Chapter 2
Knowledge Representation Using the Atomspace

2.1 Introduction

CogPrime’s knowledge representation must be considered on two levels: implicit
and explicit. This chapter considers mainly explicit knowledge representation, with
afocus on representation of declarative knowledge. We will describe the Atom knowl-
edge representation, a generalized hypergraph formalism which comprises a specific
vocabulary of Node and Link types, used to represent declarative knowledge but also,
to a lesser extent, other types of knowledge as well. Other mechanisms of represent-
ing procedural, episodic, attentional, and intentional knowledge will be handled in
later chapters, as will the subtleties of implicit knowledge representation.

The AtomSpace Node and Link formalism is the most obviously distinctive aspect
of the OpenCog architecture, from the point of view of a software developer building
Al processes in the OpenCog framework. But yet, the features of CogPrime that
are most important, in terms of our theoretical reasons for estimating it likely to
succeed as an advanced AGI system, are not really dependent on the particulars of
the AtomSpace representation.

What’s important about the AtomSpace knowledge representation is mainly that
it provides a flexible means for compactly representing multiple forms of knowledge,
in a way that allows them to interoperate—where by “interoperate” we mean that e.g.
a fragment of a chunk of declarative knowledge can link to a fragment of a chunk of
attentional or procedural knowledge; or a chunk of knowledge in one category can
overlap with a chunk of knowledge in another category (as when the same link has
both a (declarative) truth value and an (attentional) importance value). In short, any
representational infrastructure sufficiently flexible to support

e compact representation of all the key categories of knowledge playing dominant
roles in human memory

e the flexible creation of specialized sub-representations for various particular sub-
types of knowledge in all these categories, enabling compact and rapidly manip-
ulable expression of knowledge of these subtypes

B. Goertzel et al., Engineering General Intelligence, Part 2, 31
Atlantis Thinking Machines 6, DOI: 10.2991/978-94-6239-030-0_2,
© Atlantis Press and the authors 2014

32 2 Knowledge Representation Using the Atomspace

e the overlap and interlinkage of knowledge of various types, including that repre-
sented using specialized sub-representations

will probably be acceptable for CogPrime’s purposes. However, precisely formulat-
ing these general requirements is tricky, and is significantly more difficult than simply
articulating a single acceptable representational scheme, like the current OpenCog
Atom formalism. The Atom formalism satisfies the relevant general requirements
and has proved workable from a practical software perspective.

In terms of the Mind-World Correspondence Principle introduced in Chap. 10
of Part 1, the important point regarding the Atom representation is that it must
be flexible enough to allow the compact and rapidly manipulable representation
of knowledge that has aspects spanning the multiple common human knowledge
categories, in a manner that allows easy implementation of cognitive processes that
will manifest the Mind-World Correspondence Principle in everyday human-like
situations. The actual manifestation of mind-world correspondence is the job of
the cognitive processes acting on the AtomSpace—the job of the AtomSpace is
to be an efficient and flexible enough representation that these cognitive processes
can manifest mind-world correspondence in everyday human contexts given highly
limited computational resources.

2.2 Denoting Atoms

First we describe the textual notation we’ll use to denote various sorts of Atoms
throughout the following chapters. The discussion will also serve to give some par-
ticular examples of cognitively meaningful Atom constructs.

2.2.1 Meta-Language

As always occurs when discussing (even partially) logic-based systems, when dis-
cussing CogPrime there is some potential for confusion between logical relationships
inside the system, and logical relationships being used to describe parts of the sys-
tem. For instance, we can state as observers that two Atoms inside CogPrime are
equivalent, and this is different from stating that CogPrime itself contains an Equiv-
alence relation between these two Atoms. Our formal notation needs to reflect this
difference.

Since we will not be doing any fancy mathematical analyses of CogPrime struc-
tures or dynamics here, there is no need to formally specify the logic being used for
the metalanguage. Standard predicate logic may be assumed.

So, for example, we will say things like

http://dx.doi.org/10.2991/978-94-6239-027-0_10

2.2 Denoting Atoms 33

(IntensionalInheritanceLink Ben monster) .TruthValue.strength = .5

This is a metalanguage statement, which means that the strength field of the
TruthValue object associated with the link (Intensionallnheritance Ben monster) is
equal to .5. This is different than saying

EquivalenceLink
ExOutLink
GetStrength
ExOutLink
GetTruthvalue
IntensionalInheritancelLink Ben monster
NumberNode 0.5

which refers to an equivalence relation represented inside CogPrime. The former
refers to an equals relationship observed by the authors of the book, but perhaps
never represented explicitly inside CogPrime.

In the first example above we have used the C++ convention

structure_variable_name.field_name

for denoting elements of composite structures; this convention will be stated formally
below.

In the second example we have used schema corresponding to TruthValue and
Strength; these schema extract the appropriate fields from the Atoms they’re applied
to, so that e.g.

