Chapter 2
Nominal Terms and Nominal Logics:
From Foundations to Meta-mathematics

Murdoch J. Gabbay

2.1 Introduction

Nominal sets for meta-mathematics Suppose we want to axiomatise the A-
calculus or first-order logic. Then we need to express properties like this:

o Ify & fv(t) then V.t =¢ Vy.(¢t[y/x]).
o Ifx & fv(u) then (Ax.r)[u/y] = Ax.(t[u/y]).
o Ifx & fu(r) then Ax.(tx) =y 1.

X, ¥, t, and u here are what we would call names. A linguist might call them referents,
a mathematician might call them variables. But the words ‘referent’ and ‘variable’
carry connotations (a referent should refer to something, a variable should vary), so
we prefer the more neutral term ‘name’. So for us, a name is just an atomic symbol,
to which we may then associate further properties, at our discretion, using additional
axioms.

The axioms above are typical of a certain kind of specification. Mathematical
specification is nothing new. First-order logic can specify, to choose a classic trio of
examples, groups, rings, and fields. But the A-calculus, first-order logic itself, the
m-calculus, and a very great many other examples, are different. They have names.

By adding names to first-order logic in the correct way, we can axiomatise
the specifications above, cleanly and in a manner very close to the informal
specification. How should we do this? Using a recent application of mathematical
foundations originating in computer science: nominal sets Gabbay and Pitts (2001),
Gabbay (2011b), to which we will use nominal terms Urban et al. (2003, 2004) as
a corresponding formal syntax. To survey and update the state of the art of logics
based on nominal terms and taking semantics in nominal sets, is our goal here.

M.J. Gabbay (P<)

School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton,
Edinburgh EH14 4AS, United Kingdom

http://www.gabbay.org.uk

D.M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic: Volume 17, 79
Handbook of Philosophical Logic 17, DOI 10.1007/978-94-007-6600-6_2,
© Springer Science+Business Media Dordrecht 2014

www.gabbay.org.uk

80 M.J. Gabbay

In nominal terms, term-formers can bind names and freshening renamings like
the [y/x] or [u/y] above are taken as primitive.

Here are the informal statements above, rewritten in permissive-nominal
algebra—an algebraic logic based on nominal terms with a sound and complete
semantics in nominal sets:

o Ifb ¢ supp(X) then V([a]X) = V([b](b a)-X).
o Ifa ¢ supp(Y) then A([a)X)[b—Y] = A([a](X[b—Y])).
o Ifa ¢ supp(X) then A([a](Xa)) =X.

In this chapter we will briefly consider nominal sets, then survey nominal
terms, unification, rewriting, algebra, and permissive-nominal logic. We cover the
nominal unification algorithm, confluence proofs for nominal rewriting, soundness
and completeness results for nominal algebra and permissive-nominal logic, an HSP
theorem, and a finite axiomatisation of first-order logic.

By doing this we aim to give an overview of the applications of nominal sets
to meta-mathematical syntax. We cannot be exhaustive, but we can try to be
representative of what can be achieved.

As we shall see, nominal syntax is more expressive than first-order syntax (for
instance we can give a finite first-order axiomatisation of arithmetic), because term-
formers that can explicitly manipulate names. Yet, it remains first-order in flavour,
preserving theoretical and computational properties like completeness and most
general unifiers.

A few words on atoms What nominal sets add to ‘ordinary’ structures is an
assumption of a distinguished class of symmetric atomic elements called atoms:
these are also called urelemente or names. We will use these terms more-or-less
synonymously.

Indeed, nominal sets are a special case Zermelo-Fraenkel sets with atoms, and are
instances of the structures considered by Fraenkel and Mostowski in their celebrated
independence proof of the Axiom of Choice from the other axioms of set theory with
atoms. For detailed references see (Gabbay 2011b, Remark 2.22). So this chapter
really does describe a journey from mathematical foundations to meta-mathematics,
and that is representative of how the maths we describe here was arrived at.

We can view the underlying philosophy of nominal techniques is as the following
informal inequality, where ‘smaller’ means ‘greater generality’:

atoms = urelemente = names < referents < variables

Discovering to what extent these intuitions can be made precise, concrete, and
useful, is the topic of much ongoing research, some of which is reported on here.
Names induce automorphisms generated by permuting them. We shall see that if
we model variables as a special case of atoms, then o-renaming becomes a special
case of a much more general fact that nominal sets are symmetric under permuting
atoms. This generalisation turns out to have powerful consequences, including the
atoms-abstraction and Vl-quantifier introduced by the author with Pitts in Gabbay

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 81

and Pitts (2001). So the point of view described above has led to and continues to
lead to new reasoning principles.

If we identify a thing with the properties of that thing, then the ‘nominal’ model
suggests that names are equal to the following set of three properties:

names = {atomic, symmetric, generative}

The reader familiar with nominal techniques can identify these three properties with
the use of: atomic symbols a (an atom, name, or urelement, with a distinct existence
in the denotation), permutations 7 (symmetries under permutation of names), and
the M-quantifier (‘choose a fresh name’). These three properties will appear directly
in this chapter as atoms, permutations, and permission sets.' Full definitions appear
below.

This material in the literature This paper surveys existing literature on logics
based on nominal terms, and adds a few new results. Very broadly, Sect. 2.2.1 is
based on Gabbay and Pitts (1999, 2001) (nominal sets; they were called equivariant
FM sets there); Sects. 2.2.2 and 2.3.1 are based on Urban et al. (2003, 2004), Dowek
et al. (2009, 2010), Gabbay (2012a) (nominal terms and unification); Sects. 2.3.2
and 2.3.3 are based on Ferndndez et al. (2004), Fernandez and Gabbay (2007),
Gabbay (2012a) (rewriting and closed terms); Sect. 2.3.4 is based on Gabbay (2005),
Gabbay and Mathijssen (2006a, 2007, 2009) (nominal algebra); Sects. 2.4.1, 2.4.2,
and 2.4.3 are based on Dowek and Gabbay (2010, 2012a) (permissive-nominal
logic).

Definitions and proofs may have changed from the original presentations. In
particular:

* The semantics is permissive-nominal, meaning that it is based on possibly
infinitely supported nominal sets with co-infinite support. In Gabbay and Pitts
(2001) a nominal semantics based on finite and co-infinite support was used.

e Unlike Urban et al. (2004) and Dowek et al. (2010) we use nominal abstract
syntax to build our nominal terms. That is, in this paper nominal terms atoms-
abstraction is directly equal to Gabbay-Pitts atoms-abstraction. Thus, nominal
terms here are an instance of nominal abstract syntax and come quotiented by
a-equivalence by construction.

* Permutation may be stronger than usual, and we parameterise over the group of
permutations.

We consider (as usual) finite permutations (generated by swappings,
also called transpositions) as standard, but in particular we also find shift-
permutations & useful, which shift infinitely many atoms. The shift-permutation
0 corresponds to a de Bruijn shift function 1 and presheaf reindexing map up,
though 6 is not equal to them since it is a permutation and so invertible.

'In other papers, such as Urban et al. (2004), permission sets are presented instead as syntactic
freshness assumptions.

82 M.J. Gabbay

* Syntax includes non-equivariant constant symbols. In Urban et al. (2004)
all term-formers/function-symbols (including O-ary ones, i.e. constants) were
equivariant. This does not matter for finite support but it does make a difference
with infinite support.

e Nominal unknowns are modelled as arbitrary elements of a strongly-supported
nominal set. This means that the X and Y in this paper correspond to moderated
unknowns from Urban et al. (2004): see Example 2.45.

e Because unknowns have support, there are no freshness contexts and
substitutions are characterised as equivariant functions (the freshness
conditions normally attached to substitutions follow from equivariance: see
Proposition 2.64). The theories of nominal unification, rewriting, and algebra are
reformulated to reflect this.

e The simplification rules for unification problems (Fig. 2.2) are new and the
treatments of closed terms and closed nominal rewriting (Sect. 2.3.3) are entirely
revised with respect to Ferndndez and Gabbay (2007).

2.2 Nominal Sets and Nominal Terms

2.2.1 Nominal Sets

We open with a brief presentation of nominal sets, which are the semantic basis for
this work: this is the universe that the logics we define will describe, and be sound
(and complete) for.

Nominal sets were developed with Pitts and introduced in the author’s thesis
Gabbay (2001), a conference paper Gabbay and Pitts (1999), and journal paper
Gabbay and Pitts (2001). The nominal sets here are more general than in Gabbay
and Pitts (2001): following Dowek et al. (2010) we are permissive, meaning that
we split the set of atoms into two infinite halves and consider infinite support.
This specific idea was developed jointly with Dowek,? but shades of it appear
also in Cheney’s paper Cheney (2006) and in the author’s study of infinite atoms-
abstraction Gabbay (2007b).

In addition we parameterise over a group of permutations which need not just be
finitely-supported permutations. This is new.

2.2.1.1 Atoms, Permutations, Permission Sets

In Definition 2.2 we need several sets of atoms. This is to model the several sorts of
names that will appear in our syntax later on.

>The development here is a little different from that in Dowek et al. (2010) because we take
permission sets to be sets of the form 7-A< instead of sets of the form (A< \ A) UB.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 83

Following Dowek et al. (2010) our development will be permissive-nominal. A
permission set S splits a set of atoms into two halves A< and A>. One intuition for
A< is ‘the atoms that have been generated so far’, and for A> is ‘the atoms that might
be generated later’.

Definition 2.1. Write N = {0,1,2,3,...} for the natural numbers and Z =
{0,-1,1,-2,2,...} for the integers.

Definition 2.2. For each i € N fix a pair of disjoint countably infinite sets of atoms
A and A .
Write

Ai=AwA A=A A=A A=A

a,b,c,... will range over distinct atoms: we call this the permutative convention.

Remark 2.3 (Comments on splitting the set of atoms). The different sets of atoms
A; are different ‘types’ of atoms. Thus, later on in Definitions 2.39 and 2.49 we can
give each name sort its own distinct population of atoms.

The reasons for splitting the set of atoms into A< and A> will become clear as the
maths develops. It might help to think of A< as ‘atoms that can be captured’ and of
A> as ‘atoms that cannot be captured’, or as ‘atoms that might have been generated
in the past’ and ‘atoms that may be generated in the future’—but with reservations.
In Definition 2.10 we see that this is only true up to permuting atoms.

The real purpose of Definition 2.2 is to ensure that we have plenty—countably
infinitely many—of ‘capturable’ and ‘non-capturable’ atoms. Permutations (below)
can and will move atoms between these worlds, but no permutation can move them
all at once. So the interest of A< is not just for the set itself but for its orbit under per-
mutations; this is a property of the set as a whole, and not of its individual elements.

Remark 2.4 (Comments on the permutative convention). While visiting Tel-Aviv
University in 2006 I gave talks on nominal techniques and Arnon Avron asked: “Do
a and b refer to specific atoms (e.g. in the axioms in the Introduction), or to any two
atoms?”. In other words, are a and b constants or variables?

In response I started using a permutative convention that a and b are variables, but
they range over distinct atoms so that variables with distinct names refer to distinct
objects (the first uses were in Gabbay and Mathijssen (2006c,a); the convention was
explicitly named in Gabbay and Mathijssen (2008c¢)).

For a while this was resisted by some anonymous referees. Yet, we typically
apply the permutative convention informally; e.g. we silently assume that Ax.Ay.xy
is never the same term as Ax.Ax.xx. I would claim that the permutative convention
expresses something about the foundational origins of the nominal view of names
as urelemente—constants that are distinguishable yet symmetric—in an underlying
set theory.

Perhaps this is why the referees did not like it: the permutative convention
may seem unnatural if we are committed to standard (nameless) Zermelo-Fraenkel
foundations, since names are then just some set, and like any set should be varied

84 M.J. Gabbay

over non-permutatively by variables. Thus the fact that we accept that Ax.Ay.xy and
Ax.Ax.xx always signify distinct A-terms to us, can be taken as a sign that we inhabit
a nameful foundation, so that the permutative convention is a signpost on the way
to something more extensive.

A formal reflection of the permutative convention appears explicitly in the formal
logics of this paper: it lives in the 7 of the 7-X in Definition 2.125.

Definition 2.5. Given a,b € A; for some i € N write (a b) for the swapping
bijection on atoms mapping a to b, b to a, and any other ¢ € A\ {a,b} to c.
Another standard name for a swapping is a transposition.
By convention (a a) will denote the identity function on atoms id.
If 7 is a bijection on atoms define

nontriv(r) = {a | n(a) # a}.

Definition 2.6. A nominal permutation group is any set of bijections P of A such
that:

1. Ifa€ A;and b € A; then (a b) € P.
2. If € Pthena € A; if and only if 7(a) € A;.
3. There exists some infinite S C A such that nontriv(m) NS is finite for every 7 € P.

Call a bijection on atoms 7 a finite permutation when it is in the subgroup
generated by swappings. (7 is finite when m(a) € A; if and only if a € A; and
nontriv(r) is finite.)

Write won’ for the composition of 7 and 7’ (so (o 7')(a) = n(n'(a))). Write
id for the identity permutation (so id(a) = a always).

The purpose of conditions 1-3 of Definition 2.6 are as follows:

1. Swappings make sure we can always rename a to b (and b to a).

2. Condition 2 is a standard typing condition, that we do not try to turn an atom of
one sort, into an atom of another sort.

3. This condition guarantees that we can still always choose a fresh atom for any
finite set of permutations (see for instance Lemma 2.57).

Example 2.7. 1. The set of all finite permutations is a nominal permutation group.
2. For each i fix a bijection f; between A; and the integers Z, such that {f(i) | i <
0} = A; and (consequently) {f(i) | i > 0} = A7. We can do this because we
assumed atoms are countable.
Write 6; for the permutation mapping

* fi(j) to fi(j—1) for j <0,
o fi(2j) to f;(2(j—1)) and f;(2j—1) to f;(2j—1) for j > 1, and
* anyotherc € A\ A;toc.

This is an example of a shift-permutation, considered in more generality
in Definition 2.79 and throughout Sect. 2.2.2.6. We illustrate fragments of the
actions of a swapping (f(0) f(1)) and a §;:

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 85

1(-6) F(-5) F(-4) f(:3) f(:2) S0 1(0) (1) 2 f3)) f(5) 1(6)
N o N o o o N N o N N
1(-6) f(-5) f(-4) f(:3) f(-2) fD £(0) F(1)) f3) 4 f(5) 1(6)
N3 N3 N3

The atoms corresponding to positive odd integers are taken to be fixed points
of §; in order to satisfy condition 3 of Definition 2.6, so that these atoms can be
taken fresh for 6; if we need to.

The set of permutations generated by swappings and §;, is a nominal
permutation group.

Remark 2.8. The nominal permutation group [P determines the symmetries of our
nominal syntax and semantics. We consider permutations designed to guarantee
(in Definition 2.14) symmetry up to equality/inequality of atoms. We will get sets
with atoms that are atomic, symmetric (up to equality and inequality of names),
and generative—the main further design choice we care about is whether or not to
include a shift (Example 2.7), which goes strictly beyond what can be achieved with
finite permutations as considered e.g. in Gabbay and Pitts (2001).

Other notions of permutation may lead to other symmetries, so an interesting
topic of future research is to weaken the conditions in Definition 2.6.

For instance, if we only allow permutations generated by f(i) — f(i +1)
and f(i) — f(-i) then we preserve a notion of ‘distance’ between atoms.’ In a
similar vein, we can identify atoms with points in a plane and consider Euclidian
transformations. It is not known how much of ‘nominal techniques’ would hold of
such examples.

More generally of course, presheaves are a forum within which sets with
symmetry structure can be expressed. Indeed, nominal sets can be viewed as a
category of presheaves Gabbay and Pitts (1999) and a similar presheaf category was
considered at the same time Fiore et al. (1999) (see also the later related nominal
renaming sets Gabbay and Hofmann (2008), which are in some sense half-way in
between those two systems).

There is no shortage of research into this kind of structure Mac Lane and
Moerdijk (1992). It remains, however, to understand what are the abstract properties
that make a set with a group action, or a presheaf, into something ‘nominal’.

Definition 2.9. If A C A define the pointwise action by

A= {r(a)|acA}.

Definition 2.10. A permission set S is a set of the form 7-A<.
S, T will range over permission sets.

3This example modified from an example by Bartek Klin; private communication from Alexander
Kurz.

86 M.J. Gabbay

Remark 2.11. Some preliminary comments on permission sets:

* The notion of permission set used in some previous work, for instance in (Dowek
et al. 2010, Definition 2.2), was slightly different: a permission set was taken to
be a set of the form (S\ A) UB for finite A C A< and B C A>. In the presence of
shift-permutations we can do this using a permutation, and any (S'\ A) UB can be
written as 7-S for suitable 7 (cf. Remark 2.80 and dx_,-X in (IF) of Fig. 2.2).

Given that the designs are equivalent for the cases we will care about, we
chose Definition 2.10 because it is somewhat simpler to do mathematics with.
In the semantics, permission sets are used in the definition of support Defini-
tion 2.14; if permutations specify symmetry, permission sets specify capturability
and generativity (Remark 2.15).

In the syntax, permission sets are used to control capture (see Remark 2.70);
atoms in S are intuitively ‘capturable’ and atoms not in S are intuitively ‘not
capturable’.

This is reminiscent of some treatments of syntax where a formal distinction
is made between ‘names that exist to be bound’ and ‘names that exist to be
free’. See for instance the freie and gebundene Gegenstansvariable of Gentzen
(1935, Section 1), and the individual variables and parameters of Prawitz (1965,
Section 1), or Smullyan (1968, [Chapter IV, Section 1]).

However, note that here, for any a € S and b € S, also a & (b a)-S and
b € (b a)-S. That is, for any given atom there is no fixed sense in which it is
capturable or not capturable. Each individual permission sets defines its own
world of capturable/non-capturable atoms, which differs by a permutation 7 from
what is really a fixed but entirely arbitrary representative A<.

2.2.1.2 Permissive-Nominal Sets

Definition 2.12. A set with a (P-)permutation action X is a pair (|X|,-) of

* acarrier set [X| and
* agroup action (P x |X|) — |X|, written infix as 7-x.
So, id-x = x and ©t-(7'-x) = (mo it’)-x for every &, 7/, and x € |X|.

Definition 2.13. Given a set with a P-permutation action X say that A C A supports
x € |X| when for all permutations 7 € P, if 7(a) = a for all a € A then w-x = x.
Also, call A C A small when A C S for some permission set S.

Definition 2.14. A permissive-nominal set is a set with a permutation action
such that every element has a unique least small supporting set supp(x). We call
this the support of x.

X, Y will range over permissive-nominal sets.

Note in Definition 2.14 that supp(x) must be small, that is, included in some
permission set. For instance, a € A—with A having the natural permutation action

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 87

given by m-x = t(x) for x € A—is supported by {a} and A\ {a}, but the former is
small while the latter is not.

Remark 2.15. The difference between a set with a permutation action and a
‘nominal’ set is that nominal sets guarantee for any element, infinitely many atoms
fresh for that element.

A mild generalisation of Definition 2.14 is possible, where we insist there is a
supporting set but do not insist on the existence of a unique /east such set. It is
possible to do a surprising amount just with that; see for instance Fiore, Plotkin and
Turi’s paper Fiore et al. (1999) based on presheaves, and the ‘nominal’ study of
infinite permutations and infinite atoms-abstraction in Gabbay (2007b).*

Example 2.16.

* First-order syntax with variable symbols (modelled as atoms) is a permissive-
nominal set, where the permutation action permutes variable symbols directly in
syntax so that e.g. m-Aa.t = Ax(a).mt.

A term ¢ is supported by the variable symbols it contains. In this and the
following examples the precise nature of the permutation group is not important.

* First-order syntax up to o-equivalence is a permissive-nominal set. The o-
equivalence class of ¢ is supported by the free variable symbols of . A full proof
is in (Gabbay 2011b, Theorem 5.18).

* Traces of m-calculus processes with channel names (atoms) taken from some
permission set S, form a permissive-nominal set. A trace is supported by the set
of channel names it mentions (which may be infinite in number).

* Given a permissive-nominal nominal set X the set of subsets U C |X| with the
pointwise action w-U = {m-u | u € U} is a set with a permutation action (this
generalises Definition 2.9).

The subset of this consisting of those subsets U C |X| that have a supporting
permission set under this action, forms a permissive-nominal set pow(X).>

Lemma 2.17. Suppose X is a permissive-nominal set and x € |X|. Then
supp(m-x) = m-supp(x).

Proof. By aroutine calculation using the group action. |

4 1f all permutations in IP are finite then we have as a Technical Lemma that the existence of some
supporting set implies the existence of a unique least small supporting set.

In the more general case where infinite permutations are allowed, it is possible to construct a
set with a permutation action X and x € |X| such that x has a supporting set but does not have a
unique least small supporting set. See (Gabbay 2007b, Lemma 21) for an example.

An intermediate state is to admit infinite permutations but restrict the notion of support to
consider only the finite ones. We do this in Definitions 3.1 and 3.2 and Remark 3.3 of Dowek and
Gabbay (2012a).

For this paper, none of this will matter directly.

SUsing possibly repeated powersets, arbitrarily complex structures may be constructed. Thus this
example guarantees an inexhaustible supply of arbitrarily large and complex structures with which
to model ... almost anything we can imagine. The survey Gabbay (2011b) explores this in detail.

88 M.J. Gabbay

We conclude with a useful condition for checking whether a € supp(x):

Corollary 2.18. Suppose X is a permissive-nominal set and x € |X|. Suppose b &
supp(x). Then (b a)-x = x if and only if a & supp(x).

Proof. Suppose b ¢ supp(x). The right-to-left implication is by the definition of
support. For the left-to-right implication, we prove the contrapositive. Suppose
a € supp(x). By Lemma 2.17 supp((b a)-x) = (b a)-supp(x). By our suppositions,
(b a)-supp(x) # supp(x). It follows that (b a)-x # x. |

2.2.1.3 Equivariance

Definition 2.19. Suppose X and Y are permissive-nominal sets.

Call x € |X| equivariant when supp(x) = &. (So x is equivariant when 7-x = x
for all r.)

Call F € |X| — |Y| equivariant when

Vr e P.Vx € |X|.n-(F(x)) = F(mx).

F will range over equivariant functions between pairs of permissive-nominal sets.

Remark 2.20. The second notion of equivariance in Definition 2.19 is a special case
of the first. For details, see e.g. Definition 9.3 and Lemma 9.4 of Gabbay (2011b).

Lemma 2.21. If F from |X| to |Y| is equivariant then supp(F (x)) C supp(x) for all
x € |X|.

Proof. Suppose 7 € fix(supp(x)). By assumption 7-F (x) = F(7-x), and w-x = x. B

Definition 2.22. Write PmsPrm for the category with objects permissive-nominal
sets and arrows equivariant functions between them.

So X, Y range over objects in PmsPrm (Definition 2.14).

2.2.1.4 Examples of Permissive-Nominal Sets

Throughout the rest of this document we will need the following examples of
permissive-nominal sets: atoms, booleans, lists, product, equivariant elements,
permutation orbits, and atoms-abstraction. We consider each in turn now.

Atoms, Booleans, infinite lists

Definition 2.23 (Atoms). A the set of all atoms can be considered a permissive-
nominal set with a natural permutation action 7-a = 7(a). So can each A,.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 89

Definition 2.24. If X is a permissive-nominal set say the permutation action is
trivial when m-x = x for all x € |X| and all & € .

So X is trivial if and only if all its elements are equivariant.

Definition 2.25. Any ‘ordinary’ set can be made into a permissive-nominal set by
giving it the trivial permutation action such that -x = x always.

In particular, the set B = {0, 1} can be considered a permissive-nominal set with
the trivial permutation action; so can N and Z from Definition 2.1.

In the cases of A and {0, 1} only, we will be lax about the distinction between
the set, and the permissive-nominal set with its natural permutation action.

Definition 2.26 (Infinite lists). Define a permissive-nominal set L by:

 |LJ is the set of infinite sequences of distinct atoms L = [a;,as,as,...| such that
atms(L) = {ay,a,,as,...} is a permission set.
® n-L:[n(al),n(ag),n(a3),...].

Product
Definition 2.27. Suppose I is an indexing set.% If X; are permissive-nominal sets
for i € I then define I1;X; by:

 |IT;X;| is the set of I-tuples (x;); such that Vi.x; € |X;| and there exists a permission
set S such that Vi.supp(x;) C S.
o 7-(x;); = (mx;); (the elementwise or pointwise action).

Permutation orbits

Permutation orbits will serve us later in Definition 2.59 (free unknowns of a term).
If X is a nominal set then orb(X) is ‘X quotiented by the permutation action’.

Definition 2.28. If X is a permissive-nominal set define orb(X) by:

* Ifx € X then define its permutation orbit by orb(x) = {m-x | * € P}.
o Jorb(X)| = {orb(x) | x € X}.
o T-orb(x) = orb(x).

Lemma 2.29.

o supp(orb(x)) = &. That is, orb(x) is equivariant (Definition 2.19).
* orb(x) = orb(y) if and only if y = w-x for some T.

SFor clarity, note that we intend this set to not have a permutation action. Or, we can take this to
be a nominal set with the trivial action (Definition 2.24). We have in mind N.

90 M.J. Gabbay

Atoms-abstraction

Definition 2.30. Suppose X is a permissive-nominal set and A; is a set of atoms.
Define atoms-abstraction [A;]X by:

Lemma 2.31.

1. [Ai]X is a permissive-nominal set.
2. lalx=la]X if and only if x=x, for acA; and x€|X.
3. lalx=[d']x" if and only if a'¢supp(x) and (a' a)-x=x', for a,d'€A; and x,x'€|X|.

Lemma 2.32. Suppose a function F from |A x X| to |Y| is equivariant and suppose
Va,x.a ¢ supp(F(a,x)). Then there is a unique equivariant function F from |[A]X|
to |Y| such that Va,x.F ([a)x) = F (a,x).

Proof. Tt suffices to show that if b ¢ supp(x) U supp(F(a,x)) then
F(b,(ba)-x)=F(a,x). By assumption a & supp(F (a,x)), so (b a)-F(a,x) = F(a,x).
The result follows by equivariance.]

Here are some basic properties of support:

Lemma 2.33.

* supp(a) = {a}.
* supp([alx) = supp(x) \ {a}.
o supp((x1,...,x)) = U{supp(xi) | 1 <i<n}.

Proof. Proofs are as in Gabbay and Pitts (2001) or Gabbay (2011b). |

The fine design of PmsPrm

Studying PmsPrm (Definition 2.22) is not the point of this paper, but for the benefit
of the interested reader we will discuss a few aspects of its behaviour.

* If P consists of finite permutations then PmsPrm is a Boolean topos, directly
generalising the category of nominal sets (equivariant FM sets) from Gabbay and
Pitts (2001), Gabbay (2011b). The proof proceeds much as in (Gabbay 2011b,
Corollary 9.11).

e If P contains infinite permutations then PmsPrm is cartesian (has products) but
is not necessarily cartesian closed (may not have exponentials). This is the fuzzy
support observed in Gabbay (2007b); see (Gabbay 2007b, Lemma 21) for the
concrete construction. This is reasonable, and it happens because it is possible
to construct a function f on @ + @ which satisfies f(0) =0 and f(i+1) = f(i)

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 91

yet which is not a constant function (it returns O on finite cardinals and 1 on
infinite ones).

» If PP contains infinite permutations but we follow Dowek et al. (2010) and take
the notions of support in Definition 2.13 and equivariance to consider only finite
permutations, then the category we obtain is a Boolean topos but we only have
supp(x) Nnontriv(m) = & implies 7-x = x for finite 7. In other words, an element
can be fixed by all finite permutations and have empty support, but be shifted by
some infinite permutation.

Again, this is reasonable; it is no surprise that infinite permutations can
‘observe’ more than finite ones.

* If P contains infinite permutations and we work with presheaves (in essence, we
lose the ‘unique least supporting set” assumption in Definition 2.14), then we get
a topos, though it is not Boolean.

In this paper we do not attempt to reason inside PmsPrm so we do not care whether
it is a topos; and we do want the possibility of infinite permutations because these
let us write nice algorithms and they give our logics some useful extra expressive
power (see e.g. rule (IF) of Fig. 2.2, Sect. 2.2.2.6, and Remark 2.239).

