Chapter 2
Architecture of DNA Bound RAR
Heterodimers

Natacha Rochel and Dino Moras

Abstract Nuclear Retinoic Acid receptors (RARs) consist of three subtypes,
o, B, and y, encoded by separate genes. They function as ligand-dependent tran-
scriptional regulators, forming heterodimers with Retinoid X receptors (RXRs).
RARSs mediate the effects of retinoic acid (RA), the active metabolite of Vitamin
A, and regulate many biological functions such as embryonic development,
organogenesis, homeostasis, vision, immune functions, and reproduction. During
the two last decades, a number of in-depth structure—function relationship stud-
ies have been performed, in particular with drug design perspectives in the thera-
peutics for cancer, dermatology, metabolic disease, and other human diseases.
Recent structural results concerning integral receptors in diverse functional states,
obtained using a combination of different methods, allow a better understanding
of the mechanisms involved in molecular regulation. The structural data high-
light the importance of DNA sequences for binding selectivity and the role of
promoter response elements in the spatial organization of the protein domains into
functional complexes.
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DBD DNA binding domain

DR Direct repeat

Cryo-EM Cryo-electron microscopy

FRET Fluorescence resonance energy transfer
GR Glucocorticoid receptor

HDX Hydrogen deuterium exchange

IR Inverted repeat

LBD Ligand binding domain
LBP Ligand binding pocket

NR Nuclear receptor

NTD N-terminal domain

PPAR Peroxisome proliferator-activated receptor
RA All-trans retinoic acid

RAR Retinoic acid nuclear receptor

RARE Retinoic acid nuclear receptor response element
RXR Retinoid X nuclear receptor

SANS Small angle neutron scattering

SAXS Small angle X-ray scattering

VDR Vitamin D nuclear receptor
Introduction

Following the pioneering work of Max Perutz and the British school of biocrystal-
lography in the 1950s, protein crystallography has become one of the most power-
ful techniques for the analysis of the structure of macromolecules. Milestones have
included resolution of the crystal structures of tRNA-Phe in 1974 [21, 47] and nucleic
acid protein complexes (aminoacyl-tRNA synthetases/tRNAs, ribosome, RNA poly-
merase) that have enlightened the structure-function relationships of key steps of the
translation of genetic information [9, 49, 50, 60]. The first structure of a membrane
protein was resolved in 1984. This accomplishment paved the way for an incursion
into an essential domain of biology [10]. Most of our knowledge of macromolecular
interactions at the atomic level originates from these pioneering studies.

The field of structural investigation has expanded in the last decade to allow
more ambitious questions, such as the study of transient complexes, to be under-
taken. A three-dimensional view of molecular interactions, conformational
changes, and dynamics of association can now be reconstructed at atomic or near
atomic resolution using a variety of approaches and technologies that provide
information at different time scales. Combination of these complementary data on
the same molecular complex is called integrative structural biology [3].

The structural investigation of nuclear receptors (NR) started in the early nine-
ties. There has been an impressive increase in knowledge about the structure and
mechanism of action of NRs from the first reported atomic structure of a DNA
binding domain [54] to our current appreciation of the structure of full length
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Fig. 2.1 Structural organization of RAR together with the atomic resolution structures of the
isolated domain. a RAR, like other nuclear receptors, has a modular structure with an unstruc-
tured N-terminal domain (NTD) and two well-structured domains, the DNA binding domain
(DBD) and the ligand binding domain (LBD). The LBD contains the ligand dependent activa-
tion function, AF-2. b Crystal structure of the RXR DBD homodimer bound to its DR1 DNA
response element (PDB ID: 1BY4). Helices are represented as ribbon in cyan. ¢ Structural
changes in the ligand binding domain induced upon agonist ligand binding. Crystal structures of
unliganded (apo) RXRa (PDB ID: 1LBD) and liganded (holo) RARYy bound to all-trans retinoic
acid (PDB ID: 2LBD) are shown. Helices are represented as ribbon in green with the C-terminal
helix H12 labeled and shown in blue

receptors bound to DNA and coactivator proteins (review in [17]). Crystallography
has provided the bulk of the available information at atomic resolution with some
interesting data contributed by researchers using Nuclear Magnetic Resonance
(NMR) and Mass Spectrometry (review in [19]).

