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Summary

This chapter highlights selected contributions to photosynthesis research made from an
evolutionary and ecological perspective and, specifically, to the characterization of
zeaxanthin-associated thermal energy dissipation. First, contributions of comparative
ecophysiology to the discovery of different CO, fixation pathways are examined, followed
by a summary of the historical developments leading to documentation of the relationship
between zeaxanthin and photoprotective energy dissipation. Evergreen species exhibit
exceptionally strong non-photochemical quenching of chlorophyll fluorescence (NPQ) and
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very high levels of zeaxanthin formation. This enabled an unveiling of the correlation
between zeaxanthin versus NPQ and/or photosystem II quantum efficiency (as inferred from
the ratio of variable to maximal fluorescence, F,/F,,), even prior to development of technol-
ogy currently used in the assessment of these features. Results from characterization of the
wide variety of different manifestations (with respect to extent and/or kinetics) of the con-
version of xanthophylls, and changes in NPQ and/or F,/F, in different plant species and
diverse environments are placed in an evolutionary and ecological context. Lastly, themes
emerging from the international research community on NPQ and photoprotective thermal
dissipation are summarized, and suggestions presented for how utilization of plants geneti-
cally adapted and acclimated to high levels of light stress may aid in addressing open

questions.

I Introduction

The placement of photoprotective energy
dissipation into a context of the ecology and
evolution of photosynthetic organisms has
made contributions to the understanding and
relevance of the non-photochemical quench-
ing of chlorophyll fluorescence (NPQ), and
continues to do so today as reflected in many
of the chapters that follow. An ecological
and evolutionary perspective examines the
employment of thermal dissipation in differ-
ent organisms under diverse environmental

Abbreviations: CAM — Crassulacean acid metabolism;
Car — Carotenoid; Chl — Chlorophyll; ELIP — Early
light inducible protein; F,, F,’ — Maximal chloro-
phyll fluorescence in the dark- and light-adapted state,
respectively; F,, F,’ — Minimal chlorophyll fluores-
cence in the dark- and light-adapted state, respectively;
F,, F,’ — Variable chlorophyll fluorescence in the dark-
(Fn — F,) and light-adapted (F, — F,’) state, respec-
tively; F./F,, F,//F,’ — Interpreted to be intrinsic
efficiency (or quantum yield) of photosystem II in the
dark and light-adapted state, respectively; hECN —
3-hydroxy-echinenone as a xanthophyll bound to the
orange carotenoid protein of cyanobacteria; HLIP —
High light-inducible protein; HPLC — High-pressure
liquid chromatography; LHC - Light-harvesting
complex; LHCII — Light-harvesting complex of pho-
tosystem II; LHCSR - Light-harvesting complex
stress-related; NPQ — Non-photochemical quench-
ing of chlorophyll fluorescence; OCP — Orange
carotenoid protein of cyanobacteria; PAM — Pulse-
amplitude-modulated  (chlorophyll  fluorometry);
PS II — Photosystem II; VAZ cycle — The xantho-
phyll cycle involving the carotenoids violaxanthin (V)
antheraxanthin (A), and zeaxanthin (Z)

conditions and addresses question such as:
What is the variation on the theme of photo-
protective energy dissipation available to an
organism and to different organisms? What
parts of the system are flexible? For which of
a myriad of different environmental niches is
a particular variation of the theme most
suited? What are the different ways of sur-
viving in a challenging environment and
how does this influence the employment of
energy dissipation by different organisms?
What are the costs and benefits (trade-offs)
of the different variations?

Il Standing on the Shoulders
of Giants

A Comparative Ecophysiology

1 Adaptation and Acclimation
to the Environment

The field of comparative plant ecophysiol-
ogy has provided insights into the genetic
adaptations and individual flexibility (phe-
notypic plasticity or acclimation potential)
crucial to plant survival, productivity and
reproductive success. Such a comparative
approach identifies features underlying the
success of different species in the same habi-
tat, multiple species across different habi-
tats, and the same species in different habitats
(Osmond et al. 1980; Lange et al. 1981a, b,
¢, d; Baker and Long 1986; Mooney et al.
1987; Mooney 1991; Schulze and Caldwell
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1994; Larcher 2003). Some of the pioneering
work in this area involved characterization
of plants subjected to reciprocal transplants
between contrasting habitats as well as the
growth and characterization of species from
different habitats under “common garden”
conditions (Clausen et al. 1941, 1947; Hiesey
et al. 1942; Clausen and Hiesey 1960;
Mooney and Billings 1961; Mooney and
Johnson 1965). Such experiments allow for
identification of adaptations among plant
species and varieties as well as the individu-
al’s acclimation potential to a changing envi-
ronment (for a study on the model species
Arabidopsis  thaliana, see Agren and
Schemske 2012). Comparative plant eco-
physiology, furthermore, links the fields of
plant molecular biology and physiology to
whole-plant function and its role in commu-
nities, ecosystems, and the biosphere (Feder
2002; Beyschlag and Ryel 2007).

The evolutionary history of different plant
species is reflected in their genetic adapta-
tions as having provided advantages for sur-
vival and reproduction in the habitats where
the respective species successfully evolved.
Such traits improved plant performance with
respect to the physical environment (e.g.,
soil conditions, climatic factors, etc.) as well
as biological (e.g., herbivory, infection by
viruses and fungi, etc.) challenges faced over
multiple generations. In addition, the indi-
vidual acclimation potential allows those
genetic traits to be adjusted to a certain
extent. For instance, as a winter annual
adapted to germinate in the fall and form a
rosette of overwintering leaves, followed by
bolting, flowering, and seed set in the spring,
A. thaliana grown under controlled cool ver-
sus warm temperatures develops thicker
leaves with more layers of chloroplast-
packed palisade mesophyll cells (Gorsuch
et al. 2010; Cohu et al. 2014), higher rates of
photosynthesis (Gorsuch et al. 2010; Cohu
et al. 2013b, 2014), and leaf veins with more
(phloem) cells for exporting sugars produced
in photosynthesis (Cohu et al. 2013a, b,
2014). Such morphological and physiologi-
cal plasticity within individuals represents
acclimation.

There are, however, limits to the
acclimatory range of the individual. For
instance, leaf veins develop with a greater
number of sugar-exporting (phloem) cells in
support of higher rates of photosynthesis in
A. thaliana plants adapted to the Swedish
climate (Swedish ecotype) compared to
plants adapted to the Italian climate (Italian
ecotype) irrespective of growth temperature
(Cohu et al 2013a, b). In contrast, leaf veins
develop more water-transporting (xylem)
cells in response to growth under warmer
versus cooler temperatures in the Italian but
not the Swedish ecotype (Cohu et al. 2013b).
The Italian ecotype, based on its evolution-
ary history in the warmer and drier climate
of Italy, is thus adapted to respond to growth
at warm temperature through an acclimatory
response that can increase water delivery to
the leaves. On the other hand, such a response
of water-transporting cells was presumably
not advantageous in the moister and colder
climate of Sweden, while the adaptation
underlying the ability to upregulate the
capacity to export photosynthetically gener-
ated sugars in the face of lower temperatures
(and greater phloem sap viscosity) is impor-
tant for plants growing in Sweden compared
to Italy.

