Chapter 2
Uncertainty

2.1 Why are Measurement Results not Certain?

Suppose that you go to your physician and that he measures your blood pressure.
He will probably repeat the measurement a few times and will usually not obtain
exactly the same result through such repetitions. This is an example of measurement
uncertainty. There are many other examples of this limited repeatability which is
a good reason for being, to some extent, uncertain about the measurement value.
Moreover, even in cases in which the reading is stable, for example when we read the
temperature in a room from a wall thermometer, we cannot be totally certain about
its value, since a thermometer typically has some “tolerance”, for example +1 °C,
so that if we read 23 °C, we may be quite confident that room temperature will be
somewhere between 22 and 24 °C, but we would not “bet” on any precise value with
a high expectation of winning.

Uncertainty does not only concern simple, everyday measurements: researchers
at National Metrology Institutes, such as the National Institute for Standards and
Testing (NIST) in USA or the Istituto Nazionale di Ricerca in Metrologia (INRiM) in
Italy, spend a considerable amount of time in dealing with uncertainty, even though
they work at the highest levels of precision. Measurements in psychophysics are
also affected by an even more apparent variability, due to intra- and inter-individual
variations.

So it is worth considering uncertainty as an inherent characteristic of measure-
ment. As such, it is has been studied deeply since the beginning of the modern
measurement science, and it is therefore useful to give a brief overview of the devel-
opment of uncertainty theory.
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2.2 Historical Background

2.2.1 Gauss, Laplace and the Early Theory of Errors

The importance of accuracy in measurement has probably been recognised since
ancient times. Classical and even scriptural texts warn about the incorrectness of
faulty measurement. The concern for reliable measurement units is another side of the
problem. Modern scientists have been aware of the need for accurate measurement in
order to check scientific theories. Yet the explicit treatment of measurement “errors”
was only begun at the beginning of the nineteenth century, when the development of
scientific theories and of measuring instruments have required an explicit evaluation
of instrumental and measurement performance.

In his Theoria motus corporum coelestium [1], Carl Friedrich Gauss (1777-1855)
discusses how to obtain estimates of the orbital parameters of heavenly bodies on the
basis of a set of observations. He distinguishes between systematic and random errors.
This distinction, already mentioned in his Theoria motus, is more clearly expressed
in the subsequent Theoria combinationis observationum erroribus minimis obnoxiae
[2]. Due to the importance of this issue, it is worth reading the original text.

“Certain causes of error—he writes—are such that their effect on any one observa-
tion depends on varying circumstances that seem to have no essential connection with
the observation itself. Errors arising in this way are called irregular or random. . .
On the other hand, other sources of error by their nature have a constant effect on
all observations of the same class. Or if the effect is not absolutely constant, its size
varies regularly with circumstances that are essentially connected with the obser-
vations. These errors are called constant or regular”. Gauss further observes that
“this distinction is to some extents relative and depends on how broadly we take the
notion of observations of the same class”. He explicitly excludes the consideration of
systematic (regular, in his terminology) errors in his investigation and warns that “of
course, it is up to the observer to ferret out all sources of constant error and remove
them”. This choice of neglecting systematic errors characterises the classical theory
of errors, and it is probably its main limitation [3]. We shall see later that the need to
overcome this limitation has been the driving force behind the studies on uncertainty
in the second half of the twentieth century [4].

To see how Gauss deals with random errors, let us consider the measurement
of a single constant quantity x by N-repeated observations. We may model the ith
observation by

Vi =Xx + v, (2.1)

where y; is the ith observed and recorded value, x is the measurand, which remains
constant during the observation process, v; is the (unknown) value assumed by the
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probabilistic (or random) variable v during the ith observation, andi = 1, 2, ..., N.
The random variable v accounts for the scattering that we observe in the data.'
This can also be more compactly expressed in vector notation, as

y=x+v, (2.2)

where y is a vector of observations, and v is the vector of random measurement
erTors.

