib + X

lωB

∂ib

∂t
(2.85)

∂vc

∂x
= R

l
ic + X

lωB

∂i c

∂t
(2.86)

∂ia

∂x
= G

l
va + B

lωB

∂va

∂t
(2.87)

∂ib

∂x
= G

l
vb + B

lωB

∂vb

∂t
(2.88)

∂i c

∂x
= G

l
vc + B

lωB

∂vc

∂t
(2.89)

where X � ωB L , B � ωBC , base admittance YB � 1/Z B , and base capacitance
CB � YB/ωB . Two special cases: lossless transmission line and sinusoidal operation,
are considered.
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2.2.3.1 Lossless Transmission Line

If R = G = 0, then (2.78)–(2.83) can be written as follows.

∂va

∂x
= L

l

∂ia

∂t
(2.90)

∂ia

∂x
= C

l

∂va

∂t
(2.91)

∂vb

∂x
= L

l

∂ib

∂t
(2.92)

∂ib

∂x
= C

l

∂vb

∂t
(2.93)

∂vc

∂x
= L

l

∂ic

∂t
(2.94)

∂ic

∂x
= C

l

∂vc

∂t
(2.95)

If the subscripts a, b, and c are not shown, the solution for any phase is

i(x, t) = − f1(x − vpt) − f2(x + vpt) (2.96)

v(x, t) = Zc f1(x − vpt) − Zc f2(x + vpt) (2.97)

where vp � l/
√

LC and Zc �
√

L/C [4]. vp is called phase velocity and Zc is
called characteristic impedance. f1 and f2 are functions of x and t . Let subscripts
S and R denote sending end quantities and receiving end quantities, respectively.
If only terminal response is of interest, the following method known as Bergeron’s
method is used. From (2.96) and (2.97),

iR(t) = i(0, t) = − f1(−vpt) − f2(vpt) (2.98)

vR(t) = v(0, t) = Zc f1(−vpt) − Zc f2(vpt) (2.99)

iS

(
t − l

vp

)
= i

(
l, t − l

vp

)
= − f1

(
2l − vpt

) − f2
(
vpt

)
(2.100)

vS

(
t − l

vp

)
= v

(
l, t − l

vp

)
= Zc f1

(
2l − vpt

) − Zc f2
(
vpt

)
(2.101)

Elimination of f1
(−vpt

)
, f1

(
2l − vpt

)
, and f2(vpt) from (2.98) to (2.101) gives

iR(t) = iS

(
t − l

vp

)
+ 1

Zc
vS

(
t − l

vp

)
− 1

Zc
vR(t) (2.102)
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This equation relates the receiving end current and voltage. Similarly, one can obtain
the following equation which relates the sending end current and voltage.

iS(t) = iR

(
t − l

vp

)
− 1

Zc
vR

(
t − l

vp

)
+ 1

Zc
vS(t) (2.103)

Dividing (2.102) and (2.103) by IB gives the equations in per unit quantities.

i R(t) = i S

(
t − l

vp

)
+ 1

Zc
vS

(
t − l

vp

)
− 1

Zc
vR(t) (2.104)

i S(t) = i R

(
t − l

vp

)
− 1

Zc
vR

(
t − l

vp

)
+ 1

Zc
vS(t) (2.105)

2.2.3.2 Sinusoidal Operation

Let the voltages and currents be sinusoidal with angular frequency ωo. Then voltages
and currents can be represented by phasors. Let V and I be the notations for phasor
representation of v and i , respectively. If subscripts a, b, and c are not shown, (2.78)–
(2.83) can be written in the following form for each phase.

dV
dx

= R + jωo L

l
I (2.106)

dI
dx

= G + jωoC

l
V (2.107)

If VR and IR are the receiving end voltage and current, respectively, the solution of
(2.106) and (2.107) is

V = cosh(γ x)VR + Zc sinh(γ x)IR (2.108)

I = 1

Zc
sinh(γ x)VR + cosh(γ x)IR (2.109)

where Zc is called characteristic impedance and γ is called propagation constant.

Zc �
√

R + jωo L

G + jωoC
, γ �

√
(R + jωo L)(G + jωoC)

l
(2.110)

If VS and IS are the sending end voltage and current, respectively, then from (2.108)
and (2.109),

VS = cosh(γ l)VR + Zc sinh(γ l)IR (2.111)

IS = 1

Zc
sinh(γ l)VR + cosh(γ l)IR (2.112)
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Fig. 2.15 Equivalent π circuit
of transmission line
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Each phase of the transmission line can be represented by the equivalent π circuit
shown in Fig. 2.15, where Z is impedance and Y is admittance. For this circuit, the
following equations can be written.