So we admit the possibility of infinite permutations in Definition 2.6, we
let Definition 2.13 consider all 7 € P (even infinite ones), and we insist in
Definition 2.14 that every x have a unique least small supporting set.

In another paper, another set of design decisions might be appropriate.

The reader who does not care about these considerations need not worry; they
are all swept under the carpet henceforth.

2.2.1.5 Strong Support

Strong support exists in nominal terms, though this is implicit. Consider in Urban
et al. (2004) the ~-suspension rule in Figure 2, and Lemma 2.8. We call this strong
support, following (Tzevelekos 2007, Definition 1).

A possibly useful intuition is that an element x € X has strong support when the
atoms in its support occur in order (a dedicated theoretical study of this is in Gabbay
(2007b)). Formally, the notion of strong support enters into the mathematics in this
paper via Proposition 2.38, Lemma 2.67, and Lemma 2.186.

Definition 2.34. Suppose X is a permissive-nominal set. Say A C A strongly
supports x € |X| when -x = x if and only if Ya€A.x(a) = a.

If x has some strongly supporting set, call x strongly supported.

If every x € |X| is strongly supported then call X strongly supported.

Lemma 2.35. x € X is strongly supported if and only if

v, o' (mx = n'x < (Va € supp(x).nt(a) = 7' (a))).

92 M.J. Gabbay

Proof. From Definition 2.34 by considering 7! o 7',]
Example 2.36.

* The pair (a,b) € A x A is strongly supported by {a,b}.

* The unordered pair {a,b} C A with the pointwise permutation action (Defini-
tion 2.9) is not strongly supported, because (a b)-{a,b} = {a,b}.

+ The infinite sequences [aj,a,a3,...] in L from Definition 2.26 are strongly
supported.

Definition 2.37. Suppose X and Y are permissive-nominal sets and X is strongly-
supported. Suppose we are given the following data:

* For each x € |orb(X)| a fixed but arbitrary choice of representative X, € x.
* For each x € |orb(X)| a choice of y, € |Y| such that supp(yy) C supp(Xy).

Define the equivariant extension F of this data, which is a function from |X| to
Y], by:

F(mX,) =Ty

Proposition 2.38. 1. The equivariant extension is well-defined and is an equivari-
ant function from |X| to |Y)|.
2. Every equivariant f is an equivariant extension.

Proof. For the first part, by properties of orbits every x € |X| has the form 7-X,
for some 7 and for precisely one X,. This is equivariant by construction, if it is
well-defined. So suppose 7-X; = 7’-X;. By assumption X, is strongly supported
so w(a) = 7'(a) for every a € supp(Xy). By assumption supp(y,) C supp(X,). The
result follows by the definition of support.

The second part is easy, noting that supp(F (x)) C supp(x) by Lemma 2.21. B

2.2.2 The Syntax of Nominal Terms

Nominal terms were introduced in Urban et al. (2004). The development here is
permissive, following Dowek et al. (2010), but with some additional ingredients: We
allow non-equivariant constant symbols and we parameterise over a set of unknowns
which is a strongly-supported Tzevelekos (2007).

Some example permissive-nominal terms are given in Example 2.52. See also
how nominal terms are used in rewrite theories (Example 2.124), algebra (Exam-
ple 2.170), and first-order logic (Sect. 2.4.2.1).

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 93

2.2.2.1 Signatures

Definition 2.39. A sort-signature is a tuple (4, 3) of name and base sorts A C N
and B.

v will range over name sorts; T will range over base sorts.

A sort language is defined by

az=v|t|(a,...,0)]| [V]a.

Example 2.40. Example base sorts are: ‘A-terms’, ‘formulae’, ‘m-calculus pro-
cesses’, and ‘program environments’, ‘functions’, ‘truth-values’,
‘behaviours’, and ‘valuations’.

Base sorts 7 are arbitrary; later on when we build denotations they will be
populated by elements of arbitrary permissive-nominal sets, see Definition 2.176.

Examples of name sorts are ‘variable symbols’, ‘channel names’, ‘thread iden-
tifiers’, or ‘memory locations’. Name sorts v are populated by the atoms we fixed
in Definition 2.2 and which we used to build permutations and permissive-nominal
sets.

Remark 2.41. (c,...,a) is a product sort and behaves as expected.

[V]o is an atoms-abstraction sort; this is different. The behaviour of a term of
sort [v]or corresponds to ‘ce-abstract a name of sort v in a term of sort o’. This
is binding without functions: we will use atoms-abstractions (Definition 2.30) to
populate atoms-abstraction sorts.

Remark 2.42. In Definition 2.39 we insist that a name sort v is a natural number;
this is not necessary but it makes it easier for us to identify name sorts with sets of
atoms from Definition 2.2, which are also indexed by numbers.

Definition 2.43. A (nominal) term-signature over a sort-signature (A,) is a
tuple (C, X, F,ar) where:

» (is a permissive-nominal set of constants.

* X is a strongly supported (Definition 2.34) permissive-nominal set of un-
knowns.

» F is a set of equivariant term-formers.

* ar assigns

— to each constant C € C a base sort T which may we write sort(C),
— to each unknown X € X a sort o which we may write sor#(X), and
— toeach f € F a term-former arity (o), where

o and 7 are in the sort-language determined by (A, B).

A (nominal terms) signature X is then a tuple (A, B,C, X', F,ar).

94 M.J. Gabbay

The support supp(X) of an unknown X € X is intuitively the atoms that may
occur free in a term we substitute for that unknown, and A \ supp(X) is the atoms
which may not occur free. See Proposition 2.64.

Notation 2.44. We may write ((a,...,0))T justas (oq,...,0,)T.
We write f : (o)1 for ar(f) = ()7 and similarly we write P : o for ar(P) = a.

Example 2.45. Here are some examples of suitable X

1. For each sort o and permission set S choose a disjoint countably infinite set of
unknown symbols X5, Y5, ... Define ©-X5, = {(7/,X5) | VaeS.n(a) = 7'(a)}.
Let X = {m-X} | all X3, 7} with permutation action 7-(n'-X3) = (mon')-X5.
Define ar(m-X5) = o.

Essentially this X was used in Dowek et al. (2010).

2. For each sort @ choose a disjoint countably infinite set of unknown symbols
Xo» Yo, ... Define m-Xq = {(7,Xy) | Va€A<.n(a) = 7'(a)}. Let X = {m-Xq |
all X, 77:} with permutation action 7-(7"-Xy) = (o ')-Xg. Define ar(m-Xy) =
a.

3. Take X = (a, (ag,a1,az,...)) where {a; | i € N} is a permission set and let X
be the set of all possible X. Give this the pointwise permutation action 7-X =
(a,(m(ap),m(ay),...)) and define ar(X) = o.

This &X' is mathematically simple, eliminating the need to take quotients over
TT.

4. Take X = {0,1,2,...} with the trivial action m-x = x, so every x € X has
supp(x) = @. This example illustrates that our framework is general enough to
include the possibility of unknowns ranging over closed elements (a possibility
also mooted in (Fernandez and Gabbay 2007, Section 9.2)). By adding further
structure to X, further possibilities can be explored. See also Gabbay (2011c)
and Gabbay (2012a).

In all cases it can be verified that X is strongly supported.

Remark 2.46. In the case that X the set of unknowns is as described in parts 1
or 2 of Example 2.45, orb(X) (Definition 2.28) may be identified with X5, or X4
respectively.

The X of part 1 above may be equivalent to that of X of part 2, if there exists & €
P bijecting S with S\ {a} for a € S. This is a shift-permutation; see Definition 2.79
and subsequent discussion.

For the benefit of the reader familiar with ‘vanilla’ nominal terms as used e.g. in
Urban et al. (2004), Fernandez and Gabbay (2007), Gabbay and Mathijssen (2009),
Fig. 2.1 gives a cheat sheet suggesting how concepts in those papers map to the
‘permissive’ context.

Example 2.47. A nominal terms signature for the A-calculus would have one name
sort v, one base sort 7, and term-formers lam : ([V]1)7, app : (7,7)7, and var : (V)7.
The set of constants is empty, and for unknowns we can consider Example 2.45.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 95

Vanilla Permissive

X Unknown with permission set A<
a#X a ¢ supp(X)

attr aéfa(r)

VEr—sorAbr=s r—>sorr=s

Extend freshness context shift-permutation (approx)

Finite support Small support
Fig. 2.1 Cheat sheet relating ‘vanilla’ nominal terms concepts with ‘permissive’ ones
Usually we assume ‘plenty’ of variable symbols. Definition 2.48 makes that

formal:

Definition 2.48. Say that a signature X = (A,B,C,X,F,ar) has enough un-
knowns when for every sort o in (A,B) and every permission set S, the set
{orb(X) | X € X, sort(X) = o, supp(X) = S} is infinite.

All the examples in Example 2.45 have enough unknowns.
2.2.2.2 Terms

Definition 2.49. For each signature X = (A, B,C, X, F,ar) (Definition 2.43) define
(permissive-nominal) terms over X by:

(achy, veA) (sort(C) = 1) (sort(X) = o)
rro (ar(f) = (o)1) FLIO0 ... Tyt Oy r:o (a€hy, veA)
f(r): (F1seesmn) (0, O) [d]r: [V]o

Notation 2.50. We may write f((ry,...,r,)) as f(ry,...,r).

Remark 2.51. Definition 2.49 is nominal abstract syntax: terms come pre-
quotiented by «-equivalence by construction by virtue of our use of atoms-
abstraction [a|r. That is, if a € A and r : « then [a]r is not a pair (a,r), it is a
set {(a,r)} U{(b,(ba)r)|be Ay \supp(r)} (Definition 2.30).

Example 2.52. Recall the signature for the A-calculus from Example 2.47. In that
signature we can form terms as illustrated in the following table, where a : v and
X:1

96 M.J. Gabbay

a:v This is not a A-term.

var(a): T If we want an atom to behave like a A-term
variable, we use var to ‘inject’ it into 7. This
corresponds to ‘x’

[ala: [v]v An atoms-abstraction. This is not a A-term.

[a]var(a) : [v]T An atoms-abstraction of a A-term. This is not a
A-term.

lam([a]var(a)) : T This corresponds to ‘Ax.x’.

lam([a]app(X,var(a))) : T An open nominal term. This corresponds to
‘Ax.tx, for some ¢’. Depending on whether a ¢
supp(X), we may add a side-condition ‘where x
isnot free in #’.

Lemma 2.53. Support and the permutation action are characterised on terms r as
follows:

supp(a) = {a} supp(f(r)) = supp(r)
supp(C) = supp(C) — supp((r1...,1a)) = U1<,<nsupp(rz)
supp(X) = supp(X) supp(la]r) = supp(r)\{a}
n-a = n(a) n-f(r) = f(m-r)
nC=rnC T (ri,...,r) = (Tery,..., 1)
nX=mnX m-la]r = [n(a)]
Proof. By facts of the permutation action and Lemma 2.33.]

Remark 2.54. Lemma 2.53 is important because it verifies that ‘support of 7’
coincides with the usual definition of ‘free variables (atoms) of r’. This is false
of nominal terms; for instance the support of the structure [a|X as constructed in
Urban et al. (2004) is {a}, and that of (a b)-X is {a,b}.

What makes Lemma 2.53 work is the very specific way in which we constructed
our permissive-nominal terms syntax, so that it coincides with the nominal abstract
syntax of Gabbay and Pitts (2001). In this sense, what Lemma 2.53 expresses is a
unification (no pun intended) of the mathematics of Gabbay and Pitts (2001) and
Urban et al. (2004).

In Lemma 2.53 the clauses for C and X are uninformative, of course. This is
because support and the permutation action are determined by the choice of C and
X. If we assume further internal structure of C € C or X € X then we can be more
specific: for instance in the case of part 1 of Example 2.45, fa(n-X5) = {rn(a) |
a€e S}

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 97

Because of Lemma 2.53, we are entitled to use the following notation:

Notation 2.55. In the case of syntax r, we may write fa(r) for supp(r) and call
this the free atoms of r.

Lemma 2.56. fa(n-r) = m-fa(r).
Proof. By aroutine induction on r. |

Lemma 2.57. If n(a) = ©t'(a) for all a € fa(r) then w-r = '-r. The reverse impli-
cation also holds, provided that all constant symbols in r are strongly supported.

Proof. The first part is immediate from Notation 2.55 and the definition of support
in Definition 2.13.

The reverse implication is by a nominal abstract syntax induction on r. For the
case of r = [a]r’ we a-convert a to be fresh so that a & nontriv(r) Unontriv(zt'); by
assumption 3 in Definition 2.6 we can do this. We then use part 2 of Lemma 2.31.
The case of r = X € X uses the assumption of strong support in Definition 2.43.” ll

2.2.2.3 Free Unknowns of a Term

Remark 2.58. Defining a notion of ‘the free unknowns of 7’ is not entirely evident.

Consider for example [a]X where a € supp(X). If ‘X appears in [a]X is true then
so is ‘(b a)-X appears in [a]X* for any b & supp(X), since [a]X = [b](b a)-X. We
deal with this in Definition 2.59 using permutation orbits from Definition 2.28; we
simply quotient out all permutations. We take a more refined look at this later in
Remark 2.93.

Definition 2.59. Define (free) unknowns fU(r) by:

fUla) =2 JU(f(r)) = fU(r)
fU(C):g ﬂ]((rlv"'vrn)):UifU(ri)
JUX) ={orb(X)} JU(la]r) = fU(r)

By abuse of notation we write X € fU(r) for orb(X) € fU(r) and X & fU(r) for
orb(X) € fU(r), and so forth.

"Details of how induction on nominal abstract syntax allows us to c-convert and make freshness
assumptions, are the topic of Gabbay (2011b). A less fancy proof of both implications by a standard
induction—so not this new-fangled nominal nonsense—on terms not quotiented by ¢t-equivalence,
is in Appendix A of Dowek et al. (2010), proof of Lemma 4.15 on page 50. We leave it to the reader
to judge which is the nicer proof.

98 M.J. Gabbay

Lemma 2.60. fU(r) is well-defined.
Proof. Using Lemmas 2.29 and 2.32.]

Notation 2.61. Call a term r ground when fU(r) = &. Otherwise, call r open.

2.2.2.4 Substitutions

Remark 2.62. Substitutions are of course how unknowns ‘stand for’ terms. Some-
what later we will develop a denotational theory for nominal terms, and so
valuations for unknowns will appear, in Definition 2.178. Between now and then,
substitutions are king.

The permissive-nominal framework we work with allows us an elegant
definition:

Definition 2.63. Suppose X is a signature. A substitution 6 in X is an equivariant
function from X to terms in X such that sort(6(X)) = sort(X) always.

0 will range over substitutions.

Write id for the identity substitution mapping X to X always. It will always be
clear whether id means the identity substitution or permutation.

The reader familiar with nominal terms will expect a ‘freshness’ condition
on substitutions corresponding to ‘V/ = V@’, as in for example Equation (11) or
Lemma 2.14 of Urban et al. (2004), or ‘fa(0 (X)) C supp(X)’ as in Definition 3.1 of
Dowek et al. (2010). This follows immediately from equivariance:

Proposition 2.64. If 0 is a substitution then VX €X fa(6(X)) C supp(X).
Proof. Direct from Lemma 2.21. |

Putting Propositions 2.64 and 2.38 together with a concrete X recovers the notion
of substitution used in Dowek et al. (2010):

Lemma 2.65. If X is equal to example 1 of Example 2.45 then the construction
in Definition 2.37 describes a 1-1 correspondence between substitutions and maps
from unknowns X3, to terms t : & such that fa(t) C S.

Definition 2.66. Suppose fa(t) C supp(X) and sort(t) = sort(X). Write [X:=t] for
the atomic substitution equivariantly extending the assignment X +— ¢, so that

[X:=t](n-X) = -t and
[X:=t](Y) =Y forallother?.

By Proposition 2.38 we have:
Lemma 2.67. Definition 2.66 is well-defined. That is, if t-X = n'-X then -t = 1t'-t.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 99

Remark 2.68. The ‘moderated unknown’ 7-X in Definition 2.66 is an artefact of
our writing [X:=¢] instead of a mathematically equal [7-X :=7-¢] for some other 7.

Since 0 is equivariant its behaviour on -X is already determined by its behaviour
on X and so we could unambiguously specify [X:=¢] succinctly as [X:=t](X) =t and
X:=r(Y)=Y.

Definition 2.69. Define a substitution action on terms by:

ab=a f(r)6 =1(ro)
co=cC (riy..y10)0 = (110,...,1,0)
X0 =06(X) ([a]r)6 = [a](rO)

Note that X 0 refers to 6 acting on X as a term whereas 6(X) refers the value of the
function 0 at X. The substitution action is well-defined by Lemmas 2.32 and 2.33.

Remark 2.70. Famously, the nominal terms substitution is capturing (Urban et al.
2004, Definition 2.13). We spell out how this works in our permissive-nominal
context: Suppose supp(X) is equal to a permission set S and a € S and b ¢ S (where
we assume appropriate sorts). Then:

* ([a]X)[X:=a] = |a]a. The a in the substitution [X:=a] has been captured by the
[a]X.

« ([bIX)[X:=d] = [Bla.

* It is impossible to even ask what ([b]X)[X:=b] is equal to because [X:=b] is not
even a substitution, since b € S. So b € S cannot be captured by a substitution
[X:=b], because that substitution does not exist. This is no ad hoc restriction: by
Proposition 2.64 it cannot exist.

* Also, [b](ba)-X = [a]X. By construction in Definition 2.66

([b](b a)-X)[X:=a] = [b](b a)-a = [b]b = [d]a.

Also [X:=a] = [(b a)-X:=b] and ([b](b a)-X)[(b a)-X:=b] = [b]b.
That is, the choice of representative of [a]X and [X:=a] does not matter for
capture to occur.

It is interesting to note that in our setting, [X:=a| is equivariant and that a &
supp([a]X). If a is fresh for both [X:=a] and [a]X, how can it be captured?

What allows a to get captured is the strong support property of X. Because X is
strongly supported, we can think of it as ‘containing’ a list of its supporting atoms
in some order, so that the a in [X:=d] is bound by supp(X) but in being bound it
points to a ‘position’ in X.

Viewed from this interesting perspective, the nominal substitution action is
not capturing at all: it is simply a compact way to present an ‘infinite raising’
(terminology from higher-order logic), or a de Bruijn index.

100 M.J. Gabbay

Lemma 2.71. 7-(r0)=(7-r)6.

Proof. By aroutine induction on r using equivariance.]
Lemma 2.72. fa(r0) C fa(r).
Proof. From Lemmas 2.21 and 2.71. |

Lemma 2.73. r0 = r0' if and only if VX €fU(r).0(X) = 6'(X).
Proof. By aroutine induction on r. We consider two cases:

* The case |a]r. Suppose 0(X) = 0'(X) for every X € fU([a]r). fU([a]r) = fU(r)
so by inductive hypothesis r@ = r@’. The result follows from the definitions.
The reverse implication is similar.
» The case X. Suppose 6(7-X) = 6'(x-X) for all . Then taking 7 = id we have
X0=0X)=0'(X)=X0".
Conversely if X0 = X0’ then using equivariance (Definition 2.63) 6(7w-X) =
0’ (z-X) for all . []

Remark 2.74. Recall from Definition 2.59 that we write X € fU(r) for orb(X) €
JU(r). It might seem that the condition VX€fU(r).0(X) = 6'(X) in Lemma 2.73
would require checking 6(X) = 6’(X) for infinitely many X provided that fU(r) #
. In fact, this is not the case: by equivariance of 6, we only need to check equality
for one representative X of each permutation orbit: X € orb(X) € fU(r).

2.2.2.5 Composition and Invertibility of Substitutions
Definition 2.75. Define composition of substitutions 8 0 6, by
(61062)(X) = (61 (X))6:.

Lemma 2.76. (r0)0’ =r(6c6).
Proof. By induction on r. |

Definition 2.77. Call 6 invertible when there exists 87! such that 806! =
006 =id.

Lemma 2.78. 0 is invertible if and only if 0 is a bijection on X the set of all
unknowns. Furthermore, if 0 is invertible then supp(0 (X)) = supp(X) always.

Proof. Substitution cannot make syntax smaller, or (by Lemma 2.72) make free
atoms larger.]

So an invertible 6 must biject unknowns of a particular sort and permission set
with other unknowns of that same sort and permission set. So, like atoms, we can
rename unknowns to ‘be fresh’ (provided we have given ourselves enough of them).

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 101

Invertible substitutions will be useful later, and they are also one manifestation of a
more general framework of two-level nominal sets Gabbay (2011c).

2.2.2.6 Shift-Permutations

The reader may be familiar with nominal freshness conditions a#X from Urban et al.
(2004). In that paper, a#X indicated that X should be substituted only for terms for
which a is fresh.

In Urban et al. (2004), Fernandez and Gabbay (2007), we might have to extend
a freshness context in order to give ourselves more fresh atoms. This is what rules
like (Fr) from (Gabbay and Mathijssen 2008c, Figure 2) or (fr) from (Gabbay and
Mathijssen 2009, Figure 2) do; see also Ferndndez and Gabbay (2010) where the
issue of extending nominal freshness contexts is made very explicit.

In principle, permission sets guarantee an infinite supply of fresh atoms, so the
problem of extending a freshness context should not arise. But this may rely on
oracular knowledge of what the permission set should be, which we might prefer
not to assume. The choice of nominal permutation group [P gives us the power to
implicitly parameterise over this decision.

Suppose we have some X such that a € supp(X) and we perhaps we are solving
a unification problem and the information that a should be fresh for X has just been
revealed by an algorithm; so we want to remove a from the permission set of X.
This arises in the unification algorithm of Sect. 2.3.1.

Suppose alternatively we would like to make the permission set larger, e.g. if we
know VX .¢ and want to deduce ¢[X:=t] where fa(t) € supp(X), or we have a rewrite
rule X — X and want to deduce r — ¢ where again fa(r) Z supp(X). This arises in the
nominal rewriting, algebra and permissive-nominal logic which we construct later.

This is where shift-permutations can help.

Definition 2.79. Call a permutation 6 € IP a shift-permutation when there exists
a permission set S and atom a € S such that S\ {a} = 6-S.

Say that a nominal permutation group PP has shift-permutations when for every
permission set S and atom a € A there exists a permutation 7 € P such that 7-S =

S\{a}.

Remark 2.80. Another way to read Definition 2.79 is that P has shift-permutations
when, if S is a permission set and A is finite, then S\ A and SUA are permission sets.
Stronger versions allowing infinite A are certainly imaginable.

Example 2.81. The nominal permutation group in part 2 of Example 2.7 has shift-
permutations.

& bijects A; with A \ {f(0)}. Using swappings we can now generate a 7 to
biject any permission set S with S\{a} for a € S. We give the concrete constructions
below, culminating with Lemma 2.88.

102 M.J. Gabbay

For the rest of this section we work concretely with the nominal permutation
group from part 2 of Example 2.7; the reader only interested in the high-level
picture can skip this. Recall the bijections f; from integers to atoms from part 2 of
Example 2.7. For simplicity drop the subscript i and consider just one set of atoms.

Notation 2.82. By abuse of notation write O for the atom f(0).
Definition 2.83. 1. If a € A< then define 6™ by:
8% =(a0)o80o(a0)

2. If b € A> then for some fixed but arbitrary choice of ¢ € A~ such that 6(c) = ¢
(and so also ¢ & A<), define 5™ by:

8% = (b0) o (cb)o 5 o (cb)o (b0)

Example 2.84. We illustrate 8 and 8% where a = f(-2) and b = f(3) and where
we take ¢ = b:

e “— “— /Z—\ e —
£(-6) £(-5) £(-4) £(-3) £(2) 1) £(0) (1) 12 1) 1(4) 1(5) 1(6)
Y~ = r r r
—a —a —a —a —a /\/—\ .
£(-6) £(-5) £(-4) £(-3) £(-2) 1) £(0) (1) 12 13) 1(4) 1(5) 1(6)
oW — L

We also consider the slightly more complex example of 5™ where d = f (4), and
again we take ¢ = f(3). We do this in three steps, where we illustrate 5!, then
(cd)o 8 o(cd), and finally §*:

P N T N

— — — T~
f(-6) f(5) f(-4) f(:3) f(2) QY 1(0) F1) 1) 1G3) 1) 1) 1(6)
)))
— — — — — — o — L
1(-6) f(5) f(-4) f(:3) f(2) QY 1(0) F1) 1) 1G3) 1) 1) 1(6)
) NN
f(-6) f(5) f(-4) f(:3) f(2) QY 1(0) F1) 1) 1G3) 1) 1) 1(6)
NN —)

Lemma 2.85. 1. Ifa € A< then 8§ bijects A< with A<\ {a}.
2. Ifb € A> then 8*" bijects A< with A< U{b}.

Proof. For the first part, suppose a € A<. Then A< = (a0)-A<. We reason as follows:
§-((a0)-A°) = ((a0) 0 o (a0) o (0))-A°
=((a0)08)-A° = (a0)-(A\{0}) = A= \{a}

Now suppose b € A>. It is easier to work with (§*”)™!, to keep the parallel with
the previous case. So A< U{b} = ((b0)-A<)U{0}. We reason as follows:

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 103

(8" (((00)-A)U{0}) = ((60) o (cb) 0 8o (cb) o (b0))-(((b0)-A<) U{0})

Def. 2.83
= (((60)o(cb)odo(ch)o (bO))-((bO);(%))) u{o}
= (((p0) o (ch) 0 8o (cb))-A<)U{0}
Fact
= (((b0)o (cb)o8)-A<)U{0}
b,c & A<
= (((b0) o (cb))-(A=\{0})) U{0}
6-A<=A<\{0}
= (A*\{0})u{0}
b,c ¢ A<\{0}
= A<]

Recall from Definition 2.10 that each permission set S has the form 7-A< for
some permutation .

Definition 2.86. For each S make some choice of permutation 7g such that S =
-1 8
Ty A<,

Definition 2.87. Suppose S is a permission setand a € S and b ¢ S. Then we define:

S50 = 77,'51 0§, T Ssap = ﬂ'&l 0§ (b o T

The concrete details of the construction are only interesting insofar as they give
us Lemma 2.88. Other permutations are possible, but we only need that one exists.

Lemma 2.88.

1. 5.4 bijects S with S\{a}.
2. 8s4p bijects S with SU{b}.

Proof. From Lemma 2.85.]

Definition 2.89. Suppose S is a permission set and supp(X) = S. Suppose D is
a finite list of atoms d,...,d, and E is a finite list of atoms ey,...,e,. Suppose
{di,...,d,} C Sand{ey,...,e,} NS = &. Then define &s.p and Js,g, and X-D and
X+E by:

8Taking the inverse here saves writing ' quite so many times in Definition 2.87, and is harmless
since permutations are invertible.

104 M.J. Gabbay

55[] =id 6S+[] =id

65'[‘1] = 6S'd 6S+[e] = 6S+e

05,0 = O(s\{d})-D © O5-d OS+e.E = O(sUfe})+E © Ote
X-D= 6supp(X)—D'X X+E = 6supp(X)+E'X

Lemma 2.90. Suppose S is a permission set. Suppose D and E are finite lists of
atoms dy,...,d, and ey,... ,e,. Suppose {dy,...,d,} C Sand{ey,...,e,}NS=2.
Then O, bijects S with S\ {d\,...,d,} and &, bijects S with SU{ey,...,e,}.

Proof. Using Lemma 2.88. n

Corollary 2.91. S is a permission set if and only if S = (A<\A)UB for some finite
ACA< and BC A~

Proof. 1If S is a permission set then by Definition 2.10 S = 7-A< for some 7 and the
result follows by a routine induction on the generators of 7 (swapping and J; see
part 2 of Example 2.7).

Conversely consider S = (A<\A)UB. Let D be the atoms in A in some order, and
E be the atoms in B in some order. Then we apply J;, and then 5<S\ AVE and use
Lemma 2.90.]

Remark 2.92. The reader may be familiar with the de Bruijn shift function 1 (Abadi
et al. 1991, Section 2.2). This maps N to N\{0} by mapping j € Nto j+ 1 €N,
and in doing so it ‘creates a fresh number’ 0. The reader familiar with presheaf
techniques may know of a functor 6 and arrow up, which work the same way, as
exemplified in (Fiore et al. 1999, Section 1).