At this point, Gauss needs an explicit expression for the probability distribution of
the errors,” p,,, and he thus assumes some properties that correspond to the common
understanding of measurement errors. He assumes that p, is symmetric, maximum
in its origin and decreasing on each side of the origin. Furthermore, he assumes
that the most probable value for x, once the observations y have been acquired, is
the arithmetic mean of the observed values, since “it has been customary certainly
to regard as an axiom the hypothesis that if any quantity has been determined by
several direct observations, made under the same circumstances and with equal care,
the arithmetic mean of the observed values affords the most probable value, if not
rigorously, yet very nearly at least, so that it is always safe to adhere to it”. If we
denote “the most probable value for x” by £,3 this key assumption may be explicated
as follows:

F=yENT D w (2.3)
i

On the basis of this assumption, Gauss could derive the famous distribution named
after him. In modern notation, if we introduce the standard normal (Gaussian) dis-
tribution, with zero mean and unitary variance defined by

P(€) = 2m) " exp(—£2/2), (2.4)

! Henceforth, we need the notion of probabilistic or random variable (we prefer the former term,
although the latter is more common). Though we assume that the reader has a basic knowledge of
probability theory, for the sake of convenience, we present a brief review of the probability notions
used in this book in Sect. 4.1. Note in particular the notation, since we often use a shorthand one. We
do not use any special conventions (such as capital or bold characters) for probabilistic variables.
So the same symbol may be used to denote a probabilistic variable or its specific value. For example
the probability density function of v can be denoted either as p,(-) or, in a shorthand notation, as
p(v). For notational conventions, see also the Appendix at the end of the book, in particular under
the heading “Generic probability and statistics”.

2 A definition of probability distribution, also (more commonly) called the probability density
function for continuous variables, is provided in Sect. 4.1.8.

3 In general the “hat” symbol is used to denote an estimator or an estimated value. If applied to the
measurand, it denotes the measurement value.
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the result can be compactly expressed as
p) =0 o), (2.5)

where o is the standard deviation [5].

A similar result was reached, in a different way by Pierre-Simon Marquis de
Laplace (1749-1827), in his Théorie analytique des probabilités [6]. Let us consider
the case of repeated measurement once more, and let us still assume that the errors v;
are independent and equally distributed. We now also assume that their distribution
p(v) is symmetric about the origin and has a finite support. Let £ = y be the selected
estimate for x and

e=%—x (2.6)

the estimation error. Then Laplace showed that e is asymptotically normally distrib-
uted with a variance proportional to N~!. In this sense, the normal distribution is
regarded as the distribution of the estimation error, for a long series of observations.
It is also possible to consider the problem from another favourable viewpoint,
traceable once again to Laplace [7]. Indeed, if we consider the measurement error as
deriving from the contribution of a large sum of small independent error sources,

U:ij, 2.7
J

if none of them prevails over the others, the distribution of the resulting error tends
to be normal provided that the number of the error sources increases.

In conclusion, the classical measurement error theory, developed mainly thanks
to the contributions of Gauss and Laplace, concerns random errors only and results
in a probabilistic model, the normal distribution, whose validity can be supported by
different arguments.

We will reconsider the measurement error theory at a later stage and will discuss
its merits and limitations, and how to overcome them. But we shall now go back to
consider the problem of uncertainty from a totally different perspective.

2.2.2 Fechner and Thurstone: The Uncertainty of Observed
Relations

The problem of measurement uncertainty was also considered, in around the middle
of the nineteenth century, by Fechner in a even more fundamental way [8]. For
him, the only reliable judgements that an observer may express with respect to his
sensations are either equality or ordered inequalities (greater than). His law, in fact,
was formulated on the basis of such results. In general, people’s responses, which
we will call “indications”, must be regarded as an expression of non-deterministic
phenomena, since, for the same pair of stimuli, we may obtain different responses
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from different subjects (inter-subjective variability) or even from the same subject,
by repeating the test (intra-subjective variability).

A typical experiment in early psychophysics consists in the determination of the
just noticeable difference between two stimuli. We already know from Chap. 1 that
Fechner’s law was developed from such differences. Let us discuss this in further
detail. Let ¢¢ denote the physical intensity of a reference, fixed, stimulus, for exam-
ple a sound at 1 kHz, with a sound intensity level of 60 dB, and let ¢ be a the variable
stimulus of the same kind, having a slightly higher intensity than ¢o.* Let 1o and 1)
be the perceived intensities associated with ¢g and ¢. Suppose now that we make an
experiment with different subjects over repeated trials, in which we wish to deter-
mine the minimum value for ¢ that gives rise to a perceivable (positive) variation. In
practice, we keep ¢q fixed and, we vary ¢ until the subject listening to both stimuli
notices a difference between the two, that is he/she perceives the sensation 1), asso-
ciated with ¢, as being more intense than the sensation 1), associated with ¢q.> This
will not always occur at the same value of ¢, due to differences in the responses of
different people or even to differences in the responses of the same person, when the
trial is repeated. The result of one such experiment can therefore be expressed and
summarised by the conditional probability®

P 3= old), (2.8)

that is the probability that the sensation 1 is “greater” (=) than the sensation ).
This probability is a function of ¢, which is varied during the experiment (whilst ¢g
is kept fixed), and may qualitatively look as shown in Fig. 2.1.