VS =
(

1 + Y Z

2

)
VR + ZIR (2.113)

IS = Y

(
1 + Y Z

4

)
VR +

(
1 + Y Z

2

)
IR (2.114)

Equating the coefficients of VR and IR in (2.111) and (2.113) gives

Z = (R + jωo L)
sinh(γ l)

γ l
, Y = (G + jωoC)

tanh(γ l/2)

γ l/2
(2.115)

It is to be noted that

lim
l→0

Z = R + jωo L , lim
l→0

Y = G + jωoC (2.116)

If Z and Y in Fig. 2.15 are replaced by the values of their respective limits as l → 0,
the circuit shown in Fig. 2.16 is obtained. This circuit is called nominal π circuit.
For transmission lines of length less than 240 km, the nominal π circuit shown in
Fig. 2.16 is a good approximation [3].
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2.3 Kron’s Transformation

Kron’s transformation does a transformation of the three-phase voltages and currents
as follows [5].

⎡
⎣ vD

vQ

v0

⎤
⎦ � TK

⎡
⎣ va

vb

vc

⎤
⎦ ,

⎡
⎣ iD

iQ

i0

⎤
⎦ � TK

⎡
⎣ ia

ib

ic

⎤
⎦ (2.117)

where

TK � 1√
3

⎡
⎣

√
2 cos (ωot)

√
2 cos (ωot − 2π/3)

√
2 cos (ωot + 2π/3)√

2 sin (ωot)
√

2 sin (ωot − 2π/3)
√

2 sin (ωot + 2π/3)

1 1 1

⎤
⎦ (2.118)

where ωo is the operating frequency. It can be verified that T −1
K = T T

K .
If v0 = i0 = 0, then (2.117) can be written as

[
vD

vQ

]
= T ′

K

⎡
⎣ va

vb

vc

⎤
⎦ ,

[
iD

iQ

]
= T ′

K

⎡
⎣ ia

ib

ic

⎤
⎦ (2.119)

where

T ′
K � 1√

3

[√
2 cos (ωot)

√
2 cos (ωot − 2π/3)

√
2 cos (ωot + 2π/3)√

2 sin (ωot)
√

2 sin (ωot − 2π/3)
√

2 sin (ωot + 2π/3)

]
(2.120)

In certain studies, high-frequency transients in the transformer and the trans-
mission line are neglected. Then, Kron’s transformation results in simplification of
equations. Kron’s transformation also enables generalization of the definitions of
certain electrical quantities.

2.3.1 Definitions

There are quantities such as voltage magnitude, phase angle, frequency, reactive
power etc. which are well defined in steady state when voltages and currents are
sinusoidally varying and balanced. The definition of these quantities will be general-
ized so that they can be used even in the presence of harmonics and during a transient
when the voltage and current are not sinusoidal; however, these definitions are made
with the assumption that v0 = i0 = 0.

Consider the shunt-connected equipment shown in Fig. 2.17. Let va , vb, and vc

be the voltages of terminals a, b, and c, respectively, with respect to the neutral.
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Fig. 2.17 Shunt-connected
equipment

ic

ib

ia
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The magnitude V and phase angle φ of the voltage of the three-phase bus, at
which the equipment in Fig. 2.17 is connected, are defined as

V �
√

v2
D + v2

Q (2.121)

φ � tan−1 vD

vQ
(2.122)

In other words, V ∠φ = vQ + jvD . vQ and vD can be expressed in terms of V and
φ as follows.

vQ = V cos φ, vD = V sin φ (2.123)

If va , vb, and vc are obtained from these expressions for vQ and vD using (2.119),
then

va =
√

2

3
V sin(ωot + φ) (2.124)

vb =
√

2

3
V sin

(
ωot + φ − 2π

3

)
(2.125)

vc =
√

2

3
V sin

(
ωot + φ + 2π

3

)
(2.126)

Therefore, if va , vb, and vc are sinusoidal with angular frequency ωo and balanced,
V is the rms value of the line-to-line voltage and φ is the phase angle of va .

The frequency at the three-phase bus f is defined as

f � fo + 1

2π

dφ

dt
(2.127)

where fo � ωo/(2π).
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Similar to voltage magnitude and phase angle definitions, the magnitude I and
phase angle ψ of the current drawn by the equipment in Fig. 2.17 are defined as

I �
√

i2
D + i2

Q (2.128)

ψ � tan−1 iD

iQ
(2.129)

If ia , ib, and ic are sinusoidal with angular frequency ωo and balanced, then I is
√

3
times the rms value of ia , ib, or ic, and ψ is the phase angle of ia .

