Chapter 2
Text Processing with the Command Line
Interface

Abstract This chapter aims to help demystify the command line interface that is
commonly used in UNIX and UNIX-like systems such as Linux and Mac OS X for
language and linguistics researchers with little or no prior experience with it and to
illustrate how it can be used for managing the file system and, more importantly,
for text processing. Whereas most linguists are used to and comfortable with the
graphic user interface, the command line interface does provide us with access to a
wide range of computational tools for corpus processing, annotation, and analysis
that may not be readily accessible through the graphic user interface. The specific
command line interface used for illustration purposes in this chapter is the Terminal
in Mac OS X, but the examples work in largely similar ways in the command line
interface in a UNIX or Linux system.

2.1 The Command Line Interface

If you have only used the graphic user interface in a Windows-based PC or a Mac
OS X to meet your computing needs, but have never or rarely used the Command
Prompt in a Windows-based PC, the Terminal in a Mac OS X, or a computer with a
UNIX or Linux operating system, you probably think of the command line interface
as something that is useful only for geeky scientists and engineers. However, once
in a while, you may have encountered one or more text processing tools or corpus
annotation and analysis programs that do not have a graphic user interface version
but rather can only be invoked from the command line in a UNIX or UNIX-like
system (e.g., Linux and Mac OS X), and you may have given up on them with a
shake of your head. Although at first look the command line interface may not be as
user-friendly and intuitive as the graphic user interface, once you have learned the
basics of how it works, you will find it a versatile and powerful way of interacting
with the computer. More importantly, the command line interface enables us to ac-
cess a large set of useful corpus processing, annotation and analysis tools that are
not conveniently available via the graphic user interface.

In this chapter, we will illustrate the use of the command line interface, beginning
with a set of basic commands that are necessary for navigating the file system and
then focusing on several useful tools for text processing. Additional commands will be
introduced in the following chapters as necessary. The specific command line interface
we will use throughout this book is the Terminal in Mac OS X, but the commands and

X. Lu, Computational Methods for Corpus Annotation and Analysis, 9
DOI 10.1007/978-94-017-8645-4_2, © Springer Science+Business Media Dordrecht 2014

10 2 Text Processing with the Command Line Interface

Y GWMD + D ¢ =G Fri12:19PMq

Spotlight Terminal

Show All in Finder

TopHit [| Terminal

B Terminal

Fig. 2.1 Locating the Terminal in Mac OS X via Spotlight

& xflu — bash — 80x24

Last login: Fri Dec 14 11:45:06 on ttys0ee
LALSSPKMBO@Z2:~ xflus

Fig. 2.2 The Terminal in Mac OS X

tools covered here and in the rest of the book will work in largely similar ways in the
command line interfaces in UNIX and Linux, and you should be able to follow the
discussion in the book in a UNIX or Linux operating system without noticing major
differences. For a complete introduction to the command line interfaces in Linux and
UNIX, see Robbins (2005), Siever et al. (2009), Shotts (2012) or other similar volumes.

If you are not sure how to open the Terminal in Mac OS X, you can do this in one
of the following two ways.

1. Navigate to /Applications/Utilities (i.e., first navigate to the
Applications directory, then to the Utilities directory within the
Applications directory), and double click on “Terminal”.

2. Click on the Spotlight icon in the menu bar (shown in the upper right corner in
Fig. 2.1), type “Terminal” in the Spotlight box, and click on Terminal (listed after
Top Hit and Applications in Fig. 2.1).

When the Terminal is opened, you will see a window similar to (but perhaps not
exactly the same as) the one shown in Fig. 2.2. At the moment, you do not need
to be concerned with the title of the window, which shows the username (in this
case xflu), the active process name bash, and the dimensions of the window

2.2 Basic Commands 11

80 x 24, or the first line of the window, which shows the date, time, and terminal
ID of the last login. The second line of the window has three parts, first the name
of the computer (in this case LALSSPKMB002) followed by a colon, then the name
of the working directory (in this case ~, which is short for the home directory) fol-
lowed by a white space, and finally the command prompt (in this case xf1u$). Any
command you type will appear immediately after the command prompt. In the next
two sections, we will first introduce a set of basic commands for navigating the file
system and then several tools that are useful for text processing.