ExOutLink
GetTruthvalue
A

returns the number
A.TruthValue
Following a convention from mathematical logic, we will also sometimes use the special symbol

to mean “implies in the metalanguage”. For example, the first-order PLN deductive
inference strength rule may be written

InheritanceLink A B <sAB>
InheritanceLink B C <sBC>

InheritanceLink A C <sAC>
where

sAC = sAB sBC + (1-sAB) (sC - sB sBC) / (1- sB)

This is different from saying

34 2 Knowledge Representation Using the Atomspace

ForAll $A, $B, C, SsAB, $sBC, $sAC

ExtensionalImplicationLink_ HOJ
AND
InheritanceLink S$A $B <$sAB>
InheritanceLink $B $C <$sBC>
AND
InheritanceLink S$A $C <$sAC>
$sAC = S$sAB $sBC + (1-$sAB) ($sC - $sB $sBC) / (1- $sB)

which is the most natural representation of the independence-based PLN deduction
rule (for strength-only truth values) as a logical statement within CogPrime. In the
latter expression the variables $A, $sAB, and so forth represent actual Variable Atoms
within CogPrime. In the former expression the variables represent concrete, non-
Variable Atoms within CogPrime, which however are being considered as variables
within the metalanguage.

(As explained in the PLN book, a link labeled with “HOJ” refers to a “higher
order judgment”, meaning a relationship that interprets its relations as entities with
particular truth values. For instance,

ImplicationLink_HOJ
Inh $X stupid <.9>
Inh $X rich <.9>

means that if (Inh $X stupid) has a strength of .9, then (Inh $X rich) has a strength
of .9).

2.2.2 Denoting Atoms

Atoms are the basic objects making up CogPrime knowledge. They come in vari-
ous types, and are associated with various dynamics, which are embodied in Mind
Agents. Generally speaking Atoms are endowed with TruthValue and AttentionValue
objects. They also sometimes have names, and other associated Values as previously
discussed. In the following subsections we will explain how these are notated, and
then discuss specific notations for Links and Nodes, the two types of Atoms in the
system.

2.2.2.1 Names

In order to denote an Atom in discussion, we have to call it something. Relatedly but
separately, Atoms may also have names within the CogPrime system. (As a matter
of implementation, in the current OpenCog version, no Links have names; whereas,
all Nodes have names, but some Nodes have a null name, which is conceptually the
same as not having a name.)

2.2 Denoting Atoms 35

(name, type) pairs must be considered as unique within each Unit within a
OpenCog system, otherwise they can’t be used effectively to reference Atoms. It’s
OK if two different OpenCog Units both have SchemaNodes named “+”, but not if
one OpenCog Unit has two SchemaNodes both named “+”—this latter situation is
disallowed on the software level, and is assumed in discussions not to occur.

Some Atoms have natural names. For instance, the SchemaNode correspond-
ing to the elementary schema function 4+ may quite naturally be named “+”. The
NumberNode corresponding to the number .5 may naturally be named “.5”, and
the CharacterNode corresponding to the character ¢ may naturally be named “c”.
These cases are the minority, however. For instance, a SpecificEntityNode represent-
ing a particular instance of + has no natural name, nor does a SpecificEntityNode
representing a particular instance of c.

Names should not be confused with Handles. Atoms have Handles, which are
unique identifiers (in practice, numbers) assigned to them by the OpenCog core
system; and these Handles are how Atoms are referenced internally, within OpenCog,
nearly all the time. Accessing of Atoms by name is a special case—not all Atoms
have names, but all Atoms have Handles. An example of accessing an Atom by name
is looking up the CharacterNode representing the letter “c” by its name “c”. There
would then be two possible representations for the word “cat”:

1. this word might be associated with a ListLink—and the ListLink corresponding
to “cat” would be a list of the Handles of the Atoms of the nodes named “c”, “a”,
and “t”.

2. for expedience, the word might be associated with a WordNode named “cat”.

In the case where an Atom has multiple versions, this may happen for instance if the
Atom is considered in a different context (via a ContextLink), each version has a Ver-
sionHandle, so that accessing an AtomVersion requires specifying an AtomHandle
plus a VersionHandle. See Chap. 1 for more information on Handles.

OpenCog never assigns Atoms names on its own; in fact, Atom names are assigned
only in the two sorts of cases just mentioned:

1. Via preprocessing of perceptual inputs (e.g. the names of NumberNode, Charac-
terNodes).

2. Via hard-wiring of names for SchemaNodes and PredicateNodes corresponding
to built-in elementary schema (e.g. +, AND, Say).

If an Atom A has a name n in the system, we may write
A.name = n

On the other hand, if we want to assign an Atom an external name, we may make
a meta-language assertion such as

L1l := (InheritanceLink Ben animal)

indicating that we decided to name that link L1 for our discussions, even though
inside OpenCog it has no name.

http://dx.doi.org/10.2991/978-94-6239-030-0_1

36 2 Knowledge Representation Using the Atomspace

In denoting (nameless) Atoms we may use arbitrary names like L1. This is more
convenient than using a Handle based notation which Atoms would be referred to as
1, 3433322, etc.; but sometimes we will use the Handle notation as well.

Some ConceptNodes and conceptual PredicateNode or SchemaNodes may cor-
respond with human-language words or phrases like cat, bite, and so forth. This will
be the minority case; more such nodes will correspond to parts of human-language
concepts or fuzzy collections of human-language concepts. In discussions in this
book, however, we will often invoke the unusual case in which Atoms correspond to
individual human-language concepts. This is because such examples are the easiest
ones to write about and discuss intuitively. The preponderance of named Atoms in
the examples in the book implies no similar preponderance of named Atoms in the
real OpenCog system. It is merely easier to talk about a hypothetical Atom named
“cat” than it is about a hypothetical Atom with Handle 434. It is not impossible that
a OpenCog system represents “cat” as a single ConceptNode, but it is just as likely
that it will represent “cat” as a map composed of many different nodes without any
of these having natural names. Each OpenCog works out for itself, implicitly, which
concepts to represent as single Atoms and which in distributed fashion.