0; from part 2 of Example 2.7 is in the same spirit. It shifts ‘down’ instead of
‘up’, but &;! shifts ‘up’.

Note that is invertible (1 and up are not). This is consistent with the general
preference of nominal techniques for using permutations where possible.

2.2.2.7 Occurrences

Remark 2.93. As discussed in Remark 2.58 we have to be careful if we wish to say
‘X appears in r’; this might not quite mean what we think it does.

For example if ‘X appears in [a]X” where a € supp(X) then also ‘(b a)-X appears
in [a]X’ for any b & supp(X). We dealt with this in Definition 2.59 by quotienting
out all permutations.

But this is a little drastic. For instance, ‘(b a)-X appears in [a]X’ is not true for
b € supp(X); it is not the case that if ‘X appears in r’ then ‘m-X appears in r’ for
any 7.

We did not need to quotient out all permutations—only some of them—and so
returning orb(X) in Definition 2.59 throws out more information than necessary.

Definitions 2.94 and 2.95 develop a more refined notion of occurrence, based on
an intuition of ‘X appears in r under a list of abstractions D’. This will be useful later.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 105

Definition 2.94. D will range over finite lists of distinct atoms. A (level 2)
occurrence is a term of the form [D]X where [|X is X and [a,D]X is [a][D]X.

Definition 2.95. Define the occurrences in r inductively by:

occ(a) = @ occ(f(r)) = occ(r)
occ(C) =g occ((r1y...,mm)) = Uoce(r;)
occ(X)=X occ([a]r) = {[a]x | x€occ(r)}

Example 2.96.

e X occursin X.

* [a]X occurs in [a]X and also in [a](X,Y); so does [a]Y. X does not occur in [a]X
or [a](X,Y).

* [a][p]X and [a][a]X occur in [a]([b]X, [a]X).

We write occurrences as [D]X for D a finite list of distinct atoms. Note that [a][a]X
is an occurrence since it is equal to [a][b](b a)-X where b & supp(X). This is an
equality, not an equivalence imposed on terms after they are constructed, because of
our use of atoms-abstraction (Definition 2.30) in syntax (Definition 2.49).

2.3 Rewrites, Equations, and Algebras

2.3.1 Unification

We want to write rewrite rules and equality axioms using nominal terms. In order to
do this, we have to unify nominal terms (answer the question: “given r and s what
substitutions @ make them equal?”). Unification makes unknowns ‘come alive’ and
represent unknown terms.

Therefore, we now create a nominal unification algorithm. One notable property
of nominal unification is that it has most general (principal) unifiers Theorem 2.118.
Contrast this with higher-order unification, which does not (Dowek 2001, Sec-
tion 4). This is one reason we say that the nominal approach to names and binding
has a ‘“first-order’ flavour.

The algorithm we use follows the spirit of Urban et al. (2004) but the de-
sign is different. In Urban et al. (2004) a solution to [a]X = [b]Y would be
(b#X,[Y:=(b a)-X]); that is, the unification algorithm returns a pair of some freshness
side-conditions and some equalities.’

9We write typewriter font to avoid confusion between the symbols used in Urban et al. (2004)
(which have no support) and the elements X € X used in this paper (which do have support). To
see how to travel between these two worlds see part 2 of Example 2.45, or Dowek et al. (2010).

106 M.J. Gabbay

Here, solutions are equalities only, without freshness conditions. The extra power
resides in the notion of an shift-permutation (Definition 2.79).
A solution to [a]X = [b]Y where b € supp(X) = supp(Y) would be

[X:=8"-X, Y:=((ba)o&)X]

where &’ bijects supp(X) with supp(X) \ {b} (and by this bijection ‘internally
freshens’ X with respect to b).

In another design (Dowek et al. 2010, Section 5) we use permission sets
and fresh unknowns; a solution to [a]X = [b]Y where b € supp(X) = supp(Y) is
[X:=Z, Y:=(b a)-Z] where supp(Z) = supp(X) \ {b}. Generating Z fresh requires us
to solve problems in a context of ‘known unknowns’ V. This introduces a notion
of state and sequentiality into the algorithm of Dowek et al. (2010) which we
avoid here.

Nothing forces us to feed the unification algorithm syntax with shift-
permutations, even if the solutions it returns might mention them; similarly in
Urban et al. (2004) we may obtain a solution with freshness side-conditions
to a unification problem with only equalities. So use of shift-permutation in
Definition 2.97 should not be read as a commitment to using them everywhere
(though we do note empirically that shift seems to be useful elsewhere too).

The main definition of this section is Definition 2.104. The main result is
Theorem 2.118.

Definition 2.97. Throughout this Section we fix some signature £ and we work
with syntax over . We assume a nominal permutation group P with shift-
permutations and a set of unknowns X such that every unknown is supported by
a permission set (see e.g. part 2 of Example 2.45).

2.3.1.1 The Unification Algorithm

Definition 2.98. A (unification) equality is a unordered pair r = 5 (so r = s is
identical to s = r) such that:

1. sort(r) = sort(s).
2. If [D]X and [D'|z-X are both in occ(r) Uocc(s) then 7 is finite.
So we exclude an equality like X = §-X, where § is a shift permutation and
nontriv(6) Nsupp(X) is not finite.

A (unification) freshness is an ordered pair a#r.
Let ef range over equalities or freshnesses and define ef 0 by:

s (r£s5)6=(r0 =50).
o (attor)0 = (ath(r9)).

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics

(£a) a=a,Pr = Pr
(£C) C=C, Pr = Pr
(&f) f(r) =f(s), Pr = r=s,Pr
(Z0) (1, ymm) = (S15.00,80), Pr= 1| =51,...,In = sp,Pr
(Z) [a]r = [als, Pr = r=s,Pr
(£X) X £ X, Pr = a#X,...,a,#X,Pr
({a1,...,an} = nontriv(m) Nsupp(X))
(F) r=X,Pr = g, r=X, Pr
(a € fa(r)\supp(X))
(F#) attor, Pr = Pr (a & fa(r))
(Ff) athf(r), Pr = athr,Pr
(F()) atto(ri,...,rm), Pr = attry,...,atr,, Pr
(F[]) ait[b]r, Pr = aibr, Pr
(IE) rZX,Pr =) prix=]
(XEfU(r).fa(r)Ssupp(X))
(IF) a#hX,Pr X2 X] prx =6y X]
Fig. 2.2 Simplification rules for problems
A nominal unification problem Pr is a finite list ef{, ..., ef,.

107

We (ab)use standard sets notation and write ef € Pr as shorthand for ‘ef appears

in the list Pr’.

Remark 2.99. Condition 2 in Definition 2.98 protects (=X) in Fig. 2.2 from an
‘infinite freshness explosion’, if nontriv(m) Nsupp(X) is not finite. This condition
exists implicitly in Urban et al. (2004), in the sense that all permutations there are
finite. However, condition 2 is not only computationally motivated. Given constants
C and D with supp(C) = @ = supp(D), X = §-X may have solutions C and D but
have no principal solution. We discuss the implications of this condition to nominal
rewriting, at the end of Sect. 2.3.3.

Definition 2.100. If Pr=ef},...,ef, is a problem then define Pr by:

Pr@ = ef|0,...,¢f,0

Say O solves Pr and call 6 a solution to Pr when

r6 = s06
a & fa(r@)

forevery r=s€Pr, and

forevery attr € Pr.

Write Sol(Pr) for the set of solutions to Pr and call Pr solvable when Sol(Pr) is
non-empty.

108 M.J. Gabbay

Recall the definition of 806’ from Definition 2.75.
Lemma 2.101. 006’ € Sol(Pr) if and only if 6' € Sol(Pro).
Proof. By unpacking Definition 2.100 and using Lemma 2.76.]

Definition 2.102. Define a simplification rewrite relation Pr = Pr’ on unification
problems by the rules in Fig. 2.2.

We call rules (IF) and (IE) instantiating rules. We call all the other rules non-
instantiating rules.

In (IF) Ox., is some permutation bijecting supp(X) with supp(X) \ {a}. We can
do this because we assumed shift-permutations in Definition 2.97.1°

Write == for the transitive and reflexive closure of =—.

Remark 2.103. Compare Fig. 2.2 with Figure 3 of Urban et al. (2004). Note of
(Z[]) that we do not consider the case [a]r = [b]s. This is because a-equivalence is
handled automatically by nominal abstract syntax, specifically by Definition 2.30.
So a-renaming is pushed into the background (just as is usually the case for first-
order syntax) and these rules are somewhat higher-level than those of Urban et al.
(2004).

We also do not require a rule a#y[a]r, Pr = Pr because the abstracted atom
in [a]r is a-convertible; more formally, [a]r = [b](b a)-r for some/any fresh b (so
b ¢ fa(r)).

Finally, in (=X) we do not need to write 7-X = 7’-X (though we could) because
unknowns are just a strongly-supported nominal set. We know that nontriv(m) N
supp(X) is finite by a routine argument based on condition 2 of Definition 2.98. It
is not hard to check that the instantiating rules (IF) and (IE) do indeed preserve
these conditions—(IF) involves a shift permutation, but in a manner that is applied
uniformly to the whole problem.

Definition 2.104. If Pr is a problem, define a unification algorithm by:

1. Rewrite Pr using the rules of Definition 2.102 where possible, with top-down
precedence (so apply (=a) before (=f), and so on).

2. If we reduce to @ then we succeed and return 6 where 6 is the composition
of all the substitutions labelling rewrites (we take 8 = id if there are none).
Otherwise, we fail.

19The specific choice does not matter. Intuitively this is because permutations are invertible so any
one choice and be undone and redone at will. A more formal statement of this is Theorem 2.112.
For an example of a shift-permutation concretely constructed, see Definition 2.87.

This algorithm generates shifts just like in Urban et al. (2004) we generated freshness
conditions, and for the same reason.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 109

Remark 2.105. Note in Definition 2.104 that we apply each rule to the head of the
list Pr. This is to prevent ‘unfair’ looping, e.g. repeatedly applying (F) to some
equality r = X wherever it appears in Pr.

Note also that the rule (F#) is equivalent—in the presence of the other rules—to
three rules as follows:

(Fa) attb, Pr = Pr
(FC) a#C, Pr = Pr (a & supp(C))
(FX) atX ,Pr = Pr (a & supp(X))

Proposition 2.106. The algorithm of Definition 2.104 always terminates.

Proof. It is not hard to generate an inductive quantity which is reduced by the
reductions in Fig. 2.2. |
2.3.1.2 Examples of the Algorithm

We assume the permutation group from part 2 of Example 2.7 and we recall the
definition of X-D from Definition 2.87.

Example one (succeeds).

Suppose a,c € A< and d ¢ A<. Take supp(X) = A< and suppose a term-former g.

9

We apply the algorithm to {g([a]X, [a]a) = g([d]c, [d]d)}:

g([a)X, [da) Z g([d]c, [d]d) = (=8), (£0))

[a)X £ [d]c ;lala = [d]d = (=), lalX = [d](d a)-X
(da)X e llazldld =

[a)a = [d]d = (=0); [a)a = [d]d
dZd = (=

I Success, with [X:=c]|

Example two (succeeds).

Suppose a,c € A< and b,d ¢ A<. Take supp(X) = A< U{b,d}, supp(Y) = A< U{f},
and supp(Z) = A<. Suppose a term-former f.

110 M.J. Gabbay

We apply the algorithm to {f([a]b,Z,X) = f([d]b, [a]a,Y)}:
f([a]b,Z,X) = f([d]b, [a]a,Y) = (), (£0)
[a]bé[d]b,lé[a]a,xéy — (2), [alb = [d]b
bLprZ=lda XY — (Za)

Z =+ [dla X =% [Z?=:[“>]a] (IE)

X=y = @
bihX X =Y XXE
X-bLYy — (F)

d#X-b s X-b=Y X))
fi#Y , X-bdLY =¥/l (IF)

X-b,dLY-f [Y*]‘gb,d] (IE)

1] Success, with [X:=X-b,d, Y:=X-b,d, Z:=[a]d]

Example three (fails).

[a][b]X = [a]X = =
[b]X X Failure

The algorithm fails because the precondition of rule (IE), X ¢ fU([b]X) is not
satisfied.

Example four (succeeds).

Take supp(X) = A< and take a,b € A<. We run the algorithm on {X = (a b)-X }:

X £ (ab)X = (£X)

@t X . bhX =)
[X-a:=(X-a)-b)

b#s X-a =

] Success, with [X:=(X-a)-b]

Later we will prove Theorem 2.118, which tells us that failure here implies that
no solution to the unification problem exists.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 111

2.3.1.3 Preservation of Solutions
...under non-instantiating rules

Lemma 2.107. If Pr = Pr’ by a non-instantiating rule (Definition 2.102) then
Sol(Pr) = Sol(Pr').

Proof. The empty set cannot be simplified, so suppose Pr = r=s, Pr' where the
simplification rule acts on r = s. We consider two cases:

e The case (=[]). Suppose Pr = [a]r = [a]s,Pr and [a]r = [a]s,Pr = r = 5,PF
by (£[]). By Definition 2.69 and properties of equality, [a](r8) = [a](s0) if and
only if r@ = 56.

o The case (F()). Suppose Pr = a#s(ry,...,r),Pr' and suppose that
atto(ry,...,m),Pr => attyry,... attory, Pr' by (F()). By Definition 2.69 and
Lemma 2.53, a & fa((ry,...,r,)0) if and only if a & fa(r,0), ..., a & fa(r,60). W

Lemma 2.108. Suppose 0(X) = 0'(X) forall X € fU(Pr). Then 0 € Sol(Pr) if and
only if 0" € Sol(Pr).

Proof. From Definition 2.100 it suffices to show that r@ = 56 if and only if r0’ =
s0’, for every (r = s) € Pr, and a ¢ fa(r@) if and only if a & fa(r@’), for every
(a#or) € Pr. This is immediate using Lemma 2.73. |

...under (IE)

Recall from Remark 2.68 the discussion of why we write 7-X when we have
chosen a representative element X of an equivalence class of unknowns under
permutations.

Definition 2.109. Write 6 —X for the substitution such that

(6-X)(n-X)=m-X
(6—-X)(Y)=0(Y) forallother?.

In the right circumstances, a substitution 6 can be factored as ‘a part of 6 that
does not touch X’ and ‘a single substitution for X’:

Theorem 2.110. I[fX0=s6 and X & fU(s) then

0 = [X:=5]0(6—X).

112 M.J. Gabbay

That is:

(m-X)([X:=s]o(0—X)) = (m-5)(0—X) Definition 2.69, Lemma 2.76
= (ms5)60 X €fU(s), Lemma 2.73
=(n-X)6 Assumption

Y([X:=s]0(0—X)) =Y(0-X) Definition 2.69, Lemma 2.76
=Y0 Definition 2.109

..under (IF)

Definition 2.111. Suppose 6 is a substitution. Suppose a € supp(X) and a &
fa(0(X)). Let 8x., be a shift permutation bijecting supp(X) with supp(X)\ {a}.
Define a substitution 6jx_,.—x)(X) by:

* (Q[X—a::X])(ﬂ:'X) = (77:0 SX{a)e(X)
* (Ox-a:=x))(Y) = 6(Y) for all other Y.

It is routine to verify that Definition 2.111 is well-defined and a substitution.

Theorem 2.112. Suppose a € supp(X) and a & fa(0(X)). Then
9:[X:=X-a] O(Q[X-a::X])'
That is:

0(n-X)= ([X:=X-a]OQ[X_a:X])UDX) and
0(Y)= ([X:=X-a]oy_q:=x))(Y).

Proof. We unpack definitions:

(X=X a] (Oy-ox))) (1X) = (7-(X-))O 4y Definition 275
((modx.a))G[Xa—X] Def. X-a

= (modxq40 5X X Definition 2.111
=nX Group action

The result follows. |

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 113

2.3.1.4 Simplification Rewrites Calculate Principal Solutions
Definition 2.113. Write 6; < 6, when there exists some 6’ such that X6,=X(6; o
o’) always. Call < the instantiation ordering.

Definition 2.114. A principal (or most general) solution to a problem Pr is a
solution 6 € Sol(Pr) such that 6 < 6 for all other 6’ € Sol(Pr).

Our main result is Theorem 2.117: the unification algorithm from Defini-
tion 2.104 calculates a principal solution.

Lemma 2.115. If 6, < 0, then 6060, < 006,.
Proof. By Definition 2.113, 8’ exists such that X 6,=X (6, 00’) always. Then:
X(006,)=(X6)6, Lemma 2.76

=(X0)(6,00") Lemma?2.73
X((6061)00’') Lemma?2.76

Lemma 2.116.

1. Suppose fa(s)Csupp(X) and X & fU(s). Write y=[X:=s|. If Pr £ P with (IE)
then 0 € Sol(Pr) implies 6—X € Sol(Pr’).

2. Suppose a € supp(X). Write p=[X:=X-a]. If Pr L5 Pr with (IF) then 6 €
Sol(Pr) implies Bix_q.-x) € Sol(Pr").

Proof.

1. Suppose Pr =X £ s, Pr' so that X + s, P/ =% Pr’y. Now suppose 6 €

Sol(Pr). By Theorem 2.110 yo(6—X) € Sol(Pr). By Lemma 2.101, 6—X €
Sol(Pry). It follows that 0 —X € Sol(Pr" x) as required.

2. Suppose Pr = a#,X, Pr’ and a € supp(X) so that Pr =2 Prp. Now suppose 6 €
Sol(Pr). By Theorem 2.112 p 0 0x_q.—x] € Sol(Pr). By Lemma 2.101, Ojy_,.—x] €
Sol(Prp) as required.

]
Theorem 2.117. If Pr =2 S then 8 is a principal solution to Pr (Definition 2.114).
Proof. By induction on the path of Pr 2 0.
* The empty path. So Pr = & and 6 = id. By Definition 2.113, id < 6'.

» The non-instantiating case. Suppose

Pr—=pPl s o

114 M.J. Gabbay

where Pr = P¥ by a non-instantiating rule. By inductive hypothesis 0 is a
principal solution of Pr’. It follows from Lemma 2.107 that 6 is also a principal
solution of Pr.

* The case (IE). Suppose fa(r) C supp(X) and X & fU(r). Write y = [X:=r].
Suppose Pr = r=X,Pr’ so that

r=X, pPr’ £ Pr'y iﬁ‘ .
Further, consider any other 6’ € Sol(Pr).
By Lemma 2.116 (68’—X) € Sol(Pr"x) and by inductive hypothesis 6” €
Sol(Pr'"y) and 68” < 6'—X. By Lemma 2.115, 00" < y0(6'—X). By Theo-

rem 2.110 yo(6'—X) = 6'.
* The case (IF). Suppose a € supp(X). Write p = [X:=X-d], so that

p 6"
Pr= Prp =* &,

Further, consider any other 8’ € Sol(Pr).

By Lemma 2.116, 9[’X_a:=X] € Sol(Prp) and by inductive hypothesis 6" €
Sol(Prp) and 6" < 6[/X—a:=X]' By Lemma 2.115, po8” < Poe[/x-a:x]' By The-

orem 2.112 poG[’X_a::X] =0
|

Theorem 2.118 (Correctness of algorithm). Given a problem Pr, if the algorithm
of Definition 2.104 succeeds then it returns a principal solution; if it fails then there
is no solution.

Proof. 1f the algorithm succeeds we use Theorem 2.117. Otherwise, the algorithm
generates an element of the form f(r) = g(s), a = b, ata, a#,C where a € supp(C),
or X = s where X € fU(s) and s is not of the form 7-X. By arguments on syntax and
size of syntax, no solution to the reduced problem exists. It follows by Lemma 2.116
that no solution to Pr exists.]

Definition 2.119. Fix terms r and s.

* Call nominal unification the problem of finding a 6 to make 70 = s0.
* (Call nominal matching the problem of finding a 6 to make 76 = s.

Corollary 2.120. Providing that equality of C (constants), X (unknowns), and
P (permutations) are decidable, nominal unification and nominal matching over
signatures using them are also decidable.

Proof. An algorithm for unification is sketched in Definition 2.104; furthermore by

Theorem 2.118 it calculates a most general 8 which represents all other solutions.
For matching, we substitute unknowns in s with fresh (non-equivariant) constants

of the same sorts and permission sets—we extend the signature if we need

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 115

to—and run the unification algorithm. We then replace the constants by the original
unknowns.!'! It is not hard to see that this calculates a most general matching
solution.]

Remark 2.121. The matching and unification algorithms might generate solutions
with shift-permutations. If we prefer to eliminate them then—provided that A" has
enough unknowns (Definition 2.48)—we may do so by appending an invertible
substitution (Definition 2.77) mapping each shifted §-X in the solution to a fresh
unknown Y such that supp(Y) = &-supp(X).

2.3.2 Rewriting

Nominal rewriting was the first logical system designed to study theories (sets of
axioms, i.e. rewrite rules) over nominal terms. It was introduced by Fernandez and
the author in Fernandez et al. (2004), Fernandez and Gabbay (2007). Nominal terms
allow us to express rewrite rules involving binding, like substitution and the A-
calculus (see Example 2.124).

The presentation of nominal rewriting here differs from that in Ferndndez and
Gabbay (2007), and is more concise. Partly this is optimisation, but this is also due
to the permissive-nominal approach. We compare and contrast nominal rewriting
from Ferndndez and Gabbay (2007) with nominal rewriting here, in Sect. 2.3.2.6.

2.3.2.1 Rewrite Rules

Definition 2.122. A rewrite rule in a signature X = (A, B,C, F,ar) is a pair of
terms [— m in X such that sort(l) = sort(m) € B and fU(m) C fU(I).

R will range over rewrite rules.

A rewrite theory R = (X, Rew) is a pair of a signature X (Definition 2.43) and a
(possibly infinite) set of rewrite rules Rew in X.

Notation 2.123. Write (I — m) € R to mean ‘/ and m are terms in £ and (I — m) €

bl

Rew’.

The notion of rewrite rule and rewrite theory in Definition 2.122 is much like the
first-order case, but because of the ‘nominal’ aspects of our syntax we can handle
names and binding.

1T'We do not make this formal, but since constants are structurally just like unknowns the definitions
can easily be constructed by proceeding exactly as we did when we defined substitution for
unknowns.

116 M.J. Gabbay

Example 2.124. Here are some example rewrite theories:

* nrSUB expresses the usual capture-avoiding substitution action on A-calculus
terms.
Let X have a base sort T and the following term-formers:

sub: ([v]t,t)t lam: ([v]t)Tr app:(7,7)t var: (V)T

Rewrite rules are as follows:

(var—) var(a)|a—X] - X

(var—') var(b)[a—X] — var(b)

(lam—) lam([a]X)[b—Y] — lam([a](X[b—Y])) (agsupp(Y))
(app—) app(X,X)[b—Y] = app(X[b—Y] X [b—Y])

Here and in the next example we sugar sub([a]r,?) to r[a—t]. Every permission
set contains b and every permission set contains a except for supp(Y), as
indicated above.

¢ nrLAM extends the previous theory with two more rewrites:

(B—) (AldZ)X — Zla—X]
(n—) Ald)(Ya) - Y (agsupp(Y))

Sugar lam(r) to Ar, app(r,s) to rs, and var(a) to a. We anticipate Sect. 2.3.2.2 and
sketch how one might rewrite (A[b](A[a]ab))a to A[d'|d a:
(A[b])(A]alab))a — (Alalab)[ba]
= (A[d']d'b)[ba]
— Ald]((a'b)[ba])
—* Ald)da

2.3.2.2 Rewrite Steps

Definition 2.125. Define the terms s in which X occurs only once by:
su=mX | als | f(r1y. oo Fic1y S, i1y v T0)

(X ng(rl)u e 7ﬂ](ri71)7fU(ri+1)7 .o ,fU(V”))
A position P is a pair (s,X) of a nominal term and an unknown X which occurs
only once in s.

Our notion of position is also sometimes called a context; the idea goes back to at
least Felleisen and Hieb (1992).
In Definition 2.125, 7-X denotes an unknown in the same permutation orbit as X.

Notation 2.126. If P = (s5,X) is a position write supp(P) for supp(X) and sort(P)
for sort(X).

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 117

If sort(r) = sort(P) and fa(r) C supp(P) (so that [X:=r] is a substitution) write
P[r] for s[X:=r].

Definition 2.127. The one-step rewrite relation r R §is the least relation such
that for every (I — m) € R, position P, and substitution 0, if sort(r) = sort(P) and
fa(10) U fa(mO) C supp(P) (so that P[I6] and P[m0)] are well-defined) then

P[io] X5 Pmo).

. . . R. . . .
The multi-step rewrite relation » — s is the reflexive transitive closure of the
one-step rewrite relation.

We consider decidability and complexity of the rewrite relation in Sect. 2.3.3.

Example 2.128. Let T have one name sort v, one base sort T, one term-former triv
and one axiom triv(a) — triv(b).

Then triv(a) — triv(b) but also (using positions (7-X,X) for any 7) triv(h) —
triv(a) and triv(a’) — triv(b’) for any pair of distinct atoms a’ and b'.

Thus atoms in rewrite rules range over ‘any atom’ analogously to how unknowns
in rewrite rules range over ‘any term’.

Example 2.129. Recall the rule (n—) = (A[a](Ya) — Y) where a & supp(Y) from
Example 2.124. Suppose also b & supp(Y).

1. To deduce A[a](ba) — b we take P = ((b ¢)-Y,Y) for some ¢ € supp(Y) and we
take 6 = [Y:=c]|.
2. To deduce A[d'|(ba") — b for any other a’ we also take P = ((b ¢)-Y,Y) and 6 =
[Y:=c]. This is because A [a'](ba’) and A[a](ba) are the same term (Lemma 2.31).
. To deduce A[a](Ya) — Y we take P = (Y,Y) and 6 = id.
4. Suppose supp(Y') = supp(Y)U{a}.
Suppose we have shift-permutations so there exists a permutation, write it
Oyr_q, bijecting supp(Y') with supp(Y). To deduce A[a](Y'a) — Y’ we take P =
((y0) " Y,¥) and 0 = [Y:=8y., V']
Without shiff we cannot deduce Ala](Y'a) — Y’; we can still deduce
Ala](Ya) — Y.
5. We cannot deduce A[a](aa) — a, because [Y:=a] is not a substitution: no function
mapping Y to a can be equivariant, since (b a)-Y =Y but (b a)-a = b # a (also
a & supp(Y): see Proposition 2.64).
6. A rewrite X — X only entails rewrites for ¢ with fa(r) C m-supp(X) for some 7.
With shift, the effect of this may be that we can deduce t — ¢ from X — X for any
t. We make no claim to there being a ‘right’ or ‘wrong’ answer here: the issue
is purely a design question of how much expressivity we want permutations to
have. Our results are parameterised over this choice.

(O8]

118 M.J. Gabbay

Definition 2.130.

e (all R locally confluent when r L> sy and r L 57 implies there exists some s’
such that s; Ry ¢ and 52 Ry,

e (Call R confluent when r i?‘ s; and r i?‘ s, implies there exists some s’ such
that s, Ry ¢ and $2 Ry,

2.3.2.3 Peaks, Critical Pairs, Joinability

We now begin to investigate criteria for deducing confluence of nominal rewrite
systems. Our first observation is that things are not quite as simple as in first-order
rewriting (Baader and Nipkow 1998, Section 6.2): by Lemma 2.135, trivial critical
pairs are not always joinable.

Definition 2.131. Write r — s1,s, when r — 51 and r — s; and call this a peak.
Call this peak joinable when there exists a # such that s; — ¢ and s, — ¢.

So Riis locally confluent when every peak is joinable.

Definition 2.132. Consider two rewrite rules Ry = (I} — m;) and Ry = (I, = my).
Call R; a copy of R, when there exists an invertible substitution 6 such that (;,6 —
mZe) = R1 .

Clearly, if R| is a copy of R, then R, is also a copy of R;. Furthermore:

Lemma 2.133. If R and R, are copies of the same rule then | Ky m if and only if
Ry
[—m.

Proof. Unpacking Definition 2.127 and exploiting the existence of an inverse 6!,
[

Definition 2.134. Suppose that R; = (I; = m;) fori = 1,2 and fU(R;)NfU (R,y) = @.
Suppose /; = P[l}] for some [}, and suppose I| = I, has a principal solution . Call
the pair (m;0,P[m;]0) a critical pair.