On the basis of this experimental result, the differential threshold can be estimated,
conventionally but reasonably, by the value d¢ at which P(v) = oldo + dp) =
0.75 [9].

More generally, if we consider two objects a and b and the property v associated
with them, we can consider the probability P (v, = 1,), or, in a shorthand notation,
P (b = a). The important point here is that the empirical relation holding between two
sensations is recognised as being probabilistic. This is a somewhat more fundamental
perspective than that of the early theory of errors, since uncertainty is here ascribed
to empirical relations rather than to measurement values. Since empirical relations
play a fundamental role in measurement, uncertainty is understood here as affecting
the very roots of measurement.

4 We will discuss loudness measurement in some detail in Chap. 8. Readers who are unfamiliar
with acoustic quantities may consult the initial section of that chapter for some basic ideas.

5 In the practical implementation of the experiment, there are different ways of varying the stimulus,
either through series of ascending or descending values, or as a random sequence. The variation
can be controlled by the person leading the experiment or by the test subject [9, 10] . In any case,
such technicalities do not lie within the sphere of this discussion.

6 For the notion of conditional probability, see Sects. 4.1.1-4.1.3 of Chap. 4, in this book, as well
as any good textbook on probability theory [11].
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Once that we have recognised that empirical relations have a probabilistic nature,
the challenge is how to represent that in a numerical domain. The solution to this
problem will be shown and fully discussed in Chap. 4. For the moment, let us just
mention an approach related to the law of comparative judgement developed by Luis
Leon Thurstone (1887-1955) [12].

Let us then look for a numerical representation of sensations g and 1, evoked
by objects a and b, respectively, that complies with the empirical evidence that
P (1 = o) = p, or, equivalently, P(b = a) = p, where p is a probability value,
p € [0, 1].

If we describe g and 1; with two independent probabilistic variables, x, and
Xp,, whose probability distributions, py, (1) and py, (1), are Gaussian, with expected

values 1[)0 and 121 , respectively, and equal variance, o2, our condition can be satisfied,
provided that

U1 — o = 21020, (2.9)
where z1¢ is such that

210 1

/w@%=p—§, (2.10)

0
where

p(©) = 2m) ™ exp(=¢?/2) @.11)

is the standard normal distribution (with zero mean and unitary variance).
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Fig. 2.2 Representation of va
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Let us briefly show how this result can be obtained. Let us introduce the proba-

bilistic variable u = x;, — x,, which will have mean value ii = 1/31 — 1[)0 and standard
deviation o, = /207 Then

o) oo
p=Pkp=x4)=Pu=0) =/P(u)du = /(Uu)_lw ((u—i)/oy) du.
0 0
(2.12)
Making the substitution v = u — &, we obtain
i | 7
pP= /(Uu)ilgo(v/au)dv =3 +/<P(€)d§- (2.13)
—00 0

Then defining z1 as in (2.10), we obtain z19 = /0, from which (2.9) follows.?

This is illustrated in Fig. 2.2, for p = 0.75.°

Note that, in this case, z19 = 0.6745; thus if we denote as Jv) the increment in the
sensation scale corresponding to a just noticeable increment, d¢, in the stimulus, we
obtain, approximately,

S = o, (2.14)

7 In fact the variance of the sum (or of the difference) of two independent probabilistic variables
equals the sum of their individual variances. Thus, in our case, o2 = U)%h + U)%a =202

8 The device of using the abscissae of the standard normal distribution, usually called z-points, is
widely used in probability and statistics and, consequently, in psychophysics too.