The power drawn by the equipment in Fig. 2.17 is

P = vaia + vbib + vcic (2.130)

From (2.119),

P = vDiD + vQiQ (2.131)

It can be seen that

P = Re[V ∠φ I∠(−ψ)] (2.132)

P is also known as active power. The reactive power Q drawn by the equipment in
Fig. 2.17 is defined as

Q � Im[V ∠φ I∠(−ψ)] = vDiQ − vQiD (2.133)

The active current i A and the reactive current iR drawn by the equipment in
Fig. 2.17 are defined as

i A � I cos(φ − ψ) = iQ cos φ + iD sin φ (2.134)

iR � I sin(φ − ψ) = iQ sin φ − iD cos φ (2.135)

It is to be noted that i A > 0 ⇔ P > 0, and iR > 0 ⇔ Q > 0. The reactive current
is said to be inductive if it is positive, and is said to be capacitive if it is negative.

Consider the series-connected equipment shown in Fig. 2.18. The magnitude V
and phase angle φ of the voltage across the equipment in Fig. 2.18 are given by
(2.119)–(2.122) using va , vb, and vc of Fig. 2.18. Similarly, the magnitude I and
phase angle ψ of the current through the equipment in Fig. 2.18 are given by (2.119),
(2.120), (2.128), and (2.129) using ia , ib, and ic of Fig. 2.18. The active voltage vA

and the reactive voltage vR across the equipment in Fig. 2.18 are defined as

vA � V cos(φ − ψ) (2.136)

vR � V sin(φ − ψ) (2.137)
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Fig. 2.18 Series-connected
equipment
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If vA is positive, active power is supplied by the equipment, otherwise, active power
is drawn by the equipment. The reactive voltage is said to be capacitive if it is positive
and inductive if it is negative.

2.3.2 Application to Transformer

Equations (2.18)–(2.20) of the wye-wye-connected transformer can be written as

⎡
⎣ v2a

v2b

v2c

⎤
⎦ =

⎡
⎣ v1a

v1b

v1c

⎤
⎦ − (

R1 + R2
) ⎡
⎣ ia

ib

ic

⎤
⎦ − 1

ωB

(
X1 + X2

)⎡
⎣ dia/dt

dib/dt
di c/dt

⎤
⎦(2.138)

By Kron’s transformation,

T ′T
K

[
v2D
v2Q

]
= T ′T

K

[
v1D
v1Q

]
− (

R1 + R2
)

T ′T
K

[
i D
i Q

]
− 1

ωB

(
X1 + X2

) d

dt

(
T ′T

K

[
i D
i Q

])

(2.139)

where

[
v1D

v1Q

]
� T ′

K

⎡
⎣ v1a

v1b

v1c

⎤
⎦,

[
v2D

v2Q

]
� T ′

K

⎡
⎣ v2a

v2b

v2c

⎤
⎦ and

[
i D

i Q

]
� T ′

K

⎡
⎣ ia

ib

ic

⎤
⎦.

Pre-multiplying (2.139) by T ′
K gives

v2D = v1D − (R1 + R2)i D − ωo

ωB

(
X1 + X2

)
i Q − 1

ωB

(
X1 + X2

) di D

dt
(2.140)
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Fig. 2.19 Equivalent π circuit
of phase a of transmission line
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v2Q = v1Q − (R1 + R2)i Q + ωo

ωB

(
X1 + X2

)
i D − 1

ωB

(
X1 + X2

) di Q

dt
(2.141)

If the high-frequency transients are to be neglected, then the last term on the right-
hand side of (2.140) and (2.141) are set to zero. For balanced sinusoidal operation at
angular frequency ωo, all transformed variables are constant and hence the last term
on the right-hand side of (2.140) and (2.141) is equal to zero. The factor ωo/ωB in
one of the terms of (2.140) and (2.141) is usually approximated to 1. Therefore,

v2D = v1D − (R1 + R2)i D − (
X1 + X2

)
i Q (2.142)

v2Q = v1Q − (R1 + R2)i Q + (
X1 + X2

)
i D (2.143)

2.3.3 Application to Transmission Line

For sinusoidal operation, the equivalent π circuit of the transmission line shown in
Fig. 2.15 is applicable. Let Z = Re + jωo Le and Y = Ge + jωoCe. The circuit of
Fig. 2.15 can be redrawn as shown in Fig. 2.19 for phase a.

From the circuit diagram in Fig. 2.19,

vSa − vRa = Reia + Le
dia

dt
(2.144)

iSa − ia = Ge

2
vSa + Ce

2

dvSa

dt
(2.145)

ia − iRa = Ge

2
vRa + Ce

2

dvRa

dt
(2.146)

Similarly, for phases b and c,

vSb − vRb = Reib + Le
dib

dt
(2.147)

vSc − vRc = Reic + Le
dic

dt
(2.148)
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iSb − ib = Ge

2
vSb + Ce

2

dvSb

dt
(2.149)

iSc − ic = Ge

2
vSc + Ce

2

dvSc

dt
(2.150)

ib − iRb = Ge

2
vRb + Ce

2

dvRb

dt
(2.151)

ic − iRc = Ge

2
vRc + Ce

2

dvRc

dt
(2.152)