History: Structural Analysis of Nuclear Receptor Isolated
Domains

NRs control a large number of physiological events through their interactions with
DNA sequence elements and downstream actions that are set in motion to regu-
late gene transcription. NR activation is controlled by ligands and cofactors that
include repressors, activators, and bridging proteins [25, 39]. Additional fine-tun-
ing is provided by post-translational modifications of NRs that result from cross-
talk between different signaling pathways.

NRs share a common structural organization that is comprised of a variable
N-terminal domain (NTD) harboring a ligand-independent activation function (AF-1),
a conserved DNA binding domain (DBD) and a C-terminal ligand binding domain
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Fig. 2.2 DNA binding of RAR-RXR heterodimers to DNA. a DNA Retinoid response elements
are composed of direct repeats (DR) of the hexanucleotide sequence (5'-(A/G)G(G/T)TCA-3')
separated by separated by 0 (DRO0), 1 (DR1), 2 (DR2), 5 (DR5) or 8 (DR8) nucleotides. RAR-
RXR binds to these elements with a specific polarity. b Crystal structure of the heterodimer
RARa (green)-RXRa (cyan) DBD in complex with the retinoic response element DR1. (PDB
ID: 1DSZ). The DBD core is composed of approximately 66 amino acid residues which form a
tertiary structure composed of an N-terminal B-hairpin and two a-helices (H I and H II) followed
by a short C-terminal helix and an extension. The response elements are indicated with yellow
arrows

(LBD). The LBD contains the ligand dependent activation function, AF-2 (Fig. 2.1).
The LBD also harbors several interaction surfaces for homodimerization or heterodi-
merization and for the binding of coregulators. Structural studies of individual DBD
and LBD have shed light on the molecular basis of transcription regulation by nuclear
receptors. Unfortunately, structural information is still not available for the NTDs
containing the ligand-independent function AF-1 or the hinge region connecting the
DNA and ligand binding domains. These two domains are highly variable in size and
sequence and show poorly defined secondary structures [30].

Studies of DNA Binding Domains

Retinoic acid receptors (RAR) are members of the NR family. The pleiotropic
effects of retinoic acid (RA) are mediated through binding interactions with RARs.
The RARs, as most of the NRs, function as dimers. RARs partner with retinoid
receptors (RXR) to form heterodimers. A general model proposes that RARs bind
to cognate RA-response elements (RAREs) both with and without RA bound to
the receptor. Recent chromosome-protein precipitation analyses coupled to mas-
sive parallel sequencing and bioinformatics analyses carried out using different
cell types have led to the identification of thousands of genomic RAR binding sites
and RA-regulated gene networks [11, 18, 28, 29, 33]. Analyses of RAR bound loci
have confirmed the presence of direct repeat consensus sequences composed of the
hexanucleotide motif (5°-(A/G)G(G/T)TCA-3’) separated by 1 (DR1), 2 (DR2) or 5
(DRS) nucleotides [2] (Fig. 2.2a). In vitro studies have also shown that a significant
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number of RAR-RXR heterodimer-occupied sites in embryoid bodies or F9 embryo-
nal carcinoma cells have divergent, non-canonical half-site spacings, including DRO,
DRS and inverted repeat O (IR0) elements [33]. RAR-RXR heterodimers bind to the
asymmetric DRs with specific polarities [27, 41]. RAR DBDs bind to the half-site
at the 3’ end of DRS5 or DR2 elements, while RXR binds to the 5 half-site of these
RARES. The polarity is reversed in the case of DR1, with RXR bound to the 3’half-
site and RAR or other binding partners bound at the 5’ end (Fig. 2.2a) [27, 41].

NMR provided the first 3D structure of estrogen NR DBDs [54], and crystallog-
raphy unraveled the atomic details of DNA-DBD interactions in the glucocorticoid
receptor (GR) [26]. It was determined that the DBD core is composed of approxi-
mately 66 amino acid residues which form a tertiary structure composed of an
N-terminal B-hairpin and two a-helices followed by a short C-terminal helix and an
extension (Fig. 2.1). The N-terminal a-helix (helix I) fits into the major groove of
the DNA and makes direct and water mediated hydrogen bonds with the nucleotide
sequence. In addition, there are a number of interactions between amino acid side
chains and the phosphate backbone of the DNA. Helix II (Fig. 2.1) is perpendicular
to the N-terminal helix I and stabilizes the core of the DBD.