2.2 Basic Commands

2.2.1 Notational Conventions

Throughout the book, we will use the courier font to differentiate commands, file-
names, and directory names from regular text. URL addresses mentioned in the
main text will be enclosed in angle brackets. The actual commands to be entered in
the Terminal will be given in blocks of code, as illustrated in the examples below,
where $ denotes a command prompt (do not type it) and 9 denotes a line break (an
instruction for you to press ENTER). The actual command prompt in your own
Terminal will look different (as illustrated by the second line in the Terminal in
Fig. 2.2), but that difference is irrelevant here. Lines in the blocks of code that do
not begin with $ and end with q indicate output generated by a command, and they
should not be typed or entered into the Terminal. In the case of a long command
that runs two or more lines (see Sect. 2.3.6 for examples), use the command-end
9 to determine where the command ends. You should type a multi-line command
continuously (with a white space instead of a line break between lines) and press
ENTER only once at the end of the command (i.e., when you reach).

In the first example below, the echo command is used to simply print anything
you type after it on the screen. It is crucial that you type all commands exactly as
they are provided, as typos as well as missing or extraneous elements (e.g., white
space, single or double quotes, etc.) will likely lead to either error messages or unin-
tended results. This is illustrated in the second example below, where a white space
is missing between “echo” and “this”.

$ echo this is going to be funf{

this is going tobe fun

$ echothis is going to be fun{
-bash: echothis: command not found

2.2.2 Printing the Current Working Directory

The file system is hierarchically organized, and it may be easy to lose track of where
you are in the hierarchy. The pwd command can be used to print the location of the
current working directory, as illustrated in the example below. The output shows

12 2 Text Processing with the Command Line Interface

that my current working directory is /Users/xflu, i.e., in a subdirectory called
xf1lu under the Users directory, which is also my home directory. When you first
open the Terminal, you are by default located in your home directory (i.e., /Users/
yourusername) !, which is the directory that contains your Desktop, Docu-
ments, and Downloads folders, among others. If you have difficulty conceptual-
izing where your home directory is actually located, try finding it using the Finder in
your Mac (open the Finder, click on “go” in the menu bar, and then click on “Home”).

S pwdq
/Users/xflu

2.2.3 Listing Files and Subdirectories

The 1s command can be used to list the contents of a directory, including files and
subdirectories. As in the following example, type 1s after the command prompt
to list the contents of your current working directory. If you have not done any-
thing else in the Terminal after opening it and typing the pwd command shown
above, you should now see a list of subdirectories in your home directory, including
Desktop, Documents, Downloads, and possibly a few others.

$ 1s9
Desktop Documents Downloads

2.2.4 Making New Directories

The mkdir command can be used to make a new directory. Let us make a new
subdirectory in the home directory called corpus using the following example.
We will be using the corpus directory throughout the rest of this chapter.

$ mkdir corpusq

Now, try listing the contents of the current working directory again. You will see
that a corpus directory is now shown in addition to the other directories that were
shown previously.

$ 1s9
corpus Desktop Documents Downloads

In naming directories and files, note the following general rules:

1. Names are case sensitive.

2. Avoid white space in a file name or a directory name. Use the underscore or dash
instead to concatenate different parts of a name if necessary.

3. Avoid the following characters, because they have special meanings in com-
mands: [;, @# S O<>?2A"" T~ {}[]=+&"*

'If you are using a UNIX or Linux system, the path to the home directory, specifically the part
preceding the username, will look different.

2.2 Basic Commands 13

2.2.5 Changing Directory Locations

The cd command can be used to change directory locations. For example, you can
use the following example to change the current working directory to the corpus
directory you just created.

$ cd corpus{

The pwd command will show that your current working directory is now the corpus
subdirectory under your home directory (/Users/xflu/corpus in my case).

$ pwd]
/Users/xflu/corpus

At this point, let us make two subdirectories within the corpus directory, with the
names files and programs. We will be using these two directories to store text
files and programs as we work through this book. They will also be useful as we
learn more commands for navigating the file system. Assuming your current work-
ing directory is still the corpus directory, use the first two commands below to
create the two subdirectories, and then use the last command to confirm that you
have created these two subdirectories successfully.