9 Interestingly enough, Link notes that Fechner proposed a similar (but not identical) approach,
which is very close the signal-detection method of the 1950s. Applying this approach, one would
obtain 12)1 — 1210 = 27190, instead of the result in (2.9) [13].
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which indicates an interesting link between the dispersion of sensorial responses,
expressed by o, and the resolution of the sensation scale, expressed by §7).1°

As anumerical example, consider again the case of a sound at 1 kHz, with a sound
intensity level of 60 dB. The differential threshold value in this case is, roughly,
d¢ =1 dB [14]. The corresponding loudness values can be obtained by defining the
loudness scale for pure tones. We will briefly present such a scale in Chap. 8, Sect.
8.2.2, formulaes 8.17 and 8.11. The measurement unit for that scale is the sone. We
obtain 1y = 4 sone, ¥; = 4.3 sone, that is 59 =0.3 sone, and o = 0.3 sone.

Thus the two sensations can be represented on a sone scale as probabilistic vari-
ables, with mean values 9 = 4.0 sone, ¢ = 4.3 sone, and standard deviation
o = 0.3 sone.

2.2.3 Campbell: Errors of Consistency and Errors
of Methods

Let us now go back to physical measurement and take a look at Campbell’s posi-
tion. We have already encountered Campbell in the first chapter, as the first (and
one of the few) proposers of a comprehensive theory of measurement, at least for
physical measurement [15]. In his theory, he also considers measurement errors and
distinguishes, as Gauss does, between two kinds of them, which he calls errors of
consistency and errors of method. The former are those that occur when the same
measurement is repeated several times under the same conditions and correspond to
Gauss’s random errors, the latter correspond to systematic errors. It is interesting to
see the way he introduces methodical errors: they appear as violations of empirical
relations, in particular as violation of “equality”, or equivalence, in a more modern
language. Equivalence should be transitive, yet in “real” measurement it is often pos-
sible to find three objects, a, b and ¢, such thata ~ b and b ~ ¢, butnota ~ c. How
is it possible to reconcile this evidence with the possibility of making fundamental
measurements of the quantity for which this happens?

One way to do this is to consider probabilistic rather than deterministic relations.
So the solution to this (fundamental) problem raised but not solved by Campbell
comes from an idea that is ultimately traceable to Fechner and Thurstone, that is
from the other side of the barricade, in the perspective of the Report of the British
Association for the Advancement of Science!

This is further evidence in favour of the need for a unified, interdisciplinary theory
of measurement. Prior to discussing probabilistic relations in greater depth, we shall
review some subsequent important contributions to the treatment of measurement
data.

10 The resolution of a measurement scale is the minimum variation that can be expressed with that
scale (see also the glossary, in the Appendix, at the end of the book).
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2.2.4 The Contribution of Orthodox Statistics

Orthodox statistics—the term was coined by E. T. Jaynes (1922-1998) [3]—is a
school whose principal exponent was Ronald Aylmer Fisher (1890-1962). During
the first part of the twentieth century, he made an important contribution to the devel-
opment of probabilistic-statistical models by providing a store of methods for their
use in conjunction with experimentation [16]. Interestingly enough, this approach
makes it possible, in some cases, fo model systematic effects. To understand how this
can be achieved, suppose that we have a measuring instrument that may be affected
by a residual (additive) calibration error. If we have just one instrument, the calibra-
tion error will give rise to a systematic effect since it will remain constant, at least for
some time. But if we have a set of independently calibrated instruments, the calibra-
tion error will vary randomly amongst the instruments. Consider now an experiment
in which we measure the same fixed quantity x with a set of m independently cali-
brated measuring instruments of the same type, repeating the measurement » times
for each instrument and collecting a total of N = nm observations. The experiment
can thus be modelled as follows:

yij =x+6; +vij, (2.15)
where
i =1,...,mis the index denoting the instruments,
e j=1,...,nisthe index denoting the repetitions,

0; is a probabilistic variable representing the residual calibration error of each
instrument and

v;; is an array of probabilistic variables, representing random samples from a
probabilistic variable, v, that models the random error.

In this framework, the residual calibration error 6 gives rise to a systematic error,
if we consider the indications of a single instrument as “observations of the same
class”, whilst it varies randomly if we sample instruments from the class of all the
instrument of the same type. From the mathematical point of view, to select a single
instrument we fix index i to a constant value, iy, whilst to sort different instruments,
we let it vary within a range from 1 to m. Consider now the following averages:
the overall

_ 1
V= 2V (2.16)
ij
and the average per instrument

_ 1
Yi = ;Zyi]w 2.17)
J
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Then the measurand x can be estimated as
=Yy, (2.18)

whilst the systematic deviation of the ith instrument by

~

b =75, —7. (2.19)

Interestingly enough, in this experiment it is possible to quantify both the effect of
random variations and of systematic deviations. In fact, the variance of the random
variations can be estimated as

1
N —m

A2
oy =

> i =% (2.20)
ij
whilst the variance of the calibration error by
1
2 b )
6= — Z(yl 2. 2.21)
1

Soifitis possible to develop experiments in which the quantities that normally give
rise to systematic effects are allowed to vary at random, it is possible to quantitatively
evaluate their effect. Unfortunately, this is not the general case in measurement and
when this approach is not applicable we have to look for another solution which we
will describe at a later stage.