By Kron’s transformation, (2.144)–(2.152) can be written as

vSD − vR D = ReiD + ωo LeiQ + Le
diD

dt
(2.153)

vSQ − vRQ = ReiQ − ωo LeiD + Le
diQ

dt
(2.154)

iSD − iD = Ge

2
vSD + ωo

Ce

2
vSQ + Ce

2

dvSD

dt
(2.155)

iSQ − iQ = Ge

2
vSQ − ωo

Ce

2
vSD + Ce

2

dvSQ

dt
(2.156)

iD − iR D = Ge

2
vR D + ωo

Ce

2
vRQ + Ce

2

dvR D

dt
(2.157)

iQ − iRQ = Ge

2
vRQ − ωo

Ce

2
vR D + Ce

2

dvRQ

dt
(2.158)

where

[
vSD

vSQ

]
� T ′

K

⎡
⎣ vSa

vSb

vSc

⎤
⎦,

[
vR D

vRQ

]
� T ′

K

⎡
⎣ vRa

vRb

vRc

⎤
⎦,

[
iSD

iSQ

]
� T ′

K

⎡
⎣ iSa

iSb

iSc

⎤
⎦,

[
iR D

iRQ

]
� T ′

K

⎡
⎣ iRa

iRb

iRc

⎤
⎦, and

[
iD

iQ

]
� T ′

K

⎡
⎣ ia

ib

ic

⎤
⎦. For balanced sinusoidal operation

at frequency ωo, all transformed variables are constant. Therefore, (2.153)–(2.158)
can be written as

vSD − vR D = ReiD + ωo LeiQ (2.159)

vSQ − vRQ = ReiQ − ωo LeiD (2.160)

iSD − iD = Ge

2
vSD + ωo

Ce

2
vSQ (2.161)

iSQ − iQ = Ge

2
vSQ − ωo

Ce

2
vSD (2.162)

iD − iR D = Ge

2
vR D + ωo

Ce

2
vRQ (2.163)

iQ − iRQ = Ge

2
vRQ − ωo

Ce

2
vR D (2.164)
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Dividing (2.159) and (2.160) by VB , and (2.161)–(2.164) by IB gives the following
equations in per unit quantities.

vSD − vR D = Rei D + ωo

ωB
Xei Q (2.165)

vSQ − vRQ = Rei Q − ωo

ωB
Xei D (2.166)

i SD − i D = Ge

2
vSD + ωo

ωB

Be

2
vSQ (2.167)

i SQ − i Q = Ge

2
vSQ − ωo

ωB

Be

2
vSD (2.168)

i D − i R D = Ge

2
vR D + ωo

ωB

Be

2
vRQ (2.169)

i Q − i RQ = Ge

2
vRQ − ωo

ωB

Be

2
vR D (2.170)

where Xe � ωB Le and Be � ωBCe. The factor ωo/ωB in one of the terms in all
equations is usually approximated to 1. As an approximation, (2.165)–(2.170) are
used even during transients.

2.4 Load

In many system studies, the effects of the subtransmission and the distribution net-
works along with the connected load devices are represented by an aggregated load
at a transmission substation. The load model is given by the expressions for active
power P and reactive power Q drawn, in terms of voltage magnitude and/or frequency
[5, 6]. Two commonly used models are:

•

P = Po

(
V

Vo

)a [
1 + kp f ( f − fo)

]
(2.171)

Q = Qo

(
V

Vo

)b [
1 + kq f ( f − fo)

]
(2.172)

•

P = Po

[
p1

(
V

Vo

)2

+ p2
V

Vo
+ p3

] [
1 + kp f ( f − fo)

]
(2.173)

Q = Qo

[
q1

(
V

Vo

)2

+ q2
V

Vo
+ q3

] [
1 + kq f ( f − fo)

]
(2.174)



72 2 Transformer, Transmission Line, and Load

Subscript o identifies the values of the respective variables at the operating point.
a, b, p1, p2, p3, q1, q2, q3, kp f , and kq f are constants; p1 + p2 + p3 = 1 and
q1 + q2 + q3 = 1. If frequency dependence is not to be considered, kp f and kq f are
set to zero.

Equations (2.171)–(2.174) in per unit quantities are

P = PoV a
B

SB V a
o

V
a [

1 + kp f ( f − fo)
]

(2.175)

Q = QoV b
B

SB V b
o

V
b [

1 + kq f ( f − fo)
]

(2.176)

P = Po

SB

[
p1

V 2
B

V 2
o

V
2 + p2

VB

Vo
V + p3

] [
1 + kp f ( f − fo)

]
(2.177)

Q = Qo

SB

[
q1

V 2
B

V 2
o

V
2 + q2

VB

Vo
V + q3

] [
1 + kq f ( f − fo)

]
(2.178)
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