2 Pioneers of Comparative Ecophysiology

The mentors of the authors (B.D.-A. and
W.W.A.) were Olle Bjérkman and C. Barry
Osmond, respectively; they both conducted
pioneering comparative plant ecophysiologi-
cal work on features important to the adapta-
tion and acclimation of plants to different
environmental conditions. This included leaf
and photosynthetic acclimation to the light
environment among plants adapted to shaded
versus sun-exposed habitats (Bjorkman and
Holmgren 1963, 1966; Bjorkman 1968;
Bjorkman et al. 1973; Osmond 1983), photo-
synthetic adaptation and acclimation to tem-
perature (Bjorkman et al. 1972; Armond et al.
1978; Mooney etal. 1978; Berry and Bjorkman
1980; Badger et al. 1982), characterization of
plants with different photosynthetic pathways
(Osmond 1967, 1970, 1971, 1974, 1978,
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Bjorkman and Gauhl 1969; Woo et al. 1970;
Kluge and Osmond 1971, 1972; Osmond and
Harris 1971; Bjorkman et al. 1973; Osmond
et al. 1973, 1980; Ehleringer and Bjorkman
1977), responses of plants to salinity stress
(Osmond 1966; Greenway and Osmond 1972;
Osmond and Greenway 1972), and responses
of plants to excess light (Powles and Osmond
1978; Powles et al. 1979, 1983; Osmond
1981; Powles and Bjorkman 1982; Bjorkman
and Powles 1984).

We will use the discovery and character-
ization of three different photosynthetic
pathways, C3, C4, and crassulacean acid
metabolism (CAM) to illustrate the evolu-
tion of adaptations allowing plants to diver-
sify and colonize multiple niches in the
natural world (for historical and basic aspects
of C3 photosynthesis, see Benson 2005 and
Bassham 2005; for C4, see Hatch 2005, and
for CAM, see Black and Osmond 2005.) In a
nutshell, the latter photosynthetic pathways
offer distinct advantages in some environ-
ments at the cost of disadvantages in other
environments, resulting in unique benefits
and costs (trade-offs). Remarkably, all three
pathways share the ancestral feature of fix-
ing carbon into sugars in much the same
way, while C4 and CAM plants employ an
additional cycle of fixing atmospheric CO,
and then concentrating it for use by the C3
pathway of photosynthesis in the chloro-
plast. In the case of C4, this additional cycle
operates during the day in the leaf mesophyll
cells and shuttles the CO, to specialized cells
surrounding the veins where only the C3
pathway operates. In the case of CAM, the
additional cycle operates during the night,
storing the fixed CO, in the vacuoles for uti-
lization in the C3 pathway during the subse-
quent day (largely behind stomata that
remain closed because of the high internal
levels of CO, that arise as it is released for
use by the chloroplasts in the light).

The evolution of variation in the pathway
for CO, acquisition presumably aided in the
exploitation of many diverse habitats.
Compared to C3 plants, plants utilizing the
C4 and CAM pathways of photosynthesis
typically require less nitrogen, exhibit little
to no photorespiration, are more efficient at

capturing CO,, and consequently typically
lose less water to the atmosphere for a given
level of CO, fixation compared to plants uti-
lizing the C3 pathway of photosynthesis
(Osmond 1978; Winter 1985; Larcher 2003;
Raghavendra and Sage 2011). On the other
hand, plants using C4 and CAM have
increased energetic costs associated with the
use of an additional carboxylation pathway
and of specialized anatomical features (mod-
ified leaf venation in C4 plants and succulent
cells with large vacuoles in CAM; Bjorkman
et al. 1973; Osmond et al. 1980; Edwards
and Walker 1983; Winter 1985; Hatch 1992;
Larcher 2003; Silvera et al. 2010;
Raghavendra and Sage 2011; Sage and Zhu
2011). Because of their highly efficient fixa-
tion of CO,, some CAM species are able to
thrive in aquatic habitats with very low CO,
levels (Keeley 1998) and to fix CO, through
tissues without stomatal leaf pores (Keeley
et al. 1984; Cockburn et al. 1985; Winter
et al. 1985). Furthermore, there are species
with intermediate levels of C4 or CAM fea-
tures (Holaday et al. 1981; Ku et al. 1983;
Harris and Martin 1991a, b; Leegood and
von Caemmerer 1994; Liittge 2006), as well
as others exploiting a greater water availabil-
ity during spring as a C3 plant and transition-
ing to CAM developmentally and, most
importantly, during the hot and dry summer
(Winter et al. 1978, 2008; Winter 1985).
Such variation in plant form and function
among species, and even within a species,
has allowed plants to thrive in an expanded
range of ecological niches (specific environ-
ments) with, e.g., low levels of soil nitrogen
and/or water availability. Each set of
photosynthetic adaptations has its own trade-
offs, or costs versus benefits, for a particular
growing condition.

In addition to the three major photosyn-
thetic pathways, many other anatomical,
morphological, physiological, and develop-
mental plant features impact plant success.
For instance, in the hot deserts of North
America(Mojave, Sonoran, and Chihuahuan)
all three pathways (C3, C4, CAM) are found.
In locations or during seasons with continu-
ous access to water, C4 plants thrive under
very hot conditions, with extremely high
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rates of photosynthesis (Bjorkman et al.
1972; Larcher 2003; Sage and Kubien 2007).
In deserts where water is periodically avail-
able, water-storing CAM plants (e.g., succu-
lent cacti, agaves, yuccas, and euphorbs) are
found (Kluge and Ting 1978; Osmond 1978;
Winter 1985). C3 plants are also remarkably
well represented in these deserts, as (i)
extremely fast developing “ephemerals”
(with high rates of growth and photosynthe-
sis, and rapid seed set following, e.g., intense
rainfall events; Patten 1978), (ii) perennials
leafing out during the respective moister sea-
sons (Mooney and Strain 1964; Nedoff et al.
1985; Yoder and Nowak 1999), (iii) as plants
like palms or mesquite with deep roots tap-
ping into the permanent water table (Nilsen
et al. 1983, 1984; Sala et al. 1996; Hultine
et al. 2003, 2005), and (iv) as slow-growing
evergreens with low rates of photosynthetic
water loss, such as the Joshua tree (Yucca
brevifolia) and creosote bush (dominant
shrub of all three North American hot des-
erts; Armond et al. 1978; Mooney et al.
1978; Smith et al. 1983). All species are sim-
ilarly well adapted to these hot deserts, yet
each by virtue of its own particular adapta-
tion and advantage (that might be a disad-
vantage in other habitats, particularly in
competition with other species adapted to
the other habitats). Regardless of the particu-
lar photosynthetic pathway employed, all of
these species share common features of
photosynthetic electron transport and carbon
fixation in the Calvin-Benson cycle
(C3 photosynthetic pathway in the chloro-
plast), as well as zeaxanthin-associated
photoprotective energy dissipation.

B Prerequisite Contributions to Linking
Thermal Dissipation and Zeaxanthin
from Biochemistry and Physics

1 Pioneers in the Discovery of Rapid
Xanthophyll Conversions in Plants

In addition to possessing chlorophyll,
photosynthetically competent chloroplasts
typically contain several carotenoids,
including oxygen-containing xanthophylls

(neoxanthin, violaxanthin, lutein) and
oxygen-free carotenes (f-carotene and, for
some species, a-carotene). The levels of most
of these chloroplast pigments are relatively
static over short periods of time. However, in
the late 1950s it was discovered that several
xanthophylls are inter-converted over short
time spans (minutes) in response to changes
in light level (reviewed in Sapozhnikov
1973). This observation was followed by
intensive investigation of the biochemical
factors controlling de-epoxidation of violax-
anthin (with two epoxide groups), via the
intermediate antheraxanthin (with one epox-
ide group) to zeaxanthin (epoxide-free), as
well as factors responsible for re-epoxidation
of zeaxanthin to violaxanthin (reviewed in
Yamamoto 1979, 2006; Hager 1980;
Yamamoto et al. 1999). This cyclical inter-
conversion of the latter three xanthophylls
became known as the violaxanthin cycle or
xanthophyll cycle (here referred to as the
VAZ cycle, where V, A and Z stand for vio-
laxanthin, antheraxanthin and zeaxanthin,
respectively, for distinction between the VAZ
cycle and two other xanthophyll cycles pres-
ent in some plants and algal groups; see, e.g.,
Esteban and Garcia-Plazaola, Chap. 12 and
Lavaud and Goss, Chap. 20). While it was
known (i) that these xanthophyll conversions
occurred in the chloroplast, (ii) that zeaxan-
thin levels increased under high light condi-
tions, and (iii) that zeaxanthin was converted
back to violaxanthin under low light, a spe-
cific function for the cycle and these carot-
enoids remained elusive until the late 1980s.