2.2.5 Uncertainty Relations in Quantum Mechanics

A decisive contribution to a deeper understanding of measurement uncertainty came,
in the twentieth century, from quantum mechanics [17, 18]. As an example, we
briefly mention the basic idea behind the celebrated Heisenberg uncertainty relation.
Consider the single-split experiment schematically illustrated in Fig. 2.3.

Suppose we have a beam of electrons impinging on a screen with a thin split. The
electrons passing through the split will reach a second, photo-sensitive, screen and
form an image on it. If the split is very thin, diffraction will occur, and the image will
be wider than the split. We can consider the motion of the electrons passing through
the split, as characterised by their position and velocity along the y axis. Interestingly
enough, this apparatus will reduce the experimenter’s uncertainty as regards position
but will increase that concerning velocity. Indeed, before reaching the first screen,
the position of the electrons is somewhere in the interval D, whilst their velocity in
the y direction is equal to zero. The positions of the electrons passing through the
screen lies within the interval d, much smaller than D, but, their velocity vy is no
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Fig. 2.3 The single-split
experiment [18] ED ] []
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longer null. If we (informally) denote the uncertainties concerning y and vy with Ay
and Avy, respectively, Heisenberg’s principle states that

h
AxAvy > —, (2.22)

3

where & is Planck’s constant and  is the mass of the electron.!! This is an example of
interaction of the measuring system with the object under observation—a system of
particles—, which gives rise to a kind of fundamental uncertainty. This suggests that
numerical representations in this field must be regarded as inherently probabilistic.
In contrast with the classical theory of errors, where, in the absence of systematic
effects, measurement precision can be, at least in principle, indefinitely increased,
here this is no longer possible, and probabilistic representations are definitely needed.

In fact there is another way, even more important for our purpose, in which
quantum mechanics departs from the “classical” perspective of the early theory of
errors. To see this in the simplest way, consider a beam splitter, that is an optical
device that splits a beam of light in two, as shown in Fig. 2.4.

Itis quite easy to describe the macroscopic behaviour of such a device: one half of
the incident light is transmitted, whilst the other half is reflected. But now consider
a single photon of light: what happens in this case? It cannot be split any further,

! This formulation is somewhat qualitative but sufficient for the purpose of this informal discussion.
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since it is an elementary, indivisible, entity; it may therefore either pass through
or be reflected. This situation can be described in probabilistic terms by assigning
a probability of 0.5 to each of these two possibilities. But note now an important
difference with respect to the early theory of errors, which was developed within
the framework of classical mechanics. In that theory, probability was essentially
intended as accounting for our “ignorance” (partial knowledge). Ideally, should we
dispose of all the information needed to fully describing the system, we would have
no “error”. But here, in the new quantum mechanics framework, we cannot describe
the behaviour of an elementary item, such as a photon or a particle, better than in
probabilistic terms. This makes a big difference. It is often said that in this case
probability has a non-epistemic nature (“‘epistemic” means: related to our state of
knowledge).

An important lesson can be learned from quantum mechanics. The approach to
uncertainty made in this book will consider measurement as an inherently uncertain
process, and we will develop the theory in this perspective. We will also briefly
discuss the “nature” of probability in Sect. 4.1.1 and will take a position in that
regard.

2.2.6 The Debate on Uncertainty at the End of the Twentieth
Century

In the late 1970s, the metrological community recognised the need to reach an inter-
nationally agreed way of expressing measurement uncertainty. It also recognised
the need to accompany the reporting of measurement results by some quantitative
indications of its quality, not only in primary metrology, but also in everyday mea-
surements. In 1978, therefore, the Bureau International des Poids et Mesures (BIPM)
carried out an investigation on a large number of laboratories and prepared a recom-
mendation, INC-1 (1980), which was also adopted by the Comité International des
Poids et Mesures (CIPM).!? An international working group was then established,
under the guidance of the International Organization for Standardization (ISO), for
the purpose of developing a detailed technical Guide. One of the major scientific
problems to be faced was the composition of random and systematic effects causing
uncertainty. The work of the group was paralleled by intensive scientific debate on
these issues. In 1993, the “Guide to the expression of uncertainty in measurement”
(GUM) [19, 20] was published. The document had a great impact on both technical
and scientific aspects and further stimulated international debate on measurement
uncertainty and related topics.