S mkdir files({

$ mkdir programsq
$ 1s1

files programs

You can change your current working directory to a different directory by spelling
out the absolute or full path to that directory. The absolute path is preceded by a ““/”
and starts from the root of the file system. For example, the command below can
be used to change my current working directory to the programs directory I just
created under my home directory (replace x £ 1u with the name of your own home
directory, i.c., your username).

$ cd /Users/xflu/corpus/programsq

You can also change to another directory by specifying a relative path to that direc-
tory. A relative path specifies the location of another directory relative to the current
directory, and so it starts from the current directory rather than the root of the file
system. In order to explain how relative paths work, we need to first introduce two
important hidden files called “.” and “..”, respectively. These files are hidden in the
sense that you normally do not see them when viewing the contents of a directory.
The file represented by a single dot identifies the current working directory, where-
as the file represented by double dots identifies the parent directory of the current
working directory. A relative path begins with one of these two filenames instead of a
“/”. Assuming the programs directory is your current working directory, you can
change your working directory to the £iles directory using the command below.
In this command, the double dots take you to the corpus directory (i.e., the parent
directory of the current working directory, which is programs), and /files
then takes you to the £i1les directory within the corpus directory.

14 2 Text Processing with the Command Line Interface

S cd ../filesq

Now that your current working directory is the £i1les directory, try typing the first
command below. This command will take you two levels up the directory hierarchy:
The first double dots take you to the parent directory of the £iles directory, i.e.,
the corpus directory, and the second double dots then take you to the parent direc-
tory of the corpus directory, i.e., your home directory. You can verify whether this
is the case with the pwd command, as shown in the second command below.

$cd ../..q
S pwdd
/Users/xflu

If you want to go back to the £iles directory using a relative path, you can do so
using the command below. Here, the dot identifies the current working directory
(which is the home directory at this moment), and /corpus/files identifies
first the corpus directory within the current directory and then the £iles direc-
tory within the corpus directory.

$ cd ./corpus/files(

In practice, however, if you are trying to get to a child or grandchild directory of the
current directory, it is not necessary to type ./ and you can start directly with the
name of the child directory instead. Let us return to the home directory with the first
command below (where ~ is shorthand for the home directory) and then get to the
files directory with the second command.

$ cd ~9
$ cd corpus/filesq

Remember, if at any point you are lost in the directory hierarchy, you can always
identify your current working directory with the pwd command, check out the con-
tents of the current working directory with the 1s command, and, as a last resort,
return to the home directory from wherever you are with the cd ~ command.

2.2.6 Creating and Editing Text Files with UTF-8 Encoding

In general, the text files that we will be working with will be in plain text for-
mat (saved with the “.txt” suffix) rather than Word or PDF documents (saved with
the “.doc”, “.docx”, or “.pdf” suffix). It is also desirable that the plain text files
(regardless of the language they are in) be saved with UTF-8 (short for Unicode
Transformation Format 8-bit) encoding to ensure compatibility with the various
tools we will be introducing later.

A character encoding system pairs each character in a given character repertoire
(e.g., a letter in the English alphabet or a Chinese character) with a unique code (e.g.,
a sequence of numbers). While humans read characters the way they are written,

2.2 Basic Commands 15

computers store and process information as sequences of numbers. Character encod-
ing systems serve as a means to “translate” characters in written form into codes that
can be decoded by computer programs. There are many national and international
character encoding standards, which differ in terms of the number and types of char-
acters they can encode as well as the types of codes that the characters are translated
into. Not all encoding systems have a large enough capacity (or code points) to en-
code all characters (consider the large number of symbols required in scientific and
mathematic texts), and the same character is often represented using different codes
in different systems. To ensure that a text can be displayed and processed correctly
by a specific computer program, it is necessary to choose an encoding system for
the text that covers all the characters in the text and that is compatible with the com-
puter program. This is especially relevant when the text is in a language other than
English. To get a sense of what happens when an inappropriate encoding system is
used for a text, try the following:

1. Open a web page in Chinese, e.g., <http://www.nankai.edu.cn> or French, e.g.,
<http://news.google.fr> in any web browser.