2 History of Chlorophyll Fluorescence
in Photosynthesis

The reader is referred to other chapters
(Papageorgiou and Govindjee, Chap. 1,
Horton, Chap. 3, and Logan et al., Chap. 7)
in this volume for detailed accounts of the
historical developments in the measurement
and understanding of chlorophyll fluores-
cence emission and factors influencing the
level of fluorescence emission. For further
information on the relation of chlorophyll
fluorescence to photosynthesis, we refer the
reader to books edited by Govindjee et al.
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Fig. 2.1 Participants in a workshop on “structure, function and photoinhibition of photosystem II in relation to
plant stress” held at the East-West Center, University of Hawaii, in September of 1985. Identified individuals
pictured include: (/) David Fork, (2) Robert Smillie, (3) George Cheniae, (4) Dick Dilley, (5) unidentified, (6)
C. Barry Osmond, (7) Jan Anderson, (8) Neil Baker, (9) Sue Hetherington, (/0) Steve Powles, (/1) Jim Barber,
(12) Bob Sharp, (13) Dennis Greer, (/4) Robyn Cleland, (15) Barbara Demmig, (/6) Kit Steinback, (17) Peter
Horton, (18) William Adams, (/9) Gunnar Oquist, (20) Olle Bjérkman, (21) unidentified, (22) Christa Chritchley,
(23) David Kyle, (24) unidentified, (25) unidentified, (26) Gabriel Cornic, (27) Salil Bose, (28) Norio Murata,
(29) Charlie Arntzen, (30) M.-A. Takahashi, (37) Paul Armond, (32) Merv Ludlow, (33) Don Ort, (34) unidenti-
fied, (35) Patrick Neale, (36) G. Heinrich Krause, (37) John Boyer, (38) Kozi Asada, and (39) Aubrey Naylor.
Although the authors (W. W. A. and B. D.-A.) had met during the summer of 1984, this conference marked the
beginning of their professional and personal relationship (see Fig. 2.4, less than 1 month later). Note: if you know

the identity of #5, #21, #24, #25, or #34, please send an email to william.adams@colorado.edu.

(1986) and Papageorgiou and Govindjee
(2004). As we attempted to interpret
chlorophyll fluorescence measurements in
various plant species in 1984 (B.D.-A. in
O. Bjorkman’s lab and W.W.A. in
C.B. Osmond’s lab), we found the work of
Kitajima and Butler (1975) particularly
enlightening. Using empirical data, Butler
and Kitajima had developed a model for the
fates of excitation energy absorbed by
photosystem II (PS II) and its antennae,
including non-radiative, thermal dissipation
in what he termed the chlorophyll pigment
bed that offered a theoretical explanation
for decreases in the level of initial or instan-
taneous fluorescence (F,) and maximal

fluorescence (F,). Each of us shared our
findings of strong (non-photochemical)
quenching of both F,, and F, in various plant
species exposed to excess light under con-
trolled experimental conditions or in the
field at a small gathering of photosynthesis
investigators in 1985 (Fig. 2.1) before pub-
lishing our findings a couple of years later
(Adams et al. 1987, 1988; Demmig and
Bjorkman 1987; Adams and Osmond 1988;
Demmig and Winter 1988). Upon complet-
ing a postdoctoral appointment with
0. Bjorkman, Barbara returned to Germany,
where she began exploring the relationship
between chlorophyll fluorescence quenching
and the VAZ cycle.
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lll Contributions of Comparative
Ecophysiology to the Initial Linking
of Non-Photochemical Quenching
of Chlorophyll Fluorescence

and Zeaxanthin

A The Vantage Point
of Ecology and Evolution

As stated in the beginning of this chapter,
multiple questions lend themselves to explo-
ration in a comparative ecophysiological
framework, including: What variation on the
theme of photoprotective energy dissipation
is available (i) to an organism under differ-
ent environmental conditions and (ii) to dif-
ferent organisms? What parts of the system
are flexible? For which of a myriad of differ-
ent environmental niches is a particular
variation of the theme most suited? What
ways of surviving in a challenging environ-
ment exist and how does this influence the
employment of energy dissipation by differ-
ent organisms? What are the costs and ben-
efits (trade-offs) of the different variations of
thermal dissipation?

Comparing and contrasting the features of
zeaxanthin-associated energy dissipation in
plants with different growth rates and life
spans in response to a variety of environ-
mental conditions unveiled a multitude of
facets of the employment of photoprotective
energy dissipation differing widely in, e.g.,
extent and kinetics. This comparative
approach included different types of plants
predicted to experience different demands
on the extent and kinetics of their thermal
dissipation, i.e., soft-leafed annuals
(completing their life cycle in one growing
season), soft-leafed biennials (experiencing
multiple seasons over 1.5 years before
reproducing and dying), deciduous species
(persisting over multiple years but shedding
their leaves during the harshest season every
year), and evergreen species (maintaining
green leaves or needles through many years).
Comparing and contrasting annual and
evergreen lifeforms provided examples of
the predicted pronounced differences in

the magnitude of employment of
zeaxanthin-associated energy dissipation as
well as different modes of employment with
vastly different kinetics. Many of these
differences parallel, and are expected to
result from, differences inherent in the
annual versus evergreen lifestyle.

Annuals grow rapidly and complete their
life cycle over few weeks to several months
(typically before climatic conditions
become unfavorable for rapid growth via,
e.g., reduced water availability or growth-
precluding temperatures). Since annuals are
adapted for inherent high rates of growth
and photosynthesis, they thrive in high-
light environments under conditions favor-
able for rapid growth and, conversely,
possess a low shade tolerance. Leaves of
high light-acclimated annual species, unless
subjected to other environmental stresses,
utilize a relatively large fraction of the light
they absorb in photosynthesis, and exhibit
low maximal levels of photoprotective
energy dissipation (typically ranging
between 1 and 2 when quantified as NPQ =
F./F.'—1) as well as, typically, incomplete
conversion of their VAZ pool to zeaxanthin
(Demmig-Adams and Adams 1994;
Demmig-Adams et al. 1995, 1996a, 2006;
Demmig-Adams 1998; see also Demmig-
Adams et al., Chap. 24).