12 The BIPM and the CIPM are two of the main bodies in the international system of metrology
and were established when the Metre Convention was signed (1875). A concise introduction to the
organisation of the system is made in Sect. 3.7.4. and additional details on how it works are given
in Sect. 10.1.
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Let us briefly review some of its main points. Firstly, the GUM recognises, several
possible sources of uncertainty, including the following:

1. incomplete definition of the measurand;

2. imperfect realisation of the definition of the measurand;

3. non-representative sampling—the sample measured may not represent the

defined measurand;

4. inadequate knowledge of the effects of environmental conditions on the mea-

surement or imperfect measurement of environmental conditions;

personal bias in reading analogue instruments;

finite instrument resolution or discrimination threshold;

inexact values of measurement standards and reference materials;

inexact values of constant or other parameters obtained from external sources

and used in the data-reduction algorithm;

9. approximations and assumptions incorporated in the measurement method and

procedure;

10. variations in repeated observations of the measurand under apparently identical
conditions.

® N

Then, addressing uncertainty evaluation, the GUM adopts the paradigm of indi-
rect measurement which has already been mentioned in Chap. 1. In this kind of
measurement, the value of the measurand is not obtained directly from the measur-
ing instrument, but by first measuring other quantities that are functionally related to
the measurand, and then processing data according to this functional relation. This
may be expressed as

x = g(z), (2.23)

where x is the measurand, z a vector of quantities functionally related to the measur-
and and g a function.!3 We shall call this expression the (GUM) evaluation model or
formula. The quantities appearing in it are treated as probabilistic (or random) vari-
ables and their standard deviation, here known as standard uncertainty and denoted
with u, is of special interest. Basically the formula allows the uncertainties on the
quantities z to be “propagated” to the measurand x, as we will see in a moment. In
turn, these uncertainties may be evaluated on the basis of different pieces of informa-
tion, which the GUM classifies into two main categories: those coming from a series
of observations (type A) and those coming from other sources, such as information
provided by the instrument manufacturers, by calibration, by experience, and so on
(type B). Note that, in this approach, the focus moves from the type of the uncer-
tainty sources (systematic vs. random) to the type of information concerning them
(type A vs. type B). Consequently, it is possible to pragmatically support a common
treatment for both of them.

13 We do not use the GUM’s notation here, since we wish to be consistent with the notation used in
this book. See the Appendix for further details.
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Let us now see how can we apply this approach to the basic case in which we
obtain the measurement result directly from a measuring system. We can interpret
one of the z;, for example the first one, as the indication, y, of the measuring system,
thatis z; = y, and the remaining z; as “corrections” that should ideally be applied to
correct the effect of the various error sources. The (possible) spread of the indications
is accounted for by considering the variability of the probabilistic variable y. The
evaluation procedure for the standard uncertainty then proceeds as follows. Since
the variables appearing in the evaluation formula are regarded as probabilistic, if Z
is the expected value!# of z, thatis 2 = E(z), X, the covariance of z and b the vector
of the “sensitivities” of x with respect to z, calculated for z = Z, that is

0
b= 22| (2.24)
0z 72=1%
then an “estimate” of x may be obtained as
*=yg@), (2.25)

and the standard uncertainty, u, to be associated with x is

u=/b"> b (2.26)

At present, the GUM is an important international reference for the evaluation of
measurement uncertainty. Yet, as we have seen, the proposed solution is based on a
pragmatic agreement reached within the working group that developed it, rather than
on a coherent measurement theory. In this book, we will attempt to do the opposite,
that is, derive the rules for evaluating and expressing measurement uncertainty from
an overall probabilistic theory of measurement. Due to its importance, uncertainty
evaluation will be specifically addressed in Chap. 9. We will also consider the exten-
sion of these ideas to all the domains of science, including experimental psychology
in particular. Some indications in this sense will be provided in Chap. 8.