Current understanding of DNA recognition by RAR-RXR at the atomic level is lim-
ited to the crystal structure of the RAR-RXR DBDs bound to a consensus DR1 with
identical half-sites, as illustrated in Fig. 2.2b [45]. Unfortunately this structure does
not clarify how non-canonical elements are recognized nor how flanking and spacer
nucleotides influence the interactions. Consensus motifs could induce potential arti-
facts [26]. The use of natural DNA sequences from target genes for crystallization may
be required to reveal the selectivity process. Such an approach has been used to study
GR by the group of Yamamoto who demonstrated that the sequence of the GR bind-
ing sites differentially affects receptor conformation and transcriptional activity [32].
Although only minor structural changes could be determined by comparing the numer-
ous GR crystal structures, the study showed that DNA can act as an allosteric effec-
tor to modulate GR activity [32]. A recent NMR study of GR DBD-DNA complexes
confirms this allosteric mechanism [57]. The molecular structure of several other NR
DBDs, such as the thyroid nuclear receptor (TR) or the Vitamin D nuclear receptor
(VDR), either in their free states or bound to target DNA, have indicated that DNA
sequences specify specific recognition and facilitate allosteric regulation [43, 51, 61].

Studies of Ligand Binding Domains

The first structures of LBDs to be determined were those of unliganded RXRa [5]
and liganded RARYy bound to all-trans RA [46]. These structures revealed a novel
fold comprising 12 a-helices (HI to H12) and a short B-turn, arranged in three
layers to form an anti-parallel a-helical sandwich (Fig. 2.1). The overall fold has
proven to be a prototype for the NR family [58].

The LBD is a key regulatory domain containing the ligand binding pocket
(LBP) and multiple interaction surfaces for homo- or hetero- dimerization and for
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interactions with corepressors, coactivators, and other cofactors that participate in
sending signals to the basal transcriptional machinery [40]. Available structural
data of NR dimers suggest a conserved interface in the LBD, with helices H7, H9
and H10 of each NR contributing a contact surface of between 1,000 and 1,500
square angstroms. In the absence of ligand, the RAR-RXR heterodimers are asso-
ciated with corepressor complexes with histone-deacetylase activity that modify
chromatin to establish and maintain a repressed transcriptional state [15, 34]. The
binding of RA induces a structural transition in the LBD leading to release of the
corepressors and the formation of a novel interaction surface for coactivators,
including histone acetyltransferases and methyltransferases, as well as chromatin
remodeling complexes or components of the basal transcription machinery [1].

LBD crystal structures for most NRs in different oligomeric states have now
been determined, and the changes brought about by the binding of a large num-
ber of natural and synthetic RAR and RXR selective ligands, including agonists,
antagonists, and inverse agonists, have been characterized (review in [19]). The
RAR and RXR ligands can be classified by their actions on coregulator recruit-
ment and dissociation. Ligand binding induces allosteric conformational changes
that promote or repress receptor-coregulator interactions. Structural data analyses
have clearly linked (1) coactivator recruitment with receptor binding of agonists
(2) coactivator dissociation with receptor binding of antagonists and (3) corepres-
sor stabilization with receptor binding of inverse agonists.

Agonist ligands induce a unique closed conformation of RAR or RXR LBD
with the LBP sealed by helix H12 allowing coactivator to interact. This confor-
mation is referred to as the “holo” or “active” conformation. Comparison of the
unliganded RXRa LBD and the “holo” RARy LBD suggest a ligand-triggered
activation mechanism that is accompanied by a repositioning of the C-terminal
helix (Fig. 2.1) [46]. Helix H12 (which contains the residues of the AF-2 domain)
of Apo-RXRa extends outwards to the solvent, whereas this helix in RA-bound
RAR LBDs folds back over the ligand binding pocket (LBP) such that the ligand
is entirely buried in a predominantly hydrophobic pocket. Structures of liganded
RXR confirm the proposed mouse trap mechanism [12].