Evergreens receive their name from the
fact that they keep green leaves, with a high
light-harvesting capacity, throughout both
favorable and unfavorable seasons. Over
their lifetime, evergreen species persist
throughout multiple unfavorable seasons
(e.g., summer heat in hot, dry climates or
winter frost in temperate climates).
Evergreens have genetically fixed low maxi-
mal rates of photosynthesis even under con-
ditions ideal for growth. Evergreen species,
therefore, successfully grow under condi-
tions with limiting resources, but are unable
to compete with rapidly growing species in
resource-rich environments. Many evergreen
species are highly shade tolerant, but also
thrive in high-light environments, where their
reproductive success is, in fact, enhanced
(Adams 1988). When acclimated to high
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Fig. 2.2 Custom-built instrument for measuring chlorophyll fluorescence from photosystem II (leaf sample illu-
minated with blue light and fluorescence detected at 690 nm) and photosystem I (detection at 740 nm) from
samples that were darkened for several minutes (a) then frozen to 77 K (b) before illumination. Tissue (leaf or
cladode) samples of 1 cm diameter were appressed against one end of a quartz rod enclosed in a brass housing
and allowed to equilibrate in darkness for several minutes (see lower lefi corner of a). The brass holder was
screwed into the instrument and a shutter slid to the side (from right to left; compare brass holder in lower left of
a to that in the center of a) to allow the other end of the quartz rod to become appressed to the fiber-optic cable
that both delivered the blue light to the sample and returned the chlorophyll fluorescence to the photodiode detec-
tor (employed in this instrument) or photomultiplier (employed in other instruments). After darkening, the sam-
ple and lower portion of the brass holder and quartz rod were submerged in liquid nitrogen (b) for 6 min to ensure
complete freezing before opening of the shutter that permitted a low level of blue excitation energy (1.3 ymol
photons m™ s™) to illuminate the sample, allowing the assessment of F, and F,,. The signal from the photodiode
or photomultiplier was captured on a strip-chart recorder (see Figs. 2.5 and 2.6). This particular instrument was
built by Dr. S. Chin Wong, Win Coupland, and Peter Groeneveld at the Research School of Biological Sciences
(now Research School of Biology), Australian National University. Photographs by W.W. Adams.

light, evergreen leaves are able to quickly
and fully (90 % and above) convert their
VAZ cycle carotenoids to antheraxanthin and
zeaxanthin and reach a high maximal capac-
ity for photoprotective energy dissipation
(high NPQ levels of 4-8; Demmig-Adams
and Adams 1994, 1996a; Demmig-Adams
et al. 1995, 1996a, 2006; Barker and Adams
1997; Demmig-Adams 1998).

B Quenching of Chlorophyill
Fluorescence in Evergreens

During the mid-1980s, both authors of this
chapter conducted chlorophyll fluorescence
measurements on excised leaf (or cactus
pad, or cladode) segments (from experimen-
tal or field-grown plants) darkened for 5 or
10 min (Fig. 2.2a) and frozen to 77 K
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Fig. 2.3 (a) Barbara Demmig motoring along a waterway near the Pacific ocean on the eastern coast of Australia
(just south of Brisbane) with the evergreen species Rhizophora stylosa (the small-stilted mangrove) growing in
the background (March 1987; photograph by W.W. Adams) and (b) Monstera deliciosa (Swiss cheese plant),
adjacent to W.W.A. and B.D.-A., growing in a glasshouse at the University of Colorado in July 2008; photograph
courtesy of The Daily Camera.

(Fig. 2.2b) before determining the levels of
F, and F,, fluorescence. By virtue of the fact
that evergreen species exhibit much greater
decreases than annuals in the levels of both
F,, and F, fluorescence in response to expo-
sure to excess light (e.g., much higher levels
of NPQ), strongly decreased levels of F,,
and F, fluorescence were still detectable
from high-light-acclimated evergreens
exposed to excess light even after darkening
of leaves for several minutes. Employment
of evergreens was thus instrumental in the
recognition of strong concomitant decreases
in F, and F,. It is worth mentioning that the
numerous data collected at 77 K invariably
revealed a concomitant strong quenching
of F, and F,, (with concomitant strong
decreases in F,/F,) in both PS II and

photosystem I (Demmig and Bjorkman
1987). B.D.-A. worked predominantly with
two evergreen species, Australian salt-toler-
ant mangroves (Fig. 2.3a) Olle Bjorkman
had brought back to Stanford and the climb-
ing rainforest vine Monstera deliciosa
(Fig. 2.3b; Demmig and Bjorkman 1987),
and W.W.A. worked with evergreen cacti
(Fig. 2.4) and other CAM plants (Figs. 2.5
and 2.6; Adams et al. 1987, 1988; Adams
1988; Adams and Osmond 1988), all of
which were both adapted and acclimated to
highly excessive light levels and exhibited
strong and sustained (non-photochemical)
quenching of the F, and F, levels of chloro-
phyll fluorescence.

Shortly thereafter, the pulse-amplitude-
modulated (PAM) system for room-
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Fig. 2.4 (a) View overlooking the Laboratory of Desert Biology (and luxury accommodations) in the northern
reaches of Death Valley, California. The green vegetation is largely Larrea tridentata (creosote bush), and Stanley
D. Smith is visible on the right side of the image. This trailer/laboratory was established by Frits Went (pioneer in
the discovery of the growth hormone auxin; Went 1926) as part of the Desert Research Institute associated with
the University of Nevada (see Went 1968); Went was still in Reno when W. W. A. began his PhD work there in
1984. (b) C. Barry Osmond, Cornelia Biichen-Osmond, Barbara Demmig, and William Adams at the Laboratory
for Desert Biology in early October 1985 (prior to Barry Osmond becoming afflicted with heatstroke later that
day). The laboratory was not equipped with air conditioning, and the swamp coolers were non-functional. (c)
Opuntia basilaris (the beavertail cactus) growing nearby (see Adams et al. 1987). Photographs by W.W. Adams.

temperature fluorescence measurement
from intact, attached leaves, permitting
assessment of chlorophyll fluorescence
quenching during illumination indepen-
dently of the level of direct sunlight or
artificial light, became available (Schreiber
1986; Schreiber et al. 1986). Our first use of
this new system still involved darkening
of leaf samples for several minutes for
comparison with those fluorescence mea-
surements obtained prior to the develop-
ment of the PAM fluorometer (Demmig
etal. 1987a, 1988; Adams et al. 1988, 1989,

1990a; Demmig and Winter 1988; Demmig-
Adams et al. 1989d). However, it soon
became clear that ascertaining the level of
F, and F,, quenching directly under (actinic)
illumination or in the field (as F,” and F,”)
was preferable unless one was interested in
characterizing only the portion of photo-
protection that remained engaged for
extended periods, e.g., nocturnally-
sustained “photoinhibitory” depressions in
PS II efficiency (Adams et al. 1995a, 2006,
2013a; see Adams et al., Chap. 23 and
Demmig-Adams et al., Chap. 24).
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Fig. 2.5 (a) William Adams in the midst of measuring chlorophyll fluorescence from leaf punches (darkened
and frozen to 77 K) of (b) the CAM fern Pyrrosia confluens growing epiphytically in Dorrigo National Park
(a subtropical rainforest approximately 15 km from the coast, southwest of Coffs Harbour, New South Wales,
Australia). William (bundled up because the predawn temperature reached a low of —5 °C on this particular field
trip [1 August 1986]) is sitting beside the strip-chart recorder and the low temperature chlorophyll fluorometer,
with a dewar of liquid nitrogen on the ground and the power cords (lower right hand corner) receiving electricity
from a gasoline-powered generator (off to the right, out of view). See Adams (1988). Photographs by E. Brugnoli

(a) and W. W. Adams (b).