2. Click on “View” in the menu bar of the browser; under “Character Encoding” (in
Firefox), “Encoding” (e.g., in Chrome), or “Text Encoding” (in Safari), select an
encoding system that is intuitively incompatible with the web page. For example,
for the Chinese web page, select an encoding system that starts with “Western”,
such as “Western (ISO-8859-15)” or “Western (ISO Latin 1)”; for the French
web page, select an encoding system for Chinese, such as “Simplified Chinese
(GBK)” or “Simplified Chinese (GB2312)”.

3. You will see that many characters on the web pages will be displayed incorrectly.

The Unicode Standard solves the problems introduced by the existence of multiple
encoding systems by assigning unique codes to characters in all modern languages
and all commonly used symbols. There are seven character encoding schemes in
Unicode, among which UTF-8 is the de facto standard for encoding Unicode on
UNIX-based operating systems; it is also the preferred encoding for multilingual
web pages, programming languages, and software applications. As such, it is desir-
able to save texts, particularly non-English texts, with the UTF-8 encoding. For
further information about UTF-8 encoding or the Unicode Standard (including its
other six encoding schemes) in general, consult the Unicode Consortium webpage.?

We will not look at how to create or edit plain text files through the command
line interface, as in Mac OS X this can be done easily in a text editor that you are al-
ready familiar with, such as Microsoft Word or TextEdit. Let us now create a simple
text file with the name myfile. txt and save it to the £iles folder with UTF-8
encoding. Make sure the file contains the following two lines only (press ENTER
once at the end of each line), with no extra empty lines before or after them. Note
that, any formatting of the text (e.g., highlighting, italicizing, bolding, underlining,
etc.) will not be saved in the plain text file. If this sounds trivial to you, you can do
this directly on your own and skip the next two paragraphs.

2 <http://www.unicode.org>

http://news.google.fr

16 2 Text Processing with the Command Line Interface

This is a sample file.
This is all very simple.

To generate this file using Microsoft Word, open a new file in Microsoft Word, type
the two English sentences mentioned above, and then save the file in the following
steps.

1. Click on “File” in the menu bar and then click on “Save As...”.

2. Enter myfile as the filename in the “Save As:” box and choose “Plain Text
(.txt)” for the “Format:” box.

3. Locate the files folder (under the corpus subdirectory in your home
directory) and click on “Save”.

4. At this point, a “File Conversion” dialog box will pop up (see Fig. 2.3). Click on
“Other encoding” and then choose “Unicode 6.0 UTF-8”. Choose “CR/LF” for
“End line with:”. Click on “OK”.

TextEdit can be used for the same purpose in a similar fashion. To open TextEdit,
type “TextEdit” in the Spotlight box and then click on “TextEdit”, similar to how
you opened the Terminal (see Fig. 2.1). Now type the two English sentences men-
tioned above in the editor. To save the file in plain text format with the name
myfile.txt inthe £iles folder, follow the following steps:

1. Click on “Format” in the menu bar and then click on “Make Plain Text”.

2. Click on “File” in the menu bar and then click on “Save”.

3. Enter myfile in the “Save As:” box and choose “Unicode (UTF-8)” for the
“Plain Text Encoding:” box.

4. Locate the files folder (under the corpus subdirectory in your home direc-
tory), and click on “Save”.

2.2.7 Viewing, Renaming, Moving, Copying, and Removing Files

In this section, we will learn a set of commands that can be used to view, rename,
copy, delete, and move files. Whereas you can perform these tasks easily with the
graphic user interface, you will find it more efficient to get them done via the com-
mand line interface sometimes, especially when you are dealing with a large num-
ber of files or if you are already working on some files via the command line.
Before we start, first make sure that you have created the file myfile.txt
and saved it to the files folder following the instructions in Sect. 2.2.6. Next,
go to <http://tinyurl.com/corpusmethods> (hosted on Google Drive) and download
the following three files: mylist.txt, mypoem.txt, and speech.txt tothe
files folder. We will be using these files for illustration purposes throughout the
rest of this chapter. The file mylist.txt contains part-of-speech and frequency
information for the 3,000 most frequent unlemmatized words in the British National
Corpus (BNC). Each row in the file contains three tab-delimited columns or fields:
aword (in lowercase), a tag indicating its part-of-speech category, and its frequency