Some synthetic ligands bind to RAR or RXR with high affinity, but in contrast
to natural ligands that act as agonist, they fail to stabilize the receptors’s active
conformation and prevent coactivator recruitment using two molecular mecha-
nisms. (1) Inverse agonists induce a conformational change of the receptor pro-
tein that stabilizes its interactions with the corepressor. The compound BMS493
that strengthens corepressor interaction with RARa is an example of this type of
ligand [24]. (2) Antagonists prevent helix H12 from adopting the active conforma-
tion, which disrupts the interaction surface with coactivators. The structural basis
of antagonism was provided by the structures of RARa LBD in complex with
the synthetic antagonist BMS614 [6] and those of RXRa LBD in complex with
LG100754 [52].

The first crystal structure of a functional heterodimer, RAR-RXR showed that
hydrophobic interactions play an important role in the relative positioning and sta-
bilization of the dimers [6]. RAR-RXR is a non-permissive heterodimer meaning
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Fig. 2.3 Dimers of RAR-RXR LBDs. The crystal structures of RAR-RXR heterodimers with
(a) both LBDs bound to agonists (ago) (RAR-9-cis-RA-RXR-9-cis-RA) (PDB ID: 1XDK), or
with (b) both LBDs bound to antagonists (antago) (RAR-BMS614-RXR-oleic acid) (PDB ID:
1DKF), or with (¢) one LBD bound to an agonist (RAR-all-trans-RA) and one LBD bound to an
antagonist (RXR-LG100754) (PDB ID: 3A9E) have been reported. RXR and RAR are shown as
ribbon in cyan and green, respectively with the C-terminal helices H12 shown in red. The coacti-
vator peptide (CoA) that binds to the agonist-bound NR is shown in pink

that RAR agonists can activate transcription upon binding to the RAR LBD even if
a ligand is not bound to the RXR LBD. In contrast, full responses to RXR ligands
only occur if the RAR LBD is occupied by an agonist [13]. Although transactiva-
tion will not occur, RXR ligands are able to bind to the heterodimer even in the
absence of RAR ligand [20].

The crystal structures of RAR-RXR heterodimers with both LBDs bound to
agonists (RAR-9¢c RA-RXR-9c RA) or of RAR-RXR with both LBDs bound to
antagonists (RAR-BMS614-RXR-oleic acid), or with one LBD bound to an ago-
nist (RAR-at RA) and one LBD bound to an antagonist (RXR-LG100754) have
been reported (Fig. 2.3) [6, 42, 52]. The observation that the RARa antagonist,
BMS614, prevented adoption of the open, active, RARa conformation in full
antagonist-occupied heterodimers indicated that helix HI2 in RARa occludes
the coactivator binding site when the receptor is not activated [6]. Previous stud-
ies showed that binding of LG100754 to RXRa led to transactivation mediated
by RAR, an effect referred to as the “phantom effect” [23]. Examination of the
RXR-LG100754 interactions indicated that this ligand acts as a true RXR antago-
nist; that is, it prevents helix H12 of the RXRa from folding into an agonist posi-
tion and instead, causes helix H12 to flip out to the solvent. The antagonism of
LG100754 on the RXR LBD does not affect dimerization of RXR with RAR nor
does it have any effect on RAR adopting an active conformation upon binding RA.

Taken together, structural studies have indicated that RAR can bind RA and
activate transcription, but only if it is interacting with RXR; RXR does not need
to have a ligand. On the other hand, RXR can bind a ligand even when RA is not
bound to RAR, but the complex will be transcriptionally inactive. Thus, the ‘phan-
tom ligand effect” of LG100754 is explained by the fact that direct binding of RA
to RAR induces coactivator binding and transcriptional activation independent of
RXR LBD antagonism [52].
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Development of the Field: Towards Structural
Characterization of Full-Length Proteins

The crystal structure of the PPARy-RXRa heterodimer bound to DNA provided
the first atomic resolution model of a full-length NR complex [7]. The solution
structures of RARa -RXRa-DNA were also reported by Rochel and colleagues in
2011. These last structures were obtained using a combination of different struc-
tural methods, including small angle X-ray (SAXS), neutron scattering, and elec-
tron microscopy methods. The cryo-EM structure of VDR-RXRa-DNA provided
another high resolution view of the complex that fitted the SAXs data [36]. The
work has produced a clear picture of receptor architecture and receptor interaction
dynamics with DNA and coregulators [48].