Call (m; 0, P[m,]6) trivial when at least one of the following hold:

1. P=(m-X,X) and R; and R; are copies of the same rule.
2. 1{ =X for some unknown X.

Lemma 2.135. Peaks that are instances of trivial critical pairs, are not always
Jjoinable.

Proof. 1t suffices to provide a counterexample. Fix term-formers 0 and f and take
Ry =(0—a)and R, = (X — f(a)) where a & supp(X).

There is a critical pair (a,f(a)) between R; and R;.

Also, 0 Ry gand0 2 f (@) and it is a fact that this peak cannot be joined—we
‘want’ to close this peak by rewriting a to f(a) using Ry, but the fact that a & supp(X)
blocks this.]

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 119

2.3.2.4 Uniform Rewriting

The proof of Lemma 2.135 suggests a simple cure:

Definition 2.136. Call a rule R = (I — m) uniform when

fa(m) < fa(l).

Call a rewrite theory R uniform when every R € R is uniform.

Definition 2.136 mirrors the condition in Definition 2.122 that fU (m) C fU(I), but
for atoms instead of unknowns. This condition is sufficient to obtain Theorem 2.142,
which is a nominal rewriting version of the well-known critical pair lemma from
first-order rewriting (Baader and Nipkow 1998, Theorem 6.2.4).

Example 2.137. Let R have one name sort v, one base sort 7, two term-formers
triv: (v)t and abs : ([v]1)7, and rewrite rules

triv(a) — triv(a) triv(a) — triv(b) abs([a]X) — X.

fa(triv(a)) C fa(triv(a)) and fa(triv(b)) < fa(triv(a)). Also fa(X) ¢
fa(abs([a]X)) if and only if a & supp(X).

So the first rule is uniform, the second is not, and the third is uniform if and only
if a € supp(X).

The rewrite rules of nrSUB and nrLAM in Example 2.124 are uniform.'

Lemma 2.138. Iffa(m) C fa(l) then fa(P[m]) C fa(P][l]).

2

Proof. Routine induction using Lemmas 2.56 and 2.53.]
<

Corollary 2.139. R = (I — m) is uniform if and only ier,s.(r Ry = fa(s)
fa(r)).
Proof. From Lemmas 2.56 and 2.72.

Lemma 2.140. Suppose R = (I — m) is uniform and X & fU(R). Suppose 0(X) =
16. Specify 6' by 6'(n-X) = rn-(m0) and 6'(Y) = 6(Y). Then r0 — r0' for any r.

Proof. 6'1is a substitution by Lemmas 2.72 and 2.56. The result follows by a routine
induction on r. |

Because of Lemma 2.133, we can be relaxed about the particular (orbits of)
unknowns that are used in a rewrite rule, if we only care about the rewrites that
they generate. We do this in Theorems 2.141 and 2.142. This can always be made
formal by inserting invertible ‘freshening’ substitutions as appropriate.

12There is a deeper reason for this: they are also closed. See Example 2.164 and Theorem 2.165.

120 M.J. Gabbay

Theorem 2.141. If a rewrite theory R (Definition 2.122) is uniform then peaks that
are instances of trivial critical pairs, are joinable.

Proof. Consider two rules R; = (I; — m;) € R for i = 1,2. Taking copies if necessary,
suppose fU(R;) NfU(R,). Suppose they have a critical pair (m; 6, P[m;]0). That is,
there exists /| such that /; = P[/{] and 6 is a principal solution to /] = l,.

There are two cases:

o The case P = (n-X,X) and R\ and R, are copies of the same rule | — m. The
peak we want to joinis /10 = w-1,0 — m 0, 7w-m,0, where the rules /; — m; and
I, — my are identical aside from their free unknowns which are renamed disjoint.
We use Lemma 2.73 and the assumption in Definition 2.122 that fU(m) C fU(I).
* The case of (m0,P[my|0) where I} = P[X]| and 6(X) = l,. Specify 6’ by
0'(w-X) = m-my and 0'(Y) = O(Y) for all other Y; note that 6’ is a substitution
since fa(my) C fa(ly) by uniformity and fa(l) C supp(X) by our assumption that
0 is a substitution.
By Lemma 2.140 m; 6 — m; 6’. By definition P[m;]60 = 1,6’ RN m;0’, so we
have joined the peak.

Theorem 2.142. Suppose all non-trivial critical pairs of R are joinable and
suppose R is uniform. Then R is locally confluent.

Proof. Suppose r EIN s1 and r KN s2. Write P and P, for the positions at which
the two rewrites occur. Taking copies if necessary, suppose fU(R;) NfU(Ry) = &.
If P, and P, identify distinct subterms of r then local confluence holds by a
standard diagrammatic argument (see for instance Baader and Nipkow (1998)).
Otherwise it must be that P, = (P, [P], X) for some position P; that is, P; identifies
a point in r beneath the point identified by P; (or the symmetric case that P, =
(Py[P],X), which is similar and we elide). There are now three possibilities:

1. X in P, replaces an unknown in r. This is an instance of a trivial critical pair; we
use Theorem 2.141.

2. P=(m-X,X) and R and R, are copies of the same rule. Then again this is an
instance of a trivial critical pair and we use Theorem 2.141.

3. Otherwise, this is an instance of a non-trivial critical pair at it may be joined
using our assumption that non-trivial critical pairs are joinable.

Definition 2.143. Call a rewrite system R terminating when all rewrite sequences

are finite. Call a term r a normal form (with respect to a rewrite system R) when
R . . .

Vs.=(r —), that is, when r does not R-rewrite to anything.

Example 2.144. Tt can be proved that nrSUB in Example 2.124 is terminating.
nrLAM (famously) is not terminating, because of (f—).

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 121

Corollary 2.145. Suppose R is terminating, uniform, and suppose non-trivial
critical pairs in R are joinable. Then:

1. R is confluent.
2. Ifr— sand r — s’ and s and s' are normal forms, then s = s'.

2.3.2.5 Orthogonal Rewrite Systems

We now treat another standard criterion in rewriting: orthogonality Dershowitz
and Jouannaud (1989), Baader and Nipkow (1998). By Theorem 2.152 orthogo-
nality implies not only local confluence, but the stronger property of confluence
(Definition 2.130). The proof is not direct: it turns out that it is easier to consider an
auxilliary parallel reduction relation = (Definition 2.149). The reflexive transitive
closure of = is equal to that of — (Lemma 2.150), but = allows (intuitively)
multiple reductions provided that they do not occur ‘one after the other, in the same
position’. This is the kind of multiple reduction generated in the second case of the
proof of Theorem 2.141, when we rewrite m, 6 to m 0’.

Definition 2.146. Call R = (I — m) left-linear when each unknown occurring in /
occurs only once (Definition 2.125).

For example f(X) — g(X,X) is left-linear but g(X,X) — f(X) and g(7-X,x) —
f(X) are not. Note that (a,a) — a is left-linear.

Definition 2.147. Call R orthogonal when every R € R is uniform and left-
linear, and all critical pairs are trivial.

(Note that we insist that R is uniform, as well as the standard condition that it be
left-linear.)

Definition 2.148. Suppose R = (I — m). Write r & ¢ s when r = 5 and the rewrite
occurs at a position P = (7-X,X). We say that the rewrite with R occurs at root
position.

Expanding Definition 2.148, r —R>£ s when there exists 6 and 7 such that r =
7-(16) and s = m-(m0). For example: if R = (a — a) then a & a but not [ala K
[a]a.

Definition 2.149. We define a parallel reduction relation = by the rules in
Fig. 2.3.
Lemma 2.150. » — s if and only if r =* s.

Proof. By routine inductions.]

122

rf=2581 " Ihn =35y

f
f(riy.) = 1(s1,...,80) =)

R
FL=>81 =Sy f(s1,...,8) —¢ s ,
- (=f")
f(ri,...,r) =¢
s=1 r=s s S s
(=abs) lals e (=-abs’)
[a]s = [a]t [alr =
R R
a—eS X =S
(refl) — (=) — (=X))
r=r a=s X=s5

Fig. 2.3 Parallel reduction relation

Lemma 2.151. IfR is orthogonal then = is confluent.

M.J. Gabbay

Proof. We prove by induction on the derivation of r = s that a stronger property

holds, often called the diamond property: for all 5" if r = s then the
s" such that s = s and s’ = s”. From this, confluence easily follows
diagrammatic argument.

We consider a selection of cases:

e The derivations of r = s and r = s' both end in (=f).
hypotheses and (=f).

e The derivation of r = s ends in (=f) and that of r = s ends i

re exists some
by a standard

We use the inductive

n (=f'). So

ri=siand r; =) for 1 <i<n,andf(s},...,s,) = m-(16) & o 7:(mO) for some
7 and R = (I — m) € R. By inductive hypothesis there exist s/ such that s; = s/

and s; = s”". We now proceed as illustrated and explained below:

Re

! r-(10) — 7 (

n

f(ri,...,mm) = f(s},....s

l !

f(s1,...,80) = f(s],..

)

R,
/!

S

)

Either [is an unknown X or the rewrite f(s},...,s,) = f(s/,....s
in the substitution 6.

If [is an unknown then by uniformity we may rewrite f(s,...
and close the diagram by rewriting corresponding instances of 0 (X

mo)

!

7-(16') —> 7-(m8’)

") takes place

!

,8n) using R

) in 70-(m@).

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 123

Otherwise, by uniformity there is a substitution 6 such that 6 (X) = 6’(X) for
every X and f(s],...,s),) = m-(10"). Rules are also left-linear so R still applies to

m-(10):f(sy,...,s0) K 7-(m0’) and therefore f (s1,...,s,) = 50’ by (=f") for R.

»™n

The other cases are no harder. |

Theorem 2.152. If a theory R is orthogonal (Definition 2.147) then R is confluent
(Definition 2.130).

Proof. If the uniform rewrite system has only left-linear rules and only trivial
critical pairs, then = is confluent by Lemma 2.151. It follows that =+ is confluent.
By Lemma 2.150 the result follows. |

2.3.2.6 Nominal Rewriting with Freshness Contexts Versus
Permissive-Nominal Rewriting

As mentioned in the introduction to this Section, the presentation of this paper
differs from that of Ferndndez and Gabbay (2007) in being permissive-nominal.

For clarity, let us call the nominal rewrite framework from Ferndndez and Gabbay
(2007) ‘System V’ and the nominal rewrite framework here ‘System S’.

In system V a rewrite rule takes the form V ¢ — u where V is a set of
assumptions a#X called a freshness context. X is an unknown. This is not typed by a
permission set; freshness information is given by V.

Here are (A—) from Example 2.124, and how it would look in System V:

System S lam([a]X)[b—Y] — lam([a](X[b—Y])) (agsupp(Y))
System V a#tY b lam([a]X)[b—Y] — lam([a](X[b—1]))

a & supp(Y) is a fact (we must choose Y so that this is true). It does not matter which
permission set we give Y because using 0 and swappings we can build a 7 to map
supp(Y) to every other permission set 7-supp (Y)—which will contain 7(a).

Conversely a#Y is a freshness condition. It directly controls the terms to which
we may instantiate Y; they must not contain a free. Here we attain this effect using
Proposition 2.64.

Freshness conditions are elementary: they mean what they say and what they
mean be quickly understood. Permission sets are still finitely representable, but
somewhat harder to understand. So from the point of view of keeping a gentle
learning curve, System V may be preferable to System S.

However, System S rewards us with some advantages: we can use nominal
abstract syntax and the freshness conditions which must be explicitly stated
(repeatedly) in Ferndndez and Gabbay (2007) are handled in the background by
equivariance of substitutions (as Proposition 2.64 makes formal).

This also has some effects on mathematical properties. In System V from
Ferndndez and Gabbay (2007) it was not in general the case that if V F r ¢ 7/

and VI r X5 sthen VI £ s (see the end of Section 5.2 in Fernandez and

124 M.J. Gabbay

Gabbay (2007)). It was also not in general the case that nominal rewriting coincides
with nominal algebra (Sect. 2.3.4), essentially because any fixed freshness contexts
might not be ‘big enough’. Ferndndez and the author wrote a paper on how to adjust
for this Fernandez and Gabbay (2010). In a permissive-nominal context, these issues
do not arise in the first place.

This author’s feeling is that nominal-terms-with-freshness-contexts and
permissive-nominal terms can be considered as essentially the same thing. However,
if our goal is to prove theorems then we get closer to what is ‘really going on’ via
the permissive-nominal presentation.

2.3.3 Closed Terms

Equivariant unification—the problem of finding 6 and 7 such that 7-(r) = s6—is
NP complete Cheney (2004, 2010). The same applies to corresponding matching
problems. This matters to us because the rewrite relation in Definition 2.127 is
equivariant; to determine whether r rewrites with a rule (I — r), we must solve
an equivariant matching problem.

Fernandez and the author introduced a notion of closed term such that for
closed terms, equivariant matching/unification coincides with ‘ordinary’ match-
ing/unification Fernandez and Gabbay (2007). That is, for closed terms we can
throw away the 7.

We now develop corresponding definitions and results. The definitions and
proofs in this paper are significantly different from those in Fernandez and Gabbay
(2007).13

2.3.3.1 The Definition

Definition 2.153. Define explicit atoms ea(r) inductively by:

ea(a) ={a} ea(C) = supp(C) eaX)=9
ea(f(r)) = ea(r) ea((ry,...,mm)) =Uea(r;) ea([a]r) = ea(r)\{a}

Remark 2.154. Intuitions for ea(r) versus fa(r) are as follows:

3The interested reader can begin by comparing our notion of closed terms in Definition 2.159,
based on two simpler inductive definitions, with that used in (Ferniandez and Gabbay 2007,
Definition 68), based on a renamed variant of a term and an equality derivable in an extended
freshness context. See also an inductive characterisation of closed terms in unpublished notes
Clouston (2007).

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 125

* The explicit atoms of r are the atoms that actually appear in » (unbound). That is,
we can read ‘a € ea(r)” as ‘a appears in r°.
* The free atoms of r are the atoms that can appear in 76 for some 6.

For instance, ea(X) = @ # supp(X) = fa(X).
This is an intuition, not a fact. fa(r) = Jg ea(r0) is not true in general (but see

Lemma 2.157). For instance in a signature with one base sort T and no term formers,
terms containing atoms simply do not populate the sort 7.

Recall the notion of occurrences occ(r) from Definition 2.95.

Notation 2.155. Write m-occ(r) = {m-x | x € occ(r)}. Alsoif D=[d,,...,d,] and S
is a permission set define S\ D = S\ {d,...,d,}.

Lemma 2.156. ea(n-r) = m-ea(r) and occ(n-r) = m-occ(r). In addition, ea(r) C
ea(ro).
Proof. By routine inductions on r. |
Lemma 2.157. fa(r) = ea(r) UU{supp(x) | x € occ(r)}.

As an easy corollary using Lemma 2.53, fa(r) = ea(r) UU{supp(X)\D | [D]X €
occ(r)}.
Proof. By aroutine induction on r. We consider one case:

* The case [a]r. Suppose fa(r) = ea(r) UU{supp(x) | x € occ(r)}. By definition
fa([a]r) = fa(r) \ {a}, and ea([a]r) = ea(r) \ {a} and occ([a]r) = {[a]x | x €

occ(r)}. The result follows by an easy sets calculation.

Definition 2.158. Call r fa-functional when if [D;]X € occ(r) and [D3]X € occ(r)
then fa([D1]X) = fa([D;])X) (equivalently, when D and D, contain the same atoms
but not necessarily in the same order).

Definition 2.159. Call r closed when r is fa-functional and ea(r) = @.

Example 2.160. * ais not closed (ea is non-empty).

* X is closed, so note that ‘closed’ does not mean ‘fU(r) = @’. Our terminology is
consistent with Ferndndez and Gabbay (2007) and the subsequent literature.

* ([a]X,X) is not closed (occ is not fa-functional).

* [a](X,a) is closed.

Lemma 2.161. Suppose ea(r) = @. Then m-(r0) =r0' ifand only if n-(([D]X)0) =
([D)X)6’ for every [D|X € occ(r).

Proof. By aroutine induction on r. |

126 M.J. Gabbay

Theorem 2.162. r is closed if and only if
3S.fa(r) CSAVR,0.nfa(r0) C S = 30".7-(r0) =r6'.

Proof. Suppose there is a permission set S D fa(r) such that if w-fa(r6) C S then
there exists 0’ such that 7-(r8) = r6’. There are two things to prove:

* ea(r) is empty. Suppose there exists a € ea(r). Pick b € S\ ea(r). By assump-
tion taking 6 = id there exists 6’ such that (b a)-(r6) = r6’. By Lemma 2.156
ea((ba)-r)=(ba)-ea(r) Zaand a € ea(r) C ea(r@’), a contradiction.

* occ(r) is fa-functional. Consider [D{]X and [D;]X in occ(r); choose D; such
that D; Nfa(r) = & for i = 1,2. Suppose there exists a € fa([D2]X) \ fa([D1]X),
and choose any b € fa([D1]X) (since supp(X) is infinite and D is finite, such a b
exists).

By Lemma 2.157 a,b € fa(r) so by assumption taking 6 = id there exists 6’
such that (b a)-r = r@’. We proved above that ea(r) = &, so by Lemma 2.161
(b a)-[D1)X = ([D1]X)6. By Lemma 2.56 a is free in the left-hand side, and by
Lemma 2.72 a is not free in the right-hand side; a contradiction.

Suppose occ(r) is fa-functional and ea(r) = @ and choose some permutation 7
and substitution 6.

If occ(r) = @ then by Lemma 2.157 fa(r) = @ so by Lemmas 2.57 and 2.73
7-(r@) = r and r@’ = r, so there is nothing to prove.

Otherwise take S = fa(r). For every element of in occ(r) make a fixed but
arbitrary choice of representation as [D]X where the atoms in D are disjoint
from the atoms in nontriv(m). We take 0’ to equivariantly extend this choice
(Definition 2.37), so we map ©’-X to (7’ o)-0(X) for the choice of representing
X above, and otherwise to map Y to Y. Using Proposition 2.38 this is a substitution
and -(([D]X)0) = (|[D]X)6’ for every [D]X € occ(r). We use Lemma 2.161. W

2.3.3.2 Closed Rewrite Rules

Definition 2.163. Call a rewrite rule / — m closed when (I, m) is closed.

Example 2.164. Let R have one name sort v, one base sort 7, two term-formers
triv: (v)T and abs : ([v]1)7, and rewrite rules

triv(a) — triv(a) triv(a) — triv(b) abs([a]X) — X.

The terms triv(a) and triv(b) are not closed; the terms abs([a]X) and X are
closed. The terms (triv(a),triv(a)) and (triv(a),triv(b)) are not closed. The term
(abs([a]X),X) is closed if and only if a & supp(X). So the first two rules are not
closed and the third is closed if and only if a & supp(X).

The rewrite rules of nrSUB and nrLAM in Example 2.124 are closed.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 127

Recall that uniform rules have good properties like Theorems 2.142 and 2.152.
Closed rules inherit these good properties, because:

Theorem 2.165. If R = (I — m) is closed then it is uniform.

Proof. By assumption fU(m) C fU(l). Also (I,m) is fa-functional; it follows that
occ(m) C occ(l). The result follows from Lemma 2.157. |

Lemma 2.166. Suppose r and | are terms and [is closed. Then

1. 3m,0.r = 1-(16) implies
2. Vrfa(r) C nfa(l) = 30.r =n-(10)

Proof. Suppose fa(r) C w-fa(l) and fa(r) C @'-fa(l) and r = 7-(16).
We need a 60’ such that r = #’-(/0’). It follows from the above that
(n'"' o m)-fa(16) C fa(l). We use Theorem 2.162. [|

Theorem 2.167. If R is closed then R can be checked as follows, where for
simplicity we suppose R = {(I — m)}:

1. We try to match r against ©-l for some m such that fa(r) C w-fa(l), if such a ©
exists.

2. If we fail then by Lemma 2.166 we must fail for instantiating for any n-1. We
descend into subterms of r and repeat the previous step.

Whether step 1 of the algorithm above is decidable depends on the decidability of
P, X, and C; obviously, if equality of the syntax is undecidable then matching will
also be undecidable. So assuming that we have not been silly, closed rules are useful
because we only need to compute one 7 and consider matching, rather than consider
an equivariant matching problem.

To use the matching algorithm of Sect. 2.3.1, we need terms to satisfy condition 2
of Definition 2.98. So, we could forbid shift permutations altogether. The algorithm
might reintroduce them but as noted in Remark 2.121, shift can be eliminated
once a solution is found. Thus, if we care about decidability and not so much
about infinite permutations—which was the case e.g. in Fernandez et al. (2004),
Fernandez and Gabbay (2007)—then shift can be viewed as an internal mechanism
of our unification/matching algorithm. However we have designed the mathematics
to allow the possibility of exploring other, more liberal (and perhaps still decidable)
choices, if we wish. More on this in Gabbay (2012a).

2.3.4 Equality: (Permissive-)Nominal Algebra

Permissive-nominal algebra has one judgement form: an equality » = s. This is
just an unoriented nominal rewriting rule, so what makes algebra different from
rewriting is not so much the judgement form as the properties we care about:
instead of confluence and decidability, we primarily care about soundness and
completeness. These are Theorems 2.188 and Corollary 2.200.

128 M.J. Gabbay

This different emphasis affects the axioms we write. The rewrites in
Example 2.124 are designed to work on A-terms without unknowns (since we expect
to ‘evaluate’ closed terms using rewrites). The analogous axioms in Example 2.170
are designed to work also on open terms (since we expect to reason about arbitrary
denotations).

Permissive-nominal algebra simplifies and streamlines the nominal algebra logic
of Gabbay and Mathijssen (2009) (which was based on nominal terms). Essentially,
these two logics do the same thing, but there are significant differences which we
discuss in Sect. 2.3.4.7. Nominal Algebra (NA) was presented in Gabbay (2005);
Gabbay and Mathijssen (2006b); see also Gabbay and Mathijssen (2007, 2009). It
was first used to axiomatise substitution, first-order logic, and the A-calculus Gab-
bay and Mathijssen (2006a,c, 2008a,c,b, 2010). The interest of these papers was not
merely to write down the axioms—which all take advantage of atoms-abstraction to
axiomatise various binding operators—but also to prove these axioms sound and
complete. These proofs are not included here; see the presentations in Gabbay
and Mathijssen (2008a,c, 2010). Or, to see a much more sophisticated instance
of the same general idea, the reader can examine the permissive-nominal logic
axiomatisation of arithmetic which is proved correct in the case study of Sect. 2.4.2.

2.3.4.1 Judgement Form, Axioms, Theories

Definition 2.168. A (nominal algebra) equality judgement is a pair r = s.

Definition 2.169. A theory T = (X,Ax) is a pair of a signature X and a possibly
infinite set of equality judgements Ax in that signature; we call them the axioms.

Example 2.170. Here are some example nominal algebra theories:

* naSUB axiomatises capture-avoiding substitution (on the A-calculus).
Let X have a base sort T and the following term-formers:

sub: ([v]r,t)t lam: ([v]t)t app:(7,7)T var:(v)T

Axioms are as follows:

(var—) var(a)[a—X] =X

(#—) Y]a—X] =Y (adsupp(Y))

(f—) f(Y)[a—X] =f(Y[a—X]) (fe{lam,app,var,sub})
(tup—) (Xi,....Xp)[a—=X] = Xila—=X],..., Xula—X])

(abs—) ([b]Y)[a—X] = [b](Y[a—X]) (agsupp(Y))

(id—) Y[b—svar(b)] =Y

(=) [dJsub(Y,var(a)) =Y (a¢supp(Y))

Here and in the next example we sugar sub([a]r,) to r[a—t]. Every permission
set contains b and every permission set contains a except for supp(Y), as
indicated above. Sorts are filled in as appropriate.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 129

naSUB is based on the nominal algebra axioms of Gabbay and Mathijssen
(20064a, 2008a) (which were parameterised over the signature X).

There, we proved the axioms sound and complete for a specific syntactic
model in which Z[a:=X] really is interpreted as capture-avoiding substitution.
The completeness result from Corollary 2.200 remains valid but is weaker
because it holds not for the specific syntactic model, but the class of all nominal
algebra models of the axioms.

* nalAM extends the previous theory with two more axioms:

(B) (Ala]y)X =Y[a—X]
() Ala)(Xa) =X (agsupp(X))
This theory is studied in Gabbay and Mathijssen (2008b, 2010). Analogously

to naSUB, we prove the axioms sound and complete for a syntactic model where
substitution is substitution and f3- and n-conversion are 3- and 1-conversion.

Remark 2.171. Compare and contrast Example 2.170 with Example 2.124. Clearly,
one is an equality theory and another a rewrite theory, but we obtain a nominal
algebra theory from Example 2.124 by replacing — by =, and conversely we can
replace = with — in Example 2.170.

So why are they different? They demonstrate different design priorities.

The rewrites in Example 2.124 are designed to operate on ground terms
(fU(r) = @), following an intuition that rewriting is about ‘executing programs’.
The equalities in Example 2.170 are designed to operate on possibly open terms,
following an intuition that algebra is about models, not all of whose elements need
be referenced by ground terms.

What we gain in deductive power we lose in computational properties. For
instance, nrSUB is terminating whereas (an oriented version of) naSUB is not
terminating, because explicit substitutions can ‘churn’ by distributing repeatedly
over one another (this is essentially the idea behind Mellies’s counterexample in
Melligs (1995)). On the other hand while the effect of (#—) from naSUB can be
obtained on ground terms using the rules in nrSUB, by pushing the substitution
down to the atoms, the rules of nrSUB are not deductively powerful enough to do
this for open terms (or arbitrary models). More on this in Gabbay and Mathijssen
(2008a, 2010).

2.3.4.2 Derivable Equality

Definition 2.172. Suppose T is a theory. Derivable equality T - » = s is the least
transitive reflexive symmetric relation such that for every (r = s) € T, position P,
and substitution 8, if sort(r) = sort(P) and fa(r0) Ufa(s0) C supp(P) (so that P[/0]
and P[s0)] are well-defined) then

T+ P[rf] = P[s0].

130 M.J. Gabbay

— (Refl) ; (Trans)
r=s S r=r n =1, Conal
s:r(ymm) o =t (Congl)
=" (Cong? "= (Cong3

f(r) =f(r) (Cong2) [a]r = [a] (Cong3)
r=s)eT
((r=s)€T) (Axes)

n-(r0) = m-(s0)
Fig. 2.4 Derivable entailment in Permissive-Nominal Algebra (PNA)

Remark 2.173. Definition 2.172 is rather compact; it might be useful to expand it a
little. This is Fig. 2.4, given in natural deduction style.

The reader familiar with nominal terms (see for instance Figure 2 of Urban et al.
(2004)) should note of (Cong3) that we do not need to consider the case [a]r = [b]s,
because a-equivalence is handled automatically for us by nominal abstract syntax. It
is built in by Definition 2.30. In other words, thanks to how we set up our permissive-
nominal terms syntax, we can always rename abstracted atoms so that they are equal.
We noted an analogous point earlier on, in Remark 2.103.

Lemma 2.174. Suppose T = (X,Ax) is a theory. Then:

e TrFa=bisimpossible.
o Tt [alr=[b]sifand only if b & fa(r) and (b a)-r =s.
o TH(r1y..ostn) =(81,...,8) ifand only if THr; =s; for 1 <i<n.

Proof. In axiom (r = s) € Ax, r and s must have base sort 7; thus it is not possible
to assert equalities between atoms, abstractions, or tuples (unless wrapped in a
term-former and so injected into a base sort). The second part additionally uses
Lemma 2.31.]

Lemma 2.175. Suppose T+ r=s. Then:

1. THkrnr=m-s.
2. THro =s6.

Proof. Both parts are by a routine argument on derivations. We consider one case:

e Thecase (' =5') € Tand r=P[F'0'] and s = P[s'0') and P = (t,X). For the
first part we use a position (7#,X).
For the second part we consider a position P’ = (1(6—X),X) and consider
P'[F'6'6) and S'[r'6'6] (6—X defined in Definition 2.109). It is not hard to check
that P'[r'6'0] = P[r'0']0 and P'[s'6'0] = P[s'0']0, and the result follows.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 131

2.3.4.3 Interpretation of Signatures and Terms

Definition 2.176. Suppose (A, BB) is a sort-signature (Definition 2.39).