2.3 The Proposed Approach

In the above brief historical review, we have learned to distinguish between ran-
dom variations in observations and systematic effects in the measurement process.
We have seen how the former may be modelled according to the classical theory of
errors, whilst the latter requires a different approach. Orthodox statistics has provided

14 In the GUM, the expected value of a quantity is regarded as a “best estimate” of that quantity.
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a model for randomising these effects, where practically possible, in order to gain
some control on the variables affecting the experiment. Although this is not the
general case in measurement, this method is certainly useful, when it is applicable;
otherwise a different approach is needed. We have also seen that in psychophysics
empirical relations are understood to have a probabilistic character and that in quan-
tum mechanics quantities are regarded as inherently probabilistic. Lastly, we have
seen how internationally recognised guidelines are devoted to the evaluation and
expression of measurement uncertainty.

In this book, we will develop a general probabilistic approach to measurement
that enables uncertainty to be considered and treated in all its forms, in rigorous
probabilistic terms.

In Chap. 1, we have seen that in order to measure something a reference scale
must first be established and then at least one measuring system based on that scale
devised. In dealing with uncertainty, we will follow the same pattern, distinguishing
between uncertainty mainly related to the scale and uncertainty mainly related to the
measurement process.

2.3.1 Uncertainty Related to the Measurement Scale
and to Empirical Relations

A measurement scale is characterised by the empirical relations that can be mapped
into corresponding numerical ones. For example, in the case of an ordinal scale, the
representation reads

a'=b < m(a) > m). (2.27)

But this is a deterministic description, since it really implies that, whenever we
observe the pair of objects @ and b, we always observe eithera > bora ~ borb > a,
and the measurement reflects this state of affairs. Is this what really always happens?
I suggest readers think of any measurable property of their interest and check if
this is the case. I think that making such a statement—a definite relation holds for
a, b—is only possible if, intuitively, a and b are “far apart”. Instead, if they are
“close” to each other it may be, in general, impossible to establish a definite relation
between them. To be more precise let us introduce the notion of “comparator”, here
intended as a device that is capable of establishing an order relation for pairs of
elements, with respect to the characteristic under investigation. Let us also consider
the notion of “repeatability”, this being the ability of a device to produce the same
result when operated in the same conditions. Operatively, “same conditions” means
that they are undistinguishable for the operator. Repeatability is usually characterised
by a standard deviation that quantifies the dispersion of the observations and that
can be assessed by a proper calibration test. For example, if we say that a length
measuring device has a repeatability of, say, 10 pm, we mean that when repeating
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the measurement of an object in undistinguishable conditions, we observe a spread
in the instrument indication, with a standard deviation of 10 pm.

So, going back to the issue of comparison, I suggest that if we compare two objects,
a and b, whose difference is comparable with the repeatability of the comparator,
and we repeat the comparison several times, we may sometimes observe a > b,
sometimes a ~ b and sometimes even b > a. If this happens, we can say that
empirical relations are uncertain and we can describe this situation by means of
probability. Very simply, we can assign a probability to each of the possible observed
relations, that is

P(a > b), P(a ~Db), P(a <D), (2.28)
satisfying the condition
P(a>b)+ P(a~b)+ Pla<b)=1. (2.29)

We will see later on in this book how to treat the notion, here just presented
intuitively, of the probability of a relation in rigorous terms.

To complete this quick look at uncertain relations, we mention that there is another
way in which empirical relations may be uncertain. Suppose that we have two equally
reliable comparators, C and D, and suppose that, when comparing a and b,

e with C we obtain a >¢ b, whilst
e with C we obtaina ~p b.

We can interpret this evidence in different ways. We may think that either a > b
or a ~ b is true and one of the two comparators is wrong, but we do not know
which one. Or we may think that the two objects interact with the comparators, in
such a way that there are state changes in them, but we are unable to define their
states outside these comparisons. Although this uncertainty condition is completely
different from the one concerning the issue of repeatability, yet both of them can be
described in probabilistic terms. Indeed, in both cases, we can consider a > b and
a ~ b as uncertain statements characterised by a probability figure.

In Chap. 4, we will see that this yields a probabilistic representation, such as

P(a = b) = P (m(a) > m(b)), (2.30)

that replaces formula (2.27). In Chap. 4, we will systematically derive these relations
for the scales that are of the greatest interest.