NRs have well-defined domains separated by unstructured linkers that make
them inherently flexible. Their N-terminal domains (NTD) are highly variable
in both length and sequence and characteristically, unfolded. The hinge domains
connecting the DBD to the LBD are also flexible (a requirement for the NRs to
recognize and adapt their conformations to DNA response elements of various
topologies). Additionally, their conformations are adaptable. These features make
it a challenge to determine the full-length structure of NR proteins using crystal-
lographic methods and, even more so, to trap a meaningful functional conformer
in the process [31]. As well, the quaternary structure of macromolecules can be
affected by crystal packing forces that create artifacts in the crystal structure [55].
Alternate approaches have been developed to address these challenges. Small-
angle scattering of X-rays (SAXS) is a method that is specifically tailored for the
structural analysis of multi-domain proteins with flexible linkers [44, 56]. SAXS
can determine the low-resolution, three-dimensional structure of a macromol-
ecule in close-to-native conditions in a time-resolved manner that also provides
information about the kinetics and dynamics of interactive elements and biologi-
cal processes. Data from NMR [16], mutagenesis [14], fluorescence resonance
energy transfer (FRET), or small angle neutron scattering (SANS) are often used
to complement and validate SAXS models [44]. The SANS method has the unique
capability of measuring diffraction data from samples where part of the multi-
component complex can be masked. Another promising method that provides
macromolecular solution structures at near atomic resolution is cryo-electron
microscopy (Cryo-EM). This method can attain high resolution while avoiding the
pitfalls of crystal packing artifacts.

Dynamics of functional complexes have been illustrated using proton exchange
methods [22]. In the case of the VDR-RXR-DNA complex, Zhang and colleagues
observed that binding of ligand to VDR or RXR causes changes within both the
cognate receptor LBD and the receptor partner LBD. A number of these changes
map to dimerization regions as well as more distant regions in the complex [61].
These studies suggest that crosstalk between the DBD and LBD promotes allos-
teric regulation of receptor binding with DNA and cofactors that ultimately tune
gene expression.
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Fig. 2.4 Molecular envelopes calculated from Small Angle X-ray Scattering data of full-length
complexes. a RAR-RXR-DRS5. b RAR-RXR-DR1. These envelopes correspond to the low res-
olution architecture of the complexes showing the positioning of the two main regions of the
dimer—the ligand-binding domains (LBDs) and the DNA-binding domains (DBDs) bound to the
corresponding DNA

Current State of the Field: Architecture of Full-Length
RAR/RXR/DNA Complexes

The atomic model of full-length PPARy-RXRa bound to a canonical DRI
response element [7] confirmed previous structural information obtained from
studies of isolated DBDs bound to DR1 [45] and PPARy-RXR LBD heterodi-
mer complexes [35, 59]. The PPAR monomer adopted a ‘closed’ conformation
with extensive interactions between the PPAR LBD and DBD and the RXR LBD,
hinge, and DBD [7]. In contrast, the RXR monomer had an ‘open’ conformation
with the hinge region extended to create a surface for PPAR binding. The hinge
regions adopt different conformations when different ligands are bound, whereas
the PPAR LBD exhibits an agonist conformation even when antagonists serve as
ligands. In all cases, the NTD was not visible in the electron density map and is
probably unfolded. Variable conformations of the hinge regions were observed
when comparing the three crystal structures of PPARy-RXRa in complex with dif-
ferent ligands. The functional correlation of the novel interdomain interactions is
limited to a single point mutation having an observable effect on transactivation.
The ‘closed’ conformation of the PPAR-RXR complex was not observed in
solution structure studies carried out using SAXS [48, 38]. Analysis of a number of
RXR-NR heterodimers bound to different response elements using SAXS, SANS,
and FRET clearly established the existence of a single, or largely dominant, con-
former in solution. In contrast with the crystal structure, the solution structures of
all heterodimers exhibited an extended asymmetric shape without additional inter-
domain contacts between the DBDs and LBDs beyond the connection through the
hinge regions. The calculated molecular envelopes of RAR-RXR complexes illus-
trate this important result (Fig. 2.4). For both complexes with DRS (Fig. 2.4a) and
DRI (Fig. 2.4b), the LBD dimers are positioned at the 5’ end of the target response
element with an orientation orthogonal to the DNA axis. The hinge regions are in
extended conformations permitting the ordering of the LBDs over the 5 half-site of
the DNA element. The pseudo-atomic models of RAR-RXR-DNA complexes have
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Fig. 2.5 Solution structures of full-length RAR-RXR-DNA complexes. (a, b) Two views of
the solution structure of RAR-RXR (NTDs are truncated from the NRs) in complex with DR1
(a) and DR5 (b) DNA response elements. RAR is shown in green, RXR in cyan, DNA in red,
and the coactivator peptide (CoA) interacting with RAR is shown in pink. The molecular models
were obtained by docking the crystal structures of the LBD heterodimer and the DBDs bound
to the DNA into the ab initio envelopes. The structures were refined as two rigid bodies using
experimental diffraction data. Note that in the DR1 complex, the RAR and RXR DBDs are posi-
tioned on opposite side on the DNA, whereas in the DR5 complex, the RAR and RXR DBDs are
positioned side by side on the DNA. ¢ Schematic view of the two complexes that summarizes the
main features of the structures: the absence of contacts between the DBDs and LBDs, the same
orientation of the LBD heterodimer despite the different polarities of the DBD-DNA, and relative
positions of the two DRs. In both cases, the relative position of the coactivator, represented by a
pink circle, is similar