An interpretation .# for (A,B) consists of an assignment of a nonempty
permissive-nominal set [a]” to each sort @ in (A,B), along with equivariant
maps

« foreach v € A an equivariant and injective map A, — [v]” which we write a.»,

 for each v € A and o an equivariant and injective map [A,|[o]” — [[v]a]”
which we write [a]” x, and

e for each ¢; for 1 < i < n an equivariant and injective map Hi[[al-]]"” —
[(ou,...,0n)]” which we write (x1,...,x,)”.

Definition 2.177. Suppose X = (A, B,C,F,ar) is a signature (Definition 2.43).
An interpretation .# for X, or X-algebra, consists of the following data:

* An interpretation for the sort-signature (A,) (Definition 2.176).

* Forevery f € F with ar(f) = (&) 7 an equivariant function f* from [oc]” to [7]”.

* An equivariant assignment from C € C to C7 € [sort(C)]”. (That is, (7-C)” =
m-(C”).)

Definition 2.178. Suppose .# is a Z-algebra. A valuation ¢ to .# is an equivariant
function on unknowns X such that for each unknown X, ¢(X) € [sort(X)]”.
¢ will range over valuations.

Definition 2.179. Suppose .# is a X-algebra. Suppose ¢ is a valuation to .#.
Extend . to an interpretation on terms [r] (where of course r is a term in the
signature X) by:

[a =a’ ()l = (1)
[=C" [l = () [l
XL = <(x) llalrly = o}’ [l

Lemma 2.180 is a basic sanity check and an important soundness result:
Lemma 2.180. Ifr: then [r]{ € [a]”.
Proof. By aroutine induction on r. |
Lemma 2.181. #-[r]/ = [m-r]!.
Proof. By aroutine induction on r. We consider one case:

* The case X. By Definition 2.179 [X]7 = ¢(X). Therefore 7-[X]! = m-¢(X).
By assumption 7-6(X) = ¢(n-X) = [z-X]{.

|
Lemma 2.182. supp([r]{) C fa(r).
Proof. From Lemmas 2.21 and 2.181.]

132 M.J. Gabbay

2.3.4.4 Models and Soundness

Definition 2.183. For a theory T = (X, Ax) and interpretation . of T call (r =)
valid in .# when [r] = [s]/ for every valuation G to .#.

Call .# amodel of T when every axiom (r = s) € Ax is valid in .¥.

Write T |= r = s when (r = s) is valid in every model of T.

Lemma 2.184. If ¢(X) = ¢'(X) for all X € fU(r) then [r]{ = [r]7.
Proof. By aroutine induction on r.]

Definition 2.185. Suppose ¢ is a valuation to .#. Suppose X is an unknown and
x € [sort(X)]” is such that supp(x) C supp(X). Define a function g[X:=x] by

(¢[X:=x])(m-X)=mx and (g[X:=x])(Y)=¢(Y) allotherY

Lemma 2.186. ¢[X:=x] in Definition 2.185 is well-defined and a valuation to .9 .
Proof. As that of Proposition 2.38.]
Lemma 2.187. [r[/y._;, = [r[X:=t][{. As corollaries we have:

1 =[S then [PIAL = [Ps]]S
2. f[r7 = [517 then [0 = [s6]7.

Proof. By aroutine induction on the definition of [r].". We consider one case:

* The case of [m-X]/y..,. We reason as follows:
[X xmpyr) = =[] Definition 2.179
= [mt]¢ Lemma 2.181

= [(m-X)[X:=t]] Definition 2.69.

For the two corollaries we reason as follows:
1. By definition where P = (¢,X), P[r] = t[X:=r] and P[s] = ¢[X:=s]. Using the

assumptions,

[t(X:=rle =]y = [0xmpiey = XK=

2. Tt is a fact of syntax that fU(r) and fU(s) are finite. Using Lemma 2.73 we
may represent the effect of 8 on r and s as a sequence of atomic substitutions
(Definition 2.66). The result follows.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 133

Theorem 2.188 (Soundness). Forany T = (£,Ax) if Tkr=sthen T Er=s.

Proof. Let . be amodel of T and g be a valuation to ..

Identity in the denotation is reflexive, transitive, and symmetric so it suffices to
check the theorem for axioms. That is, suppose (r = s) € Ax and assume a position
P and substitution 6 such that sort(r) = sort(P) and fa(r0) Ufa(s0) C supp(P). We
must show that [P[r0]]{ = [P[s6]]!.

& is amodel so [r]{ = [s]. We use parts 1 and 2 of Lemma 2.187. |

2.3.4.5 Free Term Models and Completeness

In this section fix a signature ¥ and a theory T = (Z,Ax).

The proof of completeness follows a standard method: we construct a model out
of syntax in which by construction two terms denote equal elements if and only if
they are derivably equal.

The subtlety occurs in Lemma 2.197. We want to eliminate ¢ in
[[r]]’fm by converting it into a substitution 8. This ‘should’ be easy, since for
each X, ¢(X) is a provably equivalent class of terms. We need only choose some
representative term in ¢(X) for each X and set 6(X) to be that representative.

If we are naive in our construction then this could be impossible, as outlined in
Example 2.198: there might be ‘too many atoms’ in the available representatives.
We enrich our syntax with ‘enough’ extra constant symbols, to guarantee ‘enough’
representatives of every element of the model. Nominal algebra without the constant
symbols is complete for the same semantics, but the proof would be more complex.

Definition 2.189. For each sort @ in X define [r]y and .#(T) by

[Flr={r:0|THr=r} (r:a)
F(Mg=A{[r]r|r: a}.

Make each .7 (T), into a permissive-nominal set by giving it a permutation action
ﬂ"[r]'r = [ﬂ"r]'r.

Z(T) stands for ‘.Zree terms in the signature of T, up to derivable equality in T.
Lemmas 2.190 and 2.191 relate permutation and support to the natural notions from
nominal sets:

Lemma 2.190. The permutation action on [r|y is pointwise on [r]t as a set: that is,

r-[rlr ={mr' | ¥ €[r]+}.

Proof. From Definition 2.189 and Lemma 2.175. |
Lemma 2.191. supp([r]7) C fa(r).

Proof. From Definition 2.189 and Lemma 2.21.]

134 M.J. Gabbay

Definition 2.192. We construct the free term interpretation .7 (T) of T as

follows:
* Take .Z(T), as in Definition 2.189.
o a7(M = [a]+, [a]f}(T) [r]+ = [[a]r]+, and ([ri]7,..., [r,,]T)y(T) =[(r1y-..,r)]r

o 7 ([r]y) = [f(r)]7 for each term-former f : (¢t)7 in X and each r : c.
« 7 =[C]; for each constant in .

Lemma 2.193. Definition 2.192 is well-defined and is an interpretation. That is:

* The choice of representative of [r]t does not matter in any of the clauses.
* The choice of abstracted atom in the clause for [a)” V) [r]; does not matter.
o The maps a” V), (@] D[rlr, and ([r1]r,...,[r]r)7 ") are injective.

Proof. The first part follows by congruence properties of derivable equality.
The second part additionally uses Lemmas 2.32 and 2.33. The third part uses
Lemma 2.174.]

Definition 2.194. Define a theory T = (£,Ax™) to be equal to T except that
we adjoin J; .7 (T): to the set of constants in X, and we add axioms equating r
with [r]7 in Ax.

That is, for every r : T there is a constant C, = [r]; € £T, and an axiom (C, =r) €
F(T)*.

Lemma 2.195. .7 (T) extends to an interpretation F (T)" of T, where for each
r: T we take C}Q(T)+ = [r]y. Furthermore, Z(T)" is a model of T™.

Definition 2.196. Write ¢;; for the valuation to .% (T) mapping each X to Cx =
[X]r.

Lemma 2.197. For every valuation G to .7 (T) there exists a substitution 6 in T"
such that [r]]" = [r0]7"".

Proof. For each orbit x € |orb(X)| choose a representative X € x. Define 6 by
0(m-X) = m-Cx. Recall that Cx = [X]7 and by Lemma 2.191 supp([X]1) C supp(X).

By Proposition 2.38 0 is well-defined and is a substitution
It is not hard to check by induction on r that [r]. " = [r0]Z"". |

Example 2.198. To see why Lemma 2.197 is non-trivial and how T helps, suppose
T has one name sort v, two base sorts T and 7/, one term-former abs : (v, r)r’ , and
one axiom abs(b, (b a)-X) = abs(a,X) where a € supp(X) and b & supp(X).

Then it is a fact that there is no r € [abs(a,X)]y such that
fa(r) C supp([abs(a,X)]t) and it follows that there is no 6 such that
[x’]]‘[fgfabsm o = X 6]Z'"" (recall that substitutions must be equivariant).

Theorem 2.199. .%(T) is a model of T.

Proof. We must show that .7 (T) validates the axioms.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 135

Suppose (r = s) € Ax. Suppose ¢ is a valuation to .% (T). We must show that
L =
S
By Lemma 2.197 there exists 6 to T such that [/]/"" = [r0]Z"" and [s]/" =
[s61."))
By assumption T+ + r@ = s6. By Lemma 2.195, [r0]."" = [s6]."" . T
result follows. I

Corollary 2.200 (Completeness). If T =r=sthen TFr=s.

Proof. Suppose T = r = 5. By Theorem 2.199 [r]Z" = [s]Z" (g4 is defined in
Definition 2.196).

It is not hard to prove by induction that [r]Z" = [r]r and [s]Z" = [s]r. It follows
that T - r = s as required. |

2.3.4.6 Freshness

Nominal terms freshness conditions a#X and a#r from Urban et al. (2004) corre-
spond in this paper to ‘free atoms of” a & supp(X) and a & fa(r). See Notation 2.55
and Lemma 2.53. Call this syntactic freshness.

Nominal sets freshness a & supp([[r]) is a distinct notion which can be expressed
using equality; call this semantic freshness. The two are not identical, but they are
connected in various ways which we briefly explore.

Proposition 2.201 corresponds to Theorem 5.5 from Gabbay and Mathijssen
(2007) and Lemma 4.51 from Gabbay and Mathijssen (2009):

Proposition 2.201. Suppose b & fa(r).

Then Tt (b a)-r = rif and only if for every model % of T and valuation ¢ to .Z,
a & supp([r]7)-
Proof. By Theorem 2.188 and Corollary 2.200 T + (b a)-r = r if and only if
T = (b a)-r = r, which unpacking definitions means that for every .# and g,
[(ba)-r] =[r].By Lemma 2.181 [(b a)-r]{ = (b a)-[r]{, and by Lemma 2.182
b & supp([r]?). The result follows by Corollary 2.18. |

Lemmas 2.191 (and also Lemma 2.182) express that syntactic freshness implies
semantic freshness. A partial converse is Proposition 2.203, which is based on a
technical property of nominal sets:

Lemma 2.202. Suppose X is a nominal set and U C |X| is finitely-supported (so
U € |pow(X)| from Example 2.16) and nonempty.
Then if a#U then there exists some x € U with a#x.

Proof. U is nonempty so choose any x’ € U. Choose fresh b (so b & supp(U) U
supp(x’)) and set x = (b a)-x. By the definition of support (b a)-U = U. By the
pointwise action (Example 2.16) x € U. By Lemma 2.17 a & supp(x). |

136 M.J. Gabbay

Proposition 2.203. a#|r]; implies there exists some r' such that T+ r =7 and
a & fa(r).
Proof. By Lemmas 2.190 and Lemma 2.202.]

2.3.4.7 Design of Nominal Algebra

We designed nominal algebra originally to axiomatise substitution, first-order logic,
and the A-calculus Gabbay and Mathijssen (2006a,c, 2008a,c, 2009).

We encountered two design decisions: whether to include freshness axioms, and
whether to include atoms-abstraction as primitive.

We disallowed freshness axioms because they are a definitional extension of
the system without them, and we chose to include atoms-abstraction as primitive
because—even though they too are a definitional extension (see next paragraph)—
they make for more compact derivations and proofs and we knew that the reader
would expect to see them in a ‘nominal’ paper. These decisions do not matter for
expressivity because of the following two equalities from Gabbay and Pitts (2001),
here written in the language of FM sets:

(Freshness) attx = Nb.(ba)x=x
(Abstraction) Wb.([b](b a)-x = [a]x)

In Sect. 2.4.3.1 we express the equalities above in PNL. In Gabbay (2012b),
we do the same in nominal algebra, showing how to compile nominal algebra
with semantic freshness judgements and atoms-abstraction down to the core logic
without it.

M above is the new-quantifier meaning ‘for some/any fresh atom’ Gabbay and
Pitts (2001), Gabbay (2011b)."* 1 does not care which fresh atom we choose
(the some/any property (Gabbay 2011b, Theorem 6.5)). So, we do not have to
be exact about supp(x) when we choose fresh b; any will do, and for instance
Proposition 2.201 is an ‘if and only if” even though we chose b ¢ fa(r) (syntactic
freshness) instead of b & supp([r]) (semantic freshness), and it may be that
supp([r]) & fa(r). More on this Sect. 2.4.3.1.

Note that including atoms-abstraction is orthogonal to the rest of the logic in the
sense that it is isolated by the sort system: if we provide no term-formers injecting
atoms-abstraction into base sorts, then it cannot interact with the rest of the logic.

The permissive-nominal algebra of this paper differs from the nominal algebra
of Gabbay and Mathijssen (2009) in the following respects:

* The system here is sorted, the system in Gabbay and Mathijssen (2009) is not.

14In words: ‘a is fresh for x if for some/any fresh b, (b a)-x = x’ and ‘for some/any fresh b,
[b](b a)-x = [a]x.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 137

* We use permissive-nominal terms and semantics here, and ‘vanilla’ nominal
terms and nominal sets in Gabbay and Mathijssen (2009). That is, the logic here
is permissive-nominal algebra. Freshness conditions a#X and a#r translate to
a & supp(X) and a ¢ fa(r) here.

* Axioms are exactly equalities, with no freshness contexts: permission sets play
this role instead.

e The syntax here admits non-equivariant constant symbols, that of Gabbay and
Mathijssen (2009) does not. That does not matter if we are using finitely-
supported models (as is the case in Gabbay and Mathijssen (2009)) because finite
non-equivariance can be emulated using term-formers applied to finitely many
atoms. Here, elements can have infinite support, which cannot be emulated using
(finite) equivariant term-formers.

* The syntax here admits the possibility of unknowns with empty support ranging
over closed elements (so it includes the ef freshness constraint of (Fernandez
and Gabbay 2007, Section 9.2)), unknowns with finite support ranging over
finitely-supported elements, unknowns with support equal to a permission set,
and whatever else we can imagine in-between.

e The development is parameterised over the set of unknowns X and also the
group of permutations PP. In particular we admit (but do not insist on) the
possibility of infinite permutations, including the shift-permutations considered
in Sect. 2.2.2.6.

* Substitutions and valuations are—rather elegantly—treated as equivariant func-
tions on & the set of unknowns.

In spite of these many differences, the spirit of the proofs remains the same.
The details become simpler, and in particular the non-equivariant constants make
construction of the free term model easier. '

2.3.5 The Nominal HSP Theorem

The HSP theorem states that a class of X-algebras is equational if and only if it is
closed under Homomorphism, Subobject, and Product. Definitions follow below,
and the main result is Theorem 2.228.

The result was first proved for the case of ‘ordinary’ algebra (using first-order
terms and not over nominal sets) by Birkhoff (1935). It is also called Birkhoff’s
theorem (Burris and Sankappanavar 1981, Theorem 11.12). We prefer ‘HSP’ since
this is more descriptive and Birkhoff’s name is attached to several other results.

The result was first proved for nominal algebra by the author Gabbay (2009),
and an alternative proof was provided by Kurz and Petrisan (2010). The new proof
presented here is also rather short.

5Tn Gabbay and Mathijssen (2009) to build the free term model we enriched syntax with n-ary
term-formers applied to atoms. This idea goes back to a completeness proof in Gabbay (2007a).

138 M.J. Gabbay

HSP was interesting for two reasons: first, it is not obvious that nominal algebra
is a true logic of equality, because of the freshness side-conditions which give
the nominal algebra as presented e.g. in Gabbay and Mathijssen (2009) or in
Mathijssen’s thesis (2007) a prima facie flavour of conditional equalities. The HSP
result holding for nominal algebra was a way of making formal that this is a logic
of equality.

The use of permission sets to phrase the logic entirely in terms of equality
(freshness migrates to the types, as permission sets) is a step forward from this point
of view: the nominal algebra of this paper is more visibly an equational logic. Still,
HSP along with soundness and completeness (Theorem 2.188 and Corollary 2.200)
form a triumvirate of results of interest for an algebraic reasoning framework.

The proofs here are much shorter and clearer than those of Gabbay (2009)—and
the final result is strictly stronger than Gabbay (2009), Kurz and Petrigsan (2010),
which actually proved an HSPA theorem that a class of X-algebras is equational
if and only if it is closed under Homomorphism, Subobject, Product, and Atoms-
abstraction.

That is, we have dropped the ‘atoms-abstraction’ from the closure conditions.
How can this be? The use of permission sets gives us finer control over the
support of valuations; we needed atoms-abstraction in the proof of (Gabbay 2009,
Theorem 9.8) to eliminate ‘extra’ atoms introduced by a valuation ¢—°‘extra’
relative to the freshness information in a freshness context A. Here, because
freshness contexts/permission sets are fixed, this cannot happen.

2.3.5.1 Algebra Homomorphisms

Definition 2.204. Suppose X = (A,B,C, X, F,ar) is a signature and suppose 2~
and & are interpretations of £. A X-homomorphism O from 2" to ¢ is a family
of equivariant functions @, from [a]” to [e]” for each sort o in the sort-signature
(A, B) such that:

s Oy(a”)=a”.

. G(ocl, sa) (X150 X) 7 = (O (x1),- -, O, ()7
* Ouu(la]?x) = [17 ©a(x).

. @T(f‘%(x)) =f?(04(x)) where f : (a)7 is in F.

Definition 2.205. Call " a homomorphic image of 2~ when there is a X-
homomorphism © from 2" to % such that © is surjective for every sort o in
(A, B).

Call © injective when @y is injective for every sort o in (A, B).

Lemma 2.206. Suppose X is a signature and 2 and % are X-algebras. Suppose
O is a X-algebra homomorphism from 2" to % .
Suppose that ¢ is a valuation to Z . Define ©(g) a valuationto % by ©(g)(X) =

Gsort(X)(G(X))for every X € X.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 139

Then for every r: a, Ou([r]?) = [r]3,)-
Proof. By an easy induction on r. |

Lemma 2.207. Suppose X is a signature and T = (X,Ax) is a theory. Suppose X
and &% are X-algebras and % is a homomorphic image of 2~ under ©.
Then if 2" is a model of T, then so is ¥ .

Proof. Choose (r =s) € Ax and a valuation g to %/ It suffices to show that [r]? =
[s1?"

We construct a valuation ¢’ to 2~ as an equivariant extension (Definition 2.37) of
the following data. For each unknown X : ot let Xy = {x € | 24| | ©(x) = ¢(X)}. We
construct a valuation ¢’ to 2" by for each orbit and representative X € orb(X) € X
setting ¢’ (X)) = x for some choice of x € Xy.

By construction ©¢’ = ¢. By assumption [r]7 = [s[. We apply © to both sides
and use Lemma 2.206.]

2.3.5.2 Subalgebras

Definition 2.208. For Z-algebras 2" and ¢/, call 2~ a subalgebra of ¢ when:
o |t%| C|1¥| forevery T € B.
* The subset inclusion maps form a Z-algebra homomorphism (Definition 2.204

Lemma 2.209. For X-algebras &', % and a theory T = (X, Ax), if % is a model of
T and X is a subalgebra of % then 2" is a model of T.

)-16

2.3.5.3 Products

Definition 2.210. Let I be a (possibly countably infinite) indexing set and (.27);es
be an /-indexed collection of X-algebras. The product algebra I1,c;Z; is the X-
algebra such that:

o Foreach o in X, oMlier Zi = Hieloc% as defined in Definition 2.27.
» The ith projection map to Z; is a X-algebra homomorphism for every i € I.

Lemma 2.211. For any I-indexed collection of Z-algebras (Z:)icy, if Zi is a model
of T = (X,Ax) for every i € I then so is I;c; Z:.

16That is:

- a% =a? for every atom a.

= () ® = (. x)? forevery xp € [[oa] s - x0 € [[on]” .
- a x for every x € [[a]”|.
— For every term-former f in F, f % (x) = % (x) for every x € |[a]” | where ar(f) = (o)1.

140 M.J. Gabbay

Proof. Suppose (r = s) € Ax. Suppose ¢ is a valuation to IT;c; Z;. For each i € I
we obtain a valuation ¢; to Z; by projecting to the ith component. It follows that
712 = [s]Z, and thus [r]* = [s]&*. [|

2.3.5.4 Ground Term Models and Extending a Signature

Definition 2.212. Call r ground when fU(r) = @.
Definition 2.213 exactly follows Definition 2.189 (cf. Remark 2.217):

gnd

Definition 2.213. Suppose T = (X,Ax) is a theory. For each sort ¢ in X define [r]¥
and 4(T)q by

Foo|Thr=r} (r: o, r ground)
[7%“ | r: o, r ground}.

Make each ¢(T),, into a permissive-nominal set by giving it a permutation action

R = [,

Lemma 2.214. supp([r]$"') C fa(r).

Proof. From Definition 2.189 and Lemma 2.21. |

Definition 2.215. We construct the ground free term interpretation & (T) of T as
follows:
We take ¥(T)¢ as in Definition 2.213. We define:

@0 = [alf
)" V[= [[alr
([rl]s'll'ndv RS [rn]s_'l_nd)éé’(T) = [(rl P 7’_”)]5_]_"!1
PO = [
' = [l

Above, f ranges over each term-former f : (@)t in ¥ and C ranges over each constant
in 2.

Lemma 2.216. Definition 2.215 is well-defined and is an interpretation.

Proof. As the proof of Lemma 2.193.]

Remark 2.217. Definition 2.189 is a special case of Definition 2.189. We obtain
F(T) as 9(T') where T’ is obtained from T by extending its signature with a copy
of X as constants (the construction is made formal in Definition 2.219 below).

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 141

Doing this in Definition 2.189 would have complicated the presentation for no
immediate gain, so it seemed kinder on the reader to build the special case first by
hand.

Note that we need to use ground terms now, for the proof of Theorem 2.220 to
work. The reason is that .% (T) has elements in each sort given by the elements [X],
whereas ¢ (T) lacks these elements.

2.3.5.5 Surjective Maps onto Algebras

Fix a signature X and any collection of X-algebras V.

Definition 2.218. Suppose T = (X, Ax) and suppose £ and %; for i € I are models
of T. Suppose 6; € " — %; is a family of homomorphisms.

Write IT;6; for the natural map from 2" to I1;%;, mapping x € | 2| to (6;(x)); €
T1;%].

It is easy to verify that IT;6; is a Z-algebra homomorphism.

Definition 2.219. Suppose X and ¥’ are signatures. Say X’ extends X with fresh
constants when X = (A,B,C,X,F,ar') and ¥ = (A,B,CUD, X, F,ar') where
DNC =@ and ar' (C) = ar(C) for every C € C.

Theorem 2.220. Suppose T = (X,Ax) is a theory and V' is a model of T. Then there
exists a theory T' = (X' |Ax) where ¥ extends T with some fresh constants D such
that ¥ is a homomorphic image of 4(T').

Proof. We take D = |J,, |¥4| and construct a homomorphism based on mapping
X € Y4 (as a constant in D) to itself (as an element of | #4]). []

2.3.5.6 Injections Out of Free Algebras

Definition 2.221. Suppose X is a signature and V is a set of X-algebras. Let T =
(X,Ax) where Ax is the collection of judgements valid in all ¥ € V for all valuations.
Call T the (X-)theory generated by V.

Remark 2.222. So (r =s) € Ax in Definition 2.221 when for every ¥ €V and
every valuation ¢ to ¥, it is the case that [r]! = [s]!.

Definition 2.223. Define the constants of a term consts(r) just as Definition 2.59
except that we take consts(C) = {orb(C)} and consts(X) = @.

Lemma 2.224. Suppose X is a signature and X' extends T with some fresh constants
D. Suppose T has enough unknowns (Definition 2.48).

If g is a ground term in X' then there exists a term g\ in X and substitution 0
such that g6 = g.

142 M.J. Gabbay

Proof. For each orbit in consts(r) choose a representative C € orb(C) € consts(r),
and some distinct unknown X¢ with sort(Xc) = sort(C) and supp(C) C supp(Xc)—
we can do this because we have assumed enough unknowns and it is a fact that
consts(r) is finite. Define 6 to be the equivariant extension of this choice, so
0(m-Xc) = mn-C and (for all the other unknowns) 6(Y) = Y. This is well-defined
by Proposition 2.38.

It is now easy to generate g™' by replacing each C in g with X¢ (modulo some
permutations).]

Theorem 2.225. Suppose V is a collection of X-algebras and X has enough
unknowns. Let T = (£,Ax) be the X-theory generated by V. Suppose ¥ extends
S with some fresh constants D and write T' = (', Ax).

Then there exists some indexing set I, set of algebras {¥; € V |i € I}, and an
injective -algebra homomorphism © from 4(X') to Te; V.

Proof. Take I to be the set of all pairs (g,/) of ground terms in X’ such that
THeg=h.

Consider some i = (g,h) € I. By Lemma 2.224 there exist g, h™!, and 6; such
that g'6; = g and h™'9; = h. We assumed that T' I/ ¢ = h and it follows using
Lemma 2.175 that T I ¢! = i!. Since T is the theory generated by V' there
exists a model % € V and a valuation ¢ such that [g"']/ # [#"']Y. We define a -
homomorphism ©; from ¢ (T’) to ¥; as an equivariant extension of mapping C € D
to ¢(Xc), where C and X are as chosen in the proof of Lemma 2.224.

It follows by the choice of ¥; that I1;c;6; from ¢ (T') to 1, is injective as a
map on underlying sets.]

2.3.5.7 Proof of the HSP Theorem

We can now prove Theorem 2.228; a similar result for nominal algebra is proved in
Gabbay (2009).

Definition 2.226. Suppose X is a signature. Suppose V is a collection of X-algebras.
Then:

e Call V a (Z-)variety when it is closed under Homomorphic image
(Definition 2.204), Subalgebra (Definition 2.208), and countable Product
(Definition 2.210).

e Call V (¥-)equational when it is the collection of X-algebras that are models of
T = (X,Ax) for some set of axioms Ax.

Lemma 2.227. Suppose X is a signature with enough unknowns. Suppose V is a
S-variety and let T = (X,Ax) be the X-theory generated by V. Suppose ¥/ extends X
with some fresh constants D and write T' = (¥, Ax). Then 4(T') € V.

Proof. By Theorem 2.225 there is some indexing set /, set of X-algebras {¥#; € V |
i € I}, and injective Z-algebra homomorphism © from ¢ (T’) to IT;c;%;. V is closed

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 143

under products so I;c; % € V. The image of |4(T')| is a subalgebra of I1;¢; %, and
is a homomorphic image of that subalgebra (by inverting ©). V is closed under
subalgebras and homomorphic images, so the result follows.]

Theorem 2.228. Suppose X is a signature with enough unknowns. A collection of
X-algebras 'V is equational if and only if it is a variety

Proof. Suppose V is equational. By Lemma 2.211 V is closed under products. By
Lemma 2.207 V is closed under homomorphic images. By Lemma 2.209 V is closed
under subalgebras. Therefore V is a variety.

Conversely, suppose V is a variety. Let T be the theory on X generated by V
as described in Definition 2.221. Let " be any model of T. By Theorem 2.220
there exists a signature ¥’ extending ¥ with some fresh constants D such that ¥ is
a homomorphic image of ¢(T’). By Lemma 2.227 4(T’) € V. Since V is closed
under homomorphisms, #” € V as required. Therefore V is equational. |

2.4 Permissive-Nominal Logic: VX

2.4.1 Permissive-Nominal Logic

We now add quantification over unknowns—that is, VX—to permissive-nominal
terms. Permissive nominal techniques makes the theory of ¢t-equivalence easy here:
if we used ‘vanilla’ nominal terms, then the development below might not be
impossible, but we believe that it would be harder. We obtain a first-order logic
which we call permissive-nominal logic.