C Zeaxanthin in Evergreens

Following the completion of her post-
doctoral appointment in Olle Bjoérkman’s
laboratory, B.D.-A. returned to Germany to
pursue research at the Lehrstuhl fiir Botanik
IT in Wiirzburg. After coming across papers
on VAZ cycle operation, she was intrigued
by the similarity of the features of VAZ cycle
conversions and her measurements of fluo-
rescence quenching at Stanford, expressed
(after Kitajima and Butler 1975) as changes
in the rate constant for thermal dissipa-
tion in the pigment bed. The laboratory of
professor Franz-Christian Czygan, where

separation, identification, and quantifica-
tion of plant pigments was routinely carried
out by experienced technician Frau Almuth
Kriiger, was in the neighboring Lehrstuhl for
Pharmaceutical Biology. When sought out
by Barbara, Franz-Christian Czygan kindly
offered Frau Kriiger’s assistance, which
led to the first concomitant analyses (in
the late 1980s) of chlorophyll fluorescence
quenching and leaf xanthophyll content, the
latter laboriously conducted using thin layer
chromatography before the development
of faster and more sensitive high-pressure
liquid chromatography (HPLC) methods
for the separation of the close structural
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Fig. 2.6 (a) Enrico Brugnoli and the 77 K chlorophyll fluorescence equipment on the beach in the shade of
Middle Head (south of Scotts Head and north of Grassy Head, New South Wales, Australia) where both P. con-
fluens (see Fig. 2.5b) and (b) Hoya australis (common waxflower) were characterized where they both grew as
lithophytes on Middle Head. Photographs by W.W. Adams; see Adams 1988 and Adams et al. 1988.

isomers zeaxanthin and lutein. Once again,
evergreens with their low rates of photosyn-
thesis (and resulting high need for photopro-
tection) proved invaluable since thin layer
chromatography requires large amounts
of pigment. The evergreens conveniently
generated the required large amounts of
zeaxanthin and antheraxanthin, by virtue
of de-epoxidizing their VAZ pool to over
90 % (versus typically only about 60 % in
annuals). With the support of the German
academic system that did not require young
faculty members to seek their own grants for
highly exploratory ideas, many hundreds of
leaf carotenoid analyses (expertly performed
by Frau Kriiger) helped establish close
relationships between VAZ pool conver-
sion and chlorophyll fluorescence quenching
indicative of photoprotective thermal energy
dissipation.

Initial studies established close correla-
tions between zeaxanthin level and sustained
(for 5 or 10 min in darkness), “photoinhibi-
tory” decreases in chlorophyll fluorescence
(Demmig et al. 1987a, 1988). Subsequently,
very similar correlations were established
between zeaxanthin level and the rapidly
reversible (high-energy state) quenching of
chlorophyll fluorescence for intact ever-
greens and annuals under experimental treat-
ments (Demmig-Adams et al. 1989a, b, c) or
in the field (Demmig-Adams et al. 1989d) as
well as for plants and green-algal lichens
treated with an inhibitor of violaxanthin
conversion to zeaxanthin (Demmig-Adams
and Adams 1990; Bilger and Bjorkman
1991) and for lichens accumulating zeaxan-
thin either rapidly (via the VAZ cycle) or
slowly (from pf-carotene; Demmig-Adams
et al. 1990b, ¢).
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Table 2.1 Major topics touched upon in this volume, major emerging conclusions, and the chapters in which the
topics and conclusions are discussed. ELIPs and HLIPs have not been included under proteins in plants because
it remains to be determined whether the correlative evidence for their involvement in sustained thermal energy
dissipation in evergreen plants following sudden transfer from low to high light (Demmig-Adams et al. 2006) and
during winter stress (Zarter et al. 2006a, b; Wang et al. 2009; Demmig-Adams et al., Chap. 28) can be supported

by mechanistic studies

Topic Emerging conclusions Chapters
Identification LHC family proteins
of factors Plants
involved in PsbS 3,5,13, 14
NPQ Various algal groups
LHCSR 14, 21
LHCSR-related proteins 11, 14, 20
Cyanobacteria
OCP 14,22
Xanthophylls
Products of xanthophyll cycles
Zeaxanthin & Antheraxanthin (from Violaxanthin) 3,4,5,6,13,14,23,24
Diatoxanthin (from Diadinoxanthin) 11, 14, 20
Lutein (from Lutein epoxide) 12
Other xanthophylls
Hydroxy-echinenone 22
Lutein (not from Lutein epoxide) 6,15
Photophysical Fate of excitation energy strongly affected by local environment of 4,6,8,9,10, 16
mechanism pigment-binding complexes; much support for Chl-Car exciton coupling
Possible sites Minor LHC proteins 14
of quenching  LHCII 3,6, 10,15
Both minor LHCs and LHCII 5
Ecological Multiple genetic adaptations to different specific environments plus 2,12, 20, 23, 24,
studies strong acclimation of individuals to growth light environment 25, 26,27

IV Additional Contributions

of Ecophysiology and Evolutionary
Biology to the Understanding

of Photoprotection via Thermal
Energy Dissipation

A Further Contributions
Since the Initial Linking

1 Evolutionary Relationships: Emerging
Themes and Their Variations

Table 2.1 includes a list of some of the
major topics covered in this volume,
some of the conclusions with support from
multiple investigators, and a list of the
chapters in which those topics and conclu-
sions are discussed. In most of the large
diversity of photosynthetic organisms

examined, engagement of photoprotective
energy dissipation (reflected in increased
NPQ and/or decreased PS II efficiency) is
thought to involve both (i) a xanthophyll
and (ii)) a member of the light-harvesting
family of proteins. Evidence for the involve-
ment of multiple light-harvesting complex
(LHC) family proteins and multiple dif-
ferent xanthophylls in different taxa of
photosynthetic organisms is summarized
throughout this book (see Table 2.1 for
specific chapters). Xanthophyll-associated
thermal energy dissipation is thought to be
a mechanism to harmlessly dissipate excess
excitation energy absorbed by chlorophyll
and, thereby, prevent passing of excitation
energy on to oxygen (see Demmig-Adams
et al., Chap. 28). Many additional photopro-
tective responses of plants and algae prevent
or minimize the absorption of excess light


http://dx.doi.org/10.1007/978-94-017-9032-1_28

58 William W. Adams Il and Barbara Demmig-Adams

or detoxify reactive oxygen species and
other radicals that may result from expo-
sure to excess light energy (see Logan et al.,
Chap. 7, for an overview of the entire suite
of photoprotective mechanisms available
to plants, and Havaux and Garcia-Plazaola,
Chap. 26, for differences among taxa in the
employment of energy dissipation versus
anti-oxidation).

2 Ecological Relationships

During the 1990s, we characterized (using
HPLC analysis of chloroplast pigments and
laboratory and portable PAM chlorophyll
fluorometers) multiple plant species (includ-
ing annuals, biennials, deciduous species,
and evergreens) growing naturally either in
open sunny locations or in the shade of tree
canopies or other structures, where they typi-
cally naturally received occasional sunflecks
every day. Remarkably, in all of these situa-
tions with extremely different levels of NPQ
and NPQ relaxation Kkinetics, the same
increase in NPQ and decrease in PS II light-
harvesting efficiency (ascertained as the
ratio of variable to maximal chlorophyll flu-
orescence, i.e., F,/F," determined during
illumination or F,/F,, determined in dark-
ness) was seen for a given VAZ cycle con-
version state to zeaxanthin + antheraxanthin
(Demmig-Adams et al. 1995; Demmig-
Adams and Adams 1996a). We note that
these inter-species comparisons apply to
leaves exposed to peak light levels in clear
excess of that which can be utilized in photo-
synthesis, thus presumably minimizing
involvement of mechanisms that optimize
excitation energy distribution and instead
focusing on mechanisms serving to ther-
mally dissipate excess excitation energy.
From an evolutionary standpoint, the obser-
vation of uniform responses to excess light
among species suggests that the underlying
mechanism of quenching may be conserved,
while additional, species- and growth
condition-dependent factors provide diversi-
fication to meet the demands of contrasting
environments. For summaries of other
ecophysiological work on photoprotective

thermal dissipation and/or xanthophylls,
see, e.g., Esteban and Garcia-Plazaola (Chap.
12; see also Garcia-Plazaola et al. 2007,
2012), Lavaud and Goss (Chap. 20), Adams
et al. (Chap. 23), Demmig-Adams et al.
(Chap. 24), Murchie and Harbinson (Chap. 25),
Havaux and Garcia-Plazaola (Chap. 26), and
Morales et al. (Chap. 27) as well as other
papers (Koniger et al. 1995; Krause et al.
2004; Savage et al. 2009; Matsubara et al.
2012).