been determined, combining the available crystal structures of the domains, the
SAXS analysis, and biophysical data (Fig. 2.5). Regardless of the different polar-
ity of the bound RAR/RXR heterodimers on DR5 or DRI, the full-length RAR-
RXR complexes exhibit a similar extended asymmetric conformation with the LBD
dimer positioned on top of the 5’ hexanucleotide (Fig. 2.5a for the RAR-RXR-DR1
and Fig. 2.5b for the RAR-RXR-DRS). In both cases, the two domains form an
L-shaped structure with the dimer LBD’s pseudo two-fold symmetry axis nearly
orthogonal to the DNA-bound DBDs. The LBDs can rotate around the two-fold
axis with the position controlled by the hinge domains that link to the DBDs. The
DBDs are anchored to the DNA response elements and their location is dictated by
the relative position of the binding motifs. Addition of one base pair to the spacer
sequence induces a shift of approximately 3.5 A and a rotation of 36° of the second
hexameric target. Different orientations of heterodimer LBDs on RAREs is a con-
sequence of the geometry dictated by the DNA sequence.

Cryo-EM provided a model of the VDR-RXR-DNA complex (frozen solution)
that fits perfectly with the SAXS solution data and gives near-atomic details for the
full-length heterodimer complex [36]. The results from these analyses confirmed the
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flexibility of the full-length receptors, pointed to a lack of secondary structure in the
connecting hinge domains of RXR, and underscored the importance of the hinge
region in the positioning of the LBDs. Altogether the structural studies suggest that
the discrepancy between the crystal and the solution structures are due to crystal
packing artifacts. The latter could also explain the structural similarity between ago-
nist and antagonist bound PPARs, a minor conformer present in the crystallization
solution being trapped and stabilized by crystal packing forces. The recently pub-
lished crystal structure of an HNF-4a homodimer bound to a consensus DRI [8]
revealed an asymmetric conformation that is very similar to the one observed in the
solution structure of the RAR-RXR-DR1 complex, with a similar positioning of the
LBDs and extended conformations of the hinges. The result confirms the concept of
common architecture for DNA bound NRs and its extension to homodimers.

The ability of NRs to modulate the expression of target genes results from a
combinatorial, coordinated, and sequentially orchestrated exchange between NRs
and their coregulators [40]. Several structural models have been proposed for the
binding of coactivators to a conserved anchoring cleft within the AF-2 in the LBD.
Based on the finding that the primary sequence of the cofactor binding domain usu-
ally exhibits two or three LXXLL binding motifs, it was postulated that either two
cofactors could bind to one heterodimer (RAR-RXR) or only one to both recep-
tors using two motifs (the “hat model”). In numerous crystal structure models of
LBD dimers in complex with short cofactor peptides, the stoichiometry is always
2:2, supporting both models. This observation may be an artifact arising from the
addition of excess peptide during crystallization and the low binding affinity of the
complex for the peptide compared to that of a larger coactivator domain. The first
unambiguous structural evidence for a 2:1 stoichiometry for the receptor-coactiva-
tor complex was provided by solution studies of full-length receptors (RAR-RXR
and VDR-RXR bound to DNA) bound to DNA and large coactivator protein frag-
ments [37, 48]. Each heterodimer was shown to bind only one coactivator protein
via the RXR partner. This preferential binding was controlled by affinity rather
than by steric exclusion. Indeed, RAR antagonists prevent coactivator binding,
whereas mutation of residues in the RXR coactivator binding cleft of RXR have no
effect on the stoichiometry. The molecular model resulting from the experimental
diffraction data indicate that the coactivator interacting domain is on one side of
the DNA opposite to the RXR LBD and DBDs (Fig. 2.5¢).