Permissive-nominal logic (PNL) is just first-order logic, enriched with nominal-
style names. Thus, the derivation rules in Fig. 2.5 are (virtually) identical to those
of first-order logic. Only the term language is really changed.

(A -
dD,(I)Fm(I),‘P() (I),J_F‘{’(J_L)
- -
oo, ¥ Dy \P(:>L) O, oy, Y (=R)
O o=>yFY¥Y o=y, ¥
@, 9[X:=r] F ¥
(fa(r)Csupp(X), r:sort(X)) (VL) ero. ¥ (KEfU®Y) (VR)
@, VX.0 F ¥ OFvX.9, ¥
- -
OHow dgrw
dHY

Fig. 2.5 Sequent derivation rules of Permissive-Nominal Logic

144 M.J. Gabbay

In this section we set up PNL as a sequent derivation system (Fig. 2.5),
interpret it in permissive-nominal sets (Definition 2.241), and prove soundness and
completeness (Theorems 2.245 and 2.261).

In Sect. 2.4.2 we undertake as an extended case study a sound and complete finite
axiomatisation of arithmetic inside PNL.

24.1.1 Syntax

The notions of sort-signature (.4, /) and sort language are as in Definition 2.39. An
interpretation .# for (A, B) consists of an assignment of a permissive-nominal set
77 to each 7 € B, and we extend .# to sorts as in Definition 2.176.

Definition 2.229. For this section it is convenient to take X’ to be specifically
example 2 of Example 2.45.

Remark 2.230. So an unknown X takes the form
n-Xe = {(7',Xy) | Va€As .w(a) = 7'(a)}.

In this case, in the light of Remark 2.46, we may take fU(r) to be equal to the set of
X occurring in r.

It is now easy to define binding of unknowns (level 2 variables) in terms. A more
abstract account of level 2 binding is also available Gabbay (2011c).

Definition 2.231. A PNL signature over a sort-signature (A,5) is a tuple
(C,F,P,ar) where:

» (is a permissive-nominal set of constants.
» F is aset of equivariant term-formers.

* Pis aset of equivariant predicate-formers.
* ar assigns

— to each constant C € C an arity T,
— toeach f € F a term-former arity ()7, and
— to each P € P a proposition-former arity o, where

o and 7 are in the sort-language determined by (A, B).
A (PNL) signature S is then a tuple (A, B,C, F,P,ar).

Definition 2.232. Suppose S = (A,B,C,F,P,ar) is a PNL signature.
Terms are defined as in Definition 2.49 for the signature (A, 5,C, X, F, ar).”

7The reader who would answer ‘Can you pass the salt?’ with ‘Yes.” should note that we have to
adjust ar to remove P and add X mapping X to o where (7,Xy) € X.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 145

Propositions are defined as follows:

¢ proposition Y proposition

L proposition ¢ = y proposition
r:a (ar(P)=a) ¢ proposition
P(r) proposition VXq.¢ proposition

Here VX binds X in ¢. We can use nominal abstract syntax to do this.

Notation 2.233. Write VX.¢ as shorthand for VXy.¢ where X = {(7’,Xy) |
Va€A< .1t'(a) = w(a)} for some 7.

Lemma 2.234. Support and the permutation action as characterised for terms on
Lemma 2.53 extend to propositions as follows:

supp(L) = @ supp(P(r)) = supp(r)

supp(¢ = y) = supp(¢) Usupp(y) supp(VX.¢) = supp(¢)
ml=1 n-P(r) =P(m-r)
n(¢p=>vy)=(r9)=>my nvX.¢ =VX.m-¢

Notation 2.235. We may write fa(¢) for supp(9).

2.4.1.2 Derivability

Definition 2.236. ® and ¥ will range over sets of propositions. We may write ¢, ®
and @, ¢ as shorthand for {¢ } U®. We may write @, ¥ as shorthand for ® UY.

Write fU(®) = U{fU(9) | ¢ € ®}.
A sequent is a pair @ - 'P.

Definition 2.237 (Derivable sequents). The derivable sequents are defined in
Fig. 2.5.

Remark 2.238. As standard, the intuition of ®@ - ¥ being derivable is “the conjunc-
tion (logical and) of the propositions in @ entails the disjunction (logical or) of the
propositions in W”. So for instance, intuitively the axiom rule (Ax) expresses that ¢
if and only if 7-¢.

The permutation 7 in (Ax) is deliberate and represents equivariance (preserva-
tion of truth under permuting atoms) within permissive-nominal logic. Because of
this permutation 7, free atoms can behave like variables ranging over distinct atoms.

Thus in PNL we can express a theory of atoms-inequality as follows: Suppose
a name sort Atm and a proposition-former neq : (Atm,Atm), along with a single

146 M.J. Gabbay

proposition neq(a,b) for two distinct atoms in Atm—and, if we wish, another
proposition neq(a,a) = 1. The permutation 7 in (Ax) ensures that a and b represent
any two distinct atoms.

Remark 2.239. The condition fa(r) C supp(X) in (VL) might suggest that VX.¢
means “@[X:=r] for every r such that fa(r) C supp(X)”. This is so, but the 7 in (Ax)
means that what supp(X) in VX .¢ really restricts is capture, as we now discuss.

* Suppose a name sort Atm and suppose X : Atm and P : Atm. Suppose b €
pmss(X). By considering the swapping (b @) and (Ax), and (VL), VX.P(X) F
P(b) for all a, even if a & supp(X), as follows:

m (AX) = (b a)

VX.P(X)F P(a)

(VL) [X:=b]

So we can derive P(a) from VX.P(X), even if a is not permitted in X.

* This may not work if we have to ‘shift’ infinitely many atoms; e.g. there is no
finite 7 such that fa(n-(X,a)) C supp(X) where a & supp(X). If P has shift-
permutations (Definition 2.79), then we can use them.

Consider any sort o and suppose X : o and supp(X) = S. Suppose Q : o.
Consider any other Y : o with supp(Y) = SU{a} where a € S. We will show that
given shift-permutations, VX.Q(X) F Q(Y) is derivable.

Suppose SU {a} = m-S. We derive as follows:

———— (Ax)
Q(m-Y) - Q(Y)

(VL) [X:=mY]
VX.QX)F Q(Y)

* Nevertheless, VX.¢ does not mean “¢[X:=r] for every r”. This is because
permutations are bijective. For example, suppose X : Atm, a ¢ supp(X), and
P : ([Atm]Atm). Then VX .P([a]X) I P(]a]r) for all r such that a ¢ fa(r), and
also VX .P([b]X) I P([b]r) for all r and all b such that b & fa(r). However,

VX.P([a]X) i/ P(jala), and for all b, VX.P([a]X)/ P([b]b).

The fact that a € supp(X) forbids capture by an instantiation, in a suitable sense.

2.4.1.3 Interpretation and Soundness

Definition 2.240. Suppose S = (A, B,C,F,P,ar) is a signature.
A (PNL) interpretation .# for S consists of the following data:

* An interpretation for the sort-signature (A,) (Definition 2.176).

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 147

* For every f € F with ar(f) = (/) an equivariant function f* from [o']” to
[e]” (Definition 2.19).

e For every P € P with ar(P) = o an equivariant function P’ from
[e]” to {0,1} (Definition 2.23).

Definition 2.241. Suppose that .7 is an interpretation. Define an interpretation of
propositions by:

PO =P ()
LI, =0
[o = vl = max{1-[o}¢.[v]})
[9.017 = min{ [0, | xELsom(X))” supp() Coupp(x))

Lemma 2.242. [¢] = [n-¢]. always.
Proof. By induction on ¢. We consider two cases:

* The case VX.¢. Suppose [VX.¢]/ = 1. This means that [¢]7,._, = 1 for all
x € [a]” such that supp(x) C supp(X). By inductive hypothesis [-¢]/,._, = 1
for all x € [ar]” such that supp(x) C supp(X). Therefore [VX.7m-¢]. = 1. The
result follows, since - (VX.9)=VX.7-¢.

* The case P(r). We have [P(r)]¢ = P/ ([r]{). As P” is equivariant, we get
[P(r]¢ =P/ (r-[r]{). By Lemma 2.181 #-[r[Z = [z-r]{. Thus [P(r)]{ =
P ([mr1f) = [P

]

Lemma 2.243. [¢]7, ;. = [¢[X:=f][Z.

Proof. By a routine induction on the definition of [¢]/ in Definition 2.241. We
consider one case:

* The case of [P(r)];

- We reason as follows:

[P(Nxmiyr) = P7 (1)~ Definition 2.241
=P7([rix:=t]]/) Lemma2.187
=[P(r)[X:=t]] Definition 2.241.

Validity and soundness

Definition 2.244 (Validity). Call the proposition ¢ valid in .# when [¢] = 1 for
all .
Call the sequent @y, ..., ¢, - yi,...,y, valid in .# when (¢ A--- A¢y) = (Y V
-V) is valid.

148 M.J. Gabbay

Theorem 2.245 (Soundness). If ® - ¥ is derivable, then it is valid in all
interpretations.

Proof. By induction on derivations (Fig. 2.5). The case of (Ax) uses Lemma 2.242.
The case of (VL) uses Lemma 2.243. The case of (VR) uses Lemma 2.184. Other
rules are routine by unpacking definitions. |

2.4.1.4 Completeness

In this section we prove Theorem 2.261: a converse to Theorem 2.245, that if ¢ is
valid in all interpretations, then ¢ it is derivable.
For this section fix the following data:

* Asignature S = (A,B,C,F,P,ar).
¢ A formula ¢ such that I/ ¢.

We will construct an interpretation .# and a valuation ¢ (Definition 2.176) such that
[¢]7 = 0. This suffices to prove the result.

Maximally consistent set of propositions

Definition 2.246. Make a fixed but arbitrary order on propositions &, &, &3, ...
Define ®; = {—¢} (where ¢ was fixed above). For each i > 1 we define @, as
follows:

o If @; F & then write & = &;.

o If @; F =& then write & = —¢&,.

o If @; I/ & and @; 1/ —&; then write £ = &;.
There are now two cases:

* If & has the form —VX.£' then we define ®; | = ®;U{&,-E'[X:=Z]} where Z is
some fixed but arbitrary choice of unknown that is not free in any proposition in
®@; and is such that supp(Z) = supp(X) and sort(Z) = sort(X).

* Otherwise, we define ®;1 = ®;U{&}.

Finally, we define ®, by @, = |J; ®;.
Lemma 2.247. For everyi, ®;l/ L.
Proof. By induction on i:

* By definition ®; = {—¢}. As I/ ¢, we have —¢ I/ |

e Suppose D; I/ L.
Either ®;, 1 = ®;U{—=&} or @; 1 = ©;U{—=E, ~&[X:=Z]}—we consider the first,
simpler case; the second case is similar. Suppose @;,& - L. Tt follows that @; -
—&. So we are not in the third case of Definition 2.246 and we are either in the
first or the second. So ®@; - £ and thus ®; - | ; a contradiction.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 149

Lemma 2.248. @,/ 1.

Proof. Assume @, - L. So there exists a finite subset I" of @, such that '+ 1. As
I is finite it is included in some ®;, and ®; - L, contradicting Proposition 2.247. B

Remark 2.249. 1t is well-known that in nominal sets, least upper bounds can
sometimes not exist if there are ‘too many’ atoms; so sometimes we have to be
careful to not make too many arbitrary choices.'®

The reader familiar with nominal techniques will be alert to the possibility
that @, might fail to have a supporting permission set, and that this could cause
problems. In fact, in this particular case this is a non-issue: (Ax) from Fig. 2.5
ensures that @, is not only supported, but in fact equivariant.

Lemma 2.250. For every &, at least one of & € @y and =& € @y, holds.

Proof. We check of Definition 2.246 that for every i, either &; € @; | or =&; € @, 1.
The result follows.]

Lemma 2.251. For every &, if =VX.E € ®, then there exists a Z such that
—€[X:=Z] € Oy

Proof. There exists an i such that & = —VX.&. Since @, & and @y, I/ L, we have
that @, I/ —¢&;, and so @; If =&;. Thus @; | = ®; U{-VX.&, —&[X:=Z]}. The result
follows.]

Lemma 2.252. [f®y - ¢ then ¢ € Dy,

Proof. As, by Lemma 2.248, @, I/ L, if @, F ¢ then —¢ & ®,. Thus by
Lemma 2.250, ¢ € ®,. |

Corollary 2.253.

1. (0 = y) €@y ifand only if (¢ & Py, or W € D).
2. VX.¢ € D, if and only if
(for every r such that r : sort(X) and fa(r) C supp(X), ¢[X:=r] € D).

Proof.

1. Suppose (¢ = y) € @, and ¢ € Dy. Then @, - y and so by Lemma 2.252
v E D,.
Suppose ¢ & ®g,. By Lemma 2.250 —¢ € ®g,. So O, - —¢ and therefore
Dy - ¢ = . By Lemma 2.252 (¢ =) € @,.
Suppose ¥ € ®@y. Then @y - v and so @y - ¢ = y. By Lemma 2.252
(¢ =) € Dy

18For instance, in permissive-nominal sets it is possible represent a well-order of each permission
set, but not to represent a well-ordering of the set of all atoms (which is a limit of permission
sets). This is also the feature which Fraenkel and Mostowksi used to prove the independence of the
axiom of choice from the other axioms of set theory.

150 M.J. Gabbay

2. Suppose VX.¢ € @g,. By Lemma 2.252, if r : sort(X) and fa(r) C supp(X) then
O[X:=r] € Dy
Conversely, suppose ¢ [X:=r| € @, for every r such that r : sort(X) and fa(r) C
supp(X). We proceed by contradiction: suppose VX.¢ & ®@,. By Lemma 2.250
—VX.¢ € @, and by Lemma 2.251, there exists a Z such that —¢[X:=Z] € ®@,,.
So @, F —¢[X:=Z], and so @, + ¢[X:=Z], and so O, F L, contradicting
Lemma 2.248.

The term interpretation

Definition 2.254. Define the term interpretation .7 by:

o [a] ={r|r:a}.

o / mapsrtof(r).

e P mapsry,...,rto Lif P(ry,...,r,) € @y and to 0 otherwise.

Define ¢ by ¢(X) = X for all X € X and endow [oc]” with a permutation action
given by the action on terms.

Remark 2.255. In Definition 2.192 we built an interpretation to prove completeness
of nominal algebra (Corollary 2.200). There, we built our interpretation out of terms
quotiented by derivable equality; here we just use terms. Why the difference?

In nominal algebra the judgement-form of the logic is equality—so it makes
sense to build an interpretation such that equality maps to denotational identity.

Lemma 2.256.

1. If ar(f) = ()7 then £ is well-defined, equivariant, and maps [o]” to [7]”.
2. If ar(P) = o then P” is well-defined, equivariant, and maps [o]” to {0,1}.

Proposition 2.257. . is an interpretation of the signature S = (A,B,F,
P,ar) which we fixed at the beginning of this section. In addition, ¢ is a valuation

to £.

Proof. By Lemma 2.256 for each f : (o) € F, f7 is an equivariant map from
[o']” to [e]” and for each P : & € P, P” is an equivariant function from [a]” to

{0,1}.

By construction ¢(X) € [sort(X)]” always. Equivariance is easy. [|
Lemma 2.258. [r]/ =r.
Lemma 2.259. [£]7 =1 ifand only if & € ®y,.
Proof. By induction on the definition of [£]/ (Definition 2.241):

e The case of [P(r)]/. We reason as follows:

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 151

PHNIZ=1 < P (1)) =1 Definition 2.241
< P/(r)=1 Lemma 2.258
< P(r)e®, Definition 2.254

 The case of [L]/. By definition [_L]/ = 0. By part 1 of Corollary 2.253, L ¢
D,
e The case of [¢ = y]/. We reason as follows:

o= vyll=1< [¢]f =0o0r [y]/=1 Definition 2.241
& 9Dy oryed, ind. hyp.
&S do=>yed, Cor. 2.253, part 2

¢ The case of [VX.9[/, where @ = sort(X) and S = supp(X).
VX.9]7=1 & Vie[al” .supp(t)CS = [0, =1 Definition 2.241
& vie[a]” .supp()CS = [¢[X:=t]]{ =1 Lems. 2.184, 2.258
< [o[X:=t]]{ =1every t:as.t. fa(t)CS supp(t) = fa(r)
& 9[X:=t|ed,, every r:0 s.t. fa(t)CS ind. hyp.
& VX.peD, Cor. 2.253, part 4
|

Lemma 2.260. Ift/ ¢, then there exists an interpretation .% and a valuation G such
that [¢]7 = 0.

Proof. As =¢e®@yC D, and Pyl/ 1, we have p£ZDy,. By Lemma 2.259, we get
[¢] =o. [

As a corollary we get Theorem 2.261:

Theorem 2.261 (Completeness). If ¢ is valid in all interpretations, then ¢ is
derivable.

2.4.2 Case Study: Arithmetic in Permissive-Nominal Logic

Because term-formers in PNL can bind, we can axiomatise first-order logic. Thus
assume a sort o whose terms reflect formulas of first-order logic. Then PNL
quantification VZ where Z : o has the quality of an axiom schema, and we can use
those terms to axiomatise arithmetic (a theory which in first-order logic famously
involves an axiom schema).

So, we should be able to use PNL to give a finite, first-order axiomatisation
of arithmetic. Writing down some plausible-looking axioms is one thing—proving
they do what we expect them to do, is another. In this section, as a case study of an
application of PNL, we do just that.

152 M.J. Gabbay

We assume one atomic sort v and two base sorts t and o.
We assume term-formers and proposition-formers as follows:

€): 1 succ : (1)1 Hr() (1,101
l:o =:(0,0)0 V:([v]o)o & (1,1)o0
var: (V)1 sub; : ([V]t,1)1 sub, : ([V]o,1)o

~ (1,1) ~,: (0,0) €:(0)

Fig. 2.6 Signature £ suitable for a PNL specification of arithmetic

(~2) VX' XY Y.(X'mXNY'=Y)= (X' +Y ~X+YA
X %Y ~X4Y A
X' 2Y RXSYA
X' 2Y ~XAY)

(=~1) VX' X. X'mX = succ(X’) a2 suce(X)

(~0) vX. X~X

(~V) vZ',Z. Z'~Z = V([a)Z) ~Y([d)Z)

(msub) VX', XY Y.(X'mXAY'~Y) = (sub,([a]X',Y’) ~ sub,([a]X,Y) A
~ sub,([a]X,Y))

sub, ([a]X',Y")
)

(~0) vZ' Z. 7Z'~7 = (e(Z') = €(2))
A1) VX' X. X=X = X' £X)

We fill in sorts as appropriate. Thus, i =, 1 whereas 0 =, 0, and so on. The
permission sets of all unknowns are equal to A<, and a € A<.

Fig. 2.7 EQU: axioms for equality as a PNL theory

We proceed as follows, starting with the following PNL definitions:

* Figure 2.6 gives La signature for a shallow embedding of terms and formulas of
first-order logic as PNL terms of sort 1 and o respectively.

» Figure 2.7 gives equality axioms, as a transitive reflexive symmetric congruence
for the term-formers in £.

* Figure 2.8 axiomatises substitution. We can have some confidence in this
axiomatisation because it was already considered for nominal algebra in Gabbay
and Mathijssen (2008a) and proven correct.

* Figure 2.9 gives axioms for first-order logic.

» Finally, Fig. 2.10 gives axioms for arithmetic. As discussed above, the induction
axiom schema is captured using a universal quantification (the VZ in (PInd)).

Sect. 2.4.2.4 briefly recalls the syntax and derivability relation of ‘real’ first-order
logic. Then Sect. 2.4.2.5 maps this into the PNL theory we just constructed.
Section 2.4.2.6 briefly recalls Peano arithmetic in the ‘real’ first-order logic.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 153

(subvar) VX. var(a)[a—X] ~ X

(sub#) VX,Z. Z[a—X] ~Z

(subsucc) VX' X. succ(X)[a—X] = succ(X'[a—X])

(sub+) VX" X' X. (X" + X')[a—X] = (X”[al—>X] + X'[a—X])
(sub) VX" X'\ X (X" %X)a—=X] = (X"[a—X]* X'[a—X])

(sub=) VX" X' X. (X" = X")[a—X] = (X"[a—X] :'>X’[a»—>X])
(sub%) VX" X'\ X (X” X")[a—X] ~ (X "a—X] & X'|a—X])
(subV) VX, Z. (V([b)Z))[a—X] =~ Y([b](Z[a—X]))

(subid) VX. X[a—var(a)] ~

a € A< and b ¢ A<. The permission set of X", X/, and X is equal to A<.
The permission set of Z is equal to (b a)-A<.

Fig. 2.8 SUB: axioms for substitution as a PNL theory

(=) VZ\,Z.e(Z % 27) (e(Z) = (2))
%) VZ. (e(¥([a]2)) & VX .&(Zla—X]))
(1) e(l) = 1

Here Z' and Z have sort o, permission set A<, and a € A<.

Fig. 2.9 FOL: axioms for first-order formulas as a PNL theory

(PSO) vX. succ(X) ~ 0= L
(PSS) VX', X. succ(X') & succ(X) = X' ~ X
(P+0) VX. XH0~X
(P+succ) VX' X X'Fsuce(X) ~ succ(X')+X
(P0) VX. X:0~0
(Pxsucc) VX' X. X'isucc(X) ~ (X'#X)+X
(PInd) VZ.e(Z[a—0]) =
(VX.(e(Z]a—X]) = e(Z[arsuce(X))]))) =
VX.e(Z[a—X])

The permission set of X, X', and Z is A<, and a € A<.

Fig. 2.10 ARITH: axioms for arithmetic as a PNL theory

Finally, in Sect. 2.4.2.7 by arguments on models we show our main result of this
section: Theorem 2.286. A formula is derivable in ‘real’ Peano arithmetic if and
only if its translation in PNL is derivable in the PNL theory for arithmetic.

The permissive-nominal terms, PNL, permission-sets, and permissive-nominal
sets semantics, all work together, and at the end of it all we really can embed a
non-trivial theory with binding in PNL, and know it is correct.

154 M.J. Gabbay

2.4.2.1 The Signature £ and the Axioms

Definition 2.262. A signature £ suitable for writing out a PNL theory of first-order
logic is given in Fig. 2.6.

Notation 2.263. We introduce the following syntactic sugar:

* We may write sub,([a]r,) as r[a—t].
* We may write sub, ([a]r,?) as rla—t].
* We may write both ~; and ~,, just as ~.

Examples of this in use, follow immediately below.

2.4.2.2 The Axioms: Equality, Substitution, First-Order Logic,
and Arithmetic

Equality

Axioms for equality ~2: (1,1) and equality ~: (0,0) are given in Fig. 2.7.

Substitution

Axioms for substitution sub, and sub, are given in Fig. 2.8.

We arguably abuse notation in Fig. 2.8 when we use unknowns of sort t and o as
appropriate not necessarily giving them distinct names (e.g. in (subx) X has sort t,
whereas in (sub=>) we use another unknown also written X with sort o).

First-order logic

Axioms _for (a shallow reflection of) first-order formulas as terms in PNL (the j_,
=, and V) are given in Fig. 2.9.

Arithmetic

Given EQU, SUB, and FOL, it is not hard to write axioms for arithmetic in
PNL. This is in Fig. 2.10. Later on in Theorem 2.286 we prove that this is an
axiomatisation of arithmetic in PNL.

2.4.2.3 Comments on the Axioms
Remark 2.264. SUB is a PNL rendering of the nominal algebra theory naSUB from

Example 2.170; the universal quantifiers which are implicit in the nominal algebraic
judgement-form are made explicit here. This is essentially the same axiomatisation

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 155

as studied in Gabbay and Mathijssen (2006a, 2008a). Soundness and completeness
are proved, so providing some formal sense in which the axioms of SUB are ‘right’.

In Gabbay and Mathijssen (2008c) first-order logic is equationally axiomatised
using nominal algebra (so the axioms involve only equality). Because PNL is
already a first-order logic, we can use L, =, and V directly to capture the behaviour
of 1, =, and V. So note that FOL here is not the axiomatisation of Gabbay and
Mathijssen (2008c); there we had to work a little harder because the ambient logic,
nominal algebra, was purely equational.

Remark 2.265. Instead of the axioms for equality EQU, we could directly extend
PNL by adding derivation rules Fig. 2.5 as follows:

@, s, Xi=r], 9[Xi=s| ¥ (fa(r)Ufa(s) C supp(X))
D ras, ¢ X:=r|F¥Y

(~S)

O rr-Y¥
oY

~R)

Remark 2.266. Every unknown has a sort, and a permission set.

Different choices of permission set may yield logically equivalent results. For
example, in (sublam) it is not vital that supp(Z) is exactly (b a)-A<. The important
point is that a & supp(Z).

Similarly, in (subapp) it is not vital that supp(X") = supp(X'); when we use
the axiom we can instantiate X” and X’ to r” and ¥ such that fa(r") # fa(r'), and
conversely if we take supp(X") # supp(X') then we can still instantiate X and X’
to " and r’ such that fa(r'") = fa(r') C supp(X") Nsupp(X').

2.4.2.4 First-Order Logic L

We will use the atoms A, from L in Sect. 2.4.2 as variables of our first-order logic
(this is not necessary, but it is convenient). So for this section, a,b,c,... will range
over distinct atoms in A,,.

Definition 2.267. Define terms and formulas of £ by:

tu=al0]|succ(t)|t+1]|t*t
Eimimt| L|E=E | Vak

Substitution #'[a:=t] and & [a:=f] is as usual for first-order logic. We write sequents
EF X where E and X are sets of formulas. Derivability is as usual for first-order
logic.

156 M.J. Gabbay

Definition 2.268. Define a mapping (-)° from terms and formulas of £ to terms of
L (Sect. 2.4.2.1) by:

a)=a 0y =0
(succ(t))y = succ((¢)) (41 =)+ @)
(t7xt) = () * ()
(f =~y = (') & (¢ (Ly=1
E'=8r=0CET=(@r (Yagy=Vva(&)

Definition 2.269. Extend (-) to first-order logic sequents = - X as follows:

EFX) =e(V[a]...Va](E A A& = (u V...V)))

Here, = = {&,...,&}, X ={x1,--., 1}, and the free variables of E and X are
{ai,...,a,} (in some order).

Notation 2.270. Write S for EQUUSUBUFOL.
Lemma 2.271. St ({'|a:=t]) ~ (¢') [a—(t]] and
SE (§la=t]) ~ (&) la—(t]].
Proof. By routine inductions on 7 and &.]

Theorem 2.272 (Correctness). If = X is derivable in first-order logic then S
(EF X is derivable in PNL.

Proof. By a long but routine inspection we can check that EQU, SUB, and FOL
allow us to model the behaviour of ‘real’ first-order logic. We use Lemma 2.271.

2.4.2.5 Interpretation of First-Order Logic

We recall the usual definition of interpretations in first-order logic:

Definition 2.273. A nominal (first-order logic) interpretation ./ is a carrier
set M, and elements:

0”7 eM, succ” €M — M,

+7 e (MxM)— M, and *7 € (MxM)— M.

It is convenient to fix some .# from here until Theorem 2.286.

Definition 2.274. Define Valuy (M) by:
Valuy, (M) ={e € Ay - M | A C A, A finite A\ Va,b ¢ A.e(a) =¢€(b)}

Call elements of Valuyp , (M) Ay-valuations (to M). € will range over A -valuations.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 157

If x € M write €[a:=x] for the valuation mapping b to €(b) and mapping a to x:

gla=x](a) =x
ela=x](b) = &(b)

Give € € Valuy,, (M) and X C Valuy,, (M) a pointwise permutation action:

(m-e)(a) = (! (a)).

X ={me|eeX}

U,V will range over finitely-supported subsets of Valuy ,(M)—so there exists some
finite A C A, such that for all 7, if 7(a) = aforall @ € A then n-U = U.

Remark 2.275. Valup,(M) would normally just be called ‘the set of valuations’.
We are more specific since we separately also have valuations on unknowns X
(Definition 2.178).

PNL atoms are serving as variable symbols of £. To conveniently apply nominal
techniques, it is useful to restrict to valuations that are finite in the sense given in
Definition 2.274. In any case, any term or formula will only contain finitely many
atoms.