How could it be possible that the same
NPQ (and F,/F,,) level is attained for a given
VAZ cycle conversion state in a leaf per-
forming pronounced changes in NPQ (and
F./F.) over many minutes versus over only
a single second — a time scale known to be
too fast for VAZ cycle conversions? Leaves
can contain zeaxanthin that is apparently
not engaged in energy dissipation as long as
leaves are not experiencing actual excessive
light. This was demonstrated experimentally
by inducing intact leaves to retain zeaxan-
thin in darkness, which was followed by
rapid engagement of energy dissipation upon
exposure to excess light over one to a few
second(s) in zeaxanthin-preloaded leaves
but not in zeaxanthin-free leaves (Demmig-
Adams et al. 1989b). Likewise, leaves of
two Yucca species experiencing the summer
heat of the Mojave desert (Fig. 2.7a) were
found to nocturnally retain 60 % or more of
the VAZ cycle as zeaxanthin + antheraxan-
thin that apparently only became engaged in
thermal dissipation as the sun rose (Barker
et al. 2002), presumably in response to pro-
ton accumulation in the thylakoid lumen as
photosynthetic electron transport was acti-
vated (see Strand and Kramer, Chap. 18).
Similarly, plants under either a dense rainfor-
est canopy (Fig. 2.7b; Logan et al. 1997) or
a more open Eucalyptus forest (Fig. 2.7¢, d;
Adams et al. 1999) retain zeaxanthin +
antheraxanthin overnight and throughout
the day, which, during sunflecks, appar-
ently becomes instantly engaged in thermal
energy dissipation to provide photoprotec-
tion and is instantly disengaged upon return
to low light limiting to photosynthesis. For
plants in nature, no increases in NPQ or
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Fig. 2.7 (a) Yucca schidigera (Mojave yucca, on the left and right side in the foreground, with CAM photo-
synthesis) and Yucca brevifolia (the Joshua tree, center foreground, with C3 photosynthesis) growing near Red
Rocks Conservation Area in the Mojave Desert of Nevada (Photograph by S.D. Smith; see Barker et al. 2002),
(b) Alocasia brisbanensis growing in the understory of a subtropical rainforest (Dorrigo National Park) during
exposure to a sunfleck (Photograph by W.W. Adams; see Logan et al. 1997), and two vines from which chloro-
phyll fluorescence was measured and samples for pigments and antioxidants were removed during exposure to
sunflecks in the understory of an open Eucalyptus forest south of Middle Head along the eastern coast of New
South Wales, Australia, (¢) Stephania japonica and (d) Smilax australis (left side) and Stephania japonica (lower
right corner. Photographs in ¢ and d by W.W. Adams; see Adams et al. 1999.

decreases in PS II efficiency in response
to excess light have thus been observed
in the absence of a corresponding level of
zeaxanthin + antheraxanthin.

It is attractive to assume that evolution of
dual control of thermal dissipation by not
only (1) removal of quenching xanthophyll(s)
via a xanthophyll cycle but also (ii) instanta-
neous disengagement of NPQ upon dissipa-
tion of the trans-thylakoid pH gradient
allowed a swift return to a high light-
harvesting capacity whenever light is limit-
ing to photosynthesis. A central prerequisite
for the evolution of land plants may thus
have been the removal of zeaxanthin by the

VAZ cycle (with formation of zeaxanthin
from f-carotene having evolved long before
in the earliest oxygenic photosynthetic
organisms; Hager 1980; see also Esteban
et al. 2009). By this token, it would be
unattractive to assume that land plants
would use any xanthophyll as a quencher
that is not tightly controlled by a xanthophyll
cycle (see also Esteban and Garcia-Plazaola,
Chap. 12; Demmig-Adams et al., Chap. 24).
Similar considerations also apply to certain
groups of algae employing xanthophyll
cycles (see Lavaud and Goss, Chap. 20).
Walla et al. (Chap. 9) state that, “it has
been suggested that even [carotenoids] other
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than those involved in the VAZ cycle
dissipate excess energy as a result of, for
example, conformational changes within
the pigment-protein complexes. However,
zeaxanthin-free intact leaves never show
quenching as deep as plants under excess
light in nature. ... the role of [carotenoid-
chlorophyll] interactions in various proposed
structural rearrangements that may contrib-
ute to NPQ, such as LHCII aggregation, state
transitions and other membrane restructur-
ing, is not yet clear.” While some groups
propose that zeaxanthin exerts control over
putative quenching by lutein (see, e.g.,
Horton, Chap. 3; Kriiger et al., Chap. 6), oth-
ers have argued against “a direct involve-
ment” of constitutively present lutein in
thermal dissipation and instead proposed
roles in optimizing antenna structure for
light harvesting (Lokstein et al. 2002) and
quenching of triplet chlorophyll (Dall’Osto
et al. 2006; Mozzo et al. 2008). Horton
(Chap. 3) concludes that, “there is little
doubt about the importance of the VAZ cycle
in NPQ. No theory for NPQ can be complete
unless it explains the remarkable link
between the extent of quenching and DES
[de-epoxidation state] ... However, exactly
how this link operates is still a matter of
debate and disagreement.”

The results of fluorescence lifetime analy-
ses also remain to be reconciled. Gilmore
et al. (1995), in Govindjee’s laboratory,
associated NPQ onset with a shift from a
fluorescence component with a longer (2 ns)
to one with a shorter (0.4 ns) lifetime, and
concluded that this shift was responsible for
a pH- and zeaxanthin-associated major com-
ponent of the flexible, rapidly reversible
form of NPQ. A similar conclusion was
reached for the major component of flexible
NPQ in diatoms: this NPQ component was
proposed to be both pH- and diatoxanthin-
dependent (see Holzwarth and Jahns, Chap.
5; Lavaud and Goss, Chap. 20). Gilmore and
Ball (2000) extended fluorescence lifetime
analysis to overwintering evergreens in the
continuously dissipative state (see below)
and concluded that the latter involved a
zeaxanthin-dependent, but pH-independent

(and thus continuously engaged) form of
NPQ. Jahns and Holzwarth (2012; see also
Holzwarth and Jahns, Chap. 5), using the
PsbS-deficient npg4 mutant of Arabidopsis,
on the other hand, proposed that zeaxanthin-
dependent NPQ is not pH-dependent even in
wild type exhibiting flexible NPQ. The pos-
sibility should be evaluated that zeaxanthin-
dependent NPQ may revert to a
pH-independent form (possibly involving a
pH-independent protein factor to engage
quenching) in PsbS-deficient mutants, while
wild type may employ PsbS for flexible
quenching involving both pH-control and
zeaxanthin as a quencher as envisioned by
Gilmore et al. (1995).

Although all plant species exhibit the
same relationship between the level of zea-
xanthin + antheraxanthin and the level of
thermal energy dissipation (assessed as NPQ
and decreases in PS II efficiency), different
species do exhibit different absolute levels
of both responses (of both of the latter
parameters in concert) when growing side-
by-side under the same environmental con-
ditions. For instance, an annual species,
utilizing a relatively higher proportion of
absorbed light energy in photosynthesis,
showed a peak level of NPQ of 2 and a
decrease in PS I efficiency to 0.5 at midday,
whereas an evergreen groundcover, with a
lower capacity for photosynthesis, exhibited
a peak NPQ of over 4 and a reduction in PS
II efficiency to 0.25 at midday (Demmig-
Adams et al. 1996a; see also Demmig-
Adams et al. 2012 and Chap. 24).