Functional Relevance

The solution structures of NRs bound to RARE reveal two key features (1) the
position of LBDs at the 5’ end of the target DNAs is conserved regardless of the
polarity of the response elements (2) the binding of only one coactivator mole-
cule per heterodimer through the RXR partner [48]. The combination of these two
features explains the key role of DNA in NR dependent transcription regulation.
The response elements direct the relative position of the LBDs and the DNA helix,
which in turn fixes the binding site of the cofactors (Fig. 2.6).
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RXR-RAR

Fig. 2.6 Functional implication of the conserved relative positions of RAR and the bound coac-
tivator. The model of RAR-RXR bound to the RARB2 promoter illustrates the importance of the
DNA sequence in orienting the protein complex and its association with coactivator to the tran-
scriptional initiation complex. To begin transcription, eukaryotic RNA polymerase II (RNA Pol
II) requires the general transcription factors (TFs) to be associated at the promoter. The promoter
contains a DNA sequence called the TATA box, located 25 nucleotides away from the site where
transcription is initiated (TSS), that is recognized by the TATA box binding protein (TBP). The
rest of the general transcription factors (TFs) as well as the Mediator assemble at the promoter.
Docking of the complex RAR-RXR-DNA on a nucleosome of the RARP2 promoter using exper-
imental DNA protection data shows that the position of the RAR LBD orients the bound coacti-
vator (CoA) allowing its association with the transcription machinery

In summary the molecular structures show that DNA binding controls the
architecture of the complexes. The polarity of the binding motifs and the num-
ber of dinucleotide spacers modulates rotation of the LBDs and the relative posi-
tions of the receptors. As a result, the environment of the accessible surface in the
active complex is different for each receptor. In addition to tethering the NR near
the transcription start site of target genes (Fig. 2.6), the architecture of the DNA
response element can also serve as an allosteric regulator of receptor function and
receptor association with coregulators [4, 32, 43, 51, 61].

The solution structures make it possible to address another functionally related
question: is there a sequential order for complex formation? The structural data
provide several snapshots of different functional states that suggest that the heter-
odimer forms first and then binds to DNA. Such a process, which combines two
DBDs for a simultaneous recognition of the response element, is an efficient way
to overcome the specificity problem with low affinity constants for each single
DBD. The structural data also show that the extended conformation is recognized
and maintained during the subsequent step, namely coactivator binding.

Future Directions

A combination of structural methods has elucidated the architecture of full-
length RAR-RXR complexes bound to DR5 or DR1 RARE. However, the pre-
cise structural organization of RAR-RXR-coregulator complexes on consensus
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and non-consensus DR and IR elements has not been determined. The polarity
of the DNA molecule raises several questions in relation to the specific sequence
of the target elements and their relative position on DR or IR. A complete under-
standing of the role and more specifically, the allosteric effects of DNA bind-
ing elements will require further data regarding the structure and organization of
individual domains and full length NRs bound to different elements in different
functional states. The capacity of NRs to specifically interact with numerous part-
ners, such as DNA and protein cofactors, has functional consequences which are
driven by mechanisms that are yet to be revealed. NRs and their coregulators are
subject to post-translational modifications, including phosphorylation, acetyla-
tion, methylation and sumoylation that allosterically influence their functions. The
physico-chemical details underlying the assembly and coordination of these large,
transient, dynamic macromolecular complexes and the impact of post-translational
modifications are yet unknown. Future studies will utilize multiple structural
approaches to assemble information on complexes in multiple functional states, a
first step towards “cellular structural biology”.
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