Definition 2.276. We extend the interpretation to first-order logic syntax as
follows:

[a]” = &(a)
[0} = 0
[succ()]& = succ” ([t]&)
I/ +10 = +(1. [11)
I+l = (11 1)
L] =0
[E" = &1 = max{1-[¢"]:" . [€]"}
[Va 8l = min{[E] 5y | x € M}
[f =] = 1if [{']# = [¢] and O otherwise

Definition 2.277. Call the formula & valid in .2 when [E] = 1 for all €.
Call &,....&6 F x1,....x valid in 4 when (E;A...AE) = (V... V) is
valid.

2.4.2.6 A Theory of Arithmetic in £

Definition 2.278. Define a first-order theory of arithmetic by the axioms in
Fig. 2.11.

An interpretation .# is a model of arithmetic when [E[= 1 for & each of (ps0),
(pss), (p+0), (p+suce), (px0), (pxsuce), and every instance of (pind).

158 M.J. Gabbay

(ps0) Va. succ(a) 0= 1

(pss) Vd',a. succ(a) = succ(d) = a~d
(p+0) Va. at+t0~a

(p+succe) Vd',a. d+succ(a) ~ succ(a')+a

(px0) Ya. ax0 =0

(pxsucc) Vd',a. a'xsucc(a) ~ (a'xa)+a

(pind) ¢[a:=0] = (Va.(& = Ela=succ(a)])) = Va.§

(every &, every a)

Fig. 2.11 arithmetic: axioms for arithmetic in first-order logic

Remark 2.279. (pind) the induction axiom-scheme is of course of particular
interest. We therefore unpack what its validity

[€[a:=0] = Va.(& = E[a=succ(a)]) = Va.E]" =1 (every &, every a)

means, in a little more detail. For every a and &:

o [f [[g [a=0]ﬂg = 1, and
 ifforeveryxe M, [&]]Z[Z:x] = 1 implies that [£ [a::succ(a)]]]‘gffl:x] =1,
* then for every x € M, [& Mi:x] =1

In (pind) we take ‘every a’, and in (PInd) we do not. This is because in (PInd), a
is o-convertible,

2.4.2.7 Building an Interpretation for £ from One for £

Recall the PNL signature £ from Sect. 2.4.2.1. Suppose ./ is a model of arithmetic.
We use it to build an interpretation .4 of L.

Definition 2.280. Extend £ to £L+M where we add all elements of M as constants,
and extend the interpretation to interpret these constants as themselves in M. (So if
X € M then x is a constant symbol in £+M and [x][/ = x.)

Define an A -valuation & € Valuy,, (M) by

g(a) =07 always.

If ¢ is a term, we write [¢]“ for the function A&.[t]#. If £ is a formula, we write
[E]” for the function Ae.[E].

We now define an interpretation .4 for L. We give a denotation to the base sorts
1 and o of L., as follows:

1" = {[t]” | t aterm of L+M}
o ={[€]” | & aformula of L+M}

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 159

We give a denotation to the term-formers and proposition-formers of £, as follows:

var” ae=¢(a) sub”/([a]u7 v) e =u(€la:=ve))
0" e=0" =" (U,V)e=max{1-U(e),V(e)}
succ” ue =succ” (ue) VY [a)U e =min{U (e|a:=x]) | x € M}

i (u,v)é‘:"‘/{(“&"g) N (u,)g:fvf/(us,v&‘)
7 (u,v) e=%"(ue,ve) ~/ (u,v)=11if u=v and 0 otherwise
sub," ([alu,v) e =u(ela:=ve]) -~ (U,V)=1if U=V and 0 otherwise

17e=0 e’ U=U(g&)

Here, u and v range over 1”* and U and V range over o™
Lemma 2.281. 1. [f'[a:=t][= [']f—jyer

2. [Ela:=t][" =1 if and only if [E] e = 1.

Lemma 2.282. The following equalities all hold:

var” (@) = [a]” sub,” ([a]['], [1]) = ['la:=t]]*
0" =[o]” suby’ ([a][E]7, [s[“) = [E[a:=s]]"
succ” ([t]7) = [succ(t)]” 17 =[L]”
BT = I +117 S (1, [E1) = [E = £1
(1) = V" ([a[E]7) = [Va.E]"

2 (I I = [s)

Proof. We compare Definitions 2.280 and 2.276. Most cases are immediate; we
consider only the slightly less trivial ones:

var’ (a) = (Aa.Ae.€(a))a Definition 2.280
= (Aa.[a]”)a Definition 2.276
= [a]* fact

sub!” ([a][t']7, [t]7) = Ae.[t']7 (ela:=[t] ")) Definition 2.280
= A&t [a:=t]]” Lemma 2.281
Other cases are no harder.]
Lemma 2.283. .4 (Definition 2.280) is a PNL interpretation.
Proof. We must check that:

* 1" and 0" are permissive-nominal sets.
By routine calculations. (In fact, 1 and o are nominal sets; that is, their
elements all have finite support.)

160 M.J. Gabbay

* The functions defined in Definition 2.280 map elements of 1", o, [Alt”", and
[Alo” correctly to the appropriate sets.
By Lemma 2.282.
is equivariant from o to {0,1}.
By routine calculations using the fact that (a b)-&y = €.

o« g

Lemma 2.284. If (E+ X7 isvalidin A, then E+ X is valid in A .
Proof. We calculate that if (2 + X) is valid in .4/, then

[(Ein... A& = V...Vl =1

But the proposition written out above is closed, so for all valuations &, [(& A ...
N&) = (V... vl =1. u

Recall from Notation 2.270 that we write S for EQU USUBUFOL.
Proposition 2.285. The axioms of SUARITH are valid in 4.

Proof. By a routine verification. We consider the axiom (V) from Fig. 2.9. We
unpack definitions and see that we must prove that for every & in £L+M,

o VxeM.gla:=x| € () if and only if

o gla:=(t)] € (€) forevery a term of L+M.

This follows, because £+M has a constant symbol for every x € M. Validity of the
other axioms is no harder.]

Theorem 2.286. arithmetic,ZF X in first-order logic if and only if
SUARITHF (EF X in PNL.

Proof. We prove two implications. The top-to-bottom implication follows using
Theorem 2.272.

For the bottom-to-top implication, we reason as follows: Suppose SUARITH F
(EF X) in PNL. Choose an arbitrary interpretation .# of first-order logic that
is a model of arithmetic, with carrier set M. By Soundness (Theorem 2.245) and
Proposition 2.285, (E+ X) is valid in .4". By Lemma 2.284 Z+ X is valid in ./
M was arbitrary, so by completeness of first-order logic (Shoenfield 1967, §4.2) it
follows that = - X is derivable. []

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 161

2.4.3 Further Properties of PNL

2.4.3.1 More PNL Theories

We briefly mention on how to express some familiar ‘nominal’ constructs in PNL.

Inductive types

Permissive-nominal logic can express the principles of nominal abstract syntax
developed in Gabbay and Pitts (2001).
Suppose a base sort 1, a name sort v, and term-formers

var: (v)t, app:(t,1)1, and lam: ([v]i)t.

Fix an unknown U : 1 and for brevity write ¢[U:=r] as ¢(r) for every ¢. Suppose an
axiom-scheme, for every ¢:

(var() =

X.(0(X) = ¢(lam([a]X))) =

VX Y(0(X) = o(Y) = app(X,Y)) =
vX.((X))

Here X and Y have sort 1 and we make a fixed but arbitrary choice of atom a €
supp(X).

We can also express this finitely, if we axiomatise a sort for predicates (as we did
for arithmetic). Here is the axiom-scheme above made finite by using the theories
EQU, SUB, and FOL from Sect. 2.4.2:

VZ.e(Zla—svar(a)]) =

VX.(e(Zla—X]) = e(Zla—lam([a]X))) =

VX,Y.(e(Z[a—X]) = e(Z[a—Y]) = e(Z[a—app(X,Y)])) =
vVX.e(Z[a—X))

The W quantifier
Nominal sets support the /1-quantifier Gabbay and Pitts (2001). PNL also includes

the M-quantifier; the way in which it does this is quite interesting, as we shall see in
a moment.

162 M.J. Gabbay

W has some distinctive properties which are reflected in nominal logic (NL) and
the logic of FM sets (FM):

Vx.(P(x) = VNa.Q(a,x)) Vx.Na.Wb.(ba)-x~x

Vx.WNa.(P(x) = Q(a,x)) WNa.Nb.¥x.(attx = bitx = (ba)-x=x)

Here and below we write a double horizontal line for ‘is provably equivalent to’.
N appears absent from Permissive-Nominal Logic (PNL). It is ‘hiding’ in the
permission sets. Corresponding propositions are, where a,b & supp(X)

VX.(P(X) = Q(a,X)) VX.(ba)X ~ X

VX.(P(X) = Q(a,X)) VX.(ba)X ~ X

We see from these examples that two things are happening: first, freshness con-
ditions are hard-coded into the syntax by permission sets—and second, so is the
N-quantifier.

It is interesting to consider another example. In NL/FM:

Wa.P(a) AVa.Q(b) Va.P(a) AVa.Q(b)
Correspondingly in PNL we have:

P(a) AQ(b) P(a) AQ(b)

P(a) A Q(D) P(a) A Q(a)

It is easy to use the rule (Ax) from Fig. 2.5 to construct a derivation proving that
P(a) AQ(b) and P(a) AQ(a) are indeed logically equivalent in Permissive-Nominal
Logic.

The 7 in (Ax) expresses that truth is preserved by permutative renaming, or in
symbols: - ¢ < m-¢ always.

A permission set S can be viewed in two ways: as giving permission to instantiate
using free atoms in S—but also as a form of U for the atoms not in S.

Semantic freshness

To express in permissive-nominal algebra that a is fresh for the denotation of s
it suffices to assert (b a)-s = s where b & supp(s). Thus the theory of a semantic
freshness predicate Fresh has one axiom Fresh(a,X) < (b a)-X = X where a €
supp(X) and b & supp(X) (and we fill in sorts as appropriate). In PNL with equality,
the axiom is VX. Fresh(a,X) < (b a)-X =X.

Atoms-abstraction

Atoms-abstraction can also be expressed as a theory in permissive-nominal algebra.
For a base sort T and name sort v assume a base sort [V]7 and a term-former

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 163

abs : (v,7)([v]7), along with a single axiom abs(a,X) = abs(b, (b a)-X) where
a € supp(X) and b & supp(X). In PNL with equality, the axiom is VX .abs(a,X) =
abs(b, (b a)-X).

2.4.3.2 Admissibility of Cut

We indicate how (Cut) is admissible in the presence of the other rules in Fig. 2.5.

Definition 2.287. Suppose fa(r) C supp(X) and r : sort(X). Define ®[X:=r| by
DX:=r] = {¢[X:=r] | ¢ € D}.
Lemma 2.288 is proved by routine arguments like those in Dowek et al. (2010),

Urban et al. (2004):
Lemma 2.288. SupposeY & fV(t). Then

r[Y :=u][X:=t]=r[X:=t][Y:=u[X:=t]].
Lemma 2.289. Suppose fa(r) C supp(X) and r : sort(X). Then
OFY implies O[X:=r]FP[X:=r].
Proof. By a routine induction on derivations. The case of (Ax) uses Lemmas 2.71
and 2.288. The case of (VL) uses Lemma 2.288. |

Lemma 2.290.

1. If there exists a derivation A of ® &y, Y then there exists a derivation of ® -
-y, .

2. Ifthere exists a derivation A of ®, ¢ =Y then there exists a derivation of @, w-¢ -
Y.

Proof. By a simultaneous induction on A. The case of (VL) uses Lemma 2.71.
(We need the simultaneous induction for (=L) and (=R), since parts of the
proposition move between left and right.)]

Notation 2.291. An instance of (Cut) rests on two sub-derivations. It is convenient
to call them the left branch and right branch as illustrated:

Left branch Right branch
(ONN I 4 OF ¢,V

oY

(Cut)

164 M.J. Gabbay

Theorem 2.292 (Cut-elimination). If ® - ¥ is derivable with a derivation that
uses (Cut), then it is derivable with a derivation that does not use (Cut).

Proof. The proof is as for first-order logic. The only differences are a 7 in (Ax) and
a side-condition fa(r) C supp(X) in (VL). These affect terms and have no effect on
the structure of derivations; for the purposes of this proof they are irrelevant.

We commute instances of (Cut) upwards, as usual, following the method of
(Dummett 1977, pages 139-145) or Gabbay (2011a). At each step, the following
measure based on the depth of subderivations and the size of the cut formula,
decreases:

¢ The size of the cut formula, and
* the longest path up the derivation the cut, that the formula persists,

lexicographically ordered.

¢ The commutation cases between rules for = and V are as standard for first-order
logic.

¢ The essential case for = is as standard.

 For the essential case for V, suppose the subderivation has the following form:

“A
D, [X:=r| ¥ . O ¢, ¥
D, VX.0FY OHVX.¢, ¥
VY

(VR)

(Cut)

By Lemma 2.289 there is a derivation A[X:=r] of ® }- ¢[X:=r|, Y. We eliminate
the essential case as follows:

EA[X::r]
D, §[X:=r|FV¥ OF ¢[X:=r], ¥
oY

(Cut)

* Suppose the subderivation has the following form:

(A% LA
D, 9+ 10, D, 10V

D, o ¥

(Cut)

We use Lemma 2.290 to obtain a derivation A’ of ®, ¢ - ¥ (the transformations
involved in the proof of Lemma 2.290 do not increase the inductive measure).

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 165

2.4.3.3 Exhausting the Available Atoms

We conclude with a brief discussion on a subtle point in the PNL design. Suppose a
name sort v, a base sort 7, and a proposition former #: (v, 7). Suppose an atom a and
an unknown X : T with supp(X) = A<. Suppose an unknown Y : v with supp(Y) =
A< Consider an interpretation in which #(a, X) is interpreted as a & supp(g(X)) and
7 is interpreted as L (Definition 2.26).

That is, # is interpreted as freshness and 7 is interpreted as well-orderings of
permission-sets.

In the PNL of this paper, the interpretation of the proposition ¢ = VX.3Y #(Y,X)
is false: we take ¢(X) to well-order A< and there is no a € supp(Y) such that a ¢
supp(g(X)).

Suppose we decide that we want a version of PNL in which ¢ is true. In this
case, we can consider denotations such that every element has support of the form
7-A< where A< is infinite and A< C A< and A< \ A< is also infinite. In this way, an
unknown X cannot ‘exhaust’ A<.

The lesson we draw from this small example is that nominal semantics offer a
host of interesting and inspiring design options. In this paper, we have cut one path
through this design space which is expressive enough to get the results we want.
Other paths are possible.

2.4.4 Conclusions

This paper reflects a research arc by the author in collaboration with others,
roughly from 2005 to 2012. Thanks to improvements in presentation and the use of
permissive-nominal techniques, definitions and proofs are simpler than in previous
literature, and new properties emerge.

We have constructed permissive-nominal sets. We gave a nominal syntax for
them and explored their computational properties in nominal unification and
rewriting. We considered nominal algebra and proved soundness, completeness,
and HSP over permissive-nominal sets. We gave nominal terms a V-quantifier
over unknowns and used this to build a first-order logic permissive-nominal logic.
Finally, in an extended case study we gave finite axiomatisations of first-order logic
and arithmetic and proved correctness.

Mathematical foundations influence language, and (famously) language influ-
ences thought. Nominal sets are a foundation with a model of names which is
different from what has been considered before, so the question is: what new
languages, and new thoughts, can emerge? This chapter attempts to address that
question by illustrating the broad sweeps of what a ‘nominal’ meta-mathematics
might look like.

166 M.J. Gabbay

We are not and cannot be encyclopaedic or exhaustive. For other work we should
mention o/Prolog, which allows Horn clauses Cheney and Urban (2008) (this pre-
ceded PNL, and could be viewed as a subset of it). The author in collaboration has
proved correctness for several non-trivial theories in nominal syntaxes, including
equational treatments of substitution Gabbay and Mathijssen (2006a, 2008a), A-
calculus Gabbay and Mathijssen (2008b, 2010), and first-order logic Gabbay and
Mathijssen (2006¢c, 2008c), as well as the finite first-order nominal axiomatisation
of arithmetic Dowek and Gabbay (2010, 2012a) which we considered in Sect. 2.4.2.
There are translations from nominal terms to A-terms by Levy and Villaret and by
Dowek, the author, and Mulligan Levy and Villaret (2008), Dowek et al. (2010),
including a translation of algebraic reasoning (so, not just unification) Gabbay and
Mulligan (2009); and there is a translation of permissive-nominal logic to higher-
order logic in Dowek and Gabbay (2012b) which illustrates the differences and
similarities of the two logics, and exploits some unusual model-theoretic ideas.

We also mention a translation of nominal terms to many-sorted first-order syntax
by Kurz and Petrigsan (2010), and a categorical treatment of nominal Lawvere
theories in Clouston (2009). It may also prove useful to consider nominal languages
over nominal structures other than sets, for instance over nominal domains Turner
(2009).

See also the ‘atlas of nominal languages’ in Appendix A.

This research is developing a topic which this author believes could become an
immense field; the informal meta-level having been relatively unformalised until
now for want of a denotation with names, which is what nominal sets provide.

It is important to realise that this story is not just about nominal sets, nor is
it just about semantics; there is also the issue of finding appropriate syntaxes for
our semantics. The logic of FM sets, nominal logic, and the Nominal Isabelle
package Gabbay and Pitts (2001), Pitts (2003), Urban (2008) are all first-order
axiomatisations of nominal sets.!” In all these cases, the syntax is that of ‘ordinary’
first- or higher-logic.?” These are denotations for syntax-with-binding.

Nominal terms and permissive-nominal terms, and the syntaxes based on them
such as nominal rewriting, algebra, and permissive-nominal logic, do not follow
automatically from nominal sets. They are syntaxes for meta-mathematics of inde-
pendent interest. Thus, this chapter has surveyed the author’s attempts, via methods
which are both syntactic and also semantic, to outline what meta-mathematics could

1(’Essentially, Gabbay and Pitts (2001) is the first third of the author’s thesis; Pitts (2003) is the
same but minus the cumulative sets hierarchy; and Urban (2008) is an extensive implementation in
higher-order logic, with a library of powerful macros. One reason this is non-trivial has to do with
automatically deriving the equivariance properties described e.g. in (Gabbay, 2011b, Section 4.2).

20Sometimes, authors write ‘nominal logic’ for that logic obtained by adding for each atom a
constant symbol to the syntax of first-order logic, and adding infinitely many axioms reflecting
nominal sets (equalities of swapping atoms, fresh atoms, and so on). This is nominal sets wearing
a ‘syntactic disguise’: consider by analogy a theory of arithmetic with a constant symbol for each
number and an axiom for every arithmetic equality.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 167

look like if it were based on nominal foundations. The fact that—for instance—we
were able to finitely axiomatise arithmetic in the nominal first-order that is PNL in
Sect. 2.4.2.2, is one demonstration that this meta-mathematics is a new and different
place from what the reader may be used to.

In a sense this paper is a sequel to the survey of Gabbay (2011b) (written in
2008 and submitted in early 2009). But whereas Gabbay (2011b) concentrated on
applications of nominal sets to syntax with binding, this paper considers nominal
sets as a basis for meta-mathematics. Hints of this appeared in nominal rewriting
Fernandez et al. (2004), Fernandez and Gabbay (2007), which allowed arbitrary
oriented equality theories over nominal terms. Perhaps unwisely, we shall succumb
to a wordplay: Gabbay (2011b), Gabbay and Pitts (2001) explore denotation of
specification with binding; whereas here we explore specification of denotation with
binding.

Thus, in this document we have explored the consequences of taking FM-sets
style names seriously in meta-mathematics. But even that does not exhaust the
potential applications of nominal techniques. Mathematics and computer science are
evolving in ways which increase the importance of names, and nominal techniques
have arisen from this; we can expect that evolution to continue.

This motivates us to revisit certain foundational design decisions; whether to
admit atoms—to sound more mathematical, we say urelemente and to sound less
mathematical, we say names—and what properties these should have. Linguists
might well call these referents, and have been studying them for a long time.

Whatever we call them, they exist and we use them all the time. So we will
conclude with two slogans:

* Names are data.
* Names with additional properties are ubiquitous.

This chapter has studied formal languages with which to specify some of the
possible additional properties of names, such as ‘having a substitution action’ or
‘being universally quantifiable’. But more generally, by this combination of a new
point of view and a rigorous mathematics, nominal techniques have the potential
to simplify, factor out common properties, and help control some of a modern
mathematics of logic and computation.

Names are not just a technical issue, to be ignored or circumvented with ‘tricks’.
Names are a philosophical, foundational, linguistic, and computational issue. The
mathematics of names is the mathematics of mathematics.

Dov Gabbay wrote in his preface to the second edition that

the researcher ... is having more and more in common with the traditional philosopher
who has been analysing such questions for centuries (unrestricted by the capabilities of any
hardware). ... I believe the day is not far away in the future when the computer scientist will
wake up one morning with the realisation that he is actually a kind of formal philosopher!

We would add “and philosophers, linguists—and some artists too—may wake up
one morning with the realisation that they are actually a kind of abstract computer
scientist”. Amen.

168 M.J. Gabbay

Appendix
A An Atlas of Nominal Languages

The reader coming to the nominal literature could be forgiven for finding it
perplexing. What are ‘Fraenkel-mostowski sets’, ‘nominal sets’, ‘nominal terms’,
‘nominal logic’, ‘nominal rewriting and algebra’, ‘oProlog’, ‘nominal equational
logic’, ‘permissive-nominal algebra’, ‘permissive-nominal logic’ (with/without
shift-permutations)? In this Appendix we will give a brief annotated bibliography
covering, loosely, the relevant publications. This list is not meant to be exhaustive.

Traditionally, nominal sets are understood as a tool for the mathematical analysis
of syntax, as described for instance in the author’s previous survey/research paper
Gabbay (2011b), or in slides of an excellent course of lectures by Pitts (2011). This
author takes a view of nominal sets not just as a foundation for syntax with binding,
but as a foundation for mathematics itself—names and binding, after all, appear
everywhere. The atlas below surveys relevant publications.

For each item in the list below, we reference where the idea was introduced to
the ‘nominal’ literature, and any other relevant conference and journal papers.

A.1 FM Set Theory (Gabbay and Pitts 1999, 2001)

Fraenkel-Mostowski set theory (FM) and nominal sets (called ‘equivariant FM sets’
in that paper) are the foundational semantics for nominal techniques.

Fraenkel-Mostowski sets were already known and had been used for other
purposes; see (Gabbay, 201 1b, Remark 2.22) for more detailed historical comments.
Nominal sets were familiar as e.g. the Schanuel topos. So both semantics were
known.

What was new to Gabbay and Pitts (2001) was the observation by the author and
Pitts of the notions of support, atoms-abstraction, the self-dual behaviour of the
quantifier, and the application to what is now called nominal abstract syntax.*'

21 At the same time, Fiore Plotkin and Turi developed an approach to abstract syntax which was
really exactly the same thing Fiore et al. (1999). The key difference turned out to be that nominal
sets admit a relatively elementary sets-based interpretation of the presheaves. As argued in Gabbay
and Hofmann (2008) there are ‘fewer presheaves’ in the nominal semantics, we feel that an
elementary presentation of the mathematics—where this is possible—is a powerful advantage not
just for the reader but also for the practicing theorist.

Fiore has continued this line of research in collaboration and produced logics which in some
sense which has never been made formal, parallel the development here. For an example of this
see Fiore and Hur (2010).

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 169
A.2 Nominal Logic (Pitts 2001, 2003)

The constructions of Gabbay and Pitts (2001) are repeated, but in a first-order
axiomatisation of nominal sets rather than one of the FM cumulative hierarchy. Pitts
also coined the catchy label ‘nominal’.

Sometimes authors identify the nominal logic of Pitts (2003) with nominal
techniques in general. This is limiting, and it gets the mathematical development
the wrong way round. Nominal logic is a Hilbert-style axiomatisation in first-order
logic. These axioms have meaning because of the underlying nominal sets models,
and not the other way around; nor does the axiomatisation per se contribute to new
syntax or proof-theory with which to study names.

In order to make progress, we needed new syntax that more explicitly represents
atoms and their properties.

Thus for instance the nominal logic programming developed by Cheney and
Urban (2008) (also referenced below) is called logic-programming in nominal logic,
but we also see from Figures 6, 7, and 8 of Cheney and Urban (2008) that the syntax
and axioms used are a variant of nominal terms.

A.3 Proof-Theories for the N-quantifier (Gabbay 2007a;
Gabbay and Cheney 2004; Cheney 2005b)

Some attempts have been made to give the distinctive W-quantifier of nominal
techniques, a proof-theory. In arguably increasing order of elegance these are
Gabbay (2007a) (this was received by the journal in 2003 but took 4 years to get
printed), Gabbay and Cheney (2004) (written with Cheney to develop on Gabbay
(2007a)), and Cheney (2005b).

The permissive-nominal logic (PNL) of this survey is another item on that list,
and perhaps it is one of the nicest; certainly the PNL treatment of U is very different
from what has come before, see Sect. 2.4.3.1.

Complete semantics for this family of logics are in Gabbay (2007a), Cheney
(2006), and in Dowek and Gabbay (2012a). See also Sect. 2.4.1.4 of this survey.

A.4 Nominal Terms (Urban et al. 2003, 2004)

This new syntax introduced the distinctive freshness side-conditions and the
nominal terms syntax, with its separation of atoms a and unknowns X into two
syntactic classes. Urban et al. (2004) is where the syntactic ideas of this survey were
born, if not the specific ‘permissive’ implementation, which came later (permissive-
nominal terms below).

170 M.J. Gabbay

There is now quite a substantial body of work devoted to computing efficiently
on nominal terms; notably Calves (2010), Levy and Villaret (2010). There is also
a body of work devoted to translating between nominal terms and higher-order
patterns Miller et al. (1989). We are far from exhaustive, but good places to start
reading are Cheney (2005a), Levy and Villaret (2008, 2012), Gabbay and Mulligan
(2009), and Dowek et al. (2010).

A.5 Nominal Rewriting (Ferndndez et al. 2004, Ferndndez and
Gabbay 2007) and ocProlog (Cheney and Urban 2003,
2008)

These were the first logical languages using nominal terms as a general-purpose
assertion language; nominal rewriting was designed explicitly to allow us to assert
(directed) equalities between terms such as 8 or n-equivalence. oProlog was
intended by its designers for reasoning on nominal abstract syntax, and explicitly
presented as such—but in retrospect it can also be viewed as a general-purpose
‘nominal’ reasoning system in the same family as nominal rewriting and later
work.??

A.6 Nominal Algebra (Gabbay 2005; Gabbay and Mathijssen
2006a, 2007, 2009)

Nominal algebra is simply the undirected version of nominal rewriting.>> What
makes nominal algebra interesting above and beyond nominal rewriting is the
different theorems we prove about equality instead of rewriting; for instance the
HSPA theorem of Gabbay (2009) (much simplified here in Sect. 2.3.5), and various
correctness results for axiomatisations of e.g. substitution, A-calculus, and first-
order logic Gabbay and Mathijssen (2006a,c, 2008a,b,c, 2010).

The paper Gabbay and Mathijssen (2006a) is where the permutative convention
of Definition 2.2 was introduced, used by the author consistently since then. This
comes from the author’s work formalising nominal reasoning in Isabelle in Gabbay
(2001) and spares us from having to explicitly enumerate all inequalities between

22James Cheney, private communication.

23 Actually, this is a simplification. There is a significant difference, which is described in
Fernandez and Gabbay (2010): nominal rewriting does not have an explicit rule to generate fresh
atoms, whereas nominal algebra does. To the level of detail we wish to go into here, this does not
matter. The permissive-nominal syntax of this survey makes the issue obsolete because fresh atoms
are a structural fact of the permission sets.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 171

atoms. Thus, if pressed to be entirely formal, ‘a and b’ refers to two meta-variables
ranging over distinct atoms.

Kurz and Petrisan proved an HSP theorem for nominal algebra by treating
nominal algebra as a kind of many-sorted first-order logic Kurz and Petrisan
(2010)—the sorts are finite sets of atoms and come from the categorical view of
nominal sets as presheaves. The effect of nominal theories can thus be attained
in many-sorted first-order syntax. That syntax is just standard first-order syntax is
potentially a big advantage, for instance if one wants to transfer results directly from
universal algebra. This offers alternative and effective methods of semantic proof;
e.g. Kurz and Petrisan (2010) significantly simplifies the proofs of Gabbay (2009).
We pay for this convenience with infinities; e.g. even the simplest theory is infinite
since equalities are replicated at every sort. Of course, the theory may still be finitely
presentable. Section 2.3.5 of the current paper contains another, further simplified,
HSP proof.