To sum up, [ have suggested that the first, in a logical order, sources of uncertainty
occurring in measurement may be found in the scale construction phase and that they
are related to empirical relations. We may be uncertain about them both due to the lack
of perfect repeatability of observations and as a consequence of systematic deviations
in what we observe. In both cases, uncertainty can be expressed by probabilistic
statements.
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2.3.2 Uncertainty Related to the Measurement Process
and the Measuring System

The second major part of a theory of measurement concerns the measurement process.
We have seen in Chap. 1 that in order to measure something we must first devise
a reference scale and then we need a device for comparing unknown objects with
the reference scale. We have called such a device a measuring system, and we have
also provided a definition for it, as an empirical system capable of interacting with
objects incorporating the property under investigation and of producing, as the result
of such interaction, signs, on the basis of which it is possible to assign a value to the
object to be measured. We can thus model measurement as a process that maps (the
properties of) objects in measurement values, that is

% = (), 2.31)

where a is an object (considered in respect of a quantity x of its) and X is the
measurement value that we obtain as the result of the measurement process. Consider
now the question of whether such a description is satisfactory or not. Consider what
it really implies. It requires that, given any object a, it is always possible to assign
to it a measurement value, X, that exactly describes it.

I do not think that this is generally possible, for reasons similar to those just
considered. Again, if we repeat the measurement of the same object several times in
equivalent conditions for the experimenter, we may obtain different values,

FIN v (2.32)

or, in another scenario, if we measure the same object with two equally reliable
devices, R and S, we may repeatedly obtain two different values, one for each system,

YR =7r(@), Xs=1s(a). (2.33)

Again it is possible to express such evidence in probabilistic terms. Basically we
interpret the statement x = ~(a), where X is a number in a set X, as an uncertain
one, to which a probability can be assigned,

P ()? = v(a)). (2.34)
This probabilistic representation may be interpreted as the probability of obtaining
the measurement value x, for x varying in a set of possible values, when object a is

measured. This can also be expressed by the conditional probability distribution

P (%la), (2.35)
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interaction
o)

Fig. 2.5 Ideal communication between the object(s) and the observer

where the conditioning event may be modelled as the “random extraction” of object a
from the set A. In Chap. 5, we will derive a general expression for such a distribution,
based on a general characterisation of the measuring system.

2.3.3 Information Flux Between the Objects(s)
and the Observer

Let us now consider a different standpoint that is transversal to the above consider-
ation.

In the case of an observed empirical order relation, @ > b, we have a pair of
objects, a and b, and a relation between them, established by a comparator. We can
thus consider an objects/observer scheme in which the comparator “observes” the
empirical relation that holds between the objects. Similarly, in the case of a ternary
relation, a = b o ¢, we have three objects, a, b and ¢, and a device that can establish
whether the relation holds or not. So, by extension, we will call comparator the
device that allows us to establish an empirical relation, and we regard it (including
the operator that handles it, in the case of manually operated systems) as an observer.

In the case of a measurement process, we have the object to be measured and the
measuring system (plus the operator where applicable), in the role of the observer. In
both cases, therefore, we can synthetically depict the ideal communication situation
as shown in Fig. 2.5.

With respect to this ideal situation, uncertainty sources may affect either the
object(s) or the observer or their interaction. The latter hypothesis includes the case,
very important in many measurements, in which the measuring system modifies the
state of the object.'® This means that the interaction between object and observer is
no longer uni-directional, as in the ideal case,—the object modifies the state of the
observer and information is transmitted thanks to this modification—but the observer
also modifies the object, and so the state that we actually observe is no longer the
original one. All these possibilities are illustrated in Fig. 2.6.

To sum up, I have proposed a taxonomy of uncertainty sources, based on three
conceptual coordinates, considering uncertainty either as

e related to empirical relations or to the measurement process,
e referring to random variations or to systematic deviations,

15 This is usually called “loading effect” in the technical literature.
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Fig. 2.6 Real communication |

between the object(s) and | no1se [ noise
the observer, affected by | |
uncertainty sources A~
object(s) [«— — — — | observer
feedback

e related to the information flux in different ways, that is to say either affecting the
object(s) or the observer or their interaction.

I hope that this taxonomy can help in the identification of uncertainty sources
as this is the first, and often the most critical, step in uncertainty evaluation. In the
second part of the book, we will develop a probabilistic theory, for dealing with
uncertainty in general terms, whilst, in the third part, we will discuss some important
application issues.
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