17

2.2 Basic Commands

PIogy SIA ut yewrto] 1x9) urerd ur o1y & Suraes uoym Surpodus g-41) Sund9RS €7 “S1g

. (o |

“Avea Ksan e g gy

i artg archares ® ot wngy
MIAIG

ALk
! (1 UNEY SMOPUIAY) WIAISaM Lf N/90 | amsauy pu3
(URWOY SO IJTW) LIAISIM

SYe24q U] LIS [
(I2SY) wiasam ot g A8

8-4.1N 0°9 ap0dIun

(ueipu3-3an) 0°9 APoIUN
09 3podiun

suondo

BuIpodua S0 @ SOQ-Sn A.J (uney2Q) SO e O
:Buipodua X3

"150] 39 01 3|y 4n0A) s2IGo pue ‘'saun1did ‘BuniTwao) [fe ISNE || 3|y 1% € ST Buaes (Buiusem

18 2 Text Processing with the Command Line Interface

in the BNC.? The part-of-speech tags will be discussed in detail in Chap. 3. The
file mypoem. txt contains a short poem “Men Improve with the Years” by the
Irish poet William Butler Yeats. Finally, the file speech. txt contains the tran-
script of the speech “I Have a Dream” delivered by Martin Luther King, Jr. on
August 28, 1963.

If for any reason your current working directory is no longer £iles, change it
back to files using the first command below, and then use the second command to
verify that it contains the following four files: myfile.txt, mylist.txt, my-
poem. txt, and speech. txt.

$ cd ~/corpus/filesq
$ 1s1
mnyfile.txt mylist.txt mypoem.txt speech.txt

The more command can be used to display the content of a text file on the screen. Use
the first example below to view the content of myfile. txt. Since the text is short,
the command prompt will be displayed in the next line immediately following the
end of the text. Use the second example below to view the content of mylist.txt
(the output of the command is omitted here). As the text has 3,000 lines and is
longer than the remaining space in the Terminal, only the first screen is shown. You
can press the SPACE bar on the keyboard to continue to the next screen or press Q
on the keyboard to exit the file and return to the command prompt.

$ more myfile.txtq
This is a sample file.
This is all very simple.

$ more mylist.txtq

If you want to know the size of a file, you can use the wc command to display the
number of lines, words, and characters in it. The first example below shows that
myfile.txt has 2 lines, 10 words (as delimited by white space), and 46 charac-
ters (including white spaces and line breaks).

$ we myfile.txtq
2 10 48 myfile.txt

In the case of a long file, sometimes you may wish to view only the first or last
few lines, instead of the whole file. The head and tail commands can be used
for these purposes. The first example below shows the first 10 lines (by default,
including empty lines) of mypoem. txt. You can also specify the exact number of
lines you wish to view from the top with a command line option, in this case a dash
followed by a number. This is illustrated in the second example below, which shows
the first 5 lines of mypoem. txt.

$ head mypoem.txtq
Men improve with the Years

3This file was adapted from the file al1.num.o5 made publicly available by Adam Kilgarriff
at <http://www.kilgarriff.co.uk/BNClists/all.num.o5>.

2 Springer
http://www.springer.com/978-94-017-8644-7

Computational Methods for Corpus Annotation and
Analysis

Lu, X,

2014, ¥, 186 p. 22 illus., Hardcover

ISBEN: 278-924-017-B644-7

	Chapter 2
	Text Processing with the Command Line Interface
	2.1 The Command Line Interface
	2.2 Basic Commands
	2.2.1 Notational Conventions
	2.2.2 Printing the Current Working Directory
	2.2.3 Listing Files and Subdirectories
	2.2.4 Making New Directories
	2.2.5 Changing Directory Locations
	2.2.6 Creating and Editing Text Files with UTF-8 Encoding
	2.2.7 Viewing, Renaming, Moving, Copying, and Removing Files