Annuals and evergreens also differ in their
response to prolonged environmental stress.
While many annuals and deciduous species
exhibit reduced leaf chlorophyll content,
resulting in reduced levels of light absorp-
tion, in response to prolonged environmental
stresses (Verhoeven et al. 1997; Logan et al.
1999; see Morales et al., Chap. 27), such a
response is less common in evergreens.
Instead, evergreen species arrest their VAZ
cycle and maintain large amounts of zeaxan-
thin that either apparently become engaged
in energy dissipation when light is excessive
and disengaged when it is not (e.g., in
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response to drought and high temperature;
Barker et al. 2002) or enter into a locked-in
dissipative state continuously maintained
regardless of the presence of light
(e.g., during winter; see Adams et al. 1995a,
2001, 2002, 2006, 2013a; Gilmore and Ball
2000; Oquist and Huner 2003; Demmig-
Adams and Adams 2006; Adams et al.,
Chap. 23; Demmig-Adams et al., Chap. 24).

Plants respond to winter stress in different
ways depending on species and environmen-
tal conditions. Soft-leafed annuals or bienni-
als (herbaceous species) persisting through
winter exhibit an upregulation of photosyn-
thesis in response to lower versus warmer
temperature (Adams et al. 1995b, 2001,
2002, 2013b; Verhoeven et al. 1999; Cohu
et al. 2013b, 2014). The latter species retain
zeaxanthin on colder nights in response to
nocturnal maintenance of the trans-thylakoid
pH gradient, exhibit an increased ATP to
ADP ratio, and a continuously maintained
apparent engagement of zeaxanthin in energy
dissipation (reflected in continuously main-
tained low levels of F,/F,,), all of which is
rapidly reversed upon warming of the leaves
(Demmig-Adams et al. 1996b; Verhoeven
et al. 1999). Evergreen species (conifers,
bushes, and groundcovers) exhibit similar
responses during the autumn-to-winter tran-
sition as temperatures drop below freezing
on some days and rise above freezing on oth-
ers (Adams and Demmig-Adams 1994,
1995), and throughout winters in environ-
ments with soil temperatures that intermit-
tently reach above-freezing levels conducive
to allowing plants to resume photosynthetic
activity (Verhoeven et al. 1998). However, in
the most extreme habitats where soil water
remains frozen for long periods of time, thus
precluding any intermittent photosynthetic
activity, zeaxanthin (and antheraxanthin)-
associated energy dissipation is not pH-
dependent and is continuously maintained
(does not reverse upon warming of leaves or
needles; Fig. 2.8) as winter progresses, and
this continuously maintained dissipative
state constitutes all of the nocturnally-
maintained decreases in F,/F,, (Adams et al.
1995a, 2002, 2006; Verhoeven et al. 1996,

Fig. 2.8 The evergreen groundcover Arctostaphylos
uva-ursi (bearberry, or kinnikinnick; see Zarter et al.
2006a) in the foreground with the conifers Pinus
contorta (lodgepole pine, left and right sides) and
Picea engelmannii (Engelmann spruce) growing in
Roosevelt National Forest, Colorado (see Zarter et al.
2006b,c). Photograph by W.W. Adams.

1998; Adams and Barker 1998; Zarter et al.
2006a,b,c). Although modulation of the
retention of zeaxanthin and its engagement
in energy dissipation differs as dependent on
species and environmental conditions, the
relationship between the VAZ conversion
state and PS II efficiency is the same irre-
spective of whether the two metrics are
rapidly reversible and determined under
midday exposure to sunlight in the summer
or are continuously maintained in their dis-
sipative state in winter (Adams et al. 1995a,
2006). In other words, maximal NPQ in
leaves can be predicted from foliar zeaxan-
thin content in a range of different natural
environments, while NPQ kinetics vary from
seconds to minutes or days.
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The latter features show that modulation
of zeaxanthin-associated thermal energy
dissipation is fine-tuned to closely respond
to the opportunity (or lack thereof) for pho-
tosynthetic activity present in each specific
environment. For instance, a continuously
maintained dissipative state is seen only in
environments where conditions (such as fro-
zen soils preventing plant water uptake) con-
tinuously preclude plant carbon uptake.
Algae likewise exhibit adaptation and accli-
mation to multiple niches with respect to the
intensity and distribution of light, as well as
other features of the aquatic habitats in which
they are found (see Lavaud and Goss, Chap.
20). While there is no evidence that the
widely variable relaxation kinetics of NPQ
in nature must be due to different quenchers,
there clearly are different manifestations of
quenching. Evolution of multiple different
manifestations of one fundamental mecha-
nism under the selective pressures of differ-
ent environments is a common theme in
biology. The many different time scales of
VAZ cycle operation and the several differ-
ent protein and other factors correlating with
these different manifestations suggest that
zeaxanthin-associated NPQ may be another
example for this theme.

Acclimation of plants to the degree of
light stress in their growth environment
involves adjustments in both xanthophylls
and specific thylakoid proteins, as the two
major chloroplast constituents implicated in
thermal energy dissipation leading to NPQ
(Table 2.1). The total VAZ pool is larger in
leaves (and lichens) acclimated to higher
versus lower light (Adams et al. 1992, 1993,
1996, 1999; Demmig-Adams and Adams
1992a, b, 1994, 1996b; Demmig-Adams
et al. 1995; Logan et al. 1996; Demmig-
Adams 1998), in winter compared to summer
(Adams and Demmig-Adams 1994; Adams
et al. 1995a, 2002), and in plants subjected to
less than optimal soil conditions (Morales
et al., Chap. 27). The level of the PS II pro-
tein PsbS (as a member of the light-stress-
related subfamily of LHC proteins), involved
in the flexible, pH-dependent engagement
and disengagement of NPQ (Li et al. 2000,

Fig. 2.9 The evergreen groundcover Arctostaphylos
uva-ursi (bearberry, or kinnikinnick) growing (a) in
full sunlight in Gregory Canyon (City of Boulder Open
Space and Mountain Parks) and (b) in a shaded site in
Roosevelt National Forest, Colorado. Photographs by
W.W. Adams; see Zarter et al. 2006a.

2002a, b, 2004), is likewise upregulated in
leaves of evergreen species acclimated to
high versus low light (Demmig-Adams and
Adams 2006; Demmig-Adams et al. 2006).
On the other hand, different members of the
sub-family of light-stress-related LHC pro-
teins, such as early light-inducible proteins
(ELIPs) and/or high light-inducible proteins
(HLIPs), were upregulated in evergreen spe-
cies upon sudden experimental transfer from
a low to a high light growth environment
(Demmig-Adams and Adams 2006;
Demmig-Adams et al. 2006) and upon the
natural seasonal shift into winter (Zarter
et al. 2006a, b; Wang et al. 2009), both of
which transitions also caused the leaves to
enter a continuously dissipative state not
requiring a trans-thylakoid pH gradient
(Verhoeven et al. 1998; Demmig-Adams
et al. 2006). While an evergreen groundcover


http://dx.doi.org/10.1007/978-94-017-9032-1_20
http://dx.doi.org/10.1007/978-94-017-9032-1_27

2 Lessons from Nature: A Personal Perspective 63

overwintering in full sun exhibited no up-
regulation of the PsbS protein (Fig. 2.9a),
leaves of the same species overwintering in
the shade did so (Fig. 2.9b; Zarter et al.
2006a; see also Ottander et al. 1995). There
is also evidence for a possible involvement
of thylakoid protein phosphorylation in the
regulation of thermal energy dissipation
(Demmig et al. 1987b; Cleland et al. 1990;
Adams et al. 2001; Ebbert et al. 2001, 2005;
Demmig-Adams and Adams 2006; Demmig-
Adams et al. 2006), which should receive
further attention (see below).