A.7 Nominal Equational Logic (Clouston and Pitts 2007,
Clouston 2011)

Call the judgement ‘a is fresh for the syntax s’ syntactic freshness and ‘a is fresh for
the denotation of s semantic freshness. Nominal Equational Logic (NEL) closely
resembles NA, but whereas both have a semantic equality judgement (s = ¢), NEL
adds a semantic freshness judgement.

In Clouston and Pitts (2007) Clouston and Pitts claimed that NEL was signifi-
cantly more complete than NA because of this, but they had missed that semantic
freshness is expressible using equality and syntactic freshness (see for instance
(Gabbay and Mathijssen 2007, Theorem 5.5) and (Gabbay and Mathijssen 2009,
Lemma 4.51)).24

Note that two distinct logics have been called NEL: one in Clouston and Pitts
(2007), and one in Clouston (2011) which restricts semantic freshness to the left
of the turnstile; compare Figure 5 of Clouston and Pitts (2007) with Figure 1 of
Clouston (2011). Both have syntactic freshness: see the side-condition a#(a,z,t’)
in the ATM-INTRO and ATM-ELIM rules of Figure 5, and similar side-conditions in
Figure 1. Thus, when Clouston writes in Clouston (2011) that “/syntactic] freshness
in NA is sound, but not complete, for freshness in the underlying nominal sets
interpretation [semantic freshness]’, echoing similar comments in Clouston and
Pitts (2007), this omits mention that NEL also has a syntactic freshness.

It is in any case a red herring. If we can choose fresh atoms and compare
elements for semantic equality, then semantic freshness makes the logic ‘do equality
twice’ and just adds complexity Gabbay (2012b)—without equality, the story can

24Syntactic freshness appears in this paper as a ¢ fa(r). We considered semantic freshness in
Sect. 2.4.3. See also Proposition 2.201.

172 M.J. Gabbay

be different; this was encountered in the first attempt at a nominal functional
programming language, in which we included freshness information in the types
Gabbay (2001).

A.8 Permissive-Nominal Terms (Gabbay and Mulligan 2009;
Dowek et al. 2009, 2010)

These simplify and improve classical nominal terms in two ways: we give explicitly
the (countably infinite) atoms that may be free/are guaranteed to be fresh in every
unknown, and since freshness information is stored directly we eliminate the need
for freshness contexts. Thus good properties emerge: permissive-nominal terms can
be constructed as nominal abstract syntax, we can directly choose a name fresh for
a term (which is not possible in nominal terms without expanding the freshness
context), and properties and proofs can then be expressed for terms alone, rather
than for terms-in-freshness-context.

For instance, in classical nominal terms a solution of a nominal unification
problem is a pair of a substitution and a freshness context; a nominal rewrite rule
is a left and a right-hand side term and a freshness context; the proof-theory of
nominal algebra requires an explicit freshness rule to generate fresh atoms, and so
on. In fact, manipulating nominal terms almost always requires us to manipulate an
external structure representing freshness constraints.

In contrast permissive terms are ‘self-sufficient’, like ordinary syntax. Proofs
and algorithms have more of the look and feel of ordinary syntax. We have seen
how, in the body of this survey. A detailed treatment of permissive-nominal syntax,
including a simple translation from the nominal terms of Urban et al. (2004) into
permissive-nominal terms, is also in Dowek et al. (2010).

A.9 Permissive-Nominal Algebra (Gabbay and Mulligan 2009,
and Sect. 2.3.4)

The permissive-nominal algebra of Sect. 2.3.4 uses permissive-nominal terms and
has a significantly different proof-theory.

The notable differences are, aside from being permissive-nominal, the inclusion
(if we want them) of infinitely-supported constant symbols and of infinitely-
supported permutations. So previous work is a special case of the general framework
of this survey, but what we do here goes strictly beyond what was possible in
previous work, also in some significant mathematical properties such as satisfying
an HSP instead of an HSPA result; see the discussion opening Sect. 2.3.5.

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 173

A.10 Permissive-Nominal Logic (Dowek and Gabbay 2010,
2012a and Sect. 2.4.1)

As we discuss in this survey, permissive-nominal logic (PNL) adds universal
quantification over unknowns X. This is non-evident for nominal terms because of
their freshness contexts; in nominal terms X behaves like an element with cofinite
support so we lose o-equivalence whereas in permissive-nominal terms X has
coinfinite support and we can always -rename bound atoms. We get a proof-theory
which is pleasingly close to that of first-order logic, a sound and complete semantics,
and we can axiomatise and prove correct a non-trivial and mathematically relevant
theory, such as arithmetic.

M.J. Gabbay

174

SULIY) "WOU 10 130] I0pI0-1SIY Y
uonenwrad-giys
Jo ooussaxd ur ‘dso ‘oarssardxe QIO

Qoudreambo-o asiprepuess ‘uoneinuad
-1f1ys ppe {S)XaJU0D SSAUYSAIJ JBUIWI[H
[AGER 1

[eurwiou I0J sOonUBWAS sIpraoid OS[y
DA DY “[30] M1

SIopuIq IO} S[QpPOW 29 UONESHIEWOIXY
A[[eIoUSS QIOW PIMIIA

9q ued Inqg ‘XeIUAS JoBNSqe IO} 93en3
-ue] Surwweidord o130] se papusiul

SULIQ) [BUILIOU UO SILIOJ)

[e10uaS SUnJIASSe IOJ IOMOWERIJ ISIL]
X ‘X[p] ‘Xx#v ‘X ‘v paonponuy
Jeurwou, piom

pasn ‘sjos [RUTWIOU JO SUIOIXE SIJe)S
sioded asoy ur s1os

INA Juerreambo, poqeo s19S [eUTION
oV jo

ouapuadopur aa01d 0] pasn A[snorraig

S9JON

Kaans s1y) ‘(BZ10T

‘0102) AeqQqeD pue yomoQq
KoAIns sTy)

“(6007) UBSINA pue Aeqqen
(0102) T8 1R

Yomo(1(6007) ULSHNIA pue
KeqqeD “(6007) T¢ 12 omo(
(6007) uoIsnoD

“(L00T) SNId pue uoIsnor)

(6002 ‘L00T “®900T) uassiyrey
pue Aeqqen (S007) Aeqqen

(8002

‘€007) ueqIn) pue Kouay)
(L00T)

Aeqqen) pue zopuguIog
“(#00T) '[e 12 ZopupuIo]
(+00T “€007) 'Te 12 ueqin

(£00T ‘1007) sWid
(1002

‘6661) sd pue Keqqen
(1002

‘6661) S1d pue Keqqen
spd

sogen3ue[[euTWOU JO JO9ys-1BAYD [V "SI

S)as "wou
10 §]19S "WOU-IAISSTULID]
$)as "wou
J0 S)3S "WIOU-IATSSTULId]

$308 "wou-aAIssTILIAd
10 $)9S "WON

SOLIOAY], QIOAME]
"WON / $19S "WION

$19S "WION

SULI?d) "WON

SULIY) "WON

39S “WON

198 "WwIou

Jo 18D / sodoy [enueyos

SOA[OSWAY],

108 N JO 18D

/ AyoIeIoTy QATIR[NUIND)
[opou papudjuy

O130] "WOU-IAISSTULIO]
LAY |
“WOU-IAISSTUIOJ

SULIQ) "WOU-JAISSTULIO
o130] [euonenba ‘woN
BIQAS[R "WON

3ojoido

SUNLIMAI "WON

SULIY) "WON

J130] "WON

$19S AL / [BUTWION

K109U) 198 N
dweN

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 175

References

Abadi, M., L. Cardelli, P-L. Curien, and J.-J. Lévy. 1991. Explicit substitutions. Journal of
Functional Programming 1(4):375-416.

Baader, F., and T. Nipkow. 1998. Term rewriting and all that. Great Britain: Cambridge University
Press.

Birkhoff, G. 1935. On the structure of abstract algebras. Proceedings of the Cambridge
Philosophical Society 31:433-454.

Burris, S.N., and H.P. Sankappanavar. 1981. A course in universal algebra. In Graduate texts in
mathematics. Springer: New York.

Calves, C. 2010. Complexity and implementation of nominal algorithms. Ph.D. thesis, King’s
College London.

Cheney, J. 2004. The complexity of equivariant unification. In Proceedings of the 31st
International Colloquium on Automata, Languages and Programming (ICALP 2004), vol. 3142
of Lecture notes in computer science, 332-344. Berlin/New York: Springer.

Cheney, J. 2005a. Relating nominal and higher-order pattern unification. In Proceedings of the
19th international workshop on Unification (UNIF 2005), 104-119. LORIA research report
A05-R-022.

Cheney, J. 2005b. A simpler proof theory for nominal logic. In FoSSaCS, vol. 3441 of Lecture
notes in computer science, 379-394. Berlin/New York: Springer.

Cheney, J. 2006. Completeness and Herbrand theorems for nominal logic. Journal of Symbolic
Logic 71:299-320.

Cheney, J. 2010, October. Equivariant unification. Journal of Automated Reasoning 45(3):267—
300.

Cheney, J., and C. Urban. 2003. System description: Alpha-Prolog, a fresh approach to logic
programming modulo alpha-equivalence. In UNIF’03, 15-19. Universidad Politécnica de
Valencia.

Cheney, J., and C. Urban. 2008. Nominal logic programming. ACM Transactions on Programming
Languages and Systems (TOPLAS) 30(5):1-47.

Clouston, R. 2007. Closed terms (unpublished notes). http://users.cecs.anu.edu.au/~rclouston/
closedterms.pdf.

Clouston, R. 2009. Equational logic for names and binding. Ph.D. thesis, University of Cambridge,
UK.

Clouston, R. 2011. Nominal Lawvere theories. In Proceedings of the 18th international Workshop
on Logic, Language, and Information (WoLLIC), vol. 6642 of Lecture notes in computer
science. Berlin/Heidelberg/New York: Springer.

Clouston, R.A., and A.M. Pitts. 2007. Nominal equational logic. In Computation, meaning and
logic: Articles dedicated to Gordon Plotkin, vol. 172 of Electronic notes in theoretical computer
science, 223-257. Amsterdam: Elsevier.

Dershowitz, N., and J.-P. Jouannaud. 1989. Rewrite systems. In Handbook of theoretical
computer science: Formal methods and semantics, vol. B, ed. J. van Leeuwen. Amsterdam/
New York/Cambridge: Elsevier and MIT Press.

Dowek, G. 2001. Higher-order unification and matching. In Handbook of automated reasoning,
1009-1062. Amsterdam: Elsevier.

Dowek, G. and M.J. Gabbay. 2010. Permissive nominal logic. In Proceedings of the 12th inter-
national ACM SIGPLAN symposium on Principles and Practice of Declarative Programming
(PPDP 2010), 165-176. New York: ACM Press.

Dowek, G., and M.J. Gabbay. 2012a. Permissive nominal logic (journal version). http://dl.acm.
org/citation.cfm?doid=2287718.2287720. Transactions on Computational Logic 13(3).

Dowek, G., and M.J. Gabbay. 2012b. PNL to HOL: from the logic of nominal sets to the logic of
higher-order functions. Theoretical Computer Science 451:38-69.

Dowek, G., M.J. Gabbay, and D.P. Mulligan. 2009. Permissive nominal terms and their unification.
In Proceedings of the 24th Italian Conference on Computational Logic (CILC’09).

http://users.cecs.anu.edu.au/~rclouston/closedterms.pdf
http://users.cecs.anu.edu.au/~rclouston/closedterms.pdf
http://www.gabbay.org.uk/papers.html#pernl-cv
http://www.gabbay.org.uk/papers.html#pernl-jv
http://dl.acm.org/citation.cfm?doid=2287718.2287720
http://dl.acm.org/citation.cfm?doid=2287718.2287720
http://www.gabbay.org.uk/papers.html#pnlthf
http://www.gabbay.org.uk/papers.html#perntu

176 M.J. Gabbay

Dowek, G., M.J. Gabbay, and D.P. Mulligan. 2010. Permissive nominal terms and their unification:
An infinite, co-infinite approach to nominal techniques (journal version). Logic Journal of the
IGPL 18(6):769-822.

Dummett, M. 1977. Elements of intuitionism, 1st ed. Oxford: Clarendon Press.

Felleisen, M., and R. Hieb. 1992. The revised report on the syntactic theories of sequential control
and state. Theoretical Computer Science 103(2):235-271.

Fernandez, M., and M.J. Gabbay. 2007. Nominal rewriting (journal version). Information and
Computation 205(6):917-965.

Fernandez, M., and M.J. Gabbay. 2010. Closed nominal rewriting and efficiently computable
nominal algebra equality. http://arxiv.org/abs/1009.2791v1. In Electronic proceedings in
theoretical computer science, vol. 34, 37-51.

Fernandez, M., M.J. Gabbay, and I. Mackie. 2004. Nominal rewriting systems. In Proceedings
of the 6th ACM SIGPLAN symposium on Principles and Practice of Declarative Programming
(PPDP 2004), 108-119. New York: ACM Press.

Fiore, M., and C.-K. Hur. 2010. Second-order equational logic. In Proceedings of the 19th EACSL
annual conference on Computer Science Logic (CSL 2010), Lecture notes in computer science.
Berlin: Springer.

Fiore, M.P., G.D. Plotkin, and D. Turi. 1999. Abstract syntax and variable binding. In Proceedings
of the 14th IEEE symposium on Logic in Computer Science (LICS 1999), 193-202. Los
Alamitos: IEEE Computer Society Press.

Gabbay, M.J. 2001. A theory of inductive definitions with alpha-equivalence. Ph.D. thesis,
University of Cambridge, UK.

Gabbay, M.J. 2005. Axiomatisation of first-order logic (talk). In Second workshop on
Computational Aspects of Nominal sets (CANS’05). London: King’s College.

Gabbay, M.J. 2007a. Fresh logic. Journal of Applied Logic 5(2):356-387.

Gabbay, M.J. 2007b. A general mathematics of names. Information and Computation 205(7):982—
1011.

Gabbay, M.J. 2009. Nominal algebra and the HSP theorem. Journal of Logic and Computa-
tion 19(2):341-367.

Gabbay, M. 2011a. A proof-theoretic treatment of lambda-reduction with cut-elimination: Lambda
calculus as a logic programming language. Journal of Symbolic Logic 76(2):673-699.

Gabbay, M.J. 2011b. Foundations of nominal techniques: Logic and semantics of variables in
abstract syntax. Bulletin of Symbolic Logic 17:(2):161-229.

Gabbay, M.J. 201 1c. Two-level nominal sets and semantic nominal terms: An extension of nominal
set theory for handling meta-variables. Mathematical Structures in Computer Science 21:997—
1033.

Gabbay, M.J. 2012a. Meta-variables as infinite lists in nominal terms unification and rewriting.
Logic Journal of the IGPL 20:967-1000.

Gabbay, M.J. 2012b. Unity in nominal equational reasoning: The algebra of equality on nominal
sets. Journal of Applied Logic 10:199-217.

Gabbay, M.J., and J. Cheney. 2004. A sequent calculus for nominal logic. In Proceedings of the
19th IEEE symposium on Logic in Computer Science (LICS 2004), 139-148. Los Alamitos:
IEEE Computer Society.

Gabbay, M.J., and M. Hofmann. 2008. Nominal renaming sets. In Proceedings of the 15th
international conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR 2008), 158-173. Berlin: Springer.

Gabbay, M.J., and A. Mathijssen. 2006a. Capture-avoiding substitution as a nominal algebra. In
ICTAC 2006: Theoretical aspects of computing, vol. 4281 of Lecture notes in computer science,
198-212. Berlin: Springer.

Gabbay, M.J., and A. Mathijssen. 2006b. Nominal algebra. In /8th Nordic workshop on
programming theory.

Gabbay, M.J., and A. Mathijssen. 2006c. One-and-a-halfth-order logic. In Proceedings of
the 8th ACM-SIGPLAN international symposium on Principles and Practice of Declarative
Programming (PPDP 2006), 189-200. New York: ACM.

http://www.gabbay.org.uk/papers.html#perntu-jv
http://www.gabbay.org.uk/papers.html#nomr-jv
http://www.gabbay.org.uk/papers.html#clonre
http://arxiv.org/abs/1009.2791v1
http://www.gabbay.org.uk/papers.html#nomr
http://www.gabbay.org.uk/papers.html#thesis
http://www.gabbay.org.uk/papers.html#frelog
http://www.gabbay.org.uk/papers.html#genmn
http://www.gabbay.org.uk/papers.html#nomahs
http://www.gabbay.org.uk/papers.html#fountl
http://www.gabbay.org.uk/papers.html#twolns
http://www.gabbay.org.uk/papers.html#metvil
http://www.gabbay.org.uk/papers.html#uniner
http://www.gabbay.org.uk/papers.html#seqcnl
http://www.gabbay.org.uk/papers.html#rens
http://www.gabbay.org.uk/papers.html#capasn
http://www.gabbay.org.uk/papers.html#noma-nwpt
http://www.gabbay.org.uk/papers.html#oneaah

2 Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics 177

Gabbay, M.J., and A. Mathijssen. 2007. A formal calculus for informal equality with binding. In
WoLLIC’07: 14th Workshop on Logic, Language, Information and Computation, vol. 4576 of
Lecture notes in computer science, 162—176. Berlin/New York: Springer.

Gabbay, M.J., and A. Mathijssen. 2008a. Capture-avoiding substitution as a nominal algebra.
Formal Aspects of Computing 20(4-5):451-479.

Gabbay, M.J., and A. Mathijssen. 2008b. The lambda-calculus is nominal algebraic. In Reasoning
in simple type theory: Festschrift in Honour of Peter B. Andrews on his 70th Birthday, Studies
in logic and the foundations of mathematics, ed. C. Benzmiiller, C. Brown, J. Siekmann, and
R. Statman. London: IFCoLog.

Gabbay, M.J., and A. Mathijssen. 2008c. One-and-a-halfth-order logic. Journal of Logic and
Computation 18(4):521-562.

Gabbay, M.J., and A. Mathijssen. 2009. Nominal universal algebra: Equational logic with names
and binding. Journal of Logic and Computation 19(6):1455-1508.

Gabbay, M.J., and D.P. Mulligan. 2009. Universal algebra over lambda-terms and nominal
terms: The connection in logic between nominal techniques and higher-order variables. In
Proceedings of the 4th international workshop on Logical Frameworks and Meta-Languages
(LFMTP 2009), 64-73. New York: ACM.

Gabbay, M.J., and A. Mathijssen. 2010. A nominal axiomatisation of the lambda-calculus. Journal
of Logic and Computation 20(2):501-531.

Gabbay, M.J., and A.M. Pitts. 1999. A new approach to abstract syntax involving binders. In
Proceedings of the 14th annual symposium on Logic in Computer Science (LICS 1999), 214—
224. Los Alamitos: IEEE Computer Society Press.

Gabbay, M.J., and A.M. Pitts. 2001. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing 13:(3-5):341-363.

Gentzen, G. 1935. Untersuchungen iiber das logische SchlieBen [Investigations into logical
deduction]. Mathematische Zeitschrift 39:176-210,405-431. Translated in Szabo (1969), pp.
68-131.

Kurz, A., and D. Petrisan. 2010. On universal algebra over nominal sets. Mathematical Structures
in Computer Science 20:285-318.

Levy, J., and M. Villaret. 2008. Nominal unification from a higher-order perspective. In Rewriting
Techniques and Applications, proceedings of RTA 2008, vol. 5117 of Lecture notes in computer
science. Berlin/New York: Springer.

Levy, J., and M. Villaret. 2010. An efficient nominal unification algorithm. In Proceedings of the
21st international conference on Rewriting Techniques and Applications (RTA 2010), vol. 6
of Leibniz International Proceedings in Informatics (LIPIcs), 209-226. Schloss Dagstuhl—
Leibniz-Zentrum fuer Informatik.

Levy, J., and M. Villaret. 2012. Nominal unification from a higher-order perspective. Transactions
on Computational logic (TOCL) 13(2):10.

Mac Lane, S., and I. Moerdijk. 1992. Sheaves in geometry and logic: A first introduction to topos
theory. Universitext. New York: Springer.

Mathijssen, A. 2007. Logical calculi for reasoning with binding. Ph.D. thesis, Technische
Universiteit Eindhoven.

Mellies, P.-A., 1995. Typed lambda-calculi with explicit substitutions may not terminate. In
Proceedings of the 2nd international conference on Typed Lambda Calculi and Applications,
(TLCA 1995), vol. 902 of Lecture notes in computer science, ed. M. Dezani-Ciancaglini, and
G.D. Plotkin, 328-334. Berlin/New York: Springer.

Miller, D., G. Nadathur, F. Pfenning, and A. Scedrov. 1989. Uniform proofs as a foundation for
logic programming. Technical report, Durham, NC.

Pitts, A. 2011. Nominal sets and their applications. In Midlands Graduate School (MGS 2011).
Available online at cl.cam.ac.uk/~amp12/talks/MGS201 1 _nominal_sets_slides.pdf.

Pitts, A.M. 2001. Nominal logic: A first order theory of names and binding. In Proceedings of
the 4th international symposium on Theoretical Aspects of Computer Software (TACS 2001),
vol. 2215 of Lecture notes in computer science, ed. N. Kobayashi, and B.C. Pierce, 219-242.
Berlin/New York: Springer.

http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#lamcna
http://www.gabbay.org.uk/papers.html#oneaah-jv
http://www.gabbay.org.uk/papers.html#nomuae
http://www.gabbay.org.uk/papers/unialt.pdf
http://www.gabbay.org.uk/papers.html#nomalc
http://www.gabbay.org.uk/papers.html#newaas
http://www.gabbay.org.uk/papers.html#newaas-jv
cl.cam.ac.uk/~amp12/talks/MGS2011_nominal_sets_slides.pdf

178 M.J. Gabbay

Pitts, A.M. 2003. Nominal logic, a first order theory of names and binding. Information and
Computation 186(2):165-193.

Prawitz, D. 1965. Natural deduction: A prooof-theoretical study. Stockholm: Almquist and
Wiksell. Reprinted by Dover, 2006.

Shoenfield, J. 1967. Mathematical logic. Reading, MA: Addison-Wesley.

Smullyan, R. 1968. First-order logic. Berlin/New York: Springer. Reprinted by Dover, 1995.

Turner, D.C. 2009. Nominal Domain theory for concurrency. Ph.D. thesis, University of
Cambridge.

Tzevelekos, N. 2007. Full abstraction for nominal general references. In Proceedings of the 22nd
IEEE symposium on Logic in Computer Science (LICS 2007), 399—410. Los Alamitos: IEEE
Computer Society Press.

Urban, C. 2008. Nominal reasoning techniques in Isabelle/HOL. Journal of Automatic
Reasoning 40(4):327-356.

Urban, C., A.M. Pitts, and M.J. Gabbay. 2003. Nominal unification. In Proceedings of the 17th
international workshop on Computer Science Logic (CSL 2003), vol. 2803 of Lecture notes in
computer science, 513-527. Berlin/New York: Springer.

Urban, C., A.M. Pitts, and M.J. Gabbay. 2004. Nominal unification. Theoretical Computer
Science 323(1-3):473-497.

http://www.gabbay.org.uk/papers.html#nomu
http://www.gabbay.org.uk/papers.html#nomu-jv

2 Springer
http://www.springer.com/978-94-007-6599-3

Handbook of Philosophical Logic
Volume 17

Gabbay, D.; Guenthner, F. (Eds.)
2014, X, 269 p., Hardcover
ISBEN: 278-24-007-6599-3

	Chapter 2: Nominal Terms and Nominal Logics: From Foundations to Meta-mathematics
	2.1 Introduction
	2.2 Nominal Sets and Nominal Terms
	2.2.1 Nominal Sets
	2.2.1.1 Atoms, Permutations, Permission Sets
	2.2.1.2 Permissive-Nominal Sets
	2.2.1.3 Equivariance
	2.2.1.4 Examples of Permissive-Nominal Sets
	2.2.1.5 Strong Support

	2.2.2 The Syntax of Nominal Terms
	2.2.2.1 Signatures
	2.2.2.2 Terms
	2.2.2.3 Free Unknowns of a Term
	2.2.2.4 Substitutions
	2.2.2.5 Composition and Invertibility of Substitutions
	2.2.2.6 Shift-Permutations
	2.2.2.7 Occurrences

	2.3 Rewrites, Equations, and Algebras
	2.3.1 Unification
	2.3.1.1 The Unification Algorithm
	2.3.1.2 Examples of the Algorithm
	2.3.1.3 Preservation of Solutions
	2.3.1.4 Simplification Rewrites Calculate Principal Solutions

	2.3.2 Rewriting
	2.3.2.1 Rewrite Rules
	2.3.2.2 Rewrite Steps
	2.3.2.3 Peaks, Critical Pairs, Joinability
	2.3.2.4 Uniform Rewriting
	2.3.2.5 Orthogonal Rewrite Systems
	2.3.2.6 Nominal Rewriting with Freshness Contexts Versus Permissive-Nominal Rewriting

	2.3.3 Closed Terms
	2.3.3.1 The Definition
	2.3.3.2 Closed Rewrite Rules

	2.3.4 Equality: (Permissive-)Nominal Algebra
	2.3.4.1 Judgement Form, Axioms, Theories
	2.3.4.2 Derivable Equality
	2.3.4.3 Interpretation of Signatures and Terms
	2.3.4.4 Models and Soundness
	2.3.4.5 Free Term Models and Completeness
	2.3.4.6 Freshness
	2.3.4.7 Design of Nominal Algebra

	2.3.5 The Nominal HSP Theorem
	2.3.5.1 Algebra Homomorphisms
	2.3.5.2 Subalgebras
	2.3.5.3 Products
	2.3.5.4 Ground Term Models and Extending a Signature
	2.3.5.5 Surjective Maps onto Algebras
	2.3.5.6 Injections Out of Free Algebras
	2.3.5.7 Proof of the HSP Theorem

	2.4 Permissive-Nominal Logic: X
	2.4.1 Permissive-Nominal Logic
	2.4.1.1 Syntax
	2.4.1.2 Derivability
	2.4.1.3 Interpretation and Soundness
	2.4.1.4 Completeness

	2.4.2 Case Study: Arithmetic in Permissive-Nominal Logic
	2.4.2.1 The Signature
.L and the Axioms
	2.4.2.2 The Axioms: Equality, Substitution, First-Order Logic, and Arithmetic
	2.4.2.3 Comments on the Axioms
	2.4.2.4 First-Order Logic L
	2.4.2.5 Interpretation of First-Order Logic
	2.4.2.6 A Theory of Arithmetic in L
	2.4.2.7 Building an Interpretation for
.L from One for L

	2.4.3 Further Properties of PNL
	2.4.3.1 More PNL Theories
	2.4.3.2 Admissibility of Cut
	2.4.3.3 Exhausting the Available Atoms

	2.4.4 Conclusions

	A An Atlas of Nominal Languages
	A.1 FM Set Theory (gabbay:newaas,gabbay:newaas-jv)
	A.2 Nominal Logic (pitts:nomlfo,pitts:nomlfo-jv)
	A.3 Proof-Theories for the N-quantifier (Gabbay 2007a;
Gabbay and Cheney 2004; Cheney 2005b)
	A.4 Nominal Terms (gabbay:nomu,gabbay:nomu-jv)
	A.5 Nominal Rewriting (Fern´andez et al. 2004; Fern´andez and
Gabbay 2007) and αProlog (Cheney and Urban 2003,
2008)
	A.6 Nominal Algebra (Gabbay 2005; Gabbay and Mathijssen
2006a, 2007, 2009)
	A.7 Nominal Equational Logic (Clouston and Pitts 2007;
Clouston 2011)
	A.8 Permissive-Nominal Terms (Gabbay and Mulligan 2009;
Dowek et al. 2009, 2010)
	A.9 Permissive-Nominal Algebra (Gabbay and Mulligan 2009,
and Sect. 2.3.4)
	A.10 Permissive-Nominal Logic (Dowek and Gabbay 2010,
2012a and Sect. 2.4.1)

	References