For another example,

ListLink
CharacterNode "c"
CharacterNode "a"
CharacterNode "t"

corresponds to the character string
("C“, "a“, llt")

and would naturally be named using the string cat. In the system itself, however, this
ListLink need not have any name.

2.2.2.2 Types

Atoms also have types. When it is necessary to explicitly indicate the type of an
atom, we will use the keyword Type, as in

A.Type = InheritanceLink
N_345.Type = ConceptNode
On the other hand, there is also a built-in schema HasType which lets us say
EvaluationLink HasType A InheritanceLink
EvaluationLink HasType N_345 ConceptNode

This covers the case in which type evaluation occurs explicitly in the system,
which is useful if the system is analyzing its own emergent structures and dynamics.

2.2 Denoting Atoms 37

Another option currently implemented in OpenCog is to explicitly restrict the
type of a variable using TypedvVariableLink such as follows

TypedvVariableLink
VariableNode $X
VariableTypeNode "ConceptNode"

Note also that we will frequently remove the suffix Link or Node from their
type name, such as

Inheritance
Concept A
Concept B

instead of

InheritanceLink
ConceptNode A
ConceptNode B

2.2.2.3 Truth Values

The truth value of an atom is a bundle of information describing how true the Atom
is, in one of several different senses depending on the Atom type. It is encased in a
TruthValue object associated with the Atom. Most of the time, we will denote the
truth value of an atom in <>’s following the expression denoting the atom. This
very handy notation may be used in several different ways.

A complication is that some Atoms may have CompositeTruthValues, which con-
sist of different estimates of their truth value made by different sources, which for
whatever reason have not been reconciled (maybe no process has gotten around to
reconciling them, maybe they correspond to different truth values in different con-
texts and thus logically need to remain separate, maybe their reconciliation is being
delayed pending accumulation of more evidence, etc.). In this case we can still assume
that an Atom has a default truth value, which corresponds to the highest-confidence
truth value that it has, in the Universal Context.

Most frequently, the notation is used with a single number in the brackets, e.g.

A <.4>

to indicate that the atom A has truth value .4; or

IntensionalInheritanceLink Ben monster <.5>

to indicate that the Intensionallnheritance relation between Ben and monster has truth
value strength .5. In this case, <tv> indicates (roughly speaking) that the truth value
of the atom in question involves a probability distribution with a mean of tv. The
precise semantics of the strength values associated with OpenCog Atoms is described
in Probabilistic Logic Networks (see Chap. 16). Please note, though: This notation
does not imply that the only data retained in the system about the distribution is the
single number .5.

http://dx.doi.org/10.2991/978-94-6239-030-0_16

38 2 Knowledge Representation Using the Atomspace

If we want to refer to the truth value of an Atom A in the context C, we can use
the construct

ContextLink <truth value>
C
A

Sometimes, Atoms in OpenCog are labeled with two truth value components as
defined by PLN: strength and weight-of-evidence. To denote these two components,
we might write

IntensionalInheritancelLink Ben scary <.9,.1>

indicating that there is arelatively small amount of evidence in favor of the proposition
that Ben is very scary.

We may also put the TruthValue indicator in a different place, e.g. using indent
notation,

IntensionalInheritanceLink <.9,.1>
Ben
scary

This is mostly useful when dealing with long and complicated constructions.
If we want to denote a composite truth value (whose components correspond to
different “versions” of the Atom), we can use a list notation, e.g.

IntensionalInheritance (<.9,.1>, <.5,.9> [h,123],<.6,.7> [c,655])
Ben
scary

where e.g.
<.5,.9> [h,123]

denotes the TruthValue version of the Atom indexed by Handle 123. The h denotes
that the AtomVersion indicated by the VersionHandle h,123 is a Hypothetical Atom,
in the sense described in the PLN book. Some versions may not have any index
Handles.

The semantics of composite TruthValues are described in the PLN book, but
roughly they are as follows. Any version not indexed by a VersionHandle is a “primary
TruthValue” that gives the truth value of the Atom based on some body of evidence. A
version indexed by a VersionHandle is either contextual or hypothetical, as indicated
notationally by the c or h in its VersionHandle. So, for instance, if a TruthValue
version for Atom A has VersionHandle h,123 that means it denotes the truth value
of Atom A under the hypothetical context represented by the Atom with handle 123.
If a TruthValue version for Atom A has VersionHandle ¢,655 this means it denotes
the truth value of Atom A in the context represented by the Atom with Handle 655.

Alternately, truth values may be expressed sometimes in <L,U,b> or <L,U,b,N>
format, defined in terms of indefinite probability theory as defined in the PLN book
and recalled in Chap. 16. For instance,

http://dx.doi.org/10.2991/978-94-6239-030-0_16

2.2 Denoting Atoms 39

IntensionalInheritanceLink Ben scary <.7,.9,.8,20>

has the semantics that There is an estimated 80% chance that after 20 more
observations have been made, the estimated strength of the link will be in the interval
(.7,.9).

The notation may also be used to specify a Truth Value probability distribution, e.g.

A <g(5,7,12)>

would indicate that the truth value of A is given by distribution g with parameters
(5,7, 12), or

A <M>

where M is a table of numbers, would indicate that the truth value of A is approximated
by the table M.

The <> notation for truth value is an unabashedly incomplete and ambiguous
notation, but it is very convenient. If we want to specify, say, that the truth value
strength of IntensionallnheritanceLink Ben monster is in fact the number .5, and no
other truth value information is retained in the system, then we need to say

(Intensional Inheritance Ben monster) .TruthValue

= [(strength, .5)]

(where a hashtable form is assumed for TruthValue objects, i.e. a list of name-value
pairs). But this kind of issue will rarely arise here and the <> notation will serve
us well.

2.2.2.4 Attention Values

The AttentionValue object associated with an Atom does not need to be notated
nearly as often as truth value. When it does however we can use similar notational
methods.

AttentionValues may have several components, but the two critical ones are called
short-term importance (STI) and long-term importance (LTI). Furthermore, multiple
STI values are retained: for each (Atom, MindAgent) pair there may be a Mind-
Agent-specific STI value for that Atom. The pragmatic import of these values will
become clear in a later chapter when we discuss attention allocation.

Roughly speaking, the long-term importance is used to control memory usage:
when memory gets scarce, the atoms with the lowest LTI value are removed. On
the other hand, the short-term importance is used to control processor time alloca-
tion: MindAgents, when they decide which Atoms to act on, will generally, but not
only, choose the ones that have proved most useful to them in the recent past, and
additionally those that have been useful for other MindAgents in the recent past.

We will use the double bracket < <> > to denote attention value (in the rare cases
where such denotation is necessary). So, for instance,

40 2 Knowledge Representation Using the Atomspace

Cow_7 <<.5>>

will mean the node Cow_7 has an importance of .5; whereas,

Cow_7 <<STI=.1, LTI = .8>>
or simply
Cow_7 <<.1, .8>>

will mean the node Cow_7 has short-term importance = .1 and long-term impor-
tance=.8 .
Of course, we can also use the style

(Intensional InheritanceLink Ben monster) .AttentionValue
=[(sTI,.1l), (LTI, .8)]

where appropriate.

2.2.2.5 Links

Links are represented using a simple notation that has already occurred many times in this book.
For instance,

Inheritance A B
Similarity A B

Note that here the symmetry or otherwise of the link is not implicit in the notation.
SimilarityLinks are symmetrical, InheritanceLinks are not. When this distinction is
necessary, it will be explicitly made. WIKISOURCE:FunctionNotation

2.3 Representing Functions and Predicates

SchemaNodes and PredicateNodes contain functions internally; and Links may also
usefully be considered as functions. We now briefly discuss the representations and
notations we will use to indicate functions in various contexts.

Firstly, we will make some use of the currying notation drawn from combinatory
logic, in which adjacency indicates function application. So, for instance, using
currying,

f x

means the function f evaluated at the argument x; and (f x y) means (f(x))(y). If
we want to specify explicitly that a block of terminology is being specified using
currying we will use the notation @[expression], for instance

2.3 Representing Functions and Predicates 41

Q[f x vy z]
means
((£(x)) (y)) (2)

We will also frequently use conventional notation to refer to functions, such as
f(x,y). Of course, this is consistent with the currying convention if (x,y) is interpreted
as a list and f is then a function that acts on 2-element lists. We will have many other
occasions than this to use list notation.

Also, we will sometimes use a non-curried notation, most commonly with Links,
so that e.g.

InheritancelLink x vy

does not mean a curried evaluation but rather means InheritanceLink(X,y).

2.3.0.6 Execution Output Links
In the case where f refers to a schema, the occurrence of the combination f x in the
system is represented by

ExOutLink f x

or graphically

Note that, just as when we write
£ (g x)
we mean to apply f to the result of applying g to X, similarly when we write
ExOutLink f (ExOutLink g x)
we mean the same thing. So for instance
EvaluationLink (ExOutLink g x) y <.8>

means that the result of applying g to x is a predicate r, so that r(y) evaluates to True
with strength .8.

This approach, in its purest incarnation, does not allow multi-argument schemata.
Now, multi-argument schemata are never actually necessary, because one can use
argument currying to simulate multiple arguments. However, this is often awkward,
and things become simpler if one introduces an explicit tupling operator, which we
call ListLink. Simply enough,

ListLink Al ... An

denotes an ordered list (A1, ..., An)

42 2 Knowledge Representation Using the Atomspace

2.3.1 Execution Links

ExecutionLinks give the system an easy way to record acts of schema execution.
These are ternary links of the form:

SchemaNode: S
Atom: A, B
ExecutionLink S A B

In words, this says the procedure represented by SchemaNode S has taken input
A and produced output B.

There may also be schemata that do not take output, or do not take input. But
these are treated as PredicateNodes, to be discussed below; their activity is recorded
by EvaluationLinks, not ExecutionLinks.

The TruthValue of an ExecutionLink records how frequently the result encoded
in the ExecutionLink occurs. Specifically,

e the TruthValue of (ExecutionLink S A B) tells you the probability of getting B as
output, given that you have run schema S on input A

e the TruthValue of (ExecutionLink S A) tells you the probability that if S is run, it
is run on input A.

Often it is useful to record the time at which a given act of schema execution was
carried out; in that case one uses the atTime link, writing e.g.

atTimeLink
T
ExecutionLink S A B

where T is a TimeNode, or else one uses an implicit method such as storing the time-
stamp of the ExecutionLink in a core-level data-structure called the TimeServer. The
implicit method is logically equivalent to explicitly using atTime, and is treated the
same way by PLN inference, but provides significant advantages in terms of memory
usage and lookup speed.

For purposes of logically reasoning about schema, it is useful to create binary
links representing ExecutionLinks with some of their arguments fixed. We name
these as follows:

ExecutionLinkl A B means: X so that ExecutionLink X A B
ExecutionLink2 A B means: X so that ExecutionLink A X B
ExecutionLink3 A B means: X so that ExecutionLink A B X

Finally, a SchemaNode may be associated with a structure called a Graph.
Where S is a SchemaNode,

Graph(S) = { (x,y): ExecutionLink S x vy }

2.3 Representing Functions and Predicates 43

Sometimes, the graph of a SchemaNode may be explicitly embodied as a Con-
ceptNode; other times, it may be constructed implicitly by a MindAgent in analyzing
the SchemaNode (e.g. the inference MindAgent).

Note that the set of ExecutionLinks describing a SchemaNode may not define
that SchemaNode exactly, because some of them may be derived by inference. This
means that the model of a SchemaNode contained in its ExecutionLinks may not
actually be a mathematical function, in the sense of assigning only one output to
each input. One may have

ExecutionLink S X A <.5>
ExecutionLink S X B <.5>

meaning that the system does not know whether S(X) evaluates to A or to B. So
the set of ExecutionLinks modeling a SchemaNode may constitute a non-function
relation, even if the schema inside the SchemaNode is a function.

Finally, what of the case where f x represents the action of a built-in system func-
tion f on an argument x? This is an awkward case that would not be necessary if
the CogPrime system were revised so that all cognitive functions were carried out
using SchemaNodes. However, in the current CogPrime version, where most cogni-
tive functions are carried out using C++ MindAgent objects, if we want CogPrime to
study its own cognitive behavior in a statistical way, we need BuiltiInSchemaNodes
that refer to MindAgents rather than to ComboTrees (or else, we need to represent
MindAgents using ComboTrees, which will become practicable once we have a suf-
ficiently efficient Combo interpreter). The semantics here is thus basically the same
as where f refers to a schema. For instance we might have

ExecutionLink FirstOrderInferenceMindAgent (L1, L2) L3

where L1, L2 and L3 are links related by

Ll
L2

L3

according to the first-order PLN deduction rules.

2.3.1.1 Predicates

Predicates are related but not identical to schema, both conceptually and notation-
ally. PredicateNodes involve predicate schema which output TruthValue objects. But
there is a difference between a SchemaNode embodying a predicate schema and a
PredicateNode, which is that a PredicateNode doesn’t output a TruthValue, it adjusts
its own TruthValue as a result of the output of its own internal predicate schema.

The record of the activity of a PredicateNode is given not by an ExecutionLink
but rather by an:

44 2 Knowledge Representation Using the Atomspace

EvaluationLink P A <tv>

where P is a PredicateNode, A is its input, and <tv> is the truth value assumed by
the EvaluationLink corresponding to the PredicateNode being fed the input A. There
is also the variant

EvaluationLink P <tv>

for the case where the PredicateNode P embodies a schema that takes no inputs.'
A simple example of a PredicateNode is the predicate GreaterThan. In this case
we have, for instance

EvaluationLink GreaterThan 5 6 <0>
EvaluationLink GreaterThan 5 3 <1>

and we also have:

EquivalenceLink
GreaterThan
ExOutLink

And
ListLink
ExOutLink
Not
LessThan
ExOutLink
Not
EqualTo

Note how the variables have been stripped out of the expression, see the PLN book for
more explanation about that. We will also encounter many commonsense-semantics
predicates such as isMale, with e.g.

EvaluationLink isMale Ben_Goertzel <1>

Schemata that return no outputs are treated as predicates, and handled using
EvaluationLinks. The truth value of such a predicate, as a default, is considered
as True if execution is successful, and False otherwise.

And, analogously to the Graph operator for SchemaNodes, we have for Predi-
cateNodes the SatisfyingSet operator, defined so that the SatisfyingSet of a predicate
is the set whose members are the elements that satisfy the predicate. Formally, that
is:

S = SatisfyingSet P

I Actually, if P does take some inputs, EvaluationLink P <tv> is defined too and tv cor-
responds to the average of P(X) over all inputs X, this is explained in more depth in the PLN
book.

2.3 Representing Functions and Predicates 45

means

TruthValue (MemberLink X S)

equals

TruthValue (EvaluationLink P X)

This operator allows the system to carry out advanced logical operations like higher-
order inference and unification.

2.3.2 Denoting Schema and Predicate Variables

CogPrime sometimes uses variables to represent the expressions inside schemata and
predicates, and sometimes uses variable-free, combinatory-logic-based representa-
tions. There are two sorts of variables in the system, either of which may exist either
inside compound schema or predicates, or else in the AtomSpace as VariableNodes:

It is important to distinguish between two sorts of variables that may exist in
CogPrime:

e Variable Atoms, which may be quantified (bound to existential or universal quan-
tifiers) or unquantified.

e Variables that are used solely as function-arguments or local variables inside the
“Combo tree” structures used inside some ProcedureNodes (PredicateNodes or
SchemaNodes) (to be described below), but are not related to Variable Atoms.

Examples of quantified variables represented by Variable Atoms are $X and $Y in:

ForAll $X <.0001>
ExtensionalImplicationLink
ExtensionalInheritanceLink $X human
ThereExists $Y
AND
ExtensionalInheritanceLink $Y human
EvaluationLink parent_of (S$X, $Y)

An example of an unquantified Variable Atom is $X in

ExtensionalImplicationLink <.3>
ExtensionalInheritanceLink $X human
ThereExists $Y

AND
ExtensionalInheritancelLink $Y human
EvaluationLink parent_of (X, SY)

This ImplicationLink says that 30 % of humans are parents: a more useful state-
ment than the ForAll Link given above, which says that it is very very unlikely to be
true that all humans are parents.

We may also say, for instance,

46 2 Knowledge Representation Using the Atomspace

SatisfyingSet(EvaluationLink eats (cat, $X))

to refer to the set of X so that eats(cat, X).
On the other hand, suppose we have the implication

Implication
Evaluation f $X
Evaluation
f
ExOut reverse $X

where f is a PredicateNode embodying a mathematical operator acting on pairs of
NumberNodes, and reverse is an operator that reverses a list. So, this implication says
that the f predicate is commutative. Now, suppose that f is grounded by the formula

f(a,b) = (a >b - 1)

embodied in a Combo Tree object (which is not commutative but that is not the
point), stored in the ProcedureRepository and linked to the PredicateNode for f.
These f-internal variables, which are expressed here using the letters a and b, are not
VariableNodes in the CogPrime AtomTable. The notation we use for these within
the textual Combo language, that goes with the Combo Tree formalism, is to replace
a and b in this example with #1 and #2, so the above grounding would be denoted

f -> (#1 > #2 - 1)

version, it is assumed that type restrictions are always crisp, not probabilistically
truth-valued. This assumption may be revisited in a later version of the system.

2.3.2.1 Links as Predicates

Itis conceptually important to recognize that CogPrime link types may be interpreted
as predicates. For instance, when one says

InheritanceLink cat animal <.8>

indicating an Inheritance relation between cat and animal with a strength .8, effec-
tively one is declaring that one has a predicate giving an output of .8. Depending on
the interpretation of InheritanceLink as a predicate, one has either the predicate

InheritanceLink cat $X
acting on the input

animal

or the predicate
InheritanceLink $X animal

acting on the input

2.3 Representing Functions and Predicates 47

cat

or the predicate
InheritanceLink $X S$Y
acting on the list input
(cat, animal)

This means that, if we wanted to, we could do away with all Link types except
OrderedLink and UnorderedLink, and represent all other Link types as PredicateN-
odes embodying appropriate predicate schema.

This is not the approach taken in the current codebase. However, the situation is
somewhat similar to that with CIM-Dynamics:

e In future we will likely create a revision of CogPrime that regularly revises its own
vocabulary of Link types, in which case an explicit representation of link types as
predicate schema will be appropriate.

e In the shorter term, it can be useful to treat link types as virtual predicates, meaning
that one lets the system create SchemaNodes corresponding to them, and hence
do some meta level reasoning about its own link types.

2.3.3 Variable and Combinator Notation

One of the most important aspects of combinatory logic, from a CogPrime perspec-
tive, is that it allows one to represent arbitrarily complex procedures and patterns
without using variables in any direct sense. In CogPrime, variables are optional, and
the choice of whether or how to use them may be made (by CogPrime itself) on a
contextual basis.

This section deals with the representation of variable expressions in a variable-
free way, in a CogPrime context. The general theory underlying this is well-known,
and is usually expressed in terms of the elimination of variables from lambda calculus
expressions (lambda lifting). Here we will not present this theory but will restrict
ourselves to presenting a simple, hopefully illustrative example, and then discussing
some conceptual implications.

2.3.3.1 Why Eliminating Variables is So Useful

Before launching into the specifics, a few words about the general utility of variable-
free expression may be worthwhile.

Some expressions look simpler to the trained human eye with variables, and some
look simpler without them. However, the main reason why eliminating all variables

48 2 Knowledge Representation Using the Atomspace

from an expression is sometimes very useful, is that there are automated program-
manipulation techniques that work much more nicely on programs (schemata, in
CogPrime lingo) without any variables in them.

As will be discussed later (e.g. Chap. 15 on evolutionary learning, although the
same process is also useful for supporting probabilistic reasoning on procedures), in
order to mine patterns among multiple schema that all try to do the same (or related)
things, we want to put schema into a kind of “hierarchical normal form”. The normal
form we wish to use generalizes Holman’s Elegant Normal Form (which is discussed
in Moshe Looks’ PhD thesis) to program trees rather than just Boolean trees.

But, putting computer programs into a useful, nicely-hierarchically-structured
normal form is a hard problem—it requires one to have a pretty nice and compre-
hensive set of program transformations.

But the only general, robust, systematic program transformation methods that
exist in the computer science literature require one to remove the variables from
one’s programs, so that one can use the theory of functional programming (which
ties in with the theory of monads in category theory, and a lot of beautiful related
math).

In large part, we want to remove variables so we can use functional programming
tools to normalize programs into a standard and pretty hierarchical form, in order to
mine patterns among them effectively.

However, we don’t always want to be rid of variables, because sometimes, from a
logical reasoning perspective, theorem-proving is easier with the variables in there.
(Sometimes not.)

So, we want to have the option to use variables, or not.

2.3.3.2 An Example of Variable Elimination

Consider the PredicateNode

AND
InheritanceLink X cat
eats X mice

Here we have used a syntactically sugared representation involving the variable X.
How can we get rid of the X?
Recall the C combinator (from combinatory logic), defined by

CcCfxy=~fyx

Using this tool,
InheritanceLink X cat
becomes
C InheritanceLink cat X

and

http://dx.doi.org/10.2991/978-94-6239-030-0_15

2.3 Representing Functions and Predicates 49

eats X mice
becomes

C eats mice X

so that overall we have

AND
C InheritanceLink cat
C eats mice

where the C combinators essentially give instructions as to where the virtual argument
X should go.

In this case the variable-free representation is basically just as simple as the
variable-based representation, so there is nothing to lose and a lot to gain by getting
rid of the variables. This won’t always be the case—sometimes execution efficiency
will be significantly enhanced by use of variables.

WIKISOURCE:Typelnheritance

2.3.4 Inheritance Between Higher-Order Types

Next, this section deals with the somewhat subtle matter of Inheritance between
higher-order types. This is needed, for example, when one wants to cross over or
mutate two complex schemata, in an evolutionary learning context. One encounters
questions like: When mutation replaces a schema that takes integer input, can it
replace it with one that takes general numerical input? How about vice versa? These
questions get more complex when the inputs and outputs of schema may themselves
be schema with complex higher-order types. However, they can be dealt with ele-
gantly using some basic mathematical rules.

Denote the type of amapping from type Ttotype S,as T -> S. Use the shorthand
inh to mean inherits from. Then the basic rule we use is that

Tl -> S1 inh T2 -> S2
iff

T2 inh T1
S1 inh S2

In other words, we assume higher-order type inheritance is countervariant. The
reason is that, if R1 = T1 -> S1 is to be a special case of R2 = T2 -> S2, then one
has to be able to use the latter everywhere one uses the former. This means that any
input R2 takes, has to also be taken by R1 (hence T2 inherits from T1). And it means
that the outputs R2 gives must be able to be accepted by any function that accepts
outputs of R1 (hence S1 inherits from S2).

50 2 Knowledge Representation Using the Atomspace

This type of issue comes up in programming language design fairly frequently, and
there are a number of research papers debating the pros and cons of countervariance
versus covariance for complex type inheritance. However, for the purpose of schema
type inheritance in CogPrime, the greater logical consistency of the countervariance
approach holds sway.

For instance, in this approach, INT -> INT is not a subtype of NO -> INT
(where NO denotes FLOAT), because NO -> INT is the type that includes all func-
tions which take a real and return an int, and an INT -> INT does not take a real.
Rather, the containment is the other way around: every NO -> INT function is an
example of an INT -> INT function. For example, consider the NO -> INT that
takes every real number and rounds it up to the nearest integer. Considered as an
INT -> INT function, this is simply the identity function: it is the function that
takes an integer and rounds it up to the nearest integer.

Of course, tupling of types is different, it’s covariant. If one has an ordered pair
whose elements are of different types, say (T1, T2),then we have

(T1 , S1) inh (T2, S2)
iff

Tl inh T2
S1 inh S2

As a mnemonic formula, we may say
(general -> specific) inherits from (specific -> general)
(specific, specific) inherits from (general, general)

In schema learning, we will also have use for abstract type constructions, such as
(T1, T2) where T1 inherits from T2

Notationally, we will refer to variable types as Xv1, Xv2, etc., and then denote
the inheritance relationships by using numerical indices, e.g. using

[1 inh 2]
to denote that
Xvl inh Xv2
So for example,
(INT, VOID) inh (Xvl, Xv2)

is true, because there are no restrictions on the variable types, and we can just assign
Xvl =INT, Xv2 = VOID.
On the other hand,

(INT, VOID) inh (Xvl, Xv2), [1 inh 2]

2.3 Representing Functions and Predicates 51

is false because the restriction Xv1 inh Xv2 is imposed, but it’s not true that INT inh
VOID.

The following list gives some examples of type inheritance, using the elementary
types INT, FLOAT (FL), NUMBER (NO), CHAR and STRING (STR), with the
elementary type inheritance relationships

INT inh NUMBER

FLOAT inh NUMBER

CHAR inh STRING

(NO -> FL) inh (INT -> FL)

e (FL-> INT) inh (FL -> NO)

e ((INT->FL)-> (FL-> INT))inh ((NO-> FL)-> (FL-> NO)).

2.3.5 Advanced Schema Manipulation

Now we describe some special schema for manipulating schema, which seem to be
very useful in certain contexts.

2.3.5.1 Listification

First, there are two ways to represent n-ary relations in CogPrime’s Atom level
knowledge representation language: using lists as in

f list (x1, ..., xn)

or using currying as in

f _curry x1 ... xn

To make conversion between list and curried forms easier, we have chosen to
introduce special schema (combinators) just for this purpose:

listify £ = £ _list so that f_list (x1, ..., xn) = f x1 ... xn
unlistify listify £ = £
For instance
kick_curry Ben Ken
denotes
(kick_curry Ben) Ken

which means that kick is applied to the argument Ben to yield a predicate schema
applied to Ken. This is the curried style. The list style is

kick_List (Ben, Ken)

52 2 Knowledge Representation Using the Atomspace

where kick is viewed as taking as an argument the List (Ben, Ken). The conversion
between the two is done by

listify kick_curry = kick_ list
unlistify kick_list = kick_curry

As a more detailed example of unlistification, let us utilize a simple mathemat-
ical example, the function (X — 1)2. If we use the notations—and pow to denote
SchemaNodes embodying the corresponding operations, then this formula may be
written in variable-free node-and-link form as

ExOutLink
pow
ListLink
ExOutLink

ListLink
X
1
2

But to get rid of the nasty variable X, we need to first unlistify the functions pow
and—, and then apply the C and B combinators a couple times to move the variable
X to the front. The B combinator (see Combinatory Logic REF) is recalled below:

Bfgh=f (gh)

This is accomplished as follows (using the standard convention of left-associativity
for the application operator, denoted @ in the tree representation given in Sect. Execution
Output Links)

pow(-(x, 1), 2)

unlistify pow (-(x, 1) 2)

C (unlistify pow) 2 (-(x,1))

C (unlistify pow) 2 ((unllstlfy -) x 1)

C (unlistify pow) 2 (C (unlistify -) 1 x)

B (C (unlistify pow) 2) (C (unlistify -) 1) x

yielding the final schema
B (C (unlistify pow) 2) (C (unlistify -) 1)

By the way, a variable-free representation of this schema in CogPrime would look
like

ExOutLink
ExOutLink
B
ExOutLink
ExOutLink
C

2.3 Representing Functions and Predicates 53

ExOutLink
unlistify
pow

2
ExOutLink
ExOutLink
C
ExOutLink
unlistify

1

The main thing to be observed is that the introduction of these extra schema lets
us remove the variable X. The size of the schema is increased slightly in this case,
but only slightly—an increase that is well—justified by the elimination of the many
difficulties that explicit variables would bring to the system. Furthermore, there is a
shorter rendition which looks like

ExOutLink
ExOutLink
B
ExOutLink
ExOutLink
C
pow_curried
2
ExOutLink
ExOutLink
C
-_curried
1

This rendition uses alternate variants of—and pow schema, labeled— _curried
and pow_curried, which do not act on lists but are curried in the manner of
combinatory logic and Haskell. It is 13 lines whereas the variable-bearing version is
9 lines, a minor increase in length that brings a lot of operational simplification.

2.3.5.2 Argument Permutation

In dealing with List relationships, there will sometimes be use for an argument-
permutation operator, let us call it P, defined as follows

(Pp f) (vi, ..., vn) = £ (p (vl, ..., vn))

where p is a permutation on n letters. This deals with the case where we want to say,
for instance that

Equivalence parent (x,y) child(y,x)

54 2 Knowledge Representation Using the Atomspace
Instead of positing variable names x and y that span the two relations parent

(X, y) and child (y, x), what we can instead say in this example is

Equivalence parent (P {2,1} child)

For the case of two-argument functions, argument permutation is basically doing
on the list level what the C combinator does in the curried function domain. On the
other hand, in the case of n-argument functions with n > 2, argument permutation
doesn’t correspond to any of the standard combinators.

Finally, let’s conclude with a similar example in a more standard predicate logic
notation, involving both combinators and the permutation argument operator intro-
duced above. We will translate the variable-laden predicate

likes(y,x) AND likes(x,y)

into the equivalent combinatory logic tree. Let us first recall the combinator S whose
function is to distribute an argument over two terms.

S fgx= (f x) (g x)

Assume that the two inputs are going to be given to us as a list. Now, the combi-
natory logic representation of this is

S (B AND (B (P {2,1} likes))) likes
We now show how this would be evaluated to produce the correct expression:
S (B AND (B (P {2,1} likes))) likes (x,y)
S gets evaluated first, to produce
(B AND (B (P {2,1} likes)) (x,y)) (likes (x,v))
now the first B
AND ((B (P {2,1} likes)) (x,y)) (likes (x,y))

now the second one

AND ((P {2,1} likes) (x,y)) (likes (x,vy))
now P
AND (likes (v,x)) (likes (x,v))

which is what we wanted.

2 Springer
http://www.springer.com/978-94-6239-029-4

Engineering General Intelligence, Part 2

The CogPrime Architecture for Integrative, Embodied
AGI

Goertzel, B.; Pennachin, C.; Geisweiller, M.

2014, XX, 562 p. 42 illus., 9 illus. in color., Hardcowver
ISBEN: 978-94-6239-029-4

& product of Atlantis Press

	2 Knowledge Representation Using the Atomspace
	2.1 Introduction
	2.2 Denoting Atoms
	2.2.1 Meta-Language
	2.2.2 Denoting Atoms

	2.3 Representing Functions and Predicates
	2.3.1 Execution Links
	2.3.2 Denoting Schema and Predicate Variables
	2.3.3 Variable and Combinator Notation
	2.3.4 Inheritance Between Higher-Order Types
	2.3.5 Advanced Schema Manipulation