Leaves grown in the absence of excess
light show very different responses than
leaves grown in the presence of regular,
intermittent exposure to excess light (see
below). Leaves grown without excess light
include leaves grown indoors under low,
non-fluctuating light levels as well as plants
growing outside in the extremely rare shade
environment without sunflecks (e.g., leaves
heavily shaded by environmental features
and/or the rest of the plant). The very first
exposure to excess light of such a leaf grown
in the absence of excess light results in only
a very low initial level of NPQ — accompa-
nied by initial conversion of only a small
fraction of the existing VAZ pool (Demmig-
Adams et al. 1995, 1998; see also Demmig-
Adams et al., Chap. 24). Over the course of
continued exposure to excess light, NPQ lev-
els subsequently increase very slowly and
gradually — over the course of many hours —
to similarly high NPQ levels as seen in plants
grown under conditions including daily
exposure to excess light (peak sunlight in
open locations and sunflecks in otherwise
shaded locations). The latter slow increase in
NPQ is closely correlated with a slow
increase in VAZ pool conversion to zeaxan-
thin and antheraxanthin, and eventually an
increase in total VAZ pool size as additional
zeaxanthin is synthesized from f-carotene
(Demmig-Adams et al. 1998; see also
Demmig-Adams et al. 1989¢; Adams and
Demmig-Adams 1992; Adams et al. 1999;
Demmig-Adams et al., Chap. 24).

While the wuse of model species
grown under controlled conditions presents

advantages with regard to understanding
the underlying genetics, this approach does
have its limitations. Model plant species
used thus far are typically short-lived, annual
mesophytes, which, among plants, are the
least tolerant of environmental stress. To
understand the full range of adaptation and
acclimation available to plants with regard to
photosynthesis and photoprotection, it is
necessary to take a broader, ecophysiologi-
cal approach that includes multiple species
and their myriad of responses to different
genetic and environmental constraints to
growth (Demmig-Adams et al. 2012; Garcia-
Plazaola et al. 2012).

B How Ecophysiology May Aid
in Addressing Open Questions

Both adaptation and acclimation to the
growth light environment determines the
kinetics and capacity for NPQ (as a measure
of energy dissipation). Techniques capable
of exploring photo-physical mechanisms in
intact leaves (Walla et al., Chap. 9) and/or
the involvement of one or more quenching
sites in intact leaves (via time-resolved fluo-
rescence; Holzwarth and Jahns, Chap. 5)
should be applied to leaves from plants (i)
grown in environments with regular expo-
sure to excess light (compared with plants
grown in the absence of excess light) and (ii)
plants genetically adapted to high versus low
levels of excess light.

The tremendous utility of the many
mutant studies conducted on this topic has
been (i) in pinpointing factors (such as vari-
ous LHC family proteins and various xan-
thophylls) that can be involved in NPQ and
(i1) in demonstrating the astonishing flexibil-
ity of plants and other photosynthetic organ-
isms in being able to employ apparent
compensatory adjustments to tolerate full
sunlight despite a missing component. Yet,
the ability to compensate for missing com-
ponents is, at the same time, a limitation of
mutant studies that should be acknowledged.
In consideration of the compensatory mech-
anisms employed by mutants, as evidenced
by their astounding tolerance of full sunlight,
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a mutant lacking, e.g., the PsbS protein may
be recruiting an alternative factor to
replace PsbS, albeit at some cost to the
flexibility of thermal dissipation modulation
(Demmig-Adams and Adams 2006; Zarter
et al. 2006a, b; Wang et al. 2009).

It therefore remains to be elucidated
whether or not the quenching component
termed qZ, assigned to zeaxanthin and
described to be pH-independent and relaxing
over 20 min (rather than over a few seconds)
inthe PsbS-deficient npq4 mutant (Holzwarth
and Jahns, Chap. 5), is also employed by
wild type. It cannot be ruled out that the wild
type may still be employing PsbS to modu-
late zeaxanthin-dependent quenching in a
pH-dependent, rapidly reversible manner,
while the PsbS-deficient mutant may be
forced to replace flexible modulation with a
less flexible modulation of a zeaxanthin-
dependent quenching, possibly via one or
more other members of the stress-inducible
LHC sub-family and including pH-
independent manifestations. Future studies
should, therefore, also address costs and
benefits of the employment of different pos-
sible mechanisms and sites of thermal dissi-
pation as well as of different extent of
thermal dissipation (see Demmig-Adams
et al. 2013, Chap. 28). For further insight,
existing mutant studies should be comple-
mented by studies of plant species geneti-
cally adapted to high versus low light stress
(e.g., annuals versus evergreens) and leaves
grown in the absence versus presence of
excess light.

In the various chapters in this volume, dif-
ferent views are expressed as to the mecha-
nism underlying thermal energy dissipation.
Many authors argue that a xanthophyll is
involved in thermal dissipation, and that this
xanthophyll is formed by a xanthophyll cycle
(Table 2.1). Likewise, much discussion of
the photo-physical mechanisms involved in
thermal dissipation centers on the ability of
the local protein environment to modulate
energy levels of pigments involved and on
the involvement of exciton coupling between
chlorophyll and carotenoids (see, e.g.,
Ostroumov et al., Chap. 4, Kriiger et al.,

Chap. 6 and Walla et al., Chap. 9). It should
prove insightful to apply these techniques,
wherever possible, to plant systems both
adapted and acclimated to excess light. As
part of such an approach, and as proposed by
Walla et al. (Chap. 9), “a quantitative study is
needed that directly assesses the spectro-
scopic signatures of all suggested electronic
interactions in a single system.”

V Concluding Remarks

Comparative eco-physiology facilitated the
uncovering of a close correlation between
zeaxanthin level and non-photochemical flu-
orescence quenching (as an indicator for the
thermal dissipation of excess excitation
energy) in intact leaves. Comparison of
annual and evergreen lifeforms with differ-
ent inherent rates of growth and photosyn-
thesis, furthermore,  revealed  stark
differences in the magnitude and kinetics of
zeaxanthin-associated energy dissipation.
An evolutionary vantage point suggests that
evolution of dual control over thermal energy
dissipation, by removal of xanthophyll(s) via
a xanthophyll cycle plus rapid disengage-
ment of NPQ via dissipation of trans-
thylakoid ApH in environments favorable
for plant growth, may have helped to maxi-
mize photosynthesis’ photon yield by allow-
ing swift return to high light-harvesting
capacity during every transition from excess
to limiting light over the course of a day in
naturally fluctuating sunlight. Conversely,
under environmental conditions less favor-
able for, or altogether preventing, plant
growth, a cascade of different manifestations
of zeaxanthin-associated thermal energy dis-
sipation is evident especially in evergreens:
each manifestation appears fine-tuned to
closely match the level of opportunity for
growth and photosynthesis present in each
unique environment. A dissipative state con-
tinuously maintained over the entire winter
season is seen only in environments where
conditions (such as frozen soils) preclude
plant carbon uptake for extended time peri-
ods. Likewise, both genetic adaptation and
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individual acclimation to growth light
environment strongly influences a plant’s
kinetics and maximal capacity for thermal
energy dissipation (as assessed via chloro-
phyll fluorescence). Since leaves grown in
the absence of fluctuating (intermittently
limiting and excessive) light show very
different responses than leaves grown in the
presence of regular exposure to excess light,
future research on a wide range of mechanis-
tic questions will benefit from a comparison
of plant systems adapted and acclimated to
different levels of excessive light and corre-
sponding different demands for thermal
dissipation of excess excitation energy, as
well as combining multiple approaches in a
single system with a high capacity for NPQ